KR100946148B1 - Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same - Google Patents

Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same Download PDF

Info

Publication number
KR100946148B1
KR100946148B1 KR1020070118472A KR20070118472A KR100946148B1 KR 100946148 B1 KR100946148 B1 KR 100946148B1 KR 1020070118472 A KR1020070118472 A KR 1020070118472A KR 20070118472 A KR20070118472 A KR 20070118472A KR 100946148 B1 KR100946148 B1 KR 100946148B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
less
excluding
acid corrosion
corrosion resistance
Prior art date
Application number
KR1020070118472A
Other languages
Korean (ko)
Other versions
KR20080046114A (en
Inventor
이수희
정기조
김교성
김재익
김성환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of KR20080046114A publication Critical patent/KR20080046114A/en
Application granted granted Critical
Publication of KR100946148B1 publication Critical patent/KR100946148B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Abstract

황산 응축에 의한 부식특성이 뛰어난 강과 그 제조방법이 제공된다. Provided is a steel having excellent corrosion characteristics by sulfuric acid condensation and a method of manufacturing the same.

내황산 부식강은, 중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성된다. 이 강은 폴리고날 페라이트의 조직을 갖을 수 있으며, 또는 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)의 저온조직에서 선택되는 적어도 1종이 포함될 수 있다. 저온조직이 포함되는 경우에 상온에서부터 500℃까지의 다양한 온도영역에서 우수한 기계적 성질을 발휘한다. Sulfuric acid corrosion resistant steels are, by weight, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (excluding 0%), S: 0.03% P: 0.02% or less, Al: 0.01% to 0.1%, Cu: 0.2% to 1.0%, Co: 0.02% to 0.1%, Cr: 0.1% to 1.0%, Ni: 0.1% or less (excluding 0%), Nb: It is composed of 0.02 ~ 0.1%, remaining Fe and other unavoidable impurities. The steel may have a tissue of polygonal ferrite, or may include at least one selected from low temperature tissues of excicular ferrite, bainitic ferrite, and bainite. When the low temperature tissue is included, it exhibits excellent mechanical properties in various temperature ranges from room temperature to 500 ° C.

내황산부식강, 저온조직, 고온강도 Sulfuric acid corrosion resistant steel, low temperature structure, high temperature strength

Description

황산 내식성이 우수한 내황산 부식강과 그 제조방법{STEEL EXCELLENT IN RESISTANCE TO CORROSION BY SULFURIC ACID AND METHOD FOR MANUFACTURING THE SAME}Sulfuric acid corrosion resistant steel with excellent sulfuric acid corrosion resistance and its manufacturing method {STEEL EXCELLENT IN RESISTANCE TO CORROSION BY SULFURIC ACID AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 발전소 보일러의 덕트, 공기 예열기, 보일러 배관 및 주변부품의 소재로 사용되는 내황산 부식강과 그 제조방법에 관한 것이다. 보다 상세하게는, 저온-저황산 농도 구간에서는 황산 내식성을 향상시켜 설비의 수명을 연장시킬 수 있는 내황산 부식강과 그 제조방법에 관한 것이다.The present invention relates to sulfuric acid corrosion-resistant steel used as a material for ducts, air preheaters, boiler pipes and peripheral parts of power plant boilers and a method of manufacturing the same. More specifically, it relates to sulfuric acid corrosion-resistant steel and a method for manufacturing the sulfuric acid corrosion resistance that can improve the corrosion resistance of sulfuric acid in the low temperature-low sulfuric acid concentration section to extend the life of the equipment.

황을 함유하는 연료를 연소시키면 배기 가스중에 SOx가 형성되어 배기가스중의 수분과 화학적 결합을 통해 황산이 생긴다. 배기가스의 온도가 내려가 약 160℃도 정도의 황산 이슬점에 도달하면, 강표면에 응축되는 황산에 의해 심한 부식환경이 조성된다. 화력발전소의 설비중 200℃ 이하의 저온부에 사용되는 소재는 뛰어난 황산 응축 부식특성 요구되지만, 기계적 성질은 통상적인 저합금강의 수준을 만족하면 적용이 가능하다. 하지만, 200℃이상의 온도에서 운전되는 보일러 덕트나 공기 예열기의 경우, 황산 내식성과 더불어 우수한 고온 인장특성 또한 필요시 되고 있다.Combustion of sulfur-containing fuels forms SOx in the exhaust gas, resulting in sulfuric acid through chemical bonding with moisture in the exhaust gas. When the temperature of the exhaust gas reaches a dew point of sulfuric acid of about 160 ° C., a severe corrosive environment is created by sulfuric acid condensing on the steel surface. Materials used for low temperature parts below 200 ° C in thermal power plants are required to have excellent sulfuric acid condensation corrosion properties, but mechanical properties can be applied if they meet the level of conventional low alloy steels. However, boiler ducts and air preheaters operating at temperatures above 200 ° C. also require excellent high temperature tensile properties in addition to sulfuric acid corrosion resistance.

일반적으로는 강중에 Cu와 더불어 다른 내식성 합금원소를 복합첨가 하여 내식성을 확보하는 강종이 개발되어 왔고, 그 대표적인 종래의 기술로는 한국 공개특허공보 2001-010931, 2003-0047470, 2003-0047469, 일본 공개특허공보 2002-327236호 등이 있다.In general, steel has been developed to secure corrosion resistance by adding a combination of Cu and other corrosion-resistant alloy elements in steel, and the representative conventional techniques are Korean Patent Publications 2001-010931, 2003-0047470, 2003-0047469, Japan Published Patent Publication No. 2002-327236.

한국 공개특허공보 2001-010931호에서는 Cu-Co 복합첨가로 내황산 부식특성을 개선하는 기술이다. 2003-0047470호에서는 Cu-Co계 부식강에서 내식성 측면에서 Cr를 표면결함측면에서 Ni를 첨가하는 기술이며, 2003-0047469호에서는 Cu-Co계에서 Nb를 첨가하여 강도를 확보하는 기술이다. 이들은 Cu-Co계에서 내황산 부식특성을 개선하고 있다. 그런데, 저온-저농도의 구간에서 내황산 부식특성이 요구되는 실정이어서 그 특성의 개선이 필요하다. 또한, 소재의 기계적 성질이 고온환경에 적용하기에는 미흡하여 보일러 덕트나 공기 예열기 등의 설비에는 적합하지 않다. Korean Unexamined Patent Publication No. 2001-010931 is a technique for improving sulfuric acid corrosion resistance by the addition of Cu-Co composite. In 2003-0047470, Cr is added to Ni in terms of surface defects in terms of corrosion resistance in Cu-Co-based corrosion steel, and in 2003-0047469, Nb is added in Cu-Co to secure strength. These are improving sulfuric acid corrosion resistance in Cu-Co system. However, since sulfuric acid corrosion resistance is required in the low temperature-low concentration range, the characteristics need to be improved. In addition, the mechanical properties of the material is insufficient to be applied to a high temperature environment, so it is not suitable for a facility such as a boiler duct or an air preheater.

일본 공개특허공보 2002-327236 특허의 경우, Cu-Cr-(Ti, Nb, V, Mo, W)등의 합금성분을 첨가하여 고온설비에 적합한 기계적 성질을 나타내지만, 저온-저황산 농도 구간에서의 내식 특성은 열위한 결과를 보이는 문제점이 있다.In the case of the Japanese Laid-Open Patent Publication No. 2002-327236, an alloy component such as Cu-Cr- (Ti, Nb, V, Mo, W) is added to exhibit mechanical properties suitable for high temperature facilities, but in the low temperature-low sulfuric acid concentration range The corrosion resistance of the product has the problem of showing poor results.

따라서, 본 발명은 상기 문제점을 해결하기 위한 것으로, 저온-저농도의 구간에서 내황산 부식특성이 보다 개선되면서 강도가 우수한 강을 제공하는데, 그 목적이 있다. Accordingly, the present invention is to solve the above problems, to provide a steel with excellent strength while improving the sulfuric acid corrosion resistance in the low temperature-low concentration range, the object is.

나아가, 상온~ 500℃ 이하의 온도영역에서 우수한 기계적 성질을 보이는 고온보증용 고강도 강과 그 제조방법을 제공하는데도 그 목적이 있다. Furthermore, the object of the present invention is to provide a high-temperature guarantee high strength steel showing excellent mechanical properties in a temperature range of room temperature to 500 ° C. or less, and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 저온-저농도 구간에서 내황산 부식특성이 우수한 강은, 중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이(0%는 제외)하, S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 것이다.In order to achieve the above object, the steel having excellent sulfuric acid corrosion resistance in the low temperature-low concentration range of the present invention is, by weight, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%) , Mn: 2.0% or less (excluding 0%), S: 0.03% or less, P: 0.02% or less, Al: 0.01 to 0.1%, Cu: 0.2 to 1.0%, Co: 0.02 to 0.1%, Cr: 0.1 ~ 1.0%, Ni: 0.1% or less (except 0%), Nb: 0.02 ~ 0.1%, remaining Fe and other inevitable impurities.

또한, 고온보증용 고강도 내황산 부식강은, 중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되고, 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)의 저온조직에서 선택되는 적어도 1종이 포함되는 것이다. In addition, high-temperature warranty high-strength sulfuric acid corrosion-resistant steel, in weight%, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (excluding 0%) ), S: 0.03% or less, P: 0.02% or less, Al: 0.01 to 0.1%, Cu: 0.2 to 1.0%, Co: 0.02 to 0.1%, Cr: 0.1 to 1.0%, Ni: 0.1% or less (0% Nb: 0.02 to 0.1%, consisting of the remaining Fe and other unavoidable impurities, at least 1 selected from the low temperature tissues of the excicular ferrite, bainitic ferrite and bainite. Paper is included.

상기 본 발명의 고온보증용 고강도 내황산 부식강은, 중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 강을 열간압연 후 가속냉각하여 500~660℃의 온도로 권취하는 것을 포함하여 이루어진다. The high-temperature warranty high strength sulfuric acid corrosion resistant steel of the present invention, in weight%, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (0% S: 0.03% or less, P: 0.02% or less, Al: 0.01 ~ 0.1%, Cu: 0.2 ~ 1.0%, Co: 0.02 ~ 0.1%, Cr: 0.1 ~ 1.0%, Ni: 0.1% or less ( 0%), Nb: 0.02 ~ 0.1%, the steel consisting of the remaining Fe and other unavoidable impurities, hot-rolled after accelerated cooling and winding to a temperature of 500 ~ 660 ℃.

본 발명의 강에서 Mn의 함량은 1.51-2.0%가 가장 바람직하다. 또한, 상기 내황산부식강에는 V이 추가로 포함될 수 있다. The Mn content in the steel of the present invention is most preferably 1.51-2.0%. In addition, the sulfuric acid corrosion resistant steel may further include V.

본 발명의 고온강도 보증용 내황산 부식강은, 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)의 저온조직에서 선택되는 적어도 1종이 20%이상 포함되는 것이다. Sulfuric acid corrosion resistant steel for high temperature strength guarantee of the present invention is 20% or more of at least one selected from the low temperature tissue of the excicular cooler (accicular ferrite), bainitic ferrite (bainitic ferrite), bainite (bainite).

본 발명의 강에서 상기 Mn, Cr, Ni, Nb은 다음의 관계,

Figure 112007083303211-pat00001
를 만족하는 것이 바람직하다. In the steel of the present invention, Mn, Cr, Ni, and Nb have the following relationship,
Figure 112007083303211-pat00001
It is desirable to satisfy.

본 발명에 따르면 저온-저황산 농도구간에서 내식특성이 개선되면서 또한 상 온강도와 고온강도가 개선되는 유용한 효과가 있는 것이다.According to the present invention, there is a useful effect of improving the room temperature strength and the high temperature strength while improving the corrosion resistance in the low temperature-low sulfuric acid concentration section.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 저온-저황산 농도 부식구간에서의 내식특성과 강도특성을 개선하기 위하여, Cu-Co성분계에서 최적의 성분설계를 도출하는 연구과정에서 도출된 것이다. 본 발명에서는 Cu-Co계 내황산강에서 강도특성을 개선하기 위하여, Mn을 2.0%수준까지 상향화고 Nb를 첨가하면서 그에 따른 내식성의 저하는 Ni의 상한을 0.1%이하(0%는 제외)로 관리하고 Cr을 0.1-1.0%의 범위로 조절하는 것이다. 이와 같이, 본 발명에서는 지금까지 알려진 Cu-Co계 내황산 부식강과는 달리, 본 발명에서는 Mn, Nb, Cr, Ni의 성분의 유기적 관리에 의하여 저온-저황산 농도 부식구간에서의 내식특성과 강도특성을 함께 개선하고 있는 것이다. Cu-Co계에서 Cu의 첨가에 따른 표면결함의 문제를 해결하기 위해서는 Ni를 0.1%이상 첨가하는 것이 필수적이나, 본 발명에 따라 Nb-Cr첨가강에서 표면결함의 문제는 발생하지 않고 Ni을 0.1%이하(0%는 제외)로 하면 내식성은 더욱 개선되는 것이다. The present invention is derived from the process of deriving the optimal component design in the Cu-Co component system in order to improve the corrosion resistance and strength characteristics in the low-temperature sulfuric acid concentration corrosion zone. In the present invention, in order to improve the strength characteristics in Cu-Co-based sulfuric acid steel, while raising the Mn to 2.0% level and adding Nb, the lowering of the corrosion resistance is lower than the upper limit of Ni to 0.1% (excluding 0%). To control the Cr in the range of 0.1-1.0%. Thus, in the present invention, unlike the Cu-Co-based sulfuric acid corrosion-resistant steel known so far, in the present invention, the corrosion resistance and strength in the low-temperature sulfuric acid concentration corrosion zone by the organic management of the components of Mn, Nb, Cr, Ni We are improving the characteristics together. In order to solve the problem of surface defects due to the addition of Cu in the Cu-Co system, it is necessary to add more than 0.1% of Ni. However, according to the present invention, the problem of surface defects in Nb-Cr additive steel does not occur and Ni is 0.1. If it is less than% (except 0%), corrosion resistance will improve further.

나아가, 이와 같이 성분설계된 강에서 가속냉각-저온권취의 프로세스에 의해 고온에서의 강도를 더욱 개선하는 것에도 본 발명의 특징이 있다. 즉, 석출강화 효과와 더불어 저온조직을 형성하는 것에 의해 고온강도를 개선하는 것이다. Furthermore, it is a feature of the present invention to further improve the strength at high temperatures by the process of accelerated cooling-cold winding in such component designed steels. In other words, by forming a low temperature structure with the precipitation strengthening effect to improve the high temperature strength.

C의 함량은 0.15%이하(0%는 제외)가 바람직하다.The content of C is preferably 0.15% or less (excluding 0%).

C의 함량이 0.15%보다 많을 경우 황산 내식성과 용접특성이 크게 저하되어 결함 발생 가능성과 더불어 본 발명이 적용된 설비의 수명이 단축되는 결과가 초래되기 때문에 0.15% 이하(0%는 제외)로 첨가하는 것이 바람직하다.When the content of C is more than 0.15%, sulfuric acid corrosion resistance and welding properties are greatly reduced, which may cause defects and shorten the lifespan of the equipment to which the present invention is applied. It is preferable.

Si의 함량은 1.0%이하(0%는 제외)가 바람직하다.The content of Si is preferably 1.0% or less (excluding 0%).

Si은 주로 강도를 향상시키기 위해 첨가하는 원소이지만, 그 함량이 1.0%보다 높을 경우에는 저온-저황산 농도구간에서 부식특성이 크게 나빠지기 때문에 1.0% 이하(0%는 제외)로 첨가하는 것이 바람직하다.Si is an element mainly added to improve the strength, but if the content is higher than 1.0%, it is preferable to add it to 1.0% or less (excluding 0%) because the corrosion property is significantly worsened in the low-low sulfuric acid concentration section. Do.

Mn의 함량은 2.0%이하(0%는 제외)가 바람직하다. The content of Mn is preferably 2.0% or less (excluding 0%).

Mn은 통상 강중 고용 S를 망간황화물로 석출하여 고용 황에 의한 적열취성을 방지하기 위해 첨가하는것으로, 본 발명에서도 적열취성 방지와 또한, 상온과 고온에서의 강도 향상을 위해 첨가한다. Mn의 함량이 2.0% 초과할 경우 강도 향상 효과 대비 내황산 부식특성이 저해되어 상한을 2.0%로 하는 것이 바람직하다. 상온과 고온에서의 강도 향상을 위해서는 Mn의 함량이 1.51-2.0%로 하는 것이 바람직하다. 이 범위에서는 강도향상을 도모하면서 인성의 저하가 없다. 물론, 원하는 강도에 따라 Mn의 함량이 적절히 선택될 수 있으며, 필요에 따라 Mn의 함량을 0.5-1.50%로 할 수 있다.Mn is usually added to precipitate solid solution S in steel as manganese sulfide to prevent red brittleness due to solid solution sulfur. In the present invention, Mn is also added for preventing red brittleness and improving strength at room temperature and high temperature. When the Mn content exceeds 2.0%, the sulfuric acid corrosion resistance is inhibited in comparison with the strength improving effect, so the upper limit is preferably 2.0%. In order to improve the strength at room temperature and high temperature, the Mn content is preferably set to 1.51-2.0%. In this range, the strength is improved while the toughness is not reduced. Of course, the content of Mn may be appropriately selected according to the desired strength, and if necessary, the content of Mn may be 0.5-1.50%.

S의 함량은 0.03%이하가 바람직하다.The content of S is preferably 0.03% or less.

상기 S는 가능한 낮게 첨가하는 것이 바람직하며, 0.03%초과할 경우 열간취성에 의한 결함발생 가능성이 높기 때문에 상한 값을 0.03%로 하는 것이 바람직하다.It is preferable to add said S as low as possible, and when it exceeds 0.03%, it is preferable to set an upper limit to 0.03% because the possibility of defects by hot brittleness is high.

P의 함량은 0.02%이하가 바람직하다. The content of P is preferably 0.02% or less.

P는 0.02%초과할 경우 강도 상승효과는 기대할 수 있지만, 내황산 부식성이 크게 저하되므로 상한값을 0.02%로 제한하는 것이 바람직하다.When P exceeds 0.02%, strength synergistic effect can be expected, but since sulfuric acid corrosion resistance is greatly reduced, it is preferable to limit the upper limit to 0.02%.

Al의 함량은 0.01-0.1%가 바람직하다. The content of Al is preferably 0.01-0.1%.

Al은 정련 과정에서 탈산 목적으로 첨가되는 원소로서, 0.01%미만에서는 탈산 효과가 적고, 0.1%초과의 경우 Al 산화물의 증가로 표면 결함 발생 확률이 높아진다. Al is an element added for deoxidation purposes in the refining process, and less than 0.01% deoxidation effect, Al exceeds 0.1% increase the probability of surface defects due to the increase of Al oxide.

Cu의 함량은 0.2-1.0%가 바람직하다. The content of Cu is preferably 0.2-1.0%.

Cu는 내황산 부식특성을 고려할 때 반드시 첨가해야 하는 원소로서, 그 함량이 0.2% 이상 되어야 내식특성의 효과가 크게 나타난다. Cu의 함량이 1.0%초과할 경우 첨가량의 증가에 비해 내식성 향상효과는 적으므로 그 상한을 1.0%로 하는 것이 바람직하다.Cu is an element that must be added in consideration of sulfuric acid corrosion resistance, the effect of the corrosion resistance is large when the content is more than 0.2%. If the Cu content is more than 1.0%, the effect of improving the corrosion resistance is small compared to the increase in the amount of addition, so the upper limit is preferably 1.0%.

Co의 함량은 0.02-0.1%가 바람직하다. The content of Co is preferably 0.02-0.1%.

Co는 Cu와 더불어 내황산강의 특징적인 원소로, Co가 첨가되었을 경우 Cu 단독첨가의 효과보다 훨신 더 월등한 내식성 확보가 가능하다. Co 함량이 0.02% 미만인 경우 그 효과가 적고, 0.1%보다 많을 경우 첨가량 대비 내식성 향상이 미비할 뿐 아니라, 제강원가를 크게 높이는 단점도 있다.Co is a characteristic element of sulfuric acid steel together with Cu, and when Co is added, it is possible to secure much better corrosion resistance than the effect of adding Cu alone. If the Co content is less than 0.02%, the effect is less, if more than 0.1% not only does not improve the corrosion resistance compared to the addition amount, there is also a disadvantage that greatly increases the steelmaking cost.

Cr의 함량은 0.1-1.0%가 바람직하다. The content of Cr is preferably 0.1-1.0%.

Cr은 고온에서 Cr계 산화물을 표면에 생성하게 하여 내식성을 향상시키기 위해 첨가한 것으로 첨가량 0.1% 미만에서는 방식피막이 거의 생성되지 않는다. Cr의 첨가량이 증가할수록 방식피막의 발달이 용이하여 방식 효과가 크지만, 1.0%초과할 경우 첨가량의 증가분에 따른 효과가 거의 없다.Cr is added to improve the corrosion resistance by forming Cr-based oxide on the surface at a high temperature, and almost no anticorrosive coating is formed when the added amount is less than 0.1%. As the amount of Cr is increased, the anticorrosive coating is easier to develop, and the anticorrosive effect is large.

Ni의 함량은 0.1%이하(0%는 제외)가 바람직하다. The content of Ni is preferably 0.1% or less (excluding 0%).

Ni은 황산 내식성을 현저히 저해시키는 원소로써, 과거에는 Cu 첨가강의 연속주조 또는 열간압연중에 발생할수 있는 표면결함을 방지하기 위해 첨가하는 원소였다. 그러나, 0.1% 이하(0%는 제외)의 Ni이 첨가되었을 경우에도 표면이 양호하고, 동시에 내식성이 향상되는 결과를 보였다. 또한 제조 원가도 절약할 수 있다. Ni is an element that significantly inhibits sulfuric acid corrosion resistance. In the past, Ni was added to prevent surface defects that may occur during continuous casting or hot rolling of Cu-added steel. However, even when Ni of 0.1% or less (except 0%) was added, the surface was good and corrosion resistance was improved at the same time. In addition, manufacturing costs can be saved.

Nb의 함량은 0.02-0.1%가 바람직히다. The content of Nb is preferably 0.02-0.1%.

Nb은 미세한 NbC 석출물의 효과로 상온 및 고온강도를 향상시킴에 있어 크게 기여하는 원소이다. Nb의 첨가량이 0.02%이상 되어야 목표로 하는 강도를 확보할 수 있으며, 첨가량이 증가할수록 강도는 증가한다. 그러나, Nb의 첨가량이 0.1% 초과할 경우 연성이 크게 감소할 뿐만 아니라, 고용 C의 고갈로 NbC 석출효과를 기대할 수 없게 되기 때문에 상한을 0.1%로 제한하는 것이 바람직하다. Nb의 경우, 다른 합금성분과 비교할 때, 강도를 효과적으로 향상시키면서 내식성을 저하시키지 않는 최적의 원소이기 때문에 가장 적합하다. Nb is an element that greatly contributes to improving room temperature and high temperature strength by the effect of fine NbC precipitates. The target strength can be ensured when the amount of Nb added is 0.02% or more, and the strength increases as the amount added. However, when the amount of Nb added exceeds 0.1%, not only the ductility is greatly reduced, but also the NbC precipitation effect cannot be expected due to the depletion of solid solution C. Therefore, the upper limit is preferably limited to 0.1%. In the case of Nb, it is most suitable because it is an optimum element which improves strength effectively and does not reduce corrosion resistance compared with other alloy components.

상기한 성분을 만족하는 강에는 필요에 따라 합금성분이 첨가될 수 있다. 그 대표적인 예로서 강도 상승을 위해 V의 첨가가 고려될 수 있다. An alloy component may be added to the steel satisfying the above components as necessary. As a representative example, the addition of V may be considered for increasing the strength.

V의 함량은 0.02-0.1%가 바람직히다. The content of V is preferably 0.02-0.1%.

V의 함량이 0.02%미만으로 첨가될 경우에 강도 상승효과가 미비하고, 0.1%를 초과할 경우에는 내식성이 저하되는 경향이 있다. When the V content is added less than 0.02%, the strength synergistic effect is insufficient, and when the content of V exceeds 0.1%, the corrosion resistance tends to be lowered.

상기한 성분계를 만족하는 강은 폴리고날 페라이트 단상 조직을 갖을 수 있다. 이 경우에는 저온-저농도 구간에서의 내식특성과 함께 강도 특성이 좋다. 나아가, 가속냉각을 통해 저온조직을 포함하도록 하는 경우에는 고온인장특성이 보다 개선된다. 본 발명에서 저온조직은 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)으로, 적어도 이들의 1종이 포함되는 것이다. 저온조직의 비율은 20-100%가 가장 바람직하다. The steel satisfying the above component system may have a polygonal ferrite single phase structure. In this case, the strength characteristics are good along with the corrosion resistance in the low temperature-low concentration range. Furthermore, when the low temperature tissue is included through accelerated cooling, the high temperature tensile property is further improved. In the present invention, the low-temperature tissue is an excimer ferrite (accicular ferrite), bainitic ferrite (bainitic ferrite), bainite (bainite), at least one of them are included. The proportion of cold tissue is most preferably 20-100%.

*본 발명의 성분계를 만족하는 강에서 Mn, Nb, Ni, Cr의 성분을 아래와 같은 관계로 유기적으로 제어할 때, 내식특성과 함께 강도특성이 최적화된다. 그러나, 본 발명이 여기에 제한되는 것은 아니다. * In the steel that satisfies the component system of the present invention, when the components of Mn, Nb, Ni, and Cr are organically controlled in the following relationship, the corrosion characteristics and the strength characteristics are optimized. However, the present invention is not limited thereto.

Figure 112007083303211-pat00002
Figure 112007083303211-pat00002

이하, 본 발명의 강의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of the steel of this invention is demonstrated.

본 발명에서는 상기 조성의 강을 통상의 방법으로 슬래브 재가열을 실시하고 열간압연하여 열연판을 제조하거나 또는 열연판을 냉간압연하여 냉연판을 제조할 수 있다. In the present invention, the steel of the composition can be reheated and hot-rolled to produce a hot rolled sheet, or a cold rolled hot rolled sheet can be manufactured by a conventional method.

본 발명의 강은 폴리고날 페라이트 단상 조직을 갖을 수 있다. 이 경우에는 저온-저농도 구간에서의 내식특성과 함께 강도 특성이 좋다. 나아가, 가속냉각을 통해 저온조직을 포함하도록 하는 경우에는 고온인장특성이 보다 개선된다. 본 발명에서 저온조직은 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)의 그룹에서 선택된 적어도 1종이 포함되는 것이다.The steel of the present invention may have a polygonal ferrite single phase structure. In this case, the strength characteristics are good along with the corrosion resistance in the low temperature-low concentration range. Furthermore, when the low temperature tissue is included through accelerated cooling, the high temperature tensile property is further improved. In the present invention, the low-temperature tissue includes at least one selected from the group consisting of an excicular cooler (accicular ferrite), bainitic ferrite, and bainite.

폴리고날 페라이트의 단상 조직을 갖는 강의 제조방법은 특별한 방법이 아니라 통상의 방법에 따라 제조하는 것이다. 즉, 가속냉각과 저온권취가 적용되지 않는 것이다. 따라서, 본 발명에 따라 가속냉각을 통해 저온조직을 포함하는 강의 제 조방법에 대하여 보다 구체적으로 설명하고자 한다. The method for producing steel having a single-phase structure of polygonal ferrite is not a special method, but a conventional method. In other words, accelerated cooling and cold winding are not applied. Therefore, according to the present invention will be described in more detail with respect to the steel manufacturing method including a low-temperature structure through accelerated cooling.

먼저, 본 발명의 성분계를 만족하는 강을 열간압연한 후에 가속냉각하고 500~660℃의 온도로 권취한다. 이러한 제조조건은 저온조직을 얻기 위한 것이다. 바람직한 가속냉각은 평균적으로 30℃/s의 이상의 속도로 하는 것이며 보다 바람직한 조건은 30-50℃/s 하는 것이다. 본 발명에서 가속냉각조건은 상기한 권취온도에서 저온조직을 얻을 수 있는 조건이면 충분한 바, 상기한 가속냉각속도에 반드시 제한되는 것은 아니다. First, after hot rolling a steel which satisfies the component system of the present invention, it is acceleratedly cooled and wound up at a temperature of 500 to 660 ° C. These manufacturing conditions are for obtaining a low temperature structure. Preferred accelerated cooling is at a rate of 30 ° C / s or more on average, and more preferably 30-50 ° C / s. In the present invention, the accelerated cooling condition is sufficient as long as it is a condition capable of obtaining a low temperature structure at the coiling temperature, and is not necessarily limited to the accelerated cooling rate.

이하, 본 발명을 실시예를 통해 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같은 조성을 만족하도록 용해하여 제조한 강괴를 1250℃ 가열로에서 1시간 재가열을 실시한 후, 열간압연 하였다. 열간압연 마무리 온도는 870 ~ 890℃, 그리고 권취온도는 각 조성을 560℃와 660℃ 두가지 조건으로 구분하여 설정하였고, 최종두께는 고객사 사용두께를 고려하여 6.0mm를 목표로 하였다. 열간압연된 시편은 저온-저농도 조건에서 내황산 부식특성을 평가하기 위해 70℃-50%황산용액에 시편을 3시간 침적시켜 부식감량을 측정하였고, 상온/고온(500℃) 인장시험을 통하여 기계적 성질을 평가하였으며, 그 결과를 표 2에 나타내었다. 고온 인장시험 진행시에는 인장시편을 목표온도까지 가열하여 30분 유지시킴으로써 온도 편차를 최소화하고자 하였다. 표 1에서 A1-A12의 강종에서 Al의 함량은 0.03%이다. The steel ingots prepared by melting to satisfy the composition shown in Table 1 were reheated in a 1250 ° C. heating furnace for 1 hour, and then hot rolled. The hot rolling finish temperature was set at 870 ~ 890 ℃, and the winding temperature was set by dividing each composition into two conditions of 560 ℃ and 660 ℃, and the final thickness was set to 6.0mm in consideration of the customer use thickness. In order to evaluate the corrosion resistance of sulfuric acid under low temperature and low concentration conditions, the hot rolled specimen was measured for 3 hours by immersing the specimen in 70 ℃ -50% sulfuric acid solution and measuring the corrosion loss. The properties were evaluated and the results are shown in Table 2. During the high temperature tensile test, the temperature specimen was minimized by maintaining the tensile test specimen to the target temperature for 30 minutes. In Table 1, the Al content is 0.03% in the steel grades A1-A12.

구분division 화학성분(중량%)Chemical composition (% by weight) CC MnMn SiSi PP SS CuCu CoCo CrCr NiNi NbNb VV TiTi (Mn+Cr+Nb)/Ni(Mn + Cr + Nb) / Ni A1A1 0.070.07 0.50.5 0.20.2 0.0150.015 0.0120.012 0.350.35 0.10.1 0.250.25 22 A2A2 0.10.1 0.70.7 0.250.25 0.0150.015 0.0120.012 0.350.35 0.60.6 0.040.04 -- A3A3 0.070.07 1.531.53 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.040.04 4040 A4A4 0.070.07 1.531.53 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.020.02 40.440.4 A5A5 0.070.07 1.531.53 0.20.2 0.0550.055 0.0120.012 0.350.35 0.050.05 0.50.5 0.250.25 0.020.02 6.086.08 A6A6 0.070.07 1.531.53 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.250.25 0.040.04 66 A7A7 0.070.07 1.531.53 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.10.1 0.050.05 0.040.04 32.832.8 A8A8 0.070.07 1.531.53 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.040.04 40.840.8 A9A9 0.070.07 1.801.80 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.040.04 46.846.8 A10A10 0.070.07 0.80.8 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.030.03 26.626.6 A11A11 0.070.07 1.01.0 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.030.03 30.630.6 A12A12 0.070.07 1.21.2 0.20.2 0.0150.015 0.0120.012 0.350.35 0.050.05 0.50.5 0.050.05 0.030.03 34.634.6

구분division 열연 권취 온도Hot rolled coiling temperature 평균 냉각 속도 (℃/s)Average cooling rate (℃ / s) 기계적 성질: 상온 (Mpa, %)Mechanical Properties: Room Temperature (Mpa,%) 기계적 성질: 500℃ (Mpa, %)Mechanical Properties: 500 ℃ (Mpa,%) 부식속도Corrosion rate 비고Remarks YSYS TSTS ElEl YSYS TSTS ElEl Mg/cm2/hrMg / cm2 / hr 목표재질Target material ≥400≥400 ≥500≥500 ≥15≥15 ≥250≥250 ≥310≥310 ≥15≥15 ≤40≤40 A1A1 560560 4040 326326 437437 33.833.8 186186 228228 41.141.1 39.139.1 비교재1Comparative Material 1 660660 2525 295295 414414 40.940.9 167167 216216 41.741.7 39.639.6 비교재2Comparative Material 2 A2A2 560560 4040 487487 572572 20.920.9 340340 395395 40.340.3 55.455.4 비교재3Comparative Material 3 660660 2525 401401 497497 24.424.4 215215 287287 46.046.0 56.856.8 비교재4Comparative Material 4 A3A3 560560 4040 496496 569569 24.924.9 339339 389389 23.523.5 42.542.5 비교재5Comparative Material 5 660660 2525 323323 432432 32.232.2 195195 307307 27.027.0 48.248.2 비교재6Comparative Material 6 A4A4 560560 4040 546546 643643 20.420.4 413413 470470 15.315.3 31.731.7 발명재1Invention 1 660660 2525 407407 504504 25.325.3 269269 368368 28.028.0 36.136.1 발명재8Invention Material 8 A5A5 560560 4040 518518 613613 21.421.4 376376 441441 18.018.0 57.957.9 비교재7Comparative Material7 660660 2525 426426 527527 29.029.0 267267 327327 32.832.8 76.376.3 비교재8Comparative Material 8 A6A6 560560 4040 489489 549549 14.614.6 328328 378378 16.516.5 49.249.2 비교재9Comparative Material 9 660660 2525 319319 421421 34.634.6 183183 282282 32.832.8 51.951.9 비교재10Comparative Material 10 A7A7 560560 4040 541541 617617 18.618.6 384384 426426 19.619.6 36.336.3 발명재2Invention 2 660660 2525 431431 511511 27.627.6 288288 378378 26.126.1 39.439.4 발명재9Invention Material 9 A8A8 560560 4040 549549 671671 18.318.3 420420 472472 16.916.9 34.334.3 발명재3Invention 3 660660 2525 441441 529529 25.525.5 257257 358358 28.028.0 38.238.2 발명재10Invention 10 A9 A9 560560 4040 558558 667667 21.121.1 439439 502502 20.820.8 39.439.4 발명재4Invention 4 660660 2525 434434 529529 24.724.7 291291 398398 26.726.7 39.639.6 발명재11Invention Material 11 A10A10 560560 4040 534.3534.3 605.3605.3 24.924.9 343.0343.0 375.7375.7 25.625.6 36.2336.23 발명재5Invention 5 660660 2525 446.2446.2 517.9517.9 25.325.3 279.3279.3 307.3307.3 21.521.5 34.1934.19 발명재12Invention Material12 A11A11 560560 4040 537.6537.6 617.4617.4 24.324.3 357.7357.7 393.0393.0 24.324.3 35.3135.31 발명재6Invention 6 660660 2525 456.4456.4 532.8532.8 32.432.4 269.0269.0 319.3319.3 33.333.3 32.0732.07 발명재13Invention Material 13 A12A12 560560 4040 545.8545.8 635.8635.8 23.623.6 386.0386.0 421.3421.3 20.020.0 33.4933.49 발명재7Invention Material7 660660 2525 485.7485.7 553.6553.6 32.632.6 262.7262.7 317.0317.0 33.933.9 31.7831.78 발명재14Invention 14

표 2의 결과에서도 볼 수 있듯이, 본 발명의 강성분계를 만족하는 A4, A7, A8, A9, A10, A11, A12의 경우에는 고온권취 또는 가속냉각-저온권취하더라도 목표재질을 확보하고 있다. 특히, 가속냉각-저온권취를 하는 경우에는 상온 및 고온에서의 강도 크게 개선되고 있다. 도 1은 A4의 강을 고온귄취와 가속냉각-저온귄취의 제조조건에 따른 미세조직변화를 나타낸 것이다. 도 1b를 보면, 저온조직이 분포되는 것을 확인할 수 있다.As can be seen from the results in Table 2, in the case of A4, A7, A8, A9, A10, A11, and A12 satisfying the steel component system of the present invention, the target material is secured even when hot winding or accelerated cooling-low temperature winding. In particular, in the case of accelerated cooling-low temperature winding, the strength at room temperature and high temperature is greatly improved. Figure 1 shows the microstructure change of the steel of A4 according to the manufacturing conditions of high temperature odor and accelerated cooling-low temperature odor. Looking at Figure 1b, it can be seen that the low temperature tissue is distributed.

A2는 Ti첨가강으로 재질수준은 만족스러우나 황산 내식성은 열위하였다. Ti가 내식성을 고려했을 때 최적의 합금첨가 원소는 아님을 증명해 주고 있다. A5는 P첨가강으로 강도 상승효과는 만족스러우나, 내식성 측면에서는 유해한 원소임을 알 수 있다. A2 is Ti-added steel, and the material level is satisfactory, but sulfuric acid corrosion resistance is inferior. It is proved that Ti is not an optimal alloying element when considering corrosion resistance. A5 is a P-added steel, but the strength increase effect is satisfactory, but it can be seen that it is a harmful element in terms of corrosion resistance.

도 1은 발명강의 권취온도에 따른 미세조직을 나타내는 사진으로1 is a photograph showing the microstructure according to the winding temperature of the invention steel

도 1a는 고온권취한 경우이며Figure 1a is a case of high temperature winding

도 1b는 저온권취한 경우이다. 1B is a case of winding at low temperature.

Claims (12)

중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 황산 내식성이 우수한 내황산부식강.By weight, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (excluding 0%), S: 0.03% or less, P: 0.02% Al: 0.01 ~ 0.1%, Cu: 0.2 ~ 1.0%, Co: 0.02 ~ 0.1%, Cr: 0.1 ~ 1.0%, Ni: 0.1% or less (excluding 0%), Nb: 0.02 ~ 0.1%, rest Sulfuric acid corrosion resistant steel with excellent sulfuric acid corrosion resistance composed of Fe and other unavoidable impurities. 제 1항에 있어서, 중량 %로 상기 Mn, Cr, Ni, Nb은 다음의 관계,
Figure 112007083303211-pat00003
를 만족하는 것을 특징으로 하는 황산 내식성이 우수한 내황산부식강.
The method according to claim 1, wherein Mn, Cr, Ni, Nb by weight% is
Figure 112007083303211-pat00003
Sulfuric acid corrosion resistant steel excellent sulfuric acid corrosion resistance, characterized in that to satisfy.
중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되고, 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)의 저온조직에서 선택되는 적어도 1종이 포함되는 황산 내식성이 우수한 내황산부식강.By weight, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (excluding 0%), S: 0.03% or less, P: 0.02% Al: 0.01 ~ 0.1%, Cu: 0.2 ~ 1.0%, Co: 0.02 ~ 0.1%, Cr: 0.1 ~ 1.0%, Ni: 0.1% or less (excluding 0%), Nb: 0.02 ~ 0.1%, rest Sulfuric acid corrosion resistant steel having excellent corrosion resistance to sulfuric acid, which is composed of Fe and other unavoidable impurities, and includes at least one selected from low temperature tissues of excicular ferrite, bainitic ferrite, and bainite. 제 1항 또는 제 3항에 있어서, 상기 Mn의 함량은 1.51-2.0%임을 특징으로 하 는 황산 내식성이 우수한 내황산부식강.The sulfuric acid corrosion-resistant steel of claim 1 or 3, wherein the Mn content is 1.51-2.0%. 제 1항 또는 제 3항에 있어서, 상기 Mn의 함량은 0.5-1.50%임을 특징으로 하는 황산 내식성이 우수한 내황산부식강.4. The sulfuric acid corrosion resistant steel having excellent sulfuric acid corrosion resistance according to claim 1, wherein the Mn content is 0.5-1.50%. 제 1항 또는 제 3항에 있어서, 상기 내황산부식강에는 V이 0.02-0.1% 함량으로 포함되는 것을 특징으로 하는 황산 내식성이 우수한 내황산부식강. The sulfuric acid corrosion-resistant steel having excellent sulfuric acid corrosion resistance according to claim 1 or 3, wherein the sulfuric acid corrosion-resistant steel contains V in an amount of 0.02-0.1%. 제 3항에 있어서, 상기 엑시쿨러 페라이트(accicular ferrite), 베이니틱 페라이트(bainitic ferrite), 베이나이트(bainite)에서 선택되는 적어도 1종은 20%이상임을 특징으로 하는 황산 내식성이 우수한 내황산부식강.4. The sulfuric acid corrosion resistant steel having excellent sulfuric acid corrosion resistance according to claim 3, wherein at least one selected from the excicular ferrite, bainitic ferrite, and bainite is 20% or more. . 중량%로, C: 0.15%이하(0%는 제외), Si: 1.0%이하(0%는 제외), Mn: 2.0%이하(0%는 제외), S: 0.03%이하, P: 0.02%이하, Al: 0.01~0.1%, Cu: 0.2~1.0%, Co: 0.02~0.1%, Cr: 0.1~1.0%, Ni: 0.1%이하(0%는 제외), Nb: 0.02~0.1%, 나머지 Fe와 기타 불가피한 불순물로 조성되는 강을 열간압연후 가속냉각하여 500~660℃의 온도로 권취하여 저온조직을 갖는 것을 포함하여 이루어지는 황산 내식성이 우수한 내황산부식강의 제조방법.By weight, C: 0.15% or less (excluding 0%), Si: 1.0% or less (excluding 0%), Mn: 2.0% or less (excluding 0%), S: 0.03% or less, P: 0.02% Al: 0.01 ~ 0.1%, Cu: 0.2 ~ 1.0%, Co: 0.02 ~ 0.1%, Cr: 0.1 ~ 1.0%, Ni: 0.1% or less (excluding 0%), Nb: 0.02 ~ 0.1%, rest A method for producing sulfuric acid corrosion resistant steel having excellent sulfuric acid corrosion resistance, comprising: cold rolling a steel composed of Fe and other unavoidable impurities after accelerated cooling, and winding it at a temperature of 500 to 660 ° C. to have a low temperature structure. 제 8항에 있어서, 상기 가속냉각은 30~50℃/s의 평균 속도로 냉각하는 것을 특징으로 하는 황산 내식성이 우수한 내황산부식강의 제조방법. The method of claim 8, wherein the accelerated cooling is performed at an average speed of 30 to 50 ° C./s. 제 8항에 있어서, 상기 Mn의 함량은 1.51-2.0%임을 특징으로 하는 황산 내식성이 우수한 내황산부식강의 제조방법. 9. The method for producing sulfuric acid corrosion resistant steel having excellent sulfuric acid corrosion resistance according to claim 8, wherein the content of Mn is 1.51-2.0%. 제 8항에 있어서, 상기 Mn의 함량은 0.5-1.50%임을 특징으로 하는 황산 내식성이 우수한 내황산부식강의 제조방법. 9. The method for producing sulfuric acid corrosion resistant steel having excellent sulfuric acid corrosion resistance according to claim 8, wherein the content of Mn is 0.5-1.50%. 제 8항에 있어서, 상기 내황산부식강에는 V이 0.02-0.1% 함량으로 포함되는 것을 특징으로 하는 황산 내식성이 우수한 내황산부식강의 제조방법. 10. The method of claim 8, wherein the sulfuric acid corrosion resistant steel includes V in an amount of 0.02-0.1%.
KR1020070118472A 2006-11-21 2007-11-20 Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same KR100946148B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060115191 2006-11-21
KR20060115191 2006-11-21

Publications (2)

Publication Number Publication Date
KR20080046114A KR20080046114A (en) 2008-05-26
KR100946148B1 true KR100946148B1 (en) 2010-03-10

Family

ID=39429888

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070118472A KR100946148B1 (en) 2006-11-21 2007-11-20 Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP5239089B2 (en)
KR (1) KR100946148B1 (en)
CN (1) CN101542006A (en)
WO (1) WO2008062984A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140487A1 (en) * 2012-03-19 2013-09-26 日新製鋼株式会社 Steel having acid dew corrosion resistance, and exhaust gas flow path constituent member
KR101518578B1 (en) * 2013-09-10 2015-05-07 주식회사 포스코 Steel for complex corrosion resistance to hydrochloric acid and sulfuric acid having excellent wear resistance and surface qualities and method for manufacturing the same
KR101536429B1 (en) * 2013-10-30 2015-07-13 주식회사 포스코 Steel sheet having excellent corrosion resistance by sulfuric acid and hydrochloric acid and method for manufacturing the same
KR102045881B1 (en) 2016-09-28 2019-11-19 주식회사 포스코 Solution composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017382A (en) 1998-07-03 2000-01-18 Nippon Steel Corp Steel excellent in sulfuric acid corrosion resistance
JP2001107196A (en) 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
WO2002063056A1 (en) 2001-02-02 2002-08-15 Nippon Steel Corporation Steel excellent in resistance to sulfuric acid dew point corrosion and preheater for air
JP2003213367A (en) 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184636A (en) * 1992-12-18 1994-07-05 Nippon Steel Corp Production of high strength and high toughness seamless steel pipe excellent in weldability
JPH07179987A (en) * 1993-12-22 1995-07-18 Nkk Corp High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JP3704306B2 (en) * 2001-12-28 2005-10-12 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
JP4291711B2 (en) * 2004-03-03 2009-07-08 新日本製鐵株式会社 High burring hot rolled steel sheet having bake hardenability and method for producing the same
JP5047180B2 (en) * 2005-10-25 2012-10-10 ポスコ Steel plate for automobile muffler with excellent corrosion resistance and method for producing the same
JP4444924B2 (en) * 2006-01-25 2010-03-31 株式会社神戸製鋼所 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4823930B2 (en) * 2006-02-10 2011-11-24 新日本製鐵株式会社 Acid corrosion resistant steel
JP5186769B2 (en) * 2006-02-13 2013-04-24 新日鐵住金株式会社 Sulfuric acid dew-point corrosion steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017382A (en) 1998-07-03 2000-01-18 Nippon Steel Corp Steel excellent in sulfuric acid corrosion resistance
JP2001107196A (en) 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
WO2002063056A1 (en) 2001-02-02 2002-08-15 Nippon Steel Corporation Steel excellent in resistance to sulfuric acid dew point corrosion and preheater for air
JP2003213367A (en) 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof

Also Published As

Publication number Publication date
JP5239089B2 (en) 2013-07-17
CN101542006A (en) 2009-09-23
JP2010510391A (en) 2010-04-02
KR20080046114A (en) 2008-05-26
WO2008062984A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5825481B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
KR100946148B1 (en) Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same
KR101166995B1 (en) Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
KR100928774B1 (en) Sulfuric acid and hydrochloric acid corrosion resistant steel with excellent sulfuric acid and hydrochloric acid corrosion resistance
KR20080038218A (en) Cr-containing steel excellent in thermal fatigue characteristics
JP4516924B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
KR101290426B1 (en) High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
US8293379B2 (en) Quenchable steel sheet having high hot press workability and method of manufacturing the same
KR20100046995A (en) High-strength corrosion resistance steel, and method for producing the same
KR20200033056A (en) Non-annealed hot-rolled ferritic stainless steel sheet with excellent impact toughness and manufacturing method thereof
JP5168806B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP2022553970A (en) Chromium steel sheet excellent in high-temperature oxidation resistance and high-temperature strength, and method for producing the same
JP5151227B2 (en) High strength steel plate and manufacturing method thereof
CN112840042A (en) Method for manufacturing high manganese steel material having excellent shock resistance and formability, and high manganese steel material manufactured by the method
KR102312511B1 (en) Cold rolled steel sheet having excellent bake hardenability and anti-aging properties at room temperature and method for manufacturing the same
JP5586704B2 (en) Cold-rolled steel sheet for processing excellent in heat resistance and method for producing the same
KR101304637B1 (en) High strength and high ductility hot-rolled steel sheet having excellent corrosion resistance and method for manufacturing the same
KR100544506B1 (en) Cold rolled high strength steel with the excellent anti-corrosion resistance to sufferic acid and method for manufaxturing thereof
KR102116757B1 (en) Cold rolled steel sheet for exhaust system and manufacturing method of the same
KR101185198B1 (en) Heat resistant steel with excellent reheating cracking resistance and high temperature strength and method of manufacturing the heat resistant steel
KR20110022308A (en) High strength steel, and method for producing the same
KR100711463B1 (en) Method for manufacturing high strength cold rolled steel sheet having low yield strength

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130221

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150225

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170224

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 11