JP2008274416A - Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor - Google Patents

Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor Download PDF

Info

Publication number
JP2008274416A
JP2008274416A JP2008079591A JP2008079591A JP2008274416A JP 2008274416 A JP2008274416 A JP 2008274416A JP 2008079591 A JP2008079591 A JP 2008079591A JP 2008079591 A JP2008079591 A JP 2008079591A JP 2008274416 A JP2008274416 A JP 2008274416A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
less
rolled steel
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008079591A
Other languages
Japanese (ja)
Inventor
Naoki Yoshinaga
直樹 吉永
Masashi Azuma
昌史 東
Koji Sakuma
康治 佐久間
Naoki Maruyama
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008079591A priority Critical patent/JP2008274416A/en
Priority to MX2010010386A priority patent/MX2010010386A/en
Priority to CA2718098A priority patent/CA2718098C/en
Priority to KR1020107021118A priority patent/KR101103203B1/en
Priority to CN2008801281683A priority patent/CN101978083B/en
Priority to PCT/JP2008/070612 priority patent/WO2009118945A1/en
Priority to BRPI0822384A priority patent/BRPI0822384B1/en
Priority to EP08873613A priority patent/EP2267175B1/en
Priority to JP2010505269A priority patent/JP4593691B2/en
Priority to US12/934,039 priority patent/US8657970B2/en
Publication of JP2008274416A publication Critical patent/JP2008274416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-rolled steel sheet provided with both fatigue characteristics of 520-670 MPa class tensile strength and stretch-flanging workability, and a producing method thereof. <P>SOLUTION: The hot-rolled steel sheet excellent in the fatigue characteristics and the stretch-flanging workability contains 0.015 to <0.040% C, <0.05% Si, 0.9-1.8% Mn, <0.02% P, <0.01% S, <0.1% Al, <0.006% N, 0.06 to <0.11% Ti, 2.5 to <3.5% Ti/C and the balance Fe with inevitable impurities, wherein the maximum tensile strength is 520 to 720 MPa, the aging index (AI) is >15 MPa, product of bore-expanding ratio (λ)% and total elongation (EL)% is ≥2350, and the fatigue limit is ≥200 MPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は疲労特性と伸びフランジ性に優れた熱延鋼板およびその製造方法に関するものであり、特に優れた伸びフランジ性を発現させる均一なミクロ組織を有し、厳しい伸びフランジ加工が要求される部品でも容易に成形できる。   The present invention relates to a hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, and a method for producing the same, and has a uniform microstructure that expresses particularly excellent stretch flangeability and a component that requires severe stretch flange processing. But it can be easily molded.

近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただし、Al合金等の軽金属は比強度が高いという利点があるものの鋼に比較して著しく高価であるためその適用は特殊な用途に限られている。従ってより安価かつ広い範囲に自動車の軽量化を推進するためには鋼板の高強度化が必要とされている。   In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, their application is limited to special applications because they are significantly more expensive than steel. Therefore, it is necessary to increase the strength of the steel sheet in order to promote the weight reduction of automobiles at a lower cost and in a wider range.

材料の高強度化は一般的に成形性(加工性)等の材料特性を劣化させるため、材料特性を劣化させずに如何に高強度化を図るかが高強度鋼板を開発する上で重要となる。特に内板部材、構造部材、足廻り部材用鋼板に求められる特性としては伸びフランジ性、延性、疲労耐久性および耐食性等が重要であり高強度とこれら特性を如何に高次元でバランスさせるかが重要である。   Higher strength of materials generally deteriorates material properties such as formability (workability), so how to increase strength without deteriorating material properties is important in developing high strength steel sheets. Become. Stretch flangeability, ductility, fatigue durability, corrosion resistance, etc. are particularly important properties required for inner plate members, structural members, and steel plates for suspension members, and how to balance these properties at a high level with high strength. is important.

このように高強度化と諸特性、特に成形性を両立するために鋼のミクロ組織中に残留オーステナイトを含むことで成形中にTRIP(TRansformation Induced Plasticity)現象を発現させることで飛躍的に成形性(延性および深絞り性)を向上させたTRIP鋼が開示されている(例えば、特許文献1、2参照)。しかしながら、伸びフランジ性には一般に劣っている。従って、高強度でありながら伸びフランジ性に著しく優れた鋼板が切望されている。   In this way, in order to achieve both high strength and various properties, especially formability, the steel microstructure contains residual austenite, and thus the TRIP (Transformation Induced Plasticity) phenomenon is manifested during forming to dramatically improve formability. A TRIP steel with improved (ductility and deep drawability) is disclosed (see, for example, Patent Documents 1 and 2). However, the stretch flangeability is generally inferior. Therefore, a steel sheet having high strength and extremely excellent stretch flangeability is desired.

伸びフランジ性に優れた熱延鋼板についてはいくつかの開示がある。特許文献3には、アシキュラーフェライト単相組織を有する熱延鋼板が開示されている。しかしながら、このような低温変態生成物単独の組織では延性が低く、伸びフランジ成形以外の用途に用いることが困難である。
特許文献4には、フェライトとベイナイトからなる組織を有する鋼板が開示されているが、このような複合組織鋼では、比較的良好な延性が得られるものの、伸びフランジ性を表す指標である穴拡げ率が低い傾向にある。
さらに特許文献5には、フェライト体積率が高い鋼板が開示されている。しかしこれにはSiが多量に含有されているため、疲労特性などに問題を生じる場合がある。このようなSiによる弊害を避けるためには、熱延中または/および熱延後に表面改質を図ることが必要となり、特殊な設備導入が必要となったり、生産性が劣化したりと問題も多い。
There are several disclosures regarding hot-rolled steel sheets with excellent stretch flangeability. Patent Document 3 discloses a hot rolled steel sheet having an acicular ferrite single phase structure. However, the structure of such a low temperature transformation product alone has low ductility and is difficult to use for applications other than stretch flange molding.
Patent Document 4 discloses a steel sheet having a structure composed of ferrite and bainite. With such a composite structure steel, although relatively good ductility can be obtained, hole expansion which is an index representing stretch flangeability is disclosed. The rate tends to be low.
Further, Patent Document 5 discloses a steel plate having a high ferrite volume fraction. However, since this contains a large amount of Si, there may be a problem in fatigue characteristics. In order to avoid such harmful effects due to Si, it is necessary to modify the surface during and / or after hot rolling, and there is a problem that special equipment must be introduced or productivity is deteriorated. Many.

特許文献6,7にはTiを添加した穴拡げ性の良好な熱延鋼板が開示されている。しかしながらTi/Cは適切に制御されておらず、穴拡げ率がさほど高くない。
特開2000−169935号公報 特開2000−169936号公報 特開2000−144259号公報 特開昭61−130454号公報 特開平8−269617号公報 特開2005−248240号公報 特開2004−131802号公報
Patent Documents 6 and 7 disclose hot-rolled steel sheets with good hole expansibility to which Ti is added. However, Ti / C is not properly controlled, and the hole expansion rate is not so high.
JP 2000-169935 A JP 2000-169936 A JP 2000-144259 A JP 61-130454 A JP-A-8-269617 JP-A-2005-248240 JP 2004-131802 A

本発明は、引張最高強度が520〜720MPaで優れた伸びフランジ成形性と良好な延性を有し、疲労特性にも優れた熱延鋼板およびその製造方法を提供するものである。   The present invention provides a hot-rolled steel sheet having excellent tensile flange formability and excellent ductility at a maximum tensile strength of 520 to 720 MPa and excellent fatigue characteristics, and a method for producing the same.

本発明者らは、上記課題を克服すべく鋭意研究を重ねた。その結果、まず、Siを極力低いレベルに抑制すること、また、組織をフェライト主体とすること、さらには固溶Cを若干でも残存させること、Ti量とC量との比に留意することが重要であることを新たに見出した。   The present inventors have intensively studied to overcome the above problems. As a result, first of all, it should be noted that Si is suppressed to the lowest level, that the structure is mainly composed of ferrite, and that even a small amount of solute C remains, and the ratio of Ti amount to C amount is noted. Newly found to be important.

即ち、本発明の要旨は、以下の通りである。
(1)質量%にて、C :0.015以上0.040%未満、Si:0.05%未満、Mn:0.9以上1.8%以下、P :0.02%未満、S :0.01%未満、Al:0.1%未満、N :0.006%未満、Ti:0.06以上0.11%未満、Ti/C=2.5以上3.5未満を含み、残部がFe及び不可避的不純物からなる成分を有する熱延鋼板であって、引張最高強度が520MPa以上かつ720MPa未満、
時効指数AIが15MPa超、穴拡げ率(λ)%と全伸び(El)%の積が2350以上、疲労限が200MPa以上であることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
(2)上記(1)に記載の熱延鋼板が、さらに質量%にて、Nb:0.001以上0.04%以下、B:0.0001以上0.004%以下、Cu:0.01以上1.5%以下、Ni:0.01以上0.8%以下、Mo:0.02以上1.0%以下、V:0.001以上0.2%以下、Cr:0.01以上1.5%以下、W:0.01以上1.0%以下の一種または二種以上を含有することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
(3)上記(1)または上記(2)のいずれか1項に記載の熱延鋼板が、さらに、質量%にて、Ca:0.0005以上0.005%以下、REM:0.0005以上0.05%以下、の一種または二種を含有することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
(4)上記(1)〜(3)のいずれか1項に記載の熱延鋼板にめっきが施されていることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.015 or more and less than 0.040%, Si: less than 0.05%, Mn: 0.9 or more and 1.8% or less, P: less than 0.02%, S: Less than 0.01%, Al: less than 0.1%, N: less than 0.006%, Ti: 0.06 or more and less than 0.11%, Ti / C = 2.5 or more and less than 3.5, the balance Is a hot-rolled steel sheet having a component consisting of Fe and inevitable impurities, the maximum tensile strength is 520 MPa or more and less than 720 MPa,
Hot rolling with excellent fatigue characteristics and stretch flangeability characterized by an aging index AI of more than 15 MPa, a product of hole expansion ratio (λ)% and total elongation (El)% of 2350 or more, fatigue limit of 200 MPa or more steel sheet.
(2) The hot-rolled steel sheet according to the above (1) is further mass%, Nb: 0.001 to 0.04%, B: 0.0001 to 0.004%, Cu: 0.01 1.5% or less, Ni: 0.01 or more and 0.8% or less, Mo: 0.02 or more and 1.0% or less, V: 0.001 or more and 0.2% or less, Cr: 0.01 or more and 1 A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, characterized by containing one or more of 5% or less and W: 0.01 or more and 1.0% or less.
(3) The hot-rolled steel sheet according to any one of (1) or (2) above is further, in mass%, Ca: 0.0005 or more and 0.005% or less, REM: 0.0005 or more. A hot rolled steel sheet excellent in fatigue characteristics and stretch flangeability, characterized by containing one or two of 0.05% or less.
(4) A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, wherein the hot-rolled steel sheet according to any one of (1) to (3) is plated.

(5)上記(1)〜(4)のいずれか1項に記載の熱延鋼板を得るための熱間圧延する際に、前記成分を有する鋼片を1100℃以上に加熱し、粗圧延を1000℃以上の温度で終了し、830〜980℃の温度域で仕上げ圧延を終了後0.5秒以上空冷し、750〜600℃の温度域を10〜40℃/secの範囲の平均冷却速度で冷却し、440〜560℃にて巻き取ることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(6)上記(5)に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを仕上圧延開始までの間、および/または粗バーの仕上圧延中に加熱することを特徴とする、疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(7)上記(5)または(6)のいずれか1項に記載の熱間圧延に際し、粗圧延終了から仕上圧延開始までの間にデスケーリングを行うことを特徴とする、疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(8)上記(5)〜(7)のいずれか1項に記載の熱間圧延後、780℃以下で焼鈍を行うことを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(9)上記(5)〜(7)のいずれか1項に記載の熱間圧延後、得られた熱延鋼板を780℃以下で加熱し、次いでめっき浴中に浸漬させて鋼板表面をめっきすることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(10)上記(9)に記載の製造方法に際し、めっき後、めっき合金化処理することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。
(5) When hot-rolling to obtain the hot-rolled steel sheet according to any one of (1) to (4) above, the steel slab having the above components is heated to 1100 ° C. or higher to perform rough rolling. Finish at a temperature of 1000 ° C. or higher, finish cooling in the temperature range of 830 to 980 ° C., air cool for 0.5 seconds or more, and average cooling rate in the temperature range of 750 to 600 ° C. in the range of 10 to 40 ° C./sec. A method for producing a hot-rolled steel sheet excellent in fatigue properties and stretch flangeability, characterized by being cooled at 440 to 560 ° C.
(6) In the hot rolling described in (5) above, the rough bar after completion of rough rolling of the steel slab is heated until the start of finish rolling and / or during the finish rolling of the coarse bar, A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability.
(7) In the hot rolling described in any one of the above (5) and (6), descaling is performed between the end of rough rolling and the start of finish rolling, and fatigue characteristics and stretch flanges A method for producing hot-rolled steel sheets with excellent properties.
(8) Production of a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability, characterized by annealing at 780 ° C. or lower after hot rolling according to any one of (5) to (7) above. Method.
(9) After hot rolling according to any one of (5) to (7) above, the obtained hot-rolled steel sheet is heated at 780 ° C. or lower and then immersed in a plating bath to plate the steel sheet surface. A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability.
(10) A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability, characterized by performing a plating alloying treatment after plating in the production method according to (9) above.

本発明は、特に伸びフランジ性に優れた熱延鋼板およびその製造方法に関するものであり、これらの鋼板を用いることにより高意匠性ホイールの飾り穴部に代表される厳しい伸びフランジ加工が要求される部品でも容易に成形できる。また伸びフランジ加工後の端面性状も2次剪断面やそれに類似する欠陥などがなく良好である。塗装後耐食性にも優れている。しかも、鋼板強度は、良好な疲労特性を有し、引張最高強度で520〜670MPaと高強度であるので板厚の低減が可能となる。     The present invention relates to a hot-rolled steel sheet having excellent stretch flangeability and a method for producing the same, and by using these steel sheets, severe stretch-flange processing typified by a decorative hole portion of a high-design wheel is required. Even parts can be easily molded. Also, the end face properties after the stretch flange processing are good with no secondary shear surface and similar defects. Excellent corrosion resistance after painting. In addition, the steel sheet strength has good fatigue characteristics, and the maximum tensile strength is as high as 520 to 670 MPa, so that the plate thickness can be reduced.

以下に、本発明について詳細に説明する。
まず、上記(1)について説明する。
Cは、本発明において最も重要な元素の一つである。0.04%以上含有していると伸びフランジ割れの起点となる炭化物が増加し、穴拡げ値が劣化するだけでなく強度が上昇してしまい加工性が劣化するので、0.04%未満とする。伸びフランジ性の観点からは0.035%未満が望ましい。また、0.015%未満では、強度が不足するので0.015%以上とする。
The present invention is described in detail below.
First, (1) will be described.
C is one of the most important elements in the present invention. If it contains 0.04% or more, the carbide that becomes the starting point of stretch flange crack increases, not only the hole expansion value deteriorates but also the strength increases and the workability deteriorates, so that it is less than 0.04%. To do. From the viewpoint of stretch flangeability, it is preferably less than 0.035%. Further, if less than 0.015%, the strength is insufficient, so 0.015% or more.

Siは、熱延板表面にSiスケールと呼ばれる表面模様を形成し、成形品の表面性状を悪化させるだけでなく、表面粗度を荒くするため、疲労特性も劣化させる場合がある。また、化成処理性が劣化し、結果耐食性も劣悪となる。したがって、Si量は極力低く含有量を抑制する必要がある。したがって、上限を0.05%未満とする。これによって粗圧延後に高圧デスケーリングをせずとも、良好な化成処理性と塗装後耐食性を確保することが可能となる。下限は特に定めないが、0.001%未満とするには大きなコストアップを伴うのでこれが実質的な下限である。     Si forms a surface pattern called Si scale on the surface of the hot-rolled sheet, and not only deteriorates the surface properties of the molded product, but also roughens the surface roughness, so that the fatigue characteristics may be deteriorated. Moreover, chemical conversion processability deteriorates and, as a result, corrosion resistance also becomes inferior. Therefore, it is necessary to suppress the Si content as low as possible. Therefore, the upper limit is made less than 0.05%. This makes it possible to ensure good chemical conversion properties and post-coating corrosion resistance without high pressure descaling after rough rolling. The lower limit is not particularly defined, but it is a substantial lower limit because it causes a large cost increase to be less than 0.001%.

Mnは、本発明において重要な元素である。Mnはフェライト変態温度を低温化するため組織の微細化効果があり、疲労特性に好ましい。また比較的安価に強度を高めることが可能であるため0.9%以上添加する。過剰の添加は伸びフランジ性や疲労特性が劣化するので、1.8%以下を上限とする。上限は好ましくは1.5%未満である。     Mn is an important element in the present invention. Since Mn lowers the ferrite transformation temperature, it has an effect of refining the structure and is preferable for fatigue characteristics. Further, since it is possible to increase the strength relatively inexpensively, 0.9% or more is added. Excessive addition deteriorates stretch flangeability and fatigue characteristics, so 1.8% or less is the upper limit. The upper limit is preferably less than 1.5%.

Pは、伸びフランジ性や溶接性、溶接部の疲労強度を劣化させるので0.02%未満を上限とする。0.01%未満がより好ましい上限である。下限は特に指定しないが、0.001%以下とするのは製鋼技術上困難であるためこれが実質的な下限である。
Sは、熱間圧延時の割れを引き起こすばかりでなく、多すぎると穴拡げ性を劣化させるA系介在物を生成するので極力低減させるべきであるが、0.01%未満ならば許容できる範囲である。ただし、高い穴拡げ性を必要とする場合は0.0040%未満が、さらに高い穴拡げが要求される場合は、0.0025%以下が望ましい。
Since P deteriorates stretch flangeability, weldability, and fatigue strength of the welded portion, the upper limit is made less than 0.02%. Less than 0.01% is a more preferable upper limit. The lower limit is not particularly specified, but it is a practical lower limit because it is difficult to make it 0.001% or less in terms of steelmaking technology.
S not only causes cracking during hot rolling, but if it is too much, it generates A-based inclusions that deteriorate hole expandability, so it should be reduced as much as possible. It is. However, when high hole expandability is required, it is preferably less than 0.0040%, and when higher hole expandability is required, 0.0025% or less is desirable.

Alは、溶鋼脱酸のために添加しても良いが、コストの上昇を招くため、その上限を0.1%未満とする。また、あまり多量に添加すると、非金属介在物を増大させ伸びや穴拡げ性を劣化させるので望ましくは0.06%未満とする。Alは無添加でも構わない。
Nは、Tiと結合してTiNを形成し、穴拡げ性や疲労特性に悪影響を及ぼすためその上限を0.006%未満とする。好ましくは0.004%未満である。下限は特に設けないが、0.0005%未満を安定して得ることは困難であるのでこれが実質的な下限である。
Al may be added for deoxidation of molten steel, but the upper limit is set to less than 0.1% because of an increase in cost. Further, if added too much, non-metallic inclusions are increased and elongation and hole expansibility are deteriorated, so the content is desirably less than 0.06%. Al may not be added.
N combines with Ti to form TiN and adversely affects hole expansibility and fatigue characteristics, so the upper limit is made less than 0.006%. Preferably it is less than 0.004%. Although there is no particular lower limit, it is difficult to stably obtain less than 0.0005%, which is a practical lower limit.

Tiは本発明において極めて重要な元素である。Tiは強度を高めるために必須であるほか、穴拡げ性も向上させる効果がある。したがって、0.06%以上の添加が必須である。しかしながら添加しすぎると強度が高くなりすぎたり穴拡げ性や疲労特性が低下したりする場合があるので、0.11%未満を上限とする。0.075%以上0.10%未満がより好ましい範囲である。
Ti/Cは質量比で2.5〜3.5未満とする。これが2.5未満では高強度を安定して得ることができない。一方、3.5以上では、後述する本発明において非常に重要な固溶Cの確保が困難となる結果、穴拡げ性や疲労特性が劣化する。
Ti is an extremely important element in the present invention. Ti is indispensable for increasing the strength and has the effect of improving the hole expandability. Therefore, addition of 0.06% or more is essential. However, if added too much, the strength may become too high, or the hole expansibility and fatigue characteristics may deteriorate, so the lower limit is made less than 0.11%. A range of 0.075% or more and less than 0.10% is a more preferable range.
Ti / C is 2.5 to less than 3.5 by mass ratio. If this is less than 2.5, high strength cannot be obtained stably. On the other hand, if it is 3.5 or more, it becomes difficult to secure solid solution C which is very important in the present invention described later, and as a result, hole expansibility and fatigue characteristics deteriorate.

本発明で得られる熱延鋼板の引張最高強度は、520〜720MPa未満である。520MPa未満では高強度化のメリットが小さく、720MPa以上だと成形性が劣化する。一方、高意匠性ホイール等の厳しい成形性や形状凍結性が求められる場合には、670MPa未満であることがより望ましい。なお、引張試験は、JIS Z 2241の方法にしたがって行う。     The maximum tensile strength of the hot-rolled steel sheet obtained in the present invention is less than 520 to 720 MPa. If it is less than 520 MPa, the merit of increasing the strength is small, and if it is 720 MPa or more, the formability deteriorates. On the other hand, when strict moldability and shape freezing property such as a high-design wheel are required, the pressure is more preferably less than 670 MPa. The tensile test is performed according to the method of JIS Z 2241.

Oは特に限定しないが、多すぎると粗大な酸化物が増えて穴拡げ性を損なうので、0.012%が実質的な上限である。より好ましくは、0.006%以下、さらに好ましくは0.003%以下である。     O is not particularly limited, but if it is too much, coarse oxides increase and the hole expandability is impaired, so 0.012% is a practical upper limit. More preferably, it is 0.006% or less, More preferably, it is 0.003% or less.

時効指数AI(Aging Index)は本発明において極めて重要である。AIとは固溶C量および/または固溶N量の指標となるが、本発明においては、NはTiやAlと結合するため固溶N量は無視することができる。したがってAIは固溶C量に対応する。AIは15MPa超である。15MPa以下では良好な穴拡げ性と疲労特性とを確保することができない。AIの上限は特に設けないが、80MPaを超えると固溶Cが多すぎて成形性が低下する場合があるのでこれを上限とする。
なお、AIは本発明の鋼板の場合には以下のようにして測定する。まず、6.5〜8.5%の引張歪を付与する。このときの流動応力をσ1とする。一旦除荷して試験片を引張試験機から取り外し、100℃にて1時間保持する熱処理を施す。その後、再度引張試験を行う。そこで得られた上部降伏応力をσ2とする。AI(MPa)=σ2−σ1で定義される。なお引張試験はJIS Z 2241の方法にしたがって行う。
The aging index AI (Aging Index) is very important in the present invention. AI is an indicator of the amount of solid solution C and / or the amount of solid solution N, but in the present invention, since N binds to Ti and Al, the amount of solid solution N can be ignored. Therefore, AI corresponds to the amount of dissolved C. AI is greater than 15 MPa. If it is 15 MPa or less, good hole expansibility and fatigue characteristics cannot be ensured. The upper limit of AI is not particularly provided, but if it exceeds 80 MPa, the amount of solid solution C is too much and the moldability may be lowered, so this is the upper limit.
In the case of the steel sheet of the present invention, AI is measured as follows. First, a tensile strain of 6.5 to 8.5% is applied. The flow stress at this time is σ1. Once unloaded, the test piece is removed from the tensile tester and subjected to heat treatment that is held at 100 ° C. for 1 hour. Thereafter, the tensile test is performed again. The upper yield stress obtained there is assumed to be σ2. It is defined by AI (MPa) = σ2−σ1. The tensile test is performed according to the method of JIS Z 2241.

伸びフランジ性は、穴拡げ値と全伸びのバランスが良いほど優れる。穴拡げ率(%)と全伸び(%)の積が2350未満であると、成形中に伸びフランジ割れが発生する頻度が高くなるため、その最適な範囲を2350以上に制限した。より厳しい成形品形状でも割れが発生しない条件として3400以上がより好ましい。なお、本発明鋼板を意匠性の高いホイール部材に適用する場合には、穴拡げ率が140%未満では、フランジ端面に割れが発生する場合があり、穴拡げ率は140%以上であることが望ましい。更に好ましくは160%以上である。なお、穴拡げ率は、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って行う。
疲労特性は応力振幅一定の完全両振り曲げ疲労試験(応力比R=−1)によって評価し、繰り返し数1×10回での疲労強度の上限を疲労限とする。疲労限が200MPa未満であると、成形品が使用中に疲労破壊する場合があるため、適切な疲労限の範囲を200MPa以上に制限した。220MPa以上がより好ましい範囲である。
Stretch flangeability is more excellent as the balance between hole expansion value and total elongation is better. If the product of the hole expansion rate (%) and the total elongation (%) is less than 2350, the frequency of stretch flange cracking during molding increases, so the optimal range was limited to 2350 or more. 3400 or more is more preferable as a condition for preventing cracking even in a stricter molded product shape. In addition, when applying this invention steel plate to a wheel member with high designability, when a hole expansion rate is less than 140%, a crack may generate | occur | produce in a flange end surface, and a hole expansion rate may be 140% or more. desirable. More preferably, it is 160% or more. The hole expansion rate is determined according to the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
The fatigue characteristics are evaluated by a complete swing bending fatigue test (stress ratio R = −1) with a constant stress amplitude, and the upper limit of the fatigue strength at the number of repetitions of 1 × 10 7 times is defined as the fatigue limit. If the fatigue limit is less than 200 MPa, the molded product may undergo fatigue failure during use. Therefore, the appropriate fatigue limit range was limited to 200 MPa or more. 220 MPa or more is a more preferable range.

次に上記(2)および(3)について説明する。
Nbは疲労特性を向上させる効果を有するため、0.001〜0.04%添加してもよい。0.001%未満の添加では特段の効果が認められないのでこれを下限とする。一方0.04%を超えて添加すると穴拡げ性が著しく低下する場合があるのでこれを上限とする。0.01%超〜0.03%未満が好ましい添加量の範囲である。
Next, (2) and (3) will be described.
Since Nb has an effect of improving fatigue characteristics, 0.001 to 0.04% may be added. If the addition is less than 0.001%, no particular effect is observed, so this is the lower limit. On the other hand, if over 0.04% is added, the hole expandability may be significantly reduced, so this is the upper limit. A range of more than 0.01% to less than 0.03% is a preferable addition amount.

Bは、焼き入れ性を向上させることを通じて鋼板強度を安価に高めるのに役立つので添加してもよい。ただし、0.0001%未満ではその効果を得るために不十分であり、0.004%超添加するとスラブ割れが起こる場合がある。好ましくは、0.0004%以上、0.0025%以下である。     B may be added because it helps to increase the strength of the steel sheet at low cost by improving the hardenability. However, if it is less than 0.0001%, it is insufficient for obtaining the effect, and if it exceeds 0.004%, slab cracking may occur. Preferably, it is 0.0004% or more and 0.0025% or less.

さらに、強度を付与するためにCu、Ni、Mo、V、Cr、Wの析出強化もしくは固溶強化元素の一種または二種以上を添加してもよい。ただし、それぞれ、0.01%、0.01%、0.02%、0.001%、0.01%、0.01%未満ではその効果を得ることができない。また、それぞれ、1.5%、0.8%、1.0%、0.2%、1.5%、1.0%を超え添加してもその効果は飽和するばかりか成形性の劣化を招き、また、コストアップとなる。     Furthermore, in order to impart strength, one or more of precipitation strengthening or solid solution strengthening elements of Cu, Ni, Mo, V, Cr, W may be added. However, if less than 0.01%, 0.01%, 0.02%, 0.001%, 0.01%, and 0.01%, respectively, the effect cannot be obtained. Moreover, even if added over 1.5%, 0.8%, 1.0%, 0.2%, 1.5%, and 1.0%, the effect is not only saturated but also the moldability is deteriorated. Incurs a cost increase.

CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態を変化させて無害化したりする元素である。ただし、0.0005%未満添加してもその効果がなく、Caならば0.005%超、REMならば0.05%超添加してもその効果が飽和するのでCa=0.0005〜0.005%、REM=0.0005〜0.05%添加することが望ましい。なお、REMとはLa,Ce等の希土類元素のことである。     Ca and REM are elements that can be harmless by changing the form of non-metallic inclusions that can be a starting point of destruction or deteriorate workability. However, even if less than 0.0005% is added, there is no effect, and if Ca exceeds 0.005%, if REM exceeds 0.05%, the effect is saturated, so Ca = 0.005 to 0 It is desirable to add 0.005% and REM = 0.005 to 0.05%. Note that REM is a rare earth element such as La or Ce.

なお、これらを主成分とする鋼にZr、Sn、Co、Zn、Mgを合計で1%以下含有しても構わない。しかしながらSnは熱間圧延時に疵が発生する恐れがあるので0.05%以下が望ましい。     Note that Zr, Sn, Co, Zn, and Mg may be contained in a total amount of 1% or less in steel containing these as main components. However, Sn is preferably 0.05% or less because wrinkles may occur during hot rolling.

次に上記(4)について説明する。
上記(1)〜(3)に述べた鋼板にはめっきが施されていても構わない。めっきの主成分は、亜鉛、アルミ、錫、あるいは他のあらゆるめっきで構わない。まためっきは、溶融めっき、合金化溶融めっきのほか電気めっきであっても良い。めっきの化学成分は、主成分の他に、Fe、Mg、Al、Cr、Mn、Sn、Sb、Znなどの元素を1種類以上含有しても構わない。
Next, the above (4) will be described.
The steel plates described in the above (1) to (3) may be plated. The main component of the plating may be zinc, aluminum, tin, or any other plating. The plating may be electroplating in addition to hot dipping and alloying hot dipping. The chemical component of plating may contain one or more elements such as Fe, Mg, Al, Cr, Mn, Sn, Sb, and Zn in addition to the main component.

次に上記(5)〜(10)に述べた鋼板の製造方法について説明する。
熱間圧延に際して、鋼片は1100℃以上に加熱する必要がある。この温度(スラブ抽出温度)が1100℃未満では、十分な強度を得ることが困難となる。これはTi系炭化物が1100℃未満では十分に溶解せず、結果として析出物が粗大となるためと考えられる。1140℃以上がより好ましい。上限は特に設けないが、1300℃超としても特段の効果はなく、コストアップとなるのでこれが実質的な上限である。
粗圧延の終了温度は本発明において極めて重要である。すなわち、粗圧延は1000℃以上で完了する必要がある。これが1000℃未満では穴拡げ性が劣化するためである。
したがって、これを下限とする。より好ましくは1060℃以上である。
Next, the manufacturing method of the steel plate described in the above (5) to (10) will be described.
In the hot rolling, the steel slab needs to be heated to 1100 ° C. or higher. When this temperature (slab extraction temperature) is less than 1100 ° C., it is difficult to obtain sufficient strength. This is presumably because Ti-based carbides are not sufficiently dissolved when the temperature is lower than 1100 ° C., and as a result, the precipitates become coarse. 1140 degreeC or more is more preferable. Although there is no particular upper limit, even if the temperature exceeds 1300 ° C., there is no particular effect and the cost is increased, which is a practical upper limit.
The end temperature of rough rolling is extremely important in the present invention. That is, rough rolling needs to be completed at 1000 degreeC or more. This is because if it is less than 1000 ° C., the hole expandability deteriorates.
Therefore, this is the lower limit. More preferably, it is 1060 degreeC or more.

熱間圧延の仕上げ温度は、830〜980℃とする。この温度が830℃未満では熱延板の強度が熱延後の冷却や巻取り条件によって大きく変動したり、引張特性の面内異方性が大きくなったりする。また穴拡げ性も劣化するので、これを下限とする。一方、仕上げ温度を980℃超とすると熱延板が硬質となり延性が劣化することがある。また熱延ロールが損耗しやすいので好ましくない。したがって980℃を仕上げ温度の上限とする。850〜960℃が好ましく、870〜930℃がより好ましい範囲である。     The finishing temperature of hot rolling is 830 to 980 ° C. If this temperature is less than 830 ° C., the strength of the hot-rolled sheet varies greatly depending on the cooling and winding conditions after hot rolling, or the in-plane anisotropy of the tensile properties increases. Moreover, since the hole expandability also deteriorates, this is set as the lower limit. On the other hand, when the finishing temperature exceeds 980 ° C., the hot-rolled sheet becomes hard and the ductility may deteriorate. Moreover, since a hot-rolling roll tends to wear out, it is not preferable. Accordingly, 980 ° C. is the upper limit of the finishing temperature. 850-960 degreeC is preferable and 870-930 degreeC is a more preferable range.

熱延の仕上げ圧延終了後は、0.5秒以上空冷とする。これが0.5秒未満では良好な穴拡げ特性を得ることができない。この理由は必ずしも明らかではないが0.5秒未満ではオーステナイトの再結晶が進まず、結果として機械的特性の異方性が大きくなり、穴拡げ性が低下する傾向になると思われる。1.0秒超の空冷時間を設けることが更に好ましい。     After the hot rolling finish rolling, air cooling is performed for 0.5 seconds or longer. If this is less than 0.5 seconds, good hole expansion characteristics cannot be obtained. The reason for this is not necessarily clear, but in less than 0.5 seconds, recrystallization of austenite does not proceed, and as a result, the anisotropy of mechanical properties increases and the hole expandability tends to decrease. More preferably, an air cooling time of more than 1.0 seconds is provided.

引き続く冷却過程において、750〜600℃の温度域での平均冷却速度は10〜40℃/sの範囲とする。この温度域での冷却速度が低いと粗大な析出物が析出し、穴拡げ性が低下する場合がある。一方、40℃/s超とすると組織が不均一となり穴拡げ性が低下したり、コイルの幅方向や長手方向に材質がばらついたりする場合があるのでこれを上限とする。15〜40℃/sが好ましく、20超〜35℃/sがさらに好ましい範囲である。     In the subsequent cooling process, the average cooling rate in the temperature range of 750 to 600 ° C. is in the range of 10 to 40 ° C./s. If the cooling rate in this temperature range is low, coarse precipitates may be deposited and the hole expansibility may be reduced. On the other hand, if it exceeds 40 ° C./s, the structure becomes non-uniform and the hole expandability may be lowered, or the material may vary in the width direction or longitudinal direction of the coil, so this is the upper limit. 15-40 degreeC / s is preferable and more than 20-35 degreeC / s is a more preferable range.

巻取り温度は、440〜560℃とする。巻取り温度が440℃未満とするとベイナイトやマルテンサイトといった硬質組織が出現し、穴拡げ性が劣化する。また、560℃超では本発明で最も重要な要件の一つである、固溶Cの確保が困難となり、結果として穴拡げ性が劣悪となる場合がある。巻取り温度のより好ましい範囲は、460〜540℃である。     The winding temperature is 440 to 560 ° C. When the coiling temperature is less than 440 ° C., a hard structure such as bainite or martensite appears and the hole expandability deteriorates. If it exceeds 560 ° C., it is difficult to ensure the solid solution C, which is one of the most important requirements in the present invention, and as a result, the hole expandability may be deteriorated. A more preferable range of the coiling temperature is 460 to 540 ° C.

粗圧延後の粗バーは、仕上げ圧延完了までの間(仕上圧延中)に加熱処理を施してもよい。また、加熱処理は、粗圧延終了した後の粗バーに対して仕上圧延開始までの間にも行なうことができる。これによって板の幅方向や長手方向の温度が均一となり、製品のコイル内における材質ばらつきも小さくなる。加熱方法は特に指定するものではない。炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。
同様に粗圧延終了から仕上圧延開始までの間にデスケーリングを行っても良い。これによって表面粗さが小さくなり疲労特性や穴拡げ性が向上する場合がある。デスケーリングの方法も特に指定しないが、高圧の水流によって行うのが最も一般的である。
このようにして得られた熱延鋼板を再加熱(焼鈍)しても構わない。この場合、再加熱の温度が780℃を超えると、鋼板の引張強度と疲労限が低下するので、その適正範囲を780℃以下に制限した。伸びフランジ性の観点からは、680℃以下がより好ましい範囲である。加熱方法は特に指定するものではなく、炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。加熱時間については特に定めないが、550℃以上の加熱保持時間が30分を越える場合には、520MPa以上の強度を得るために最高加熱温度は720℃以下であることが望ましい。
The rough bar after rough rolling may be subjected to heat treatment until finish rolling is completed (during finish rolling). Further, the heat treatment can be performed before the finish rolling is started on the rough bar after the rough rolling is completed. As a result, the temperature in the width direction and the longitudinal direction of the plate becomes uniform, and the material variation in the coil of the product is also reduced. The heating method is not particularly specified. What is necessary is just to perform by methods, such as a furnace heating, induction heating, electrical heating, and high frequency heating.
Similarly, descaling may be performed from the end of rough rolling to the start of finish rolling. This may reduce the surface roughness and improve fatigue characteristics and hole expansibility. The descaling method is not particularly specified, but the most common method is a high-pressure water stream.
The hot-rolled steel sheet thus obtained may be reheated (annealed). In this case, when the reheating temperature exceeds 780 ° C., the tensile strength and fatigue limit of the steel sheet decrease, so the appropriate range is limited to 780 ° C. or less. From the viewpoint of stretch flangeability, 680 ° C. or lower is a more preferable range. The heating method is not particularly specified, and may be performed by methods such as furnace heating, induction heating, energization heating, and high frequency heating. The heating time is not particularly defined, but when the heating and holding time of 550 ° C. or higher exceeds 30 minutes, the maximum heating temperature is desirably 720 ° C. or lower in order to obtain a strength of 520 MPa or higher.

スキンパス圧延は、形状矯正や時効性、さらには疲労特性の改善に奏効するので、酸洗後、または酸洗前に行ってもよい。行う場合には圧下率3%を上限とすることが望ましい。3%を超えると鋼板の成形性が損なわれるからである。また、酸洗は目的に応じて行ってもよい。   Skin pass rolling is effective in improving shape correction, aging, and fatigue properties, and therefore may be performed after pickling or before pickling. In the case of carrying out, it is desirable that the rolling reduction is 3% as an upper limit. This is because if it exceeds 3%, the formability of the steel sheet is impaired. Moreover, you may perform pickling according to the objective.

このようにして得られた熱延鋼板を酸洗後、連続亜鉛めっき設備あるいは連続焼鈍亜鉛めっき設備を用いて、鋼板を加熱し、溶融めっきを施しても構わない。鋼板の加熱温度が780℃を超えると、鋼板の引張強度と疲労限が低下するので、加熱温度の適正範囲を780℃以下に制限した。さらに溶融めっきを施した後に、合金化溶融亜鉛めっきとしてもよい。なお、加熱温度は、伸びフランジ性の観点から、680℃以下がより好ましい範囲である。   After pickling the hot-rolled steel sheet thus obtained, the steel sheet may be heated and hot-dip plated using a continuous galvanizing facility or a continuous annealing galvanizing facility. When the heating temperature of the steel plate exceeds 780 ° C., the tensile strength and fatigue limit of the steel plate decrease, so the appropriate range of heating temperature is limited to 780 ° C. or less. Further, after hot-dip plating, alloyed hot-dip galvanization may be used. The heating temperature is more preferably 680 ° C. or less from the viewpoint of stretch flangeability.

本発明における鋼板のミクロ組織は、フェライトを主相とすることが延性の確保にとって好ましい。すなわちフェライトの体積率が96%超であると良い。より好ましくは97%超である。フェライトとはポリゴナルフェライト(PF)、擬ポリゴナルフェライト(Quasi−Polygonal Ferrite、以下αqとする)のうちの一種類以上である。その他にはパーライトを体積率で4%未満含んでも良い。ミクロ組織には、セメンタイトやTiCといった炭化物、MnS等の硫化物、TiNなどの窒化物、Tiなどの炭硫化物、といった析出粒子や酸化物などの晶出粒子は含まない。 The microstructure of the steel sheet in the present invention preferably has ferrite as the main phase for ensuring ductility. That is, the volume fraction of ferrite is preferably over 96%. More preferably, it is over 97%. The ferrite is one or more of polygonal ferrite (PF) and pseudo-polygonal ferrite (Quasi-Polygonal Ferrite, hereinafter referred to as αq). In addition, pearlite may be contained in a volume ratio of less than 4%. The microstructure does not include precipitated particles such as carbides such as cementite and TiC, sulfides such as MnS, nitrides such as TiN, and carbon sulfides such as Ti 4 C 2 S 2, and crystallized particles such as oxides.

本発明において熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き、各種の2次精練で目的の成分含有量になるように成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料にはスクラップを使用しても構わない。連続鋳造によって得たスラブの場合には高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。   In the present invention, the production method preceding hot rolling is not particularly limited. In other words, following smelting with a blast furnace, converter, electric furnace, etc., the components are adjusted so that the desired component content is obtained by various secondary scouring, and then, in addition to normal continuous casting, casting by ingot method, thin slab What is necessary is just to cast by methods, such as casting. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be directly sent to a hot rolling mill as it is a high-temperature slab, or may be hot-rolled after being reheated in a heating furnace after being cooled to room temperature.

さらに、仕上げ圧延後の鋼板表面の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが望ましい。これは、例えば金属材料疲労設計便覧、日本材料学会編、84ページに記載されている通り熱延または酸洗ままの鋼板の疲労強度は鋼板表面の最大高さRyと相関があることから明らかである。また、その後の仕上げ圧延はデスケーリング後に再びスケールが生成してしまうのを防ぐために5秒以内に行うのが望ましい。Raは1.40μm未満が好ましく、より好ましくは1.20μm未満である。
また、粗圧延と仕上げ圧延の間にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。
Furthermore, it is desirable that the maximum height Ry of the steel sheet surface after finish rolling is 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. This is clear from the fact that the fatigue strength of a hot-rolled or pickled steel sheet correlates with the maximum height Ry of the steel sheet surface, as described in, for example, Metal Material Fatigue Design Handbook, edited by the Japan Society of Materials Science, page 84. is there. Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling. Ra is preferably less than 1.40 μm, more preferably less than 1.20 μm.
Moreover, a sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.

以下に、実施例により本発明をさらに説明する。
表1に示す化学成分を有するA〜Pの鋼は、転炉にて溶製して、連続鋳造後、表2に示す条件で再加熱、粗圧延に続く仕上げ圧延で4.5mmの板厚にした後に巻き取った。ただし、表中の化学組成についての表示は質量%である。また、鋼D、鋼O,鋼Pについては粗圧延後に衝突圧2.7MP、流量0.001リットル/cmの条件でデスケーリングを施した。さらに、表1に示す鋼Iについては、450℃で亜鉛めっきを施した。
The following examples further illustrate the present invention.
The steels A to P having chemical components shown in Table 1 are melted in a converter, and after continuous casting, are reheated under the conditions shown in Table 2, and the thickness is 4.5 mm by finish rolling following rough rolling. And then wound up. However, the display about the chemical composition in a table | surface is the mass%. Steel D, steel O, and steel P were subjected to descaling under the conditions of a collision pressure of 2.7 MP and a flow rate of 0.001 liter / cm 2 after rough rolling. Furthermore, the steel I shown in Table 1 was galvanized at 450 ° C.

Figure 2008274416
Figure 2008274416

製造条件の詳細を表2に示す。ここで、「SRT」はスラブ抽出温度、「粗バー加熱」は粗圧延終了から仕上圧延開始までの間または/および仕上げ圧延中に粗バーまたは圧延材を加熱の有無を、「RT」は粗圧延終了温度、「FT」は仕上げ圧延終了温度、「冷却開始までの時間」とは仕上げ圧延終了から冷却を開始するまでの時間を、「750〜600℃での冷却速度」とは冷却時に750〜600℃の温度域を通過する時の平均冷却速度を、「CT」とは巻取温度を示している。   Details of the manufacturing conditions are shown in Table 2. Here, “SRT” is the slab extraction temperature, “rough bar heating” is the time from the end of rough rolling to the start of finish rolling or / and whether or not the rough bar or rolled material is heated during finish rolling, and “RT” is the rough temperature. Rolling end temperature, “FT” is finish rolling end temperature, “time to start cooling” is time from finish rolling to start cooling, “cooling rate at 750 to 600 ° C.” is 750 during cooling The average cooling rate when passing through a temperature range of ˜600 ° C., “CT” indicates the coiling temperature.

Figure 2008274416
Figure 2008274416

表3は、1200℃に再加熱したスラブを仕上げ圧延温度:900℃、冷却開始までの時間:2s、750〜600℃での平均冷却速度:35℃/s、巻き取り温度530℃にて熱延を行った素材を、酸洗を施した後、焼鈍あるいは亜鉛めっき処理を施した例を示す。鋼A−3,鋼A−4は箱型焼鈍炉にて焼鈍のみを行った例であり、鋼B−3,鋼B−4は連続焼鈍めっき設備にて焼鈍を行い引き続き亜鉛めっきを行った例であり、鋼C−3、鋼C−4、鋼D−3、鋼E−3,鋼F−3,鋼L−2、鋼L−3は連続焼鈍めっき設備にて焼鈍を行い引き続き亜鉛めっき、めっき合金化処理を行った例であり、鋼M−2,鋼N−2は酸洗した板を亜鉛めっき温度まで加熱した後、亜鉛めっき及びめっき合金化処理を行った例である。なお、亜鉛めっき浸漬温度は450℃、めっき合金化温度は500℃で行った。   Table 3 shows that the slab reheated to 1200 ° C. is finished rolling temperature: 900 ° C., time to start cooling: 2 s, average cooling rate at 750 to 600 ° C .: 35 ° C./s, and heated at a winding temperature of 530 ° C. The example which annealed or galvanized, after giving the pickled material the pickling is shown. Steel A-3 and Steel A-4 are examples in which annealing was performed only in a box-type annealing furnace, and Steel B-3 and Steel B-4 were annealed in a continuous annealing plating facility and subsequently galvanized. For example, Steel C-3, Steel C-4, Steel D-3, Steel E-3, Steel F-3, Steel L-2, and Steel L-3 were annealed in a continuous annealing plating facility and subsequently zinc This is an example in which plating and plating alloying treatment were performed, and Steel M-2 and Steel N-2 were examples in which the pickled plate was heated to the galvanizing temperature and then subjected to galvanizing and plating alloying treatment. The galvanizing immersion temperature was 450 ° C. and the plating alloying temperature was 500 ° C.

Figure 2008274416
Figure 2008274416

このようにして得られた薄鋼板の引張試験は、供試材を、まず、JIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。
AI試験は引張試験と同様にJIS Z 2201に記載の5号試験片に加工し、7%の引張予ひずみを試験片に付与した後、100℃×60分の熱処理を施してから再度引張試験を実施した。ここでAIとは、再引張での上降伏点から10%の引張り予ひずみの流動応力を差し引いたと定義される。
伸びフランジ性は日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従い、穴拡げ値にて評価した。
なお、表2において「TS」は引張最高強度であり、「YS」は降伏強度であり、「EI」は伸びであり、「AI」は時効指数であり、「λ」は穴拡げ率である。
Thus, the tensile test of the obtained thin steel plate performed the test material first to the 5th test piece of JISZ2201, and performed it according to the test method of JISZ2241.
The AI test is processed into a test piece No. 5 described in JIS Z 2201 in the same way as the tensile test, and after applying a 7% tensile pre-strain to the test piece, it is subjected to a heat treatment at 100 ° C. for 60 minutes and then a tensile test again. Carried out. Here, AI is defined as subtracting 10% tensile prestrain flow stress from the upper yield point in re-tensioning.
The stretch flangeability was evaluated by the hole expansion value according to the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
In Table 2, “TS” is the maximum tensile strength, “YS” is the yield strength, “EI” is the elongation, “AI” is the aging index, and “λ” is the hole expansion ratio. .

一方、ミクロ組織の調査は鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された板厚の1/4tにおける視野の写真にて行った。ミクロ組織の体積分率とは上記金属組織写真において面積分率で定義される。本発明の鋼板は、上述の通り、主にPFとαqから構成される。αqとは日本鉄鋼協会基礎研究会ベイナイト調査研究部会/編;低炭素鋼のベイナイト組織と変態挙動に関する最近の研究−ベイナイト調査研究部会最終報告書−(1994年 日本鉄鋼協会)に記載されているように拡散的機構により生成するポリゴナルフェライトと無拡散のマルテンサイトの中間段階にある変態組織と定義されるミクロ組織のうちのひとつである。αqとはPFと同様にエッチングにより内部構造が現出しないが、形状がアシュキュラーでありPFとは明確に区別される。ここでは、対象とする結晶粒の周囲長さlq、その円相当径をdqとするとそれらの比(lq/dq)がlq/dq≧3.5を満たす粒がαqである。     On the other hand, the microstructure is examined by grinding a sample cut from a 1/4 W or 3/4 W position of the steel plate width to a cross section in the rolling direction, etching using a Nital reagent, and 200-500 times magnification using an optical microscope. This was carried out with a photograph of the field of view at 1/4 t of the observed plate thickness. The volume fraction of the microstructure is defined by the area fraction in the metal structure photograph. As described above, the steel sheet of the present invention is mainly composed of PF and αq. αq is described in the Japan Iron and Steel Institute Basic Research Group Bainite Research Group / Edition; Recent Research on Bainite Structure and Transformation Behavior of Low Carbon Steels-Final Report of Bainite Research Group (1994 Japan Iron and Steel Institute) Thus, it is one of the microstructures defined as the transformation structure in the intermediate stage between the polygonal ferrite formed by the diffusive mechanism and the non-diffusible martensite. The internal structure of αq does not appear by etching like PF, but the shape is ash and is clearly distinguished from PF. Here, αq is a grain whose ratio (lq / dq) satisfies lq / dq ≧ 3.5 when the perimeter length lq of the target crystal grain is dq and the equivalent circle diameter is dq.

本発明例については、所定の量の鋼成分を含有し、そのミクロ組織が主に均一なフェライトからなり、疲労特性と伸びフランジ性を兼ね備えた熱延鋼板が得られている。すなわち、本発明記載の方法によって評価した穴拡げ値が140%を上回っている。
また、疲労特性は完全両振り曲げ試験によって評価し、繰り返し数1×10回での疲労強度の上限と定義した。結果は表2及び表3のとおり、本発明例では疲労強度にも優れている。
これに対して本発明外のものは、化学成分または/および製造方法が発明の範囲外にあり、結果として強度、穴拡げ性、疲労特性などが劣位となっていることが分かる。
また、表2において、成分が本発明外である鋼K−1,K−2では、疲労限が200以下であるため本発明外となっている。
In the present invention example, a hot-rolled steel sheet containing a predetermined amount of a steel component, whose microstructure is mainly composed of uniform ferrite, and has both fatigue characteristics and stretch flangeability is obtained. That is, the hole expansion value evaluated by the method described in the present invention exceeds 140%.
Further, the fatigue characteristics were evaluated by a complete double-bending bending test and defined as the upper limit of the fatigue strength at the number of repetitions of 1 × 10 7 times. As shown in Tables 2 and 3, the results of the present invention are excellent in fatigue strength.
On the other hand, it can be seen that those outside the present invention have chemical components or / and production methods outside the scope of the invention, resulting in inferior strength, hole expansibility, fatigue characteristics, and the like.
Moreover, in Table 2, since the fatigue limit is 200 or less in steel K-1, K-2 whose component is outside the present invention, it is out of the present invention.

本発明によって得られる鋼板は、特に自動車のシャシー及び足回り部品に好適で、中でもホイールディスク用として最適である。伸びフランジ性を初めとする成形性に優れるため、デザインの自由度を高め、いわゆる高意匠性ホイールを実現する。塗装後の耐食性に優れ、また、高強度であるので板厚を低減することが可能となり、自動車車体の軽量化を通じて地球環境保全に貢献するものである。   The steel sheet obtained by the present invention is particularly suitable for automobile chassis and suspension parts, and is particularly suitable for wheel disks. Since it has excellent formability such as stretch flangeability, the design freedom is increased and so-called high-design wheels are realized. It is excellent in corrosion resistance after painting, and because it has high strength, it is possible to reduce the plate thickness, contributing to the conservation of the global environment through weight reduction of the car body.

Claims (10)

質量%にて、
C :0.015以上0.040%未満、
Si:0.05%未満、
Mn:0.9以上1.8%以下、
P :0.02%未満、
S :0.01%未満、
Al:0.1%未満、
N :0.006%未満、
Ti:0.06以上0.11%未満、
Ti/C=2.5以上3.5未満を含み、
残部がFe及び不可避的不純物からなる成分を有する熱延鋼板であって、
引張最高強度が520MPa以上かつ720MPa未満、
時効指数AIが15MPa超、
穴拡げ率(λ)%と全伸び(El)%の積が2350以上、
疲労限が200MPa以上であることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
In mass%
C: 0.015 or more and less than 0.040%,
Si: less than 0.05%,
Mn: 0.9 to 1.8%,
P: less than 0.02%,
S: less than 0.01%,
Al: less than 0.1%,
N: less than 0.006%,
Ti: 0.06 or more and less than 0.11%,
Including Ti / C = 2.5 or more and less than 3.5,
The balance is a hot-rolled steel sheet having a component composed of Fe and inevitable impurities,
The maximum tensile strength is 520 MPa or more and less than 720 MPa,
Aging index AI is over 15 MPa,
The product of hole expansion rate (λ)% and total elongation (El)% is 2350 or more,
A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, characterized by a fatigue limit of 200 MPa or more.
請求項1に記載の熱延鋼板が、さらに質量%にて、
Nb:0.001以上0.04%以下、
B :0.0001以上0.004%以下、
Cu:0.01以上1.5%以下、
Ni:0.01以上0.8%以下、
Mo:0.02以上1.0%以下、
V :0.001以上0.2%以下、
Cr:0.01以上1.5%以下、
W :0.01以上1.0%以下の一種または二種以上を含有することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
The hot-rolled steel sheet according to claim 1, further in mass%,
Nb: 0.001 or more and 0.04% or less,
B: 0.0001 to 0.004%,
Cu: 0.01 to 1.5%,
Ni: 0.01 to 0.8%,
Mo: 0.02 to 1.0%,
V: 0.001 to 0.2%,
Cr: 0.01 to 1.5%,
W: A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, characterized by containing one or more of 0.01 to 1.0%.
請求項1または請求項2のいずれか1項に記載の熱延鋼板が、さらに、質量%にて、
Ca:0.0005以上0.005%以下、
REM:0.0005以上0.05%以下、
の一種または二種を含有することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。
The hot-rolled steel sheet according to any one of claims 1 and 2, further in mass%,
Ca: 0.0005 or more and 0.005% or less,
REM: 0.0005 or more and 0.05% or less,
A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, characterized by containing one or two of the above.
請求項1〜3のいずれか1項に記載の熱延鋼板にめっきが施されていることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板。   A hot-rolled steel sheet excellent in fatigue characteristics and stretch flangeability, wherein the hot-rolled steel sheet according to any one of claims 1 to 3 is plated. 請求項1〜4のいずれか1項に記載の熱延鋼板を得るための熱間圧延する際に、前記成分を有する鋼片を1100℃以上に加熱し、粗圧延を1000℃以上の温度で終了し、830〜980℃の温度域で仕上げ圧延を終了後0.5秒以上空冷し、750〜600℃の温度域を10〜40℃/secの範囲の平均冷却速度で冷却し、440〜560℃にて巻き取ることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   When hot-rolling to obtain the hot-rolled steel sheet according to any one of claims 1 to 4, the steel slab having the components is heated to 1100 ° C or higher, and rough rolling is performed at a temperature of 1000 ° C or higher. After finishing finish rolling in the temperature range of 830 to 980 ° C., air cooling is performed for 0.5 seconds or more, and the temperature range of 750 to 600 ° C. is cooled at an average cooling rate in the range of 10 to 40 ° C./sec. A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability, characterized by winding at 560 ° C. 請求項5に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを仕上圧延開始までの間、および/または粗バーの仕上圧延中に加熱することを特徴とする、疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   Fatigue property, characterized in that, during the hot rolling according to claim 5, the rough bar after rough rolling of the steel slab is heated until the start of finish rolling and / or during the finish rolling of the rough bar. And a method for producing hot-rolled steel sheets with excellent stretch flangeability. 請求項5または請求項6のいずれか1項に記載の熱間圧延に際し、粗圧延終了から仕上圧延開始までの間にデスケーリングを行うことを特徴とする、疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   In the hot rolling according to any one of claims 5 and 6, descaling is performed from the end of rough rolling to the start of finish rolling, and is excellent in fatigue characteristics and stretch flangeability A method for producing a hot-rolled steel sheet. 請求項5〜7のいずれか1項に記載の熱間圧延後、780℃以下で焼鈍を行うことを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability, characterized by performing annealing at 780 ° C or lower after hot rolling according to any one of claims 5 to 7. 請求項5〜7のいずれか1項に記載の熱間圧延後、得られた熱延鋼板を780℃以下で加熱し、次いでめっき浴中に浸漬させて鋼板表面をめっきすることを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   The hot-rolled steel sheet obtained after hot rolling according to any one of claims 5 to 7 is heated at 780 ° C or lower, and then immersed in a plating bath to plate the steel sheet surface. A method for producing hot-rolled steel sheets with excellent fatigue characteristics and stretch flangeability. 請求項9に記載の製造方法に際し、めっき後、めっき合金化処理することを特徴とする疲労特性と伸びフランジ性に優れた熱延鋼板の製造方法。   A method for producing a hot-rolled steel sheet having excellent fatigue characteristics and stretch flangeability, characterized in that after the plating, the alloying treatment is performed after the plating.
JP2008079591A 2007-03-30 2008-03-26 Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor Pending JP2008274416A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008079591A JP2008274416A (en) 2007-03-30 2008-03-26 Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor
MX2010010386A MX2010010386A (en) 2008-03-26 2008-11-12 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet.
CA2718098A CA2718098C (en) 2008-03-26 2008-11-12 Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same
KR1020107021118A KR101103203B1 (en) 2008-03-26 2008-11-12 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet
CN2008801281683A CN101978083B (en) 2008-03-26 2008-11-12 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet
PCT/JP2008/070612 WO2009118945A1 (en) 2008-03-26 2008-11-12 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet
BRPI0822384A BRPI0822384B1 (en) 2008-03-26 2008-11-12 hot rolled steel sheet excellent in fatigue properties and stretch flange formability, and method for making it
EP08873613A EP2267175B1 (en) 2008-03-26 2008-11-12 Hot rolled steel sheet possessing excellent fatigue properties and stretch-flange ability and process for producing the hot rolled steel sheet
JP2010505269A JP4593691B2 (en) 2008-03-26 2008-11-12 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability and method for producing the same
US12/934,039 US8657970B2 (en) 2008-03-26 2008-11-12 Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007095094 2007-03-30
JP2008079591A JP2008274416A (en) 2007-03-30 2008-03-26 Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor

Publications (1)

Publication Number Publication Date
JP2008274416A true JP2008274416A (en) 2008-11-13

Family

ID=40052737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008079591A Pending JP2008274416A (en) 2007-03-30 2008-03-26 Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor

Country Status (1)

Country Link
JP (1) JP2008274416A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008597A1 (en) 2010-07-15 2012-01-19 Jfeスチール株式会社 High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof
JP2012136773A (en) * 2010-12-07 2012-07-19 Nippon Steel Corp High strength hot-rolled steel plate excellent in low temperature toughness and hole expansibility and method of producing the same
CN103147000A (en) * 2013-03-20 2013-06-12 钢铁研究总院 Polygonal ferrite-acicular ferrite two-phase steel plate/belt and production method thereof
JP2014043630A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal Hot rolled steel sheet
WO2014119260A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and production method thereof
CN104357743A (en) * 2014-11-17 2015-02-18 武汉钢铁(集团)公司 Hot-rolled strip steel with hole expansion rate of greater than 90% and production method of hot-rolled strip steel
KR20170138508A (en) * 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
KR20170138510A (en) * 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008597A1 (en) 2010-07-15 2012-01-19 Jfeスチール株式会社 High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansion properties, and manufacturing method thereof
US9765413B2 (en) 2010-07-15 2017-09-19 Jfe Steel Corporation High-strength galvanized steel sheet with high yield ratio having excellent ductility and stretch flange formability and method for manufacturing the same
JP2012136773A (en) * 2010-12-07 2012-07-19 Nippon Steel Corp High strength hot-rolled steel plate excellent in low temperature toughness and hole expansibility and method of producing the same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2014043630A (en) * 2012-08-28 2014-03-13 Nippon Steel & Sumitomo Metal Hot rolled steel sheet
CN104968820A (en) * 2013-01-31 2015-10-07 杰富意钢铁株式会社 High-strength hot-rolled steel sheet and production method thereof
WO2014119260A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 High-strength hot-rolled steel sheet and production method thereof
CN103147000A (en) * 2013-03-20 2013-06-12 钢铁研究总院 Polygonal ferrite-acicular ferrite two-phase steel plate/belt and production method thereof
CN104357743A (en) * 2014-11-17 2015-02-18 武汉钢铁(集团)公司 Hot-rolled strip steel with hole expansion rate of greater than 90% and production method of hot-rolled strip steel
KR20170138508A (en) * 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
KR20170138510A (en) * 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
EP3305930A4 (en) * 2015-05-26 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for producing same
KR102029566B1 (en) 2015-05-26 2019-10-07 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
KR102029565B1 (en) 2015-05-26 2019-10-07 닛폰세이테츠 가부시키가이샤 Steel plate and its manufacturing method
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof

Similar Documents

Publication Publication Date Title
JP4593691B2 (en) Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability and method for producing the same
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
KR101218448B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP4555694B2 (en) Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
US9073292B2 (en) High strength galvanized steel sheet having excellent formability and method for manufacturing the same
JP5699889B2 (en) Hot-dip galvanized steel sheet excellent in formability with a tensile strength of 980 MPa or more and its manufacturing method
JP4998756B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5047649B2 (en) High-strength hot-rolled steel sheet and galvanized steel sheet excellent in stretch flangeability and their production method
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP4580157B2 (en) Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP2008274416A (en) Hot-rolled steel sheet excellent in fatigue characteristics and stretch-flanging, and producing method therefor
JP2010255094A (en) High-strength cold-rolled steel sheet having excellent workability, hot-dip galvanized high-strength steel sheet, and method for producing them
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2012229466A (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape fixability, and method of manufacturing the same
JP2005256089A (en) Hot dip galvanized compound high-strength steel sheet having excellent formability and bore expandability and method for manufacturing the same
JP4883216B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
JP2011168877A (en) High-strength hot-dip galvanized steel sheet with excellent material stability and processability and method for producing the same
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
TWI519650B (en) Zn-coated steel sheet and method of manufacturing the same
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof