JPH07179987A - High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance - Google Patents

High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance

Info

Publication number
JPH07179987A
JPH07179987A JP5345591A JP34559193A JPH07179987A JP H07179987 A JPH07179987 A JP H07179987A JP 5345591 A JP5345591 A JP 5345591A JP 34559193 A JP34559193 A JP 34559193A JP H07179987 A JPH07179987 A JP H07179987A
Authority
JP
Japan
Prior art keywords
less
steel
cracking resistance
resistance
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5345591A
Other languages
Japanese (ja)
Inventor
Shinichi Kakihara
真一 柿原
Moriyasu Nagae
守康 長江
Osamu Hirano
攻 平野
Takaharu Sasaki
隆治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5345591A priority Critical patent/JPH07179987A/en
Publication of JPH07179987A publication Critical patent/JPH07179987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance by preparing a steel of specific composition, in which metallic structure is composed of acicular ferrite phase and C inclusions are specified. CONSTITUTION:A high strength steel consisting of, by weight, 0.02-0.06% C, 0.03-0.50% Si, 0.5-2.0% Mn, <=0.02% P, <=0.005% S, 0.001-0.005% Ca, 0.01-0.05% sol.Al, <=0.0015% O, further one or >=2 kinds among <=0.5% Cu, <=0.5% Ni, <=0.5% Cr, and <=0.5% Mo, and the balance essentially Fe and in which the metallic microstructure of the steel is composed of acicular ferrite and the number of C type inclusions of >=5mum diameter in the steel is regulated to <10pieces/mm<2>, is prepared. By this method, the high strength steel, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素環境下
で使用されるラインパイプにおいて、母材部のみならず
溶接継手部においても耐水素誘起割れ性(耐HIC性)
および耐硫化物応力腐食割れ性(耐SSC性)に優れる
ラインパイプ用高張力鋼に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to hydrogen-induced crack resistance (HIC resistance) not only in the base metal part but also in the welded joint part of a line pipe used in a humid hydrogen sulfide environment.
And high-strength steel for line pipes having excellent sulfide stress corrosion cracking resistance (SSC resistance).

【0002】[0002]

【従来の技術】近年、硫化水素を多量に含有する油田、
ガス田の開発が盛んになるに伴い、これらの輸送に用い
られるラインパイプには高い耐水素誘起割れ性が要求さ
れるようになってきた。即ち、このような湿潤硫化水素
環境下では、腐食反応により鋼表面で発生した水素原子
が鋼中に侵入し、非金属介在物等のトラップサイトに水
素原子が捕獲され、ガス化することにより、いわゆる水
素誘起割れ (HIC:Hydrogen Induced Cracking)
や、硫化物応力腐食割れ(SSC:Sulfide StressCorr
osion Cracking) が発生し、パイプ破壊に至る可能性を
有するためである。
2. Description of the Related Art In recent years, oil fields containing a large amount of hydrogen sulfide,
With the rapid development of gas fields, high resistance to hydrogen-induced cracking has come to be required for the line pipes used for these transportations. That is, in such a wet hydrogen sulfide environment, hydrogen atoms generated on the steel surface by the corrosion reaction penetrate into the steel, the hydrogen atoms are trapped at trap sites such as nonmetallic inclusions, and by gasification, So-called hydrogen-induced cracking (HIC)
And sulfide stress corrosion cracking (SSC: Sulfide StressCorr
This is because osion cracking) may occur and the pipe may be destroyed.

【0003】前者は無負荷状態において圧延方向に平行
に発生する割れであり、後者は応力下において板厚方向
に発生する割れである。これらの割れはパイプの高強度
化に伴い発生しやすくなる。ラインパイプの高強度化に
伴い、より耐HIC、耐SSC性能に優れるラインパイ
プが要求されるようになってきている。HIC、SSC
対策としては従来より、Sを低減する方法やCaやRE
M添加によるMnS等の介在物の形態を制御する方法
(例えば特開昭54-38214号公報、特開昭63-140033 号公
報) が採られてきた。
The former is a crack that occurs parallel to the rolling direction in the unloaded state, and the latter is a crack that occurs in the sheet thickness direction under stress. These cracks tend to occur as the strength of the pipe increases. With the increase in strength of line pipes, line pipes having more excellent HIC resistance and SSC resistance have been required. HIC, SSC
As a countermeasure, the method of reducing S, Ca, RE
Method for controlling morphology of inclusions such as MnS by adding M
(For example, JP-A-54-38214 and JP-A-63-140033) have been adopted.

【0004】HICやSSCはMnSのように圧延によ
り伸展された介在物を起点として発生することから、上
記の方法は鋼中のS量を低減することによりMnSを低
減し、更に、CaやREMを添加することにより、これ
ら硫化物介在物の形態を球状化する方法である。また、
鋼の金属組織を制御することによりHIC感受性を低減
する方法として、焼入れ焼戻し等の熱処理による偏析部
のミクロ金属組織を改善する方法(例えば、特開昭54-1
27821 号公報)等がとられてきた。
Since HIC and SSC originate from inclusions that are stretched by rolling like MnS, the above method reduces MnS by reducing the amount of S in steel, and further Ca and REM. Is a method of spheroidizing the form of these sulfide inclusions. Also,
As a method of reducing the HIC sensitivity by controlling the metallographic structure of steel, a method of improving the micrometallographic structure of the segregation portion by heat treatment such as quenching and tempering (for example, JP-A-54-1)
No. 27821) has been taken.

【0005】しかし、湿潤硫化水素環境で使用されるラ
インパイプのグレードがAPI 規格のX52 からX65 へと高
強度化するにつれ、ラインパイプのHIC、SSC感受
性が増加し、その結果球状化処理された介在物を起点と
してもHIC、SSCが発生するようになった。そこで
介在物形態の制御においては、A系の介在物を球状のC
系介在物に制御するだけでなく、C系介在物の割合を増
加させることにより耐HIC性能を改善する方法(特開
平2-185948号公報)等が採られるようになってきた。
However, as the grade of the line pipe used in a wet hydrogen sulfide environment increased from API standard X52 to X65, the line pipe HIC and SSC susceptibility increased, resulting in spheroidization. HIC and SSC have started to occur even with inclusions as the starting point. Therefore, in controlling the form of inclusions, A type inclusions are replaced by spherical C
In addition to controlling to system inclusions, a method of improving the HIC resistance performance by increasing the proportion of C system inclusions (Japanese Patent Laid-Open No. 2-185948) has come to be adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来の技術、即ち水素原子のトラップサイトとしての
微細なC系介在物を鋼材中に多数分散させることによ
り、局部的な水素の集積を防止する方法においても、割
れの起点となる介在物が多数存在するためHICの発生
を完全に防止することは困難である。また、熱処理によ
りHIC感受性を低減する方法は生産能率、製造コスト
の面より現実的な手段と言えない。
However, the prior art described above, that is, by dispersing a large number of fine C-based inclusions as trap sites for hydrogen atoms in the steel material, prevents localized accumulation of hydrogen. Also in the method, it is difficult to completely prevent the generation of HIC because there are many inclusions that are the starting points of cracking. Further, the method of reducing HIC sensitivity by heat treatment cannot be said to be a practical means in terms of production efficiency and manufacturing cost.

【0007】[0007]

【課題を解決するための手段】発明者等は耐HIC性
能、耐SSC性能に及ぼす鋼の清浄度および鋼のミクロ
金属組織の影響について調査・研究を行った結果、上記
のように介在物の形状、大きさのみならず、介在物の量
の制御が有効であることを知見した。すなわち、鋼材中
の直径5μm以上のC系介在物数を10個/mm以下と
することにより、耐HIC、耐SSC性が著しく向上
し、また、この効果は、鋼板の組織をアシキュラーフェ
ライトとすることにより顕著であることが知見した。
Means for Solving the Problems As a result of investigations and studies on the effects of the cleanliness of steel and the micro-metallic structure of steel on the HIC resistance and SSC resistance, the inventors have found that the inclusions It was found that the control of not only the shape and size but also the amount of inclusions is effective. That is, by setting the number of C-based inclusions having a diameter of 5 μm or more in the steel material to 10 pieces / mm or less, HIC resistance and SSC resistance are remarkably improved, and the effect is that the structure of the steel sheet is changed to acicular ferrite. It was found that this was remarkable.

【0008】(1)請求項1の発明は、鋼のミクロ金属
組織がアシキュラーフェライトであって、該鋼中の直径
が5μm以上のC系介在物個数が10個/mm2 未満で
ある耐水素誘起割れ性および耐硫化物応力腐食割れ性の
優れた高強度鋼である。
(1) The invention according to claim 1 is characterized in that the microstructure of the steel is acicular ferrite, and the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2. It is a high strength steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance.

【0009】(2)請求項2の発明は、下記の特徴を備
えた耐水素誘起割れ性および耐硫化物応力腐食割れ性の
優れた高強度鋼(成分組成はwt%である)である。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Cu:0.5 %以下、 Ni:0.5 %以下、
Cr :0.5 %以下、 Mo:0.5 %以下、 のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
(2) The invention of claim 2 is a high-strength steel (component composition is wt%) excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance having the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, further Cu: 0.5% or less, Ni: 0.5% or less,
Cr: 0.5% or less, Mo: 0.5% or less, one or more of them are contained, and the balance is substantially F.
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .

【0010】(3)請求項3の発明は、下記の特徴を備
えた耐水素誘起割れ性および耐硫化物応力腐食割れ性の
優れた高強度鋼(成分組成はwt%である)である。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Nb:0.10%以下、 V:0.15%以下、T
i:0.005 〜0.10% のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
(3) The invention of claim 3 is a high-strength steel (having a composition of wt%) excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance, which has the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, Nb: 0.10% or less, V: 0.15% or less, T
i: 0.005 to 0.10% of 1 type or 2 types or more, and the balance is substantially F
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .

【0011】(4)請求項4の発明は、下記の特徴を備
えた耐水素誘起割れ性および耐硫化物応力腐食割れ性の
優れた高強度鋼(成分組成はwt%である)である。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Cu:0.5 %以下、 Ni:0.5 %以下、
Cr:0.5%以下、 Mo:0.5 %以下、 のうち1種または2種以上および、 Nb:0.10%以下、 V:0.15%以下、T
i:0.005 〜0.10% のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
(4) The invention of claim 4 is a high-strength steel (component composition is wt%) excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance, having the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, further Cu: 0.5% or less, Ni: 0.5% or less,
Cr: 0.5% or less, Mo: 0.5% or less, one or more of them, and Nb: 0.10% or less, V: 0.15% or less, T
i: 0.005 to 0.10% of 1 type or 2 types or more, and the balance is substantially F
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .

【0012】[0012]

【作用】まず、アシキュラーフェライト鋼について説明
をする。アシキュラーフェライト鋼の組織とは、図3に
示すように擬ポリゴナルフェライトおよびベイニティッ
クフェライトからなる微細な混合組織を指す。この組織
は、均一な硬度分布を示し、またマルテンサイトおよび
ベイナイト組織に比して低硬度のため耐HIC性、耐S
SC性に優れる。アシキュラーフェライト組織を得るに
は制御圧延における圧延終了温度および圧延後の冷却条
件を以下に述べる範囲とすることが望ましい。
First, the acicular ferritic steel will be described. The microstructure of acicular ferritic steel means a fine mixed microstructure composed of pseudopolygonal ferrite and bainitic ferrite as shown in FIG. This structure exhibits a uniform hardness distribution and, because of its lower hardness than the martensite and bainite structures, it is resistant to HIC and S.
Excellent SC property. In order to obtain an acicular ferrite structure, it is desirable that the rolling end temperature in controlled rolling and the cooling conditions after rolling fall within the ranges described below.

【0013】すなわち、圧延終了温度はAr3 温度以上
のオーステナイト温度域とするこが望ましい。これは圧
延終了温度がAr1 温度以下になると、フェライトが生
成し、このフェライトが加工硬化するためHIC感受性
が高くなるからである。また圧延後の冷却温度は、微細
で均一なアシキュラーフェライト組織を得るため、5〜
30℃/sの範囲とすることが望ましい。これは5℃以
下の冷却温度では組織がフェライトとパーライトの混合
組織となり、耐HIC性、耐SSC性が劣化するためで
ある。また30℃/s以上の冷却温度では島状マルテン
サイト(MA)の増加により強度が上昇し、やはり耐H
IC性、耐SSC性に劣化をきたすようになるためであ
る。
That is, it is desirable that the rolling end temperature be in the austenite temperature range above the Ar 3 temperature. This is because when the rolling end temperature becomes equal to or lower than the Ar 1 temperature, ferrite is generated and the ferrite is work hardened, so that the HIC sensitivity becomes high. Further, the cooling temperature after rolling is 5 to obtain a fine and uniform acicular ferrite structure.
It is desirable to set it in the range of 30 ° C./s. This is because at a cooling temperature of 5 ° C. or lower, the structure becomes a mixed structure of ferrite and pearlite, and the HIC resistance and SSC resistance deteriorate. Further, at a cooling temperature of 30 ° C / s or more, the strength increases due to the increase of island martensite (MA), and the H resistance is also high.
This is because the IC property and the SSC resistance are deteriorated.

【0014】次に、この発明鋼の化学成分組成を上述の
ように限定した理由について以下に述べる。 (1)C(炭素)量 C含有量は強度の確保およびNb,V,Ti等の析出硬
化を有効に利用するために0.02%以上とした。しかし0.
06%を超えると、加速冷却時に低温変態生成物が生じる
ようになり、耐HIC、耐SSC性能の向上に有効な微
細均一なアシキュラーフェライト組織を得ることができ
ない。従って、C含有量は0.02〜0.06%とした。
Next, the reason why the chemical composition of the steel of the present invention is limited as described above will be described below. (1) C (carbon) content The C content is set to 0.02% or more in order to secure the strength and effectively utilize the precipitation hardening of Nb, V, Ti and the like. But 0.
If it exceeds 06%, low-temperature transformation products will be generated during accelerated cooling, and it will not be possible to obtain a fine and uniform acicular ferrite structure effective for improving the HIC resistance and SSC resistance. Therefore, the C content is set to 0.02 to 0.06%.

【0015】(2)Si(シリコン)量 Siは脱酸のため添加され、Si含有量が0.03%未満で
は充分な脱酸効果が得られず、また、0.50%を超えると
溶接性や靱性の劣化が生じる。従って、Si含有量は0.
03〜0.50%の範囲とした。
(2) Si (Si) Content Si is added for deoxidation. If the Si content is less than 0.03%, a sufficient deoxidization effect cannot be obtained, and if it exceeds 0.50%, the weldability and toughness are deteriorated. Deterioration occurs. Therefore, the Si content is 0.
The range is from 03 to 0.50%.

【0016】(3)Mn(マンガン)量 MnもSiと同様に脱酸元素として添加され、含有量が
0.5 %未満では充分な脱酸効果が得られず、また、2.0
%を超えると溶接性が劣化する。また偏析も著しくな
り、耐SSC性、耐HIC性の劣化が生じる。従って、
Mn含有量は0.5〜2.0 %の範囲とした。
(3) Mn (manganese) amount Mn is also added as a deoxidizing element like Si, and the content is
If it is less than 0.5%, a sufficient deoxidizing effect cannot be obtained.
%, The weldability deteriorates. Further, segregation becomes remarkable, and SSC resistance and HIC resistance are deteriorated. Therefore,
The Mn content was in the range of 0.5 to 2.0%.

【0017】(4)P(リン)量 Pは不可避的な不純物元素であり、偏析により板厚中央
部の硬度を上昇させ、割れ感受性を高める有害な元素で
あるため、その含有量を0.02%以下とした。
(4) P (Phosphorus) Content P is an unavoidable impurity element and is a harmful element that increases hardness in the central portion of the plate thickness by segregation and increases crack susceptibility, so its content is 0.02%. Below.

【0018】(5)S(硫黄)量 Sは不純物として不可避的な合金元素であり、含有量が
0.005 %を超えるとHICの起点となるMnS等の硫化
物介在物が増加し、耐SSC性、耐HIC性を劣化させ
る。従って、S含有量は0.005 %以下とした。
(5) S (sulfur) amount S is an alloy element inevitable as an impurity, and its content is
If it exceeds 0.005%, sulfide inclusions such as MnS, which are the starting point of HIC, increase, deteriorating SSC resistance and HIC resistance. Therefore, the S content is set to 0.005% or less.

【0019】(6)Ca(カルシウム)量 Caは硫化物系介在物の形態を球状化させ、また、B系
介在物を減少させる作用があり、HICの起点を減少さ
せる作用を有する。しかし0.001 %未満ではこの効果が
得られず、また0.005 %を超えると逆にCa系介在物の
クラスターが生じ、C系介在物を増加させるようにな
り、耐HICの劣化を招くようになる。したがって、C
a含有量は、0.001 〜0.005 %とした。
(6) Ca (calcium) amount Ca has a function of spheroidizing the form of sulfide-based inclusions and a function of reducing B-based inclusions, and has a function of reducing the starting point of HIC. However, if it is less than 0.001%, this effect cannot be obtained, and if it exceeds 0.005%, clusters of Ca-based inclusions occur conversely to increase the content of C-based inclusions, leading to deterioration of HIC resistance. Therefore, C
The a content was 0.001 to 0.005%.

【0020】(7)sol.Al(アルミニウム)量 Alは脱酸元素として添加され、A系介在物を低減させ
るために必要な元素であるが、含有量が0.01%未満では
充分な脱酸効果が得られず、また0.05%を超えるとAl2O
3 ( アルミナ)クラスターが増加し、B系介在物を増加
させ、、耐HIC性能の劣化を招くようになる。従っ
て、sol.Al含有量は0.01〜0.05%とした。
(7) Sol. Al (aluminum) amount Al is an element that is added as a deoxidizing element and is necessary to reduce A-based inclusions, but if the content is less than 0.01%, a sufficient deoxidizing effect cannot be obtained, and 0.05% Al 2 O
3 (alumina) clusters increase, B-type inclusions increase, and the HIC resistance performance deteriorates. Therefore, sol. The Al content was 0.01 to 0.05%.

【0021】(8)O(全酸素量)量 OはSi、Al、Ca等と酸化物系介在物を形成し、H
ICの起点となり耐HIC性能に悪影響を及ぼすので、
酸化物系介在物量を低減するため、O含有量(全酸素含
有量)は0.0015%以下とした。
(8) O (total oxygen content) O forms an oxide inclusion with Si, Al, Ca, etc., and H
It becomes the starting point of the IC and adversely affects the HIC resistance.
In order to reduce the amount of oxide-based inclusions, the O content (total oxygen content) is set to 0.0015% or less.

【0022】(9)Cu(銅)量 Cuは強度、耐食性を向上させる元素であるが、含有量
が0.5 %を超えると溶接性、HAZ靱性が劣化するた
め、Cuの含有量は0.5 %以下とした。
(9) Cu (copper) content Cu is an element that improves strength and corrosion resistance, but if the content exceeds 0.5%, the weldability and HAZ toughness deteriorate, so the content of Cu is 0.5% or less. And

【0023】(10)Ni(ニッケル)量 Niは強度、耐食性、靱性を向上させる元素であるが、
含有量が0.5 %を超えると経済的に不利であるため、N
iの含有量は0.5 %以下とした。
(10) Ni (Nickel) Amount Ni is an element that improves strength, corrosion resistance and toughness.
If the content exceeds 0.5%, it is economically disadvantageous, so N
The content of i was 0.5% or less.

【0024】(11)Cr(クロム)量 Crは強度、靱性、および耐蝕性を向上させる元素であ
るが、含有量が0.5 %を超えると溶接部の靱性が劣化す
るため、Cr含有量は0.5 %以下とした。
(11) Cr (Chromium) Content Cr is an element that improves strength, toughness, and corrosion resistance, but if the content exceeds 0.5%, the toughness of the welded portion deteriorates, so the Cr content is 0.5. % Or less.

【0025】(12)Mo(モリブデン)量 Moは強度および靱性を向上させる元素であるが、含有
量が0.5 %を超えると経済的不利であるため、Mo含有
量は0.5 %以下とした。
(12) Mo (Molybdenum) Content Mo is an element that improves the strength and toughness, but if the content exceeds 0.5%, it is economically disadvantageous, so the Mo content was made 0.5% or less.

【0026】(13)Nb(ニオブ)量 Nbは強度を向上させる元素であるが、含有量が0.1 %
を超えると溶接部および母材部の靱性が劣化するため、
Nb含有量は0.1 %以下とした。
(13) Nb (niobium) content Nb is an element for improving strength, but its content is 0.1%.
If it exceeds, the toughness of the weld and the base metal part will deteriorate, so
The Nb content was 0.1% or less.

【0027】(14)V(バナジウム)量 Vは強度、靱性を向上させる元素であるが、含有量が0.
15%を超えると溶接性、HAZ靱性が劣化する。そのた
めV含有量は0.15%以下とした。
(14) V (vanadium) content V is an element that improves strength and toughness, but its content is 0.1.
If it exceeds 15%, the weldability and HAZ toughness deteriorate. Therefore, the V content is set to 0.15% or less.

【0028】(15)Ti(チタン)量 Tiは加熱時のオーステナイト粒の粗大化を防止し、強
度、靱性を向上させる元素であるが、含有量が0.005 %
未満ではこの効果が得られない。また、0.1 %を超える
と溶接部の靱性が劣化すためTi含有量は0.005 〜0.1
%とした。
(15) Ti (titanium) content Ti is an element which prevents coarsening of austenite grains during heating and improves strength and toughness, but its content is 0.005%.
If it is less than, this effect cannot be obtained. On the other hand, if the content exceeds 0.1%, the toughness of the welded portion deteriorates, so the Ti content is 0.005 to 0.1.
%.

【0029】[0029]

【実施例】表1には本発明鋼(1〜10)および比較鋼
(11〜20)のスラブの化学成分組成および母材中の
介在物(硫化物系および酸化物系介在物)の測定結果
を、表2にはこれらのスラブを厚板圧延し、板厚24m
mの鋼板に仕上げ、この鋼板から鋼管を製造した後の母
材部の機械的性質、HIC特性、母材・溶接継手部のS
SC特性および鋼のミクロ金属組織について示す。なお
表1中の比較鋼11〜15は、本発明鋼成分組成を有す
るが直径5μm以上のC系介在物個数が10個/mm2
以上で本発明から外れた鋼、比較鋼16〜20は成分、
介在物量ともに本発明鋼から外れた鋼である。
EXAMPLES Table 1 shows the chemical composition of the slabs of the present invention steels (1-10) and comparative steels (11-20) and the measurement of inclusions (sulfide-based and oxide-based inclusions) in the base metal. The results are shown in Table 2. These slabs were rolled into a thick plate, and the plate thickness was 24 m.
m steel plate, and after manufacturing a steel pipe from this steel plate, the mechanical properties of the base material, HIC characteristics, S of the base material / welded joint
The SC characteristics and the microstructure of steel are shown below. Comparative steels 11 to 15 in Table 1 have the steel composition of the present invention, but the number of C-based inclusions having a diameter of 5 μm or more is 10 pieces / mm 2.
The steels and comparative steels 16 to 20 which are out of the present invention are
The amount of inclusions is a steel that deviates from the steel of the present invention.

【0030】SSC試験はNACE規格(TN-01-77) に
準じて行い、それぞれの鋼管母材の降伏強度に対する負
荷応力の比(限界破断応力比)で整理した値で示した。
HIC試験はNACE規格(TN-02-84)に準じNACE
規格TN-01-77溶液を用いて行い、超音波深傷により指示
が認められた3箇所の断面の割れ長さ率の平均値(CL
R;Crack Length Ratio) で示した。また介在物の測定
は光学顕微鏡により行い、被検面1mm2 中の5μm以
上の介在物数を示した。
The SSC test was conducted in accordance with the NACE standard (TN-01-77), and the values are shown by the ratio of the load stress to the yield strength of each steel pipe base material (critical fracture stress ratio).
HIC test conforms to NACE standard (TN-02-84) NACE
Using the standard TN-01-77 solution, the average of the crack length ratios of the three cross sections where the indication was confirmed by ultrasonic deep scratches (CL
R: Crack Length Ratio). The inclusions were measured with an optical microscope, and the number of inclusions of 5 μm or more in 1 mm 2 of the surface to be inspected was shown.

【0031】図1には、表2中のCLRと1mm2 中の
5μm以上の介在物数の関係を、図2にはSSC限界応
力比と1mm2 中の5μm以上の介在物数の関係をそれ
ぞれ示す。図1および図2より、5μm以上の介在物数
が10個/mm2 未満であれば耐HIC特性、耐SSC
特性ともに良好であることがわかる。
FIG. 1 shows the relationship between CLR in Table 2 and the number of inclusions of 5 μm or more in 1 mm 2 , and FIG. 2 shows the relationship of SSC critical stress ratio and the number of inclusions of 5 μm or more in 1 mm 2. Shown respectively. 1 and 2, if the number of inclusions of 5 μm or more is less than 10 / mm 2 , HIC resistance and SSC resistance
It can be seen that the characteristics are good.

【0032】また表3に、前記表1の本発明による化学
成分を有する鋼No.10について鋼板の製造方法を変
えて、組織を変化させた鋼板の耐HIC特性、耐SSC
特性について示す。表中の本発明材は、1150℃にスラブ
加熱後、Ar3 点以上で仕上げ圧延を行ない、冷却速度
10℃/minで加速冷却した鋼板であり、目標とする
アシキュラーフェライト組織を呈している。これに対
し、本発明材と同様の圧延後空冷した比較材A、焼入れ
焼戻し処理した比較材Bおよび焼入れままの比較材Cで
は均一なアシキュラーフェライト組織が得られず、耐H
IC性能また耐SSC性能が劣化していることがわか
る。
Further, Table 3 shows steel No. 1 having the chemical composition according to the present invention in Table 1 above. Regarding No. 10, the HIC resistance and SSC resistance of the steel sheet with the structure changed by changing the steel sheet manufacturing method
The characteristics are shown below. The material of the present invention in the table is a steel sheet that is slab-heated to 1150 ° C., then finish-rolled at an Ar 3 point or more and accelerated cooling at a cooling rate of 10 ° C./min, and exhibits a target acicular ferrite structure. . On the other hand, in the comparative material A that was air-cooled after rolling, the comparative material B that was quenched and tempered, and the comparative material C that was as-quenched, a uniform acicular ferrite structure could not be obtained and the resistance to H
It can be seen that the IC performance and the SSC resistance performance are deteriorated.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【発明の効果】以上述べたように、金属組織がアシキュ
ラーフェライト相であり、かつ、C介在物を10個/m
2 とすることにより、湿潤な硫化水素環境下で使用さ
れるラインパイプにおいて、母材部のみならず溶接継手
部においても耐水素誘起割れ性(耐HIC性)および耐
硫化物応力腐食割れ性(耐SSC性)に優れるラインパ
イプ用高張力鋼が得られる。
As described above, the metallic structure is the acicular ferrite phase, and the C inclusions are 10 / m.
By setting m 2 , hydrogen-induced crack resistance (HIC resistance) and sulfide stress corrosion cracking resistance not only in the base metal part but also in the welded joint part in a line pipe used in a humid hydrogen sulfide environment High-strength steel for line pipes having excellent (SSC resistance) can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】HIC試験における5μm以上の介在物数(個
/mm2)と割れ長さ率(CLR%)との関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between the number of inclusions (pieces / mm 2 ) of 5 μm or more and a crack length ratio (CLR%) in a HIC test.

【図2】SCC試験における母材と継手の5μm以上の
介在物数(個/mm2)と限界破断応力比との関係を示す
図である。
FIG. 2 is a diagram showing the relationship between the number of inclusions (pieces / mm 2 ) of 5 μm or more in the base material and the joint in the SCC test and the critical fracture stress ratio.

【図3】アシキュラーフェライト鋼のミクロ金属組織を
示す図面代用写真である。
FIG. 3 is a drawing-substituting photograph showing the microstructure of acicular ferritic steel.

【手続補正書】[Procedure amendment]

【提出日】平成6年3月11日[Submission date] March 11, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図3】 [Figure 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 隆治 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuji Sasaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼のミクロ金属組織がアシキュラーフェ
ライトであって、該鋼中の直径が5μm以上のC系介在
物個数が10個/mm2 未満である耐水素誘起割れ性お
よび耐硫化物応力腐食割れ性の優れた高強度鋼。
1. Hydrogen-induced cracking resistance and sulfide resistance, wherein the micrometallurgical structure of steel is acicular ferrite, and the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 pieces / mm 2. High strength steel with excellent stress corrosion cracking resistance.
【請求項2】 下記の特徴を備えた耐水素誘起割れ性お
よび耐硫化物応力腐食割れ性の優れた高強度鋼(成分組
成はwt%である)。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Cu:0.5 %以下、 Ni:0.5 %以下、
Cr :0.5 %以下、 Mo:0.5 %以下、 のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
2. A high-strength steel excellent in hydrogen-induced cracking resistance and sulfide stress corrosion corrosion cracking resistance (composition composition is wt%) having the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, further Cu: 0.5% or less, Ni: 0.5% or less,
Cr: 0.5% or less, Mo: 0.5% or less, one or more of them are contained, and the balance is substantially F.
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .
【請求項3】 下記の特徴を備えた耐水素誘起割れ性お
よび耐硫化物応力腐食割れ性の優れた高強度鋼(成分組
成はwt%である)。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Nb:0.10%以下、 V:0.15%以下、T
i:0.005 〜0.10% のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
3. A high-strength steel excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance (having a composition of wt%) having the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, Nb: 0.10% or less, V: 0.15% or less, T
i: 0.005 to 0.10% of 1 type or 2 types or more, and the balance is substantially F
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .
【請求項4】 下記の特徴を備えた耐水素誘起割れ性お
よび耐硫化物応力腐食割れ性の優れた高強度鋼(成分組
成はwt%である)。 (a)主成分として、 C :0.02〜0.06%、 Si:0.03〜0.50
%、Mn:0.5 〜2.0 %、 P :0.02%以
下、S :0.005 %以下、 Ca:0.001 〜
0.005 %、sol.Al:0.01〜0.05%、 O:0.00
15%以下 を含有し、更に、 Cu:0.5 %以下、 Ni:0.5 %以下、
Cr:0.5%以下、 Mo:0.5 %以下、 のうち1種または2種以上および、 Nb:0.10%以下、 V:0.15%以下、T
i:0.005 〜0.10% のうち1種または2種以上を含有し、残部は実質的にF
eからなり、(b)前記鋼のミクロ金属組織がアシキュ
ラーフェライトであり、(c)前記鋼中の直径5μm以
上のC系介在物個数が10個/mm2 未満である。
4. A high-strength steel excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance (having a composition of wt%) having the following characteristics. (A) As a main component, C: 0.02 to 0.06%, Si: 0.03 to 0.50
%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.005% or less, Ca: 0.001 to
0.005%, sol. Al: 0.01-0.05%, O: 0.00
15% or less, further Cu: 0.5% or less, Ni: 0.5% or less,
Cr: 0.5% or less, Mo: 0.5% or less, one or more of them, and Nb: 0.10% or less, V: 0.15% or less, T
i: 0.005 to 0.10% of 1 type or 2 types or more, and the balance is substantially F
and (b) the micrometallographic structure of the steel is acicular ferrite, and (c) the number of C-based inclusions having a diameter of 5 μm or more in the steel is less than 10 / mm 2 .
JP5345591A 1993-12-22 1993-12-22 High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance Pending JPH07179987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5345591A JPH07179987A (en) 1993-12-22 1993-12-22 High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5345591A JPH07179987A (en) 1993-12-22 1993-12-22 High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPH07179987A true JPH07179987A (en) 1995-07-18

Family

ID=18377635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5345591A Pending JPH07179987A (en) 1993-12-22 1993-12-22 High strength steel excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH07179987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510391A (en) * 2006-11-21 2010-04-02 ポスコ Steel with excellent corrosion resistance against sulfuric acid and method for producing the same
KR100957938B1 (en) * 2002-12-28 2010-05-13 주식회사 포스코 Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957938B1 (en) * 2002-12-28 2010-05-13 주식회사 포스코 Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same
JP2010510391A (en) * 2006-11-21 2010-04-02 ポスコ Steel with excellent corrosion resistance against sulfuric acid and method for producing the same

Similar Documents

Publication Publication Date Title
US5948183A (en) Hot-rolled steel sheet and method for forming hot-rolled steel sheet having low yield ratio, high strength and excellent toughness
CA2775043C (en) Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
EP0649915B1 (en) High-strength martensitic stainless steel and method for making the same
CA2775031C (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
KR20040075971A (en) High Strength Steel Plate and Method for Production Thereof
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JP2019214752A (en) Low-yield-ratio thick steel plate
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP3812108B2 (en) High-strength steel with excellent center characteristics and method for producing the same
JP7115200B2 (en) Steel plate for line pipe
JP2870830B2 (en) Method for producing high tensile strength and high toughness steel sheet excellent in HIC resistance
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP4089455B2 (en) High strength steel with excellent HIC resistance
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP2781000B2 (en) Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance
JP7163777B2 (en) Steel plate for line pipe
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP2000226614A (en) Production of high toughness martensitic stainless steel excellent in stress corrosion cracking resistance
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP3536687B2 (en) Low-C high-Cr alloy steel having high corrosion resistance and high strength, and method for producing the same
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20071217

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081217

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees