JP4837426B2 - High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof - Google Patents

High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof Download PDF

Info

Publication number
JP4837426B2
JP4837426B2 JP2006107314A JP2006107314A JP4837426B2 JP 4837426 B2 JP4837426 B2 JP 4837426B2 JP 2006107314 A JP2006107314 A JP 2006107314A JP 2006107314 A JP2006107314 A JP 2006107314A JP 4837426 B2 JP4837426 B2 JP 4837426B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel sheet
thin steel
high young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006107314A
Other languages
Japanese (ja)
Other versions
JP2007277661A (en
Inventor
龍雄 横井
崇博 片井
文規 田崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006107314A priority Critical patent/JP4837426B2/en
Publication of JP2007277661A publication Critical patent/JP2007277661A/en
Application granted granted Critical
Publication of JP4837426B2 publication Critical patent/JP4837426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用の鋼板として好適なバーリング加工性に優れた高ヤング率薄鋼板およびその製造方法に関するものである。   The present invention relates to a high Young's modulus thin steel sheet excellent in burring workability suitable as a steel sheet for automobiles and a method for producing the same.

近年、自動車の安全性能向上や燃費向上のための軽量化を目的として、高強度鋼板の適用が進められている。しかしながら、衝突安全性と同様に自動車の安全性や操縦安定性に関わる車体剛性は、一般的に素材のヤング率、板厚、更には構造に支配される。このため、素材としての鋼板を高強度化するだけでは剛性の向上が望めず、特に部材剛性が要求される構造部材等では高強度鋼板の適用による軽量化はあまり進んでいないのが現状である。   In recent years, the application of high-strength steel sheets has been promoted for the purpose of weight reduction for improving safety performance and fuel efficiency of automobiles. However, the vehicle body rigidity related to the safety and handling stability of the automobile as well as the collision safety is generally governed by the Young's modulus, the plate thickness, and the structure of the material. For this reason, improvement in rigidity cannot be expected simply by increasing the strength of a steel sheet as a raw material, and the current situation is that the weight reduction due to the application of high-strength steel sheets has not progressed particularly in structural members that require member rigidity. .

板厚の増加に伴う重量増加を抑制しつつ、部材の剛性を向上させる方法としては、従来において例えば比強度が高いAl合金等の軽金属を採用する方法が提案されている。しかしながら、このAl合金をはじめとした軽金属は、鋼と比較して著しく高価であるという問題点がある。このため、かかるAl合金の適用は、特殊な用途に限られるのが現状である。   As a method for improving the rigidity of a member while suppressing an increase in weight due to an increase in plate thickness, a method of employing a light metal such as an Al alloy having a high specific strength has been conventionally proposed. However, light metals including this Al alloy have a problem that they are extremely expensive compared to steel. For this reason, the application of such Al alloys is currently limited to special applications.

従って、自動車中の多くの部材に、安価でしかも剛性の高い素材を適用することにより自動車全体の軽量化を推進するためには、Al合金をはじめとした軽金属を用いることによる対応ではなく、あくまで鋼板を用いることにより対応する必要があった。実際に鋼板による対応を図るためには、鋼板のヤング率を向上させる必要があった。   Therefore, in order to promote weight reduction of the entire automobile by applying inexpensive and highly rigid materials to many members in the automobile, it is not a response by using light metals such as Al alloy, but to the last It was necessary to cope by using a steel plate. In order to actually cope with the steel plate, it was necessary to improve the Young's modulus of the steel plate.

一方、部材剛性を高める方法としては、例えばビードの付与等を行うことにより、構造の最適化を図る方法もある。しかしながら、近年の自動車部材の精密化、複雑化に対応するためには、より優れた成形性や加工性、特にバーリング加工性や伸びフランジ加工性が要求される。一般に高強度化を行うと、成形性や加工性等の材料特性を劣化させてしまう。このため、かかる材料特性を劣化させることなくいかに高強度化を図るかが高強度鋼板開発のキーポイントになる。特に内板部材、構造部材、足廻り部材用鋼板に求められる特性としてはバーリング加工性、フランジ加工性、延性、疲労耐久性および耐食性等が重要であり、高強度化と共にこれらの特性をいかにバランスよく引き出せるかが重要となる。   On the other hand, as a method for increasing the member rigidity, there is also a method for optimizing the structure, for example, by applying beads. However, in order to cope with the recent refinement and complexity of automobile members, more excellent moldability and workability, particularly burring workability and stretch flange workability are required. In general, when the strength is increased, material properties such as formability and workability are deteriorated. For this reason, how to increase the strength without deteriorating such material characteristics is a key point for the development of a high-strength steel sheet. In particular, burring workability, flange workability, ductility, fatigue durability, and corrosion resistance are important characteristics required for steel sheets for inner plate members, structural members, and suspension members. How to balance these properties with increasing strength Whether it can be pulled out well is important.

バーリング加工性、フランジ加工性を向上させる技術としては、例えば、ミクロ組織をアシキュラーフェライト組織とし、更にTiC及び/又はNbCを析出させることにより、引張強度が70kgf/mm以上の高強度であっても、優れた伸びフランジ性が得られる技術等が開示されている(例えば、特許文献1参照。)。 As a technique for improving the burring workability and the flange workability, for example, the microstructure is an acicular ferrite structure, and TiC and / or NbC is further precipitated, whereby the tensile strength is 70 kgf / mm 2 or more. However, a technique for obtaining excellent stretch flangeability is disclosed (for example, see Patent Document 1).

また特許文献2には、主組織を転位密度の高いアシキュラーフェライト組織とするとともに、さらに熱延以降の冷却速度等を制御することにより、固溶C量を可及的に低減させた伸びフランジ性に優れた高強度熱延鋼板が開示されている。   Patent Document 2 discloses an elongated flange in which the main structure is an acicular ferrite structure having a high dislocation density and the cooling rate after hot rolling is controlled to reduce the amount of dissolved C as much as possible. A high-strength hot-rolled steel sheet having excellent properties is disclosed.

さらに特許文献3には、ミクロ組織及び化学成分を規定するとともに、特に析出物のサイズと個数を制御することにより、優れた伸び及び伸びフランジ性を発揮する成形性に優れた熱延鋼板が開示されている。   Furthermore, Patent Document 3 discloses a hot-rolled steel sheet having excellent formability that exhibits excellent elongation and stretch flangeability by controlling the size and number of precipitates, in addition to defining the microstructure and chemical composition. Has been.

しかしながら、これら特許文献1〜3の開示技術では、あくまで伸びフランジ性の向上を目的としているため、鋼板のヤング率を向上させることにつき何ら想定するものではなく、そのヤング率向上のための技術は全く開示されていない。   However, since the disclosed techniques of Patent Documents 1 to 3 are intended only to improve stretch flangeability, they do not assume anything about improving the Young's modulus of the steel sheet. It is not disclosed at all.

一方、鋼板自体のヤング率を向上させる技術として、Ar変態点以下のα+γ二相域温度にて圧延を行う技術が開示されている。(例えば、特許文献4、5参照)しかしながら、当該技術はヤング率を高める技術については言及しているものの伸びフランジ性等の加工性を高める技術の開示がないばかりか、Ar変態点以下のα+γ二相域温度にて圧延を行うために板厚精度が悪化し、生産性が著しく悪化するという問題点があった。 On the other hand, as a technique for improving the Young's modulus of the steel sheet itself, a technique for performing rolling at an α + γ two-phase region temperature below the Ar 3 transformation point is disclosed. (For example, see Patent Documents 4 and 5) However, although the technique mentions a technique for increasing the Young's modulus, there is no disclosure of a technique for improving workability such as stretch flangeability, and the Ar 3 transformation point or less. Since rolling is performed at the α + γ two-phase region temperature, the plate thickness accuracy is deteriorated, and the productivity is remarkably deteriorated.

このため従来より、厳しいバーリング加工性や伸びフランジ加工性が要求される部品でも容易に成形でき、加工された後に部品としてこれまで以上の曲げ、ねじれ剛性を得ることができる鋼板が望まれていた。
特開平07−011382号公報 特開2000−144259号公報 特開2004−307919号公報 特開平01−011926号公報 特開平09−053118号公報
For this reason, there has been a demand for a steel sheet that can be easily formed even in parts that require strict burring workability and stretch flange workability, and that can be further bent and torsionally rigidity after being processed. .
Japanese Patent Laid-Open No. 07-011382 JP 2000-144259 A JP 2004-307919 A Japanese Patent Laid-Open No. 01-011926 JP 09-053118 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、バーリング加工性に優れた高ヤング率薄鋼板およびその製造方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and an object thereof is to provide a high Young's modulus thin steel sheet excellent in burring workability and a method for manufacturing the same.

本発明者らは、現在通常に採用されている製造設備により工業的規模で生産されている490〜980MPa級鋼板の製造プロセスを念頭において、バーリング加工性に優れかつ従来鋼板と比較して高いヤング率を備えた鋼板を得るべく鋭意研究を重ねた。   With the manufacturing process of a 490-980 MPa grade steel plate produced on an industrial scale by the production equipment that is usually employed at present, the present inventors have excellent burring workability and a high Young compared to conventional steel plates. We worked hard to obtain a steel plate with a high rate.

その結果、質量%で、C:0.01〜0.2%、Si:0.01〜2%、Mn:0.1〜2%、P≦0.1%、S≦0.03%、Al:0.001〜0.1%、N≦0.01%、Nb:0.005〜0.05%、Ti:0.001〜0.2%を含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が連続冷却変態組織であり、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上であることが非常に有効であることを新たに見出した。
As a result, in mass%, C: 0.01 to 0.2%, Si: 0.01 to 2%, Mn: 0.1 to 2%, P ≦ 0.1%, S ≦ 0.03%, Al: 0.001 to 0.1%, N ≦ 0.01%, Nb: 0.005 to 0.05%, Ti: 0.001 to 0.2%, the balance being Fe and inevitable impurities The microstructure of the steel plate is a continuous cooling transformation structure, and the average value of the X-ray random intensity ratio of the {100} plane and the X-ray random intensity ratio of the {211} plane is 2.5 or more. It was newly found that it is very effective.

即ち、本願の請求項1に係る発明は、上述した課題を解決するために、質量%で、C :0.01〜0.2%、Si:0.003〜2%、Mn:0.1〜2%、P ≦0.1%(但し0%超)、S ≦0.03%(但し0%超)、Al:0.001〜0.1%、N ≦0.01%(但し0%超)、Nb:0.005〜0.1%、Ti:0.001〜0.2%、を含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が連続冷却変態組織であり、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上であることを特徴とする。
That is, in order to solve the above-mentioned problem, the invention according to claim 1 of the present application is, in mass%, C: 0.01 to 0.2%, Si: 0.003 to 2%, Mn: 0.1. ˜2%, P ≦ 0.1% (exceeding 0%), S ≦ 0.03% (exceeding 0%), Al: 0.001 to 0.1%, N ≦ 0.01% (provided 0 %)), Nb: 0.005 to 0.1%, Ti: 0.001 to 0.2%, and the balance is Fe and unavoidable impurities, and the microstructure is continuously cooled. It is a transformation structure, and the average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane is 2.5 or more.

また、本願の請求項2に係る発明は、請求項1に記載の発明において、さらに質量%で、B:0.0002〜0.002%、Cu:0.2〜1.2%、Ni:0.1〜0.6%、Mo:0.05〜1%、V:0.02〜0.2%、Cr:0.01〜1%の一種または二種以上を含有することを特徴とする。   Moreover, the invention according to claim 2 of the present application is the invention according to claim 1, further in mass%, B: 0.0002 to 0.002%, Cu: 0.2 to 1.2%, Ni: It is characterized by containing one or more of 0.1 to 0.6%, Mo: 0.05 to 1%, V: 0.02 to 0.2%, Cr: 0.01 to 1%. To do.

また、本願の請求項3に係る発明は、請求項1又は2記載の発明において、さらに質量%で、Ca:0.0005〜0.005%、REM:0.0005〜0.02%の一種または二種を含有することを特徴とする。   Further, the invention according to claim 3 of the present application is the invention according to claim 1 or 2, further in mass%, Ca: 0.0005 to 0.005%, REM: 0.0005 to 0.02%. Or it contains 2 types, It is characterized by the above-mentioned.

本願の請求項4に係る発明は、請求項1〜3の何れか1項記載の発明において、表面処理が施されていることを特徴とする。   The invention according to claim 4 of the present application is characterized in that in the invention according to any one of claims 1 to 3, surface treatment is performed.

本願の請求項5に係る発明は、請求項1〜3のいずれか1項に記載の成分を含有する薄鋼板を得るための熱間圧延する際に、Nb炭化物の溶体化温度以上に加熱し、さらに粗圧延後に600mpm以上の圧延速度で、最終段とその前段の合計圧下率を25%以上とし、仕上げ圧延をAr変態点温度以上Ar変態点温度+100℃以下の温度域で実行し、冷却開始から巻き取るまでの温度域を20℃/sec以上の冷却速度で400℃以上600℃以下の温度域まで冷却し、巻き取ることを特徴とする。 When the invention according to claim 5 of the present application is hot-rolled to obtain a thin steel sheet containing the component according to any one of claims 1 to 3, it is heated above the solution temperature of Nb carbide. Further, after rough rolling, the total rolling reduction of the final stage and the preceding stage is set to 25% or more at a rolling speed of 600 mpm or more, and finish rolling is performed in a temperature range of Ar 3 transformation point temperature or higher and Ar 3 transformation point temperature + 100 ° C. or lower. The temperature range from the start of cooling to winding is cooled to a temperature range of 400 ° C. or more and 600 ° C. or less at a cooling rate of 20 ° C./sec or more, and winding is performed.

本願の請求項6に係る発明は、請求項5記載の発明において、仕上げ圧延開始温度を1000℃以上とすることを特徴とする。   The invention according to claim 6 of the present application is characterized in that, in the invention according to claim 5, the finish rolling start temperature is 1000 ° C. or higher.

本願の請求項7に係る発明は、請求項5又は6記載の発明において、鋼片を、粗圧延終了した後の粗バーを仕上げ圧延開始までの間、及び/又は、粗バーの仕上げ圧延中に、加熱することを特徴とする。   The invention according to claim 7 of the present application is the invention according to claim 5 or 6, wherein the steel bar, the rough bar after the completion of rough rolling, until the start of finish rolling and / or during the finish rolling of the rough bar. And heating.

本願の請求項8に係る発明は、請求項5〜7のうち何れか1項記載の発明において、粗圧延終了から仕上げ圧延開始までの間にデスケーリングを行うことを特徴とする。   The invention according to claim 8 of the present application is characterized in that, in the invention according to any one of claims 5 to 7, descaling is performed from the end of rough rolling to the start of finish rolling.

本願の請求項9に係る発明は、請求項5〜8のうち何れか1項記載の製造工程の後、得られた鋼板表面を表面処理することを特徴とする。
The invention according to claim 9 of the present application is characterized in that after the manufacturing process according to any one of claims 5 to 8, the obtained steel sheet surface is surface-treated.

本発明は、ミクロ組織を連続冷却変態組織とし、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上とすることにより、厳しいバーリング加工性や伸びフランジ加工性が要求される部品でも容易に成形できるだけでなく加工された後に部品としてこれまで以上の曲げ、ねじれ剛性を得ることができるため、本発明は工業的価値が高い発明であると言える。
In the present invention, the microstructure is a continuous cooling transformation structure, and the average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane is 2.5 or more, Even parts that require strict burring workability and stretch flange workability can be easily molded, and after being processed, the parts can have higher bending and torsional rigidity than before, so the present invention has high industrial value. It can be said that it is an invention.

以下、本発明を実施するための最良の形態として、バーリング加工性に優れた高ヤング率薄鋼板の製造方法について詳細に説明をする。   Hereinafter, as a best mode for carrying out the present invention, a method for producing a high Young's modulus thin steel sheet excellent in burring workability will be described in detail.

本発明者は、鋼板の集合組織がヤング率に関わる部品の曲げ剛性に影響をあると考え次のような実験を行った。実験では表1に示す鋼成分の鋳片を溶製した。この表1では、後において詳述する集合組織の影響を及ぼすNb添加した鋼AとNbを添加しない鋼Bの2種類準備した。なお、Nbを添加した鋼AのNbCの溶体化温度は987℃であり、Ar変態点温は828℃である。またNbが含有していない鋼BのAr変態点温度は845℃である。 The present inventor conducted the following experiment on the assumption that the texture of the steel sheet has an influence on the bending rigidity of the parts related to the Young's modulus. In the experiment, slabs of steel components shown in Table 1 were melted. In Table 1, two types of steels A, Nb-added steel A and Nb-free steel B, which will be described later in detail, are prepared. Note that the solution temperature of NbC in steel A to which Nb was added was 987 ° C., and the Ar 3 transformation point temperature was 828 ° C. Further, the Ar 3 transformation point temperature of steel B not containing Nb is 845 ° C.

Figure 0004837426
Figure 0004837426

表1に示す成分の252mm厚の鋼と、加熱温度910〜1230℃、圧下率10〜35%、圧延速度120〜870mpm、圧延温度860〜1100℃で互いに製造条件を異ならせて3.2mm厚の鋼板を準備し、それらについてX線面強度および部品の曲げ剛性を調査した。   A steel having a thickness of 252 mm of the components shown in Table 1, a heating temperature of 910 to 1230 ° C., a rolling reduction of 10 to 35%, a rolling speed of 120 to 870 mpm, a rolling temperature of 860 to 1100 ° C., and different manufacturing conditions, and a thickness of 3.2 mm Steel sheets were prepared, and the X-ray surface strength and the bending rigidity of the parts were investigated.

部品の曲げ剛性の評価は、図1に示すプレス形状品1にて行った。このプレス形状品は、溝部2が形成されるようにプレス成形されてなり、溝部2の幅w1が100mm、溝部の厚さdが80m超、長手方向の長さLaが600mmで構成されている。溝部2は、途中で角度θ(=15°)で拡径される結果、幅w1が140mmとなる。   The evaluation of the bending rigidity of the part was performed with the press-shaped product 1 shown in FIG. This press-shaped product is press-molded so that the groove portion 2 is formed, and the width w1 of the groove portion 2 is 100 mm, the thickness d of the groove portion is more than 80 m, and the length La in the longitudinal direction is 600 mm. . As a result of the diameter of the groove portion 2 being enlarged at an angle θ (= 15 °) in the middle, the width w1 becomes 140 mm.

上記にて採取した切り板サンプルより、プレス成形品1の長手方向が圧延方向と平行(図1中0°方向)、垂直(図1中90°方向)、さらに45°方向(図1参照)のいずれかになるようにブランクを切り出し、プレス試験に供した後に曲げ剛性を評価するために部品の長手方向をクランプして曲げモーメントを負荷し、その時の荷重と変位より、曲げ剛性を求めた。   From the cut plate sample collected above, the longitudinal direction of the press-formed product 1 is parallel to the rolling direction (0 ° direction in FIG. 1), vertical (90 ° direction in FIG. 1), and further 45 ° direction (see FIG. 1). In order to evaluate the bending rigidity after cutting out the blank so that it becomes either of the above, clamp the longitudinal direction of the part and load the bending moment, and the bending rigidity was obtained from the load and displacement at that time .

図2に測定結果を基に板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比(面強度)の平均値と曲げ剛性の関係を整理した図を示す。図2より圧延条件に関わらず板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比(面強度)の平均値が2.5以上であれば、高ヤング率の基準となる曲げ剛性が300MNm2以上の良好な部品曲げ剛性が得られることが判明した。但し、曲げ剛性が300MNm2以上となるものは何れもNbを添加した鋼Aであった。このメカニズムは必ずしも明らかではないが、Nbが添加された鋼では、仕上げ圧延時に鋼中に固溶状態で存在しているNb量がある特定範囲に限定し、さらに特定の温度、圧延速度、圧下率条件にて仕上げ圧延を行うとNbのソリュートドラッグ現象によりオーステナイト再結晶が抑制され、その未再結晶状態のオーステナイトからγ→α変態により得られた連続冷却変態組織の結晶方位が集合組織として選択的に{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が大きくなり、鋼板の特定方位のヤング率が向上し、部品としての曲げ剛性が向上したものと推定される。
FIG. 2 is a diagram in which the relationship between the average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio (plane intensity) of the {211} plane and the bending stiffness is arranged based on the measurement results. . As shown in FIG. 2, if the average value of the X-ray random intensity ratio of the {100} plane of the plate and the X-ray random intensity ratio (plane intensity) of the {211} plane is 2.5 or more regardless of the rolling conditions, high Young It has been found that a good part bending rigidity of 300 MNm 2 or more can be obtained as a criterion for the rate. However, all of the steels to which the bending rigidity was 300 MNm 2 or more were added with Nb. This mechanism is not necessarily clear, but in steel to which Nb is added, the amount of Nb present in a solid solution state in the steel at the time of finish rolling is limited to a specific range, and further, a specific temperature, rolling speed, reduction When the finish rolling is performed under the rate condition, the recrystallization of austenite is suppressed by the Nb salt drag phenomenon, and the crystal orientation of the continuously cooled transformed structure obtained from the unrecrystallized austenite by the γ → α transformation is selected as the texture. In particular, the average value of the X-ray random intensity ratio of the {100} plane and the X-ray random intensity ratio of the {211} plane is increased, the Young's modulus of the specific orientation of the steel sheet is improved, and the bending rigidity as a part is improved. It is estimated to be.

次にミクロ組織について説明する。前記板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比(面強度)の平均値が2.5以上の鋼板からサンプルを切り出してミクロ組織を調査した。
Next, the microstructure will be described. A sample was cut out from a steel sheet having an average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio (plane intensity) of the {211} plane of 2.5 or more, and the microstructure was examined.

ミクロ組織の調査は鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された板厚の1/4tにおける視野の写真にて行った。その結果、そのミクロ組織がフェライト組織、連続冷却変態組織であることが判った。   The microstructure was examined by cutting a sample cut from a 1/4 W or 3/4 W position of the steel plate width to a cross section in the rolling direction, etching using a Nital reagent, and observing at 200 to 500 times magnification using an optical microscope. This was done with a photograph of the field of view at 1/4 t of the thickness of the plate. As a result, it was found that the microstructure was a ferrite structure and a continuous cooling transformation structure.

ここで連続冷却変態組織(Zw)とは日本鉄鋼協会基礎研究会ベイナイト調査研究部会/編;低炭素鋼のベイナイト組織と変態挙動に関する最近の研究−ベイナイト調査研究部会最終報告書−(1994年 日本鉄鋼協会)に記載されているように拡散的機構により生成するポリゴナルフェライトやパーライトを含むミクロ組織と無拡散でせん断的機構により生成するマルテンサイトの中間段階にある変態組織と定義されるミクロ組織である。すなわち、連続冷却変態組織(Zw)とは光学顕微鏡観察組織として上記参考文献125〜127項にあるようにそのミクロ組織は主にBainitic ferrite(α°)、Granular bainitic ferrite(α)、Quasi−polygonal ferrite(α)から構成され、さらに少量の残留オーステナイト(γ)、Martensite−austenite(MA)を含むミクロ組織であると定義されている。αとはポリゴナルフェライト(PF)と同様にエッチングにより内部構造が現出しないが、形状がアシュキュラーでありPFとは明確に区別される。ここでは、対象とする結晶粒の周囲長さlq、その円相当径をdqとするとそれらの比(lq/dq)がlq/dq≧3.5を満たす粒がαである。 Here, the continuous cooling transformation structure (Zw) is the Japan Iron and Steel Institute Basic Research Group, Bainite Research Group / Ed; Recent research on the bainite structure and transformation behavior of low carbon steel-Final Report of Bainite Research Group (1994 Japan) The microstructure defined as the transformation structure in the intermediate stage between the microstructure containing polygonal ferrite and pearlite produced by the diffusion mechanism and the martensite produced by the non-diffusion shearing mechanism as described in It is. That is, the continuous cooling transformation structure (Zw) is an optical microscope observation structure as described in the above-mentioned References 125 to 127, and the microstructure is mainly Bainitic ferrite (α ° B ), Granular ferritic ferrite (α B ), Quasii. -Polygonal ferrite (α q ), which is further defined as a microstructure containing a small amount of retained austenite (γ r ) and Martensite-austenite (MA). The internal structure of α q does not appear by etching like polygonal ferrite (PF), but the shape is ash and is clearly distinguished from PF. Here, α q is a grain whose ratio (lq / dq) satisfies lq / dq ≧ 3.5 when the perimeter length lq of the target crystal grain and its equivalent circle diameter is dq.

連続冷却変態組織(Zw)とは前記のようにα0B、αB、αq、γr、MAの一種または二種以上を含むミクロ組織であり、少量のγ、MAはその合計量を3%以下とするものである。なお、必ずしもフェライト組織又は連続冷却変態組織の単独である必要はなく、これらの複合組織であることでも構わない。   The continuous cooling transformation structure (Zw) is a microstructure containing one or more of α0B, αB, αq, γr, MA as described above, and a small amount of γ, MA makes the total amount 3% or less. Is. Note that it is not always necessary that the ferrite structure or the continuous cooling transformation structure is used alone, and it may be a composite structure of these.

続いて、本発明の化学成分の限定理由について説明する。以下、組織における質量%は単に%と記載する。   Then, the reason for limitation of the chemical component of this invention is demonstrated. Hereinafter, the mass% in the tissue is simply referred to as%.

C :0.01〜0.2%
Cは、オーステナイト相中に十分なCを固溶させ、室温でも所望のオーステナイト相を残留させる為に重要な元素であり、強度−伸びフランジ性のバランスを高めるのに有用であり、本発明において最も重要な元素の一つである。0.2%超含有しているとバーリング割れの起点となる炭化物としてのFeCが増加し、穴拡げ値が劣化するだけでなく強度が上昇してしまい加工性が劣化するので、上限を0.2%とする。因みに延性の低下を防止する観点からは0.1%未満が望ましい。また、0.01%未満では、構造材として目的とする強度が得られないので0.01%以上とする。
C: 0.01 to 0.2%
C is an important element for dissolving a sufficient amount of C in the austenite phase and leaving the desired austenite phase at room temperature, and is useful for increasing the balance between strength and stretch flangeability. One of the most important elements. If it contains more than 0.2%, Fe 3 C as a carbide that becomes the starting point of burring cracks increases, not only the hole expansion value deteriorates but also the strength increases and the workability deteriorates. 0.2%. Incidentally, less than 0.1% is desirable from the viewpoint of preventing a decrease in ductility. If it is less than 0.01%, the desired strength as a structural material cannot be obtained, so the content is made 0.01% or more.

Si:0.003〜2%
Siは、冷却中にバーリング割れの起点となる鉄炭化物の析出を抑制する効果があるので0.003%以上添加するが、2%を超えて添加してもその効果が飽和する。従って、その上限を2%とする。さらに1%超ではタイガーストライブ状のスケール槙様を発生させ表面の美観が損なわれるとともに化成処理性を劣化させる恐れがあるので、望ましくは、その上限を1%とする。また、ウロコ状スケール欠陥抑制の観点からはSi含有量は0.1%以上とすることが望ましい。
Si: 0.003 to 2%
Since Si has the effect of suppressing precipitation of iron carbide that becomes the starting point of burring cracks during cooling, it is added in an amount of 0.003% or more, but even if added over 2%, the effect is saturated. Therefore, the upper limit is made 2%. Further, if it exceeds 1%, a tiger-strike-like scale wrinkle is generated, and the aesthetic appearance of the surface may be impaired and the chemical conversion property may be deteriorated. Therefore, the upper limit is desirably set to 1%. Further, from the viewpoint of suppressing scale-like scale defects, the Si content is preferably 0.1% or more.

Mn:0.1〜2%
Mnは、いわゆるオーステナイト安定化元素であり、オーステナイト温度域を低温側に拡大させ、圧延終了後の冷却中に、本発明ミクロ組織の構成要件の一つである連続冷却変態組織を得やすくする効果がある。本発明では、オーステナイトからの低温変態相を得ることにより、連続冷却変態組織を安定的に得るために、このMnを0.1%以上添加する。しかしながら、Mnは2%超添加してもその効果が飽和するのでその上限を2%とする。また、Mn以外にSによる熱間割れの発生を抑制する元素が十分に添加されない場合には質量%でMn/S≧20となるMn量を添加することが望ましい。
Mn: 0.1 to 2%
Mn is a so-called austenite stabilizing element, has the effect of expanding the austenite temperature range to the low temperature side and making it easy to obtain a continuous cooling transformation structure, which is one of the constituent requirements of the microstructure of the present invention, during cooling after the end of rolling. There is. In the present invention, 0.1% or more of this Mn is added in order to obtain a low temperature transformation phase from austenite to stably obtain a continuous cooling transformation structure. However, even if Mn is added in excess of 2%, the effect is saturated, so the upper limit is made 2%. In addition, in addition to Mn, when an element that suppresses the occurrence of hot cracking due to S is not sufficiently added, it is desirable to add an amount of Mn that satisfies Mn / S ≧ 20 by mass%.

P ≦0.1%、
Pは、不可避的不純物であり低いほど望ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすので、0.1%以下とする。ただし、穴拡げ性や溶接性を考慮すると0.02%以下が望ましい。但し、このPの含有率は0を超えているものとする。
P ≦ 0.1%,
P is an unavoidable impurity and is preferably as low as possible. If it exceeds 0.1%, the workability and weldability are adversely affected, so 0.1% or less. However, considering hole expansibility and weldability, 0.02% or less is desirable. However, it is assumed that the P content exceeds 0.

S ≦0.03%
Sは、不可避的不純物であり、熱間圧延時の割れを引き起こすばかりでなく、多すぎると穴拡げ性を劣化させるMnS等のA系介在物を生成するので極力低減させるべきであるが、0.03%以下ならば許容できる範囲である。ただし、ある程度の穴拡げ性を必要とする場合は0.01%以下が、さらに高い穴拡げが要求される場合は、0.003以下が望ましい。但し、このSの含有率は0を超えているものとする。
S ≦ 0.03%
S is an unavoidable impurity and not only causes cracking during hot rolling, but if it is too much, it generates A-based inclusions such as MnS that degrades the hole expandability, so it should be reduced as much as possible. 0.03% or less is an acceptable range. However, 0.01% or less is desirable when a certain degree of hole expansion is required, and 0.003 or less is desirable when higher hole expansion is required. However, it is assumed that the S content exceeds 0.

Al:0.001〜0.1%
Alは、脱酸剤とし作用するが、鋼中のNと結合しオーステナイト結晶粒度の粗大化を抑制する。溶鋼脱酸させるために、このAlを少なくとも0.001%以上添加する必要があるが、コストの上昇を招くため、その上限を0.1%とする。また、あまり多量に添加すると、非金属介在物を増大させ伸びを劣化させるので望ましくは0.06%以下とする。
Al: 0.001 to 0.1%
Al acts as a deoxidizer, but combines with N in the steel to suppress coarsening of the austenite grain size. In order to deoxidize molten steel, it is necessary to add at least 0.001% or more of Al, but the upper limit is set to 0.1% in order to increase the cost. Further, if added too much, non-metallic inclusions are increased and elongation is deteriorated, so 0.06% or less is desirable.

N ≦0.01%
Nは、鋼中に不可避的に混入する元素であり、Ti、Nb等の窒化物を形成する元素である。この窒化物は比較的高温で析出するために粗大化してバーリング割れの起点となる恐れがある。また、後述するようにNb、Tiを有効活用するためには少ない方が好ましい。従ってその上限を0.01%とする。ただし、時効劣化が問題となる部品に適用する場合は、Nを0.006%超添加すると時効劣化が激しくなるので0.006%以下が望ましい。さらに、製造後二週間以上室温で放置した後、加工に供することを前提にする場合は耐時効性の観点から0.005%以下が望ましい。また、夏季の高温での放置や船舶での輸送時に赤道を越えるような輸出を考慮すると望ましくは0.003%未満である。但し、このNの含有率は0を超えているものとする。
N ≦ 0.01%
N is an element inevitably mixed in steel, and is an element that forms nitrides such as Ti and Nb. Since this nitride precipitates at a relatively high temperature, it may become coarse and become the starting point of burring cracks. Further, as will be described later, in order to effectively utilize Nb and Ti, a smaller amount is preferable. Therefore, the upper limit is made 0.01%. However, when it is applied to a component in which aging deterioration is a problem, aging deterioration becomes severe when N is added in excess of 0.006%, so 0.006% or less is desirable. Furthermore, when it is assumed that the product is left at room temperature for 2 weeks or more after production and then subjected to processing, 0.005% or less is desirable from the viewpoint of aging resistance. In consideration of exports that exceed the equator when left at high temperatures in summer and transported by ship, it is preferably less than 0.003%. However, the N content exceeds 0.

Nb:0.005〜0.1%
Nbは、本発明において最も重要な元素の一つである。Nbは固溶状態でのドラッキング効果および/または炭窒化析出物としてのピンニング効果により圧延中もしくは圧延後のオーステナイトの回復・再結晶および粒成長を抑制し、ヤング率向上に効果的な板面の{100}面+{211}面の集積を向上させる作用を有する。ただし、これらの効果を得るためには少なくとも0.005%以上の添加が必要である。望ましくは0.01%超である。一方、0.1%超添加してもその効果が飽和するのでその上限を0.1%とする。
Nb: 0.005 to 0.1%
Nb is one of the most important elements in the present invention. Nb suppresses recovery / recrystallization and grain growth of austenite during or after rolling by means of a dripping effect in a solid solution state and / or a pinning effect as a carbonitride precipitate, and is effective for improving the Young's modulus. It has an effect of improving the accumulation of {100} plane + {211} plane. However, at least 0.005% of addition is necessary to obtain these effects. Desirably, it exceeds 0.01%. On the other hand, even if added over 0.1%, the effect is saturated, so the upper limit is made 0.1%.

Ti:0.001〜0.2%
Tiは、本発明において最も重要な元素の一つである。微細な炭化物を形成し析出強化による強度上昇に寄与するだけでなく、γ/α変態においてフェライトの核生成を抑制し、連続冷却変態組織の生成を促進する効果がある。ただし、この効果を得るためには少なくとも0.001%以上の添加が必要である。望ましくは0.005%以上である。一方、Tiを有効活用するためには熱延工程でのスラブ加熱において鋳造時に形成された炭窒化物を溶解させる必要があるが、0.2%超添加するとその温度が高温化して事実上操業範囲を逸脱するのでその上限を0.2%とする。
Ti: 0.001 to 0.2%
Ti is one of the most important elements in the present invention. In addition to forming fine carbides and contributing to an increase in strength due to precipitation strengthening, there is an effect of suppressing the nucleation of ferrite in the γ / α transformation and promoting the formation of a continuous cooling transformation structure. However, to obtain this effect, at least 0.001% or more must be added. Desirably, it is 0.005% or more. On the other hand, in order to effectively use Ti, it is necessary to dissolve carbonitride formed at the time of casting in the slab heating in the hot rolling process. Since it deviates from the range, the upper limit is set to 0.2%.

B :0.0002〜0.002%
Bは、焼き入れ性を向上させ、連続冷却変態組織を得やすくする効果があるので必要に応じ添加する。ただし、0.0002%未満ではその効果を得るために不十分であり、0.002%超添加するとスラブ割れが起こる。よって、Bの添加は、0.0002%以上、0.002%以下とする。
B: 0.0002 to 0.002%
B has the effect of improving the hardenability and facilitating obtaining a continuously cooled transformed structure, so is added as necessary. However, if it is less than 0.0002%, it is insufficient for obtaining the effect, and if added over 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.

さらに、強度を付与するためにCu、Ni、Mo、V、Crの析出強化もしくは固溶強化元素の一種または二種以上を添加してもよい。ただし、それぞれ、0.2%、0.1%、0.05%、0.02%、0.01%未満ではその効果を得ることができない。また、それぞれ、1.2%、0.6%、1%、0.2%、1%を超え添加してもその効果は飽和する。   Further, in order to impart strength, one or more of precipitation strengthening or solid solution strengthening elements of Cu, Ni, Mo, V, and Cr may be added. However, the effect cannot be obtained if the content is less than 0.2%, 0.1%, 0.05%, 0.02%, and 0.01%, respectively. Moreover, the effect is saturated even if added exceeding 1.2%, 0.6%, 1%, 0.2%, and 1%, respectively.

CaおよびREMは、破壊の起点となり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、0.0005%未満添加してもその効果がなく、Caならば0.005%超、REMならば0.02%超添加してもその効果が飽和するのでCaは0.0005〜0.005%の範囲内で、REMは0.0005〜0.02%の範囲内で添加することが望ましい。   Ca and REM are elements that become destructive by changing the form of non-metallic inclusions that become the starting point of destruction and degrade workability. However, even if added less than 0.0005%, there is no effect, and if Ca is added more than 0.005% and if REM is added more than 0.02%, the effect is saturated, so Ca is 0.0005-0. It is desirable that REM is added within a range of 0.0005% to 0.02% within a range of 0.005%.

なお、これらを主成分とする鋼にTi、Nb、Zr、Sn、Co、Zn、W、Mgを合計で1%以下含有しても構わない。しかしながらSnは熱間圧延時に疵が発生する恐れがあるので0.05%以下が望ましい。   Note that Ti, Nb, Zr, Sn, Co, Zn, W, and Mg may be contained in a total amount of 1% or less in steel containing these as main components. However, Sn is preferably 0.05% or less because wrinkles may occur during hot rolling.

次に、本発明の製造方法の限定理由について、以下に詳細に述べる。   Next, the reasons for limiting the production method of the present invention will be described in detail below.

Nb固溶量は圧延前の鋳片加熱温度に関わるため、加熱温度と固溶Nb量の関係を調査した。図3は表1でNb添加した鋼Aの加熱温度と固溶Nb量の関係を示す。図3に示すように固溶Nb量はNbの溶体化温度以下ではスラブ加熱温度とともに変化するが、溶体化温度以上では加熱温度に関わらず安定した固溶Nbが得られることから、確実にNb添加の効果を得るためにはNbの溶体化温度以上に加熱することが必要であることが判った。   Since the Nb solid solution amount is related to the slab heating temperature before rolling, the relationship between the heating temperature and the solid solution Nb amount was investigated. FIG. 3 shows the relationship between the heating temperature of steel A added with Nb and the amount of solute Nb in Table 1. As shown in FIG. 3, the amount of solute Nb changes with the slab heating temperature below the solution temperature of Nb, but stable solute Nb is obtained above the solution temperature regardless of the heating temperature. In order to obtain the effect of addition, it has been found that it is necessary to heat to a temperature higher than the solution temperature of Nb.

次に鋳片加熱温度以外の製造条件と{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を調査した。
Next, the relationship between the manufacturing conditions other than the slab heating temperature, the average value of the {100} plane X-ray random intensity ratio and the {211} plane X-ray random intensity ratio was investigated.

先ず、仕上圧延の際の圧下率について調査を行った。通常仕上げ圧延機は複数の圧延機群によって所定の厚さまで順次圧延されるが、仕上圧延機群の最終段とその前段の圧下率が仕上圧延機群の前段よりも面強度に及ぼす影響が大きいと考えられることから、最終段とその前段の合計圧下率と板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値を調査した。試験では表1の鋼Aを用いて、最終段とその前段の合計圧下率を変化させ、それ以外の操業条件を一定(加熱温度1200℃、圧延速度600mpm、圧延温度900℃)として、得られた鋼板の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値を測定した。図4にその結果を示すが、仕上圧延機の最終段とその前段の圧下率が25%以上で{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が目標の2.5を超えて著しく増加することが判った。
First, an investigation was conducted on the rolling reduction during finish rolling. Normally, finishing mills are rolled to a predetermined thickness sequentially by a plurality of rolling mill groups, but the final stage of the finishing mill group and the rolling reduction of the preceding stage have a greater influence on the surface strength than the preceding stage of the finishing mill group. Therefore , the average value of the total rolling reduction ratio of the final stage and the preceding stage, the {100} X-ray random intensity ratio of the plate surface, and the X-ray random intensity ratio of the {211} plane was investigated. In the test, steel A in Table 1 was used, and the total rolling reduction ratio of the final stage and the preceding stage was changed, and the other operating conditions were constant (heating temperature 1200 ° C., rolling speed 600 mpm, rolling temperature 900 ° C.). The average value of {100} X-ray random intensity ratio and {211} plane X-ray random intensity ratio was measured. The results are shown in FIG. 4, and the average value of the X-ray random intensity ratio of {100} and the X-ray random intensity ratio of {211} plane when the rolling reduction of the final stage of the finish rolling mill and the preceding stage is 25% or more. It was found that the target was increased significantly beyond 2.5.

次に仕上圧延速度による板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を調査した。前記同様に鋼Aを用いて圧延速度を変化させ、それ以外の操業条件を一定(加熱温度1200℃、圧下率25%、圧延温度900℃)として、得られた鋼板の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値を測定した。その結果、図5に示すように圧延速度が600mpm以上では{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が目標の2.5を超えて著しく増加することが判った。
Next, the relationship between the average value of the {100} X-ray random intensity ratio of the plate surface and the {211} plane X-ray random intensity ratio according to the finish rolling speed was investigated. In the same manner as described above, {100} X-rays of the obtained steel sheet were obtained by changing the rolling speed using steel A and keeping the other operating conditions constant (heating temperature 1200 ° C, rolling reduction 25%, rolling temperature 900 ° C). The average value of the random intensity ratio and the X-ray random intensity ratio of the {211} plane was measured. As a result, as shown in FIG. 5, when the rolling speed is 600 mpm or more, the average value of the X-ray random intensity ratio of {100} and the X-ray random intensity ratio of the {211} plane significantly increases beyond the target of 2.5. I found out.

さらに仕上圧延温度FTも面強度に及ぼす影響が大きいと考えられることから、仕上圧延温度による板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を調査した。鋼の仕上圧延温度FTを変化させ、得られた鋼板の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値を測定した。その結果、図6に示すように仕上げ温度が930℃以下では、X線のランダム強度比が目標の2.5を超えて著しく増加することが判った。
Furthermore, since the finish rolling temperature FT is considered to have a large influence on the surface strength, the average value of the {100} X-ray random intensity ratio of the plate surface and the X-ray random intensity ratio of the {211} surface due to the finish rolling temperature The relationship was investigated. The finish rolling temperature FT of steel was changed, and the average value of the {100} X-ray random intensity ratio of the obtained steel sheet and the X-ray random intensity ratio of the {211} plane was measured. As a result, as shown in FIG. 6, it was found that when the finishing temperature was 930 ° C. or less, the random intensity ratio of X-rays significantly increased beyond the target of 2.5.

上記以外の熱間圧延方法及び熱間圧延工程の前後の工程について好ましい製造方法について以下説明する。本発明において熱間圧延に先行する製造方法は特に限定するものではない。   A preferable manufacturing method will be described below for the hot rolling method other than the above and the steps before and after the hot rolling step. In the present invention, the production method preceding hot rolling is not particularly limited.

本発明は、鋳造後、熱間圧延後冷却したままもしくは熱間圧延後、あるいは熱延鋼板を溶融めっきラインにて熱処理を施したまま、更にはこれらの鋼板に別途溶融亜鉛めっきを施すことによっても得られる。これにより、耐食性をより向上させることが可能となる。   In the present invention, after casting, after hot rolling, after cooling or after hot rolling, or with hot-rolled steel sheets subjected to heat treatment in a hot dipping line, these steel sheets are separately subjected to hot dip galvanizing. Can also be obtained. Thereby, it becomes possible to improve corrosion resistance more.

本発明において熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き、各種の2次精練で目的の成分含有量になるように成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料にはスクラップを使用しても構わない。連続鋳造よって得たスラブの場合には高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。   In the present invention, the production method preceding hot rolling is not particularly limited. In other words, following smelting with a blast furnace, converter, electric furnace, etc., the components are adjusted so that the desired component content is obtained by various secondary scouring, and then, in addition to normal continuous casting, casting by ingot method, thin slab What is necessary is just to cast by methods, such as casting. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be directly sent to a hot rolling mill as it is a high-temperature slab, or may be hot-rolled after being reheated in a heating furnace after being cooled to room temperature.

スラブ再加熱温度は、
SRT(℃)=6670/(2.26−log〔%Nb〕〔%C〕)−273
等にて算出されるNb炭化物の溶体化温度以上とする。この温度未満であるとNbの炭化物が十分に溶解せず後の圧延工程においてNbによるオーステナイトの回復・再結晶および粒成長の抑制やγ/α変態の遅延による結晶方位の集積効果が得られない。従って、スラブ再加熱温度(SRT)は上式にて算出される温度以上とする。ただし、1400℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。また、1000℃未満の加熱ではスケジュール上操業効率を著しく損なうため、スラブ再加熱温度は1000℃以上が望ましい。さらには、1100℃未満の加熱ではスケールオフ量が少なくスラブ表層の介在物をスケールと共に後のデスケーリングによって除去できなくなる可能性があることから、スラブ再加熱温度は1100℃以上が望ましい。 スラブ加熱時間については特に定めないが、Nbの炭化物の溶解を十分に進行させるためには当該温度に達してから30以上保持することが望ましい。ただし、鋳造後の鋳片を高温のまま直送して圧延する場合にこの限りではない。
The slab reheating temperature is
SRT (° C.) = 6670 / (2.26-log [% Nb] [% C])-273
The solution temperature is equal to or higher than the solution temperature of Nb carbide calculated by the above. If the temperature is lower than this temperature, the carbide of Nb is not sufficiently dissolved, and in the subsequent rolling process, the austenite recovery / recrystallization by Nb and the suppression of grain growth and the effect of accumulating crystal orientation due to the delay of γ / α transformation cannot be obtained. . Therefore, the slab reheating temperature (SRT) is not less than the temperature calculated by the above equation. However, if it is 1400 ° C. or higher, the scale-off amount becomes large and the yield decreases, so the reheating temperature is preferably less than 1400 ° C. In addition, heating below 1000 ° C significantly impairs the operation efficiency in terms of schedule, so the slab reheating temperature is desirably 1000 ° C or higher. Furthermore, since the scale-off amount is small when heating at less than 1100 ° C., inclusions on the surface of the slab may not be removed together with the scale by subsequent descaling, so the slab reheating temperature is preferably 1100 ° C. or higher. The slab heating time is not particularly defined, but it is desirable to hold it for 30 minutes or more after reaching the temperature in order to sufficiently dissolve the carbide of Nb. However, this is not the case when the cast slab is directly fed and rolled at a high temperature.

熱間圧延工程は、粗圧延を終了後、仕上げ圧延を行うが、板厚方向により均一な連続冷却変態組織を得るためには仕上げ圧延開始温度を1000℃以上とする。さらに1050℃以上が望ましい。そのためには必要に応じて粗圧延終了から仕上げ圧延開始までの間、又は/及び仕上げ圧延中に粗バーまたは圧延材を加熱する。特に本発明のうちでも優れた破断延びを安定して得るためにはMnS等の微細析出を抑制することが有効である。この場合の加熱装置はどのような方式でも構わないが、トランスバース型であれば板厚方向に均熱できるのでトランスバース型が望ましい。通常、MnS等の析出物は1250℃程度のスラブ再加熱で再固溶が起こり、後の熱間圧延中に微細析出する。従って、スラブ再加熱温度を1150℃程度に制御しMnS等の再固溶を抑制できれば延性を改善できる。ただし、圧延終了温度を本発明の範囲にするためには粗圧延終了から仕上げ圧延開始までの間、又は/及び仕上げ圧延中での粗バーまたは圧延材の加熱が有効な手段となる。   In the hot rolling process, after the rough rolling is finished, finish rolling is performed. In order to obtain a continuous cooling transformation structure that is more uniform in the thickness direction, the finish rolling start temperature is set to 1000 ° C. or higher. Further, 1050 ° C. or higher is desirable. For that purpose, a rough bar or a rolling material is heated as needed from the end of rough rolling to the start of finish rolling and / or during finish rolling. In particular, it is effective to suppress fine precipitation of MnS and the like in order to stably obtain excellent elongation at break in the present invention. The heating device in this case may be of any type, but if it is a transverse type, it is desirable to use the transverse type because it can soak in the thickness direction. Usually, precipitates such as MnS are re-dissolved by slab reheating at about 1250 ° C. and finely precipitated during subsequent hot rolling. Therefore, ductility can be improved if the slab reheating temperature is controlled to about 1150 ° C. and re-solution of MnS or the like can be suppressed. However, in order to set the rolling end temperature within the range of the present invention, heating of the rough bar or rolled material from the end of rough rolling to the start of finish rolling or / and during finish rolling is an effective means.

また、粗圧延と仕上げ圧延の間にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。   Moreover, a sheet bar may be joined between rough rolling and finish rolling, and finish rolling may be performed continuously. At that time, the coarse bar may be wound once in a coil shape, stored in a cover having a heat retaining function as necessary, and rewound again before joining.

仕上げ圧延終了温度(FT)をAr変態点温度以上Ar変態点温度+100℃以下の温度域とする。ここでAr変態点温度とは、例えば以下の計算式により鋼成分との関係で簡易的に示される。すなわち
Ar=910−310×%C+25×%Si−80×%Mneq
ただし、Mneq=Mn+Cr+Cu+Mo+Ni/2+10(Nb−0.02)
または、Mneq=Mn+Cr+Cu+Mo+Ni/2+10(Nb−0.02)+1:B添加の場合
The finish rolling finish temperature (FT) is set to a temperature range of Ar 3 transformation point temperature or higher and Ar 3 transformation point temperature + 100 ° C. or lower. Here, the Ar 3 transformation point temperature is simply shown in relation to the steel component by the following calculation formula, for example. That is, Ar 3 = 910-310 ×% C + 25 ×% Si-80 ×% Mneq
However, Mneq = Mn + Cr + Cu + Mo + Ni / 2 + 10 (Nb−0.02)
Or, Mneq = Mn + Cr + Cu + Mo + Ni / 2 + 10 (Nb−0.02) +1: When B is added

仕上げ圧延終了温度(FT)はAr変態点温度未満であるとα+γの二相域圧延となる可能性があり圧延後のフェライト粒に加工組織が残留し延性が劣化するのでAr変態点温度以上とする。一方、Ar変態点温度+100℃超では、Nb添加によるドラッキングおよび/またはピンニングでのオーステナイトの回復・再結晶および粒成長を抑制する効果が失われ、回復・再結晶および粒成長の抑制やγ/α変態の遅延による結晶方位の集積効果が得られない恐れがある。仕上げ圧延の各スタンドでの圧延パススケジュールについては特に限定しなくても本発明の効果が得られるが、板形状精度の観点からは最終スタンドにおける圧延率は10%未満が望ましい。 If the finish rolling finish temperature (FT) is lower than the Ar 3 transformation point temperature, α + γ two-phase region rolling may occur, and the processed structure remains in the ferrite grains after rolling and the ductility deteriorates, so the Ar 3 transformation point temperature That's it. On the other hand, when the Ar 3 transformation temperature exceeds + 100 ° C., the effect of suppressing the recovery / recrystallization and grain growth of austenite by dripping and / or pinning due to the addition of Nb is lost. There is a possibility that the effect of accumulating crystal orientation due to the delay of / α transformation cannot be obtained. Although the effect of the present invention can be obtained even if the rolling pass schedule in each stand of finish rolling is not particularly limited, the rolling rate in the final stand is preferably less than 10% from the viewpoint of plate shape accuracy.

仕上げ圧延終了後、400℃以上600℃以下の温度域までの温度域を20℃/sec以上の平均冷却速度で冷却する。冷却開始温度は特に限定しないがAr変態点温度以上より冷却を開始するとミクロ組織は主に連続冷却変態組織となり、Ar変態点温度未満より冷却を開始するとミクロ組織中にポリゴナルフェライトが含有されるようになる。何れにしても上記冷却速度未満ではオーステナイトの回復・再結晶および粒成長して結晶方位の集積効果が得られない恐れがある。冷却速度の上限は特に定めることなく本発明の効果を得ることができると思われるが、500℃/sec以上では、降伏比が上昇する恐れがあるので500℃/sec以下が望ましい。さらに熱ひずみによる板そりが懸念されることから、250℃/sec以下とすることが望ましい。また、バーリング加工性を向上させるためには均一なミクロ組織が望ましく、そのようなミクロ組織を得るためには130℃/sec以上が望ましい。一方、600℃以上で冷却を停止すると加工性に好ましくないパーライト等の粗大炭化物を含む相が生成する恐れがある。従って、冷却を実施する温度域は600℃までである。ただし、仕上げ圧延終了後冷却を5秒以内に開始しないとオーステナイトの回復・再結晶および粒成長して結晶方位の集積効果が得られない恐れがあるので、仕上げ圧延終了後冷却を5秒以内に冷却を開始することが望ましい。 After finishing rolling, the temperature range from 400 ° C. to 600 ° C. is cooled at an average cooling rate of 20 ° C./sec or more. Although the cooling start temperature is not particularly limited, the microstructure mainly becomes a continuous cooling transformation structure when cooling is started from the Ar 3 transformation point temperature or higher, and polygonal ferrite is contained in the microstructure when cooling is started below the Ar 3 transformation point temperature. Will come to be. In any case, if it is less than the above cooling rate, there is a possibility that the effect of accumulating crystal orientation cannot be obtained due to recovery / recrystallization of austenite and grain growth. The upper limit of the cooling rate is not particularly defined, but the effect of the present invention can be obtained, but at 500 ° C./sec or more, the yield ratio may increase, so 500 ° C./sec or less is desirable. Furthermore, since there is a concern about plate warpage due to thermal strain, it is desirable to set it to 250 ° C./sec or less. Further, a uniform microstructure is desirable for improving the burring workability, and 130 ° C./sec or more is desirable for obtaining such a microstructure. On the other hand, when cooling is stopped at 600 ° C. or higher, a phase containing coarse carbides such as pearlite, which is undesirable for workability, may be generated. Therefore, the temperature range for cooling is up to 600 ° C. However, if cooling is not started within 5 seconds after finishing rolling, recovery of austenite, recrystallization, and grain growth may result in failure to obtain crystal orientation accumulation. Cooling within 5 seconds after finishing rolling is finished. It is desirable to initiate cooling.

冷却終了後に巻取り処理を行うが、巻取温度が600℃超では、当該温度域では加工性に好ましくないパーライト等の粗大炭化物を含む相が生成する恐れがあり、さらにTiC等の析出強化が過時効ため失われ強度が低下する恐れがあるため、巻取温度は600℃以下とする。一方、400℃未満ではTiC等の析出強化が発現せず目的とした強度が得られない恐れがあるので巻取温度は400℃以上とする。   Winding treatment is performed after cooling is completed, but if the winding temperature exceeds 600 ° C., a phase containing coarse carbides such as pearlite which is not preferable for workability may be generated in the temperature range, and further precipitation strengthening of TiC or the like may occur. The coiling temperature is set to 600 ° C. or lower because it may be lost due to overaging and the strength may decrease. On the other hand, if the temperature is lower than 400 ° C., precipitation strengthening such as TiC does not occur and the intended strength may not be obtained, so the coiling temperature is 400 ° C. or higher.

本発明は、鋳造後、熱間圧延後冷却したままもしくは熱間圧延後、あるいは熱延鋼板を溶融めっきラインにて熱処理を施したまま、更にはこれらの鋼板に別途溶融亜鉛めっきを施すことによって得られる。これにより、耐食性をより向上させることが可能となる。   In the present invention, after casting, after hot rolling, after cooling or after hot rolling, or with hot-rolled steel sheets subjected to heat treatment in a hot dipping line, these steel sheets are separately subjected to hot dip galvanizing. can get. Thereby, it becomes possible to improve corrosion resistance more.

熱間圧延工程終了後は必要に応じて酸洗し、その後インラインまたはオフラインで圧下率10%以下のスキンパスまたは圧下率40%程度までの冷間圧延を施しても構わない。   After completion of the hot rolling process, pickling may be performed as necessary, and then a skin pass with a reduction rate of 10% or less or cold rolling to a reduction rate of about 40% may be performed inline or offline.

この冷間圧延において、熱間での仕上げ圧延に続く酸洗後の冷間圧延の合計圧下率は80%未満とするようにしてもよい。これは、冷間圧延の合計圧下率が80%以上であると、一般的な冷間圧延ー再結晶集合組織である板面に平行な結晶面の{111}面や{554}面のX線回折積分面強度比が高くなり、目的する板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上得られなくなるためである。また、望ましくは70%以下である。冷間圧延率の下限は特に定めることなく本発明の効果を得ることができるが、結晶方位の強度を適当な範囲に制御するためには3%以上とすることが望ましい。
In this cold rolling, the total rolling reduction of cold rolling after pickling subsequent to hot finish rolling may be less than 80%. This is because when the total rolling reduction of cold rolling is 80% or more, the X direction of the {111} plane or {554} plane parallel to the plate surface, which is a general cold rolling-recrystallization texture This is because the line diffraction integrated surface intensity ratio becomes high, and an average value of the X-ray random intensity ratio of the {100} plane of the target plate surface and the X-ray random intensity ratio of the {211} plane cannot be 2.5 or more. . Moreover, it is 70% or less desirably. Although the lower limit of the cold rolling rate is not particularly defined, the effect of the present invention can be obtained. However, in order to control the strength of the crystal orientation to an appropriate range, it is desirable to set it to 3% or more.

このように冷間圧延された鋼板の熱処理は、連続焼鈍工程を前提としている。   The heat treatment of the steel sheet thus cold-rolled is premised on a continuous annealing process.

まず、その熱処理温度の下限温度をAc1 変態点温度以上とする。この下限温度がAc1 変態点温度未満の場合には、目的とする連続冷却変態組織が得られない。ここで、バーリング性をそれほど劣化させずに延性との両立を目指す場合は、連続冷却変態組織を構成するミクロ組織うちαの体積分率を増加させるためにその温度域をAc1変態点温度以上Ac3 変態点温度以下(フェライトとオーステナイトの二相域)の温度域とする。また、更に良好なバーリング性を得るためには、連続冷却変態組織うちα°、αの体積分率を増加させるため、Ac3 変態点温度以上Ac3 変態点温度+100℃以下の温度域が望ましい。 First, the lower limit temperature of the heat treatment temperature is set to the Ac1 transformation point temperature or higher. When this lower limit temperature is lower than the Ac1 transformation point temperature, the intended continuous cooling transformation structure cannot be obtained. Here, when aiming at coexistence with ductility without significantly degrading the burring property, the temperature range is higher than the Ac1 transformation point temperature in order to increase the volume fraction of α q among the microstructures constituting the continuous cooling transformation structure. Ac3 The temperature range is below the transformation point temperature (two-phase region of ferrite and austenite). In order to obtain better burring properties, in order to increase the volume fraction of α ° B and α B in the continuously cooled transformation structure, a temperature range of Ac3 transformation point temperature to Ac3 transformation point temperature + 100 ° C or less is desirable. .

次に、冷却工程については本発明で特に定めないが、前記熱処理温度がAc1変態点温度以上Ac3 変態点温度以下の場合においては、20℃/s以上の冷却速度で600〜400℃の温度域まで冷却する。これは、冷却速度が20℃/s未満では、炭化物を多量に含むベイナイトもしくはパーライト変態のノーズにかかる恐れがあるためである。また、冷却終了温度は、400℃以下ではバーリング性に有害と考えられているγ、MAが多量に生成する恐れがあるため、400℃超が望ましい。さらに、冷却工程の終了温度は、600℃超では時効性が劣化する恐れがあるので600℃以下とする。また、その後の冷却については特に定めないが20℃/s以上の冷却速度では、バーリング性に有害と考えられているγ、MAが多量に生成する恐れがあるため、20℃/s未満の冷却速度が望ましい。また、このときの冷却の下限は、水冷もしくはミストで冷却する場合、コイルが長時間水濡れの状態にあると錆による外観不良が懸念されるため、50℃以上が望ましい。 Next, the cooling step is not particularly defined in the present invention, but when the heat treatment temperature is not lower than the Ac1 transformation point temperature and not higher than the Ac3 transformation point temperature, a temperature range of 600 to 400 ° C at a cooling rate of 20 ° C / s or higher. Allow to cool. This is because if the cooling rate is less than 20 ° C./s, there is a risk of bainite containing a large amount of carbide or nose of pearlite transformation. Further, the cooling end temperature is preferably more than 400 ° C. because a large amount of γ r and MA, which are considered to be harmful to the burring property, may be generated at 400 ° C. or less. Furthermore, the end temperature of the cooling step is set to 600 ° C. or lower because aging properties may deteriorate if it exceeds 600 ° C. Further, the subsequent cooling is not particularly defined. However, at a cooling rate of 20 ° C./s or more, γ r and MA, which are considered to be harmful to the burring property, may be produced in large quantities. A cooling rate is desirable. In addition, the lower limit of cooling at this time is preferably 50 ° C. or higher because when cooling with water or mist, if the coil is in a wet state for a long time, there is a concern about poor appearance due to rust.

さらにその後、必要に応じてスキンパス圧延を実施する。ただしこの場合、摩擦係数を低減させる効果を得るためには、スキンパス後の鋼板表裏の表面のうち、少なくとも一方の算術平均粗さRaが1〜3.5μmであるようにスキンパス圧下率を制御することが望ましい。   Thereafter, skin pass rolling is performed as necessary. However, in this case, in order to obtain the effect of reducing the friction coefficient, the skin pass reduction ratio is controlled so that the arithmetic average roughness Ra of at least one of the front and back surfaces of the steel plate after skin pass is 1 to 3.5 μm. It is desirable.

酸洗後の熱延鋼板、もしくは上記の再結晶熱処理終了後の冷延鋼板に亜鉛めっきを施すためには、亜鉛めっき浴中に浸漬し、必要に応じて合金化処理してもよい。   In order to galvanize the hot-rolled steel sheet after pickling or the cold-rolled steel sheet after completion of the recrystallization heat treatment, it may be immersed in a galvanizing bath and alloyed as necessary.

なお、鋼板形状の矯正や可動転位導入による延性の向上のためには0.1%以上2%以下のスキンパス圧延を施すことが望ましい。   In order to improve the ductility by correcting the shape of the steel sheet or introducing movable dislocations, it is desirable to perform skin pass rolling of 0.1% or more and 2% or less.

酸洗後の熱延鋼板に亜鉛めっきを施すためには、亜鉛めっき浴中に浸積し、必要に応じて合金化処理してもよい。   In order to galvanize the hot-rolled steel sheet after pickling, it may be immersed in a galvanizing bath and alloyed as necessary.

なお、本発明においては、粗圧延終了から仕上げ圧延開始までの間にデスケーリングを行うようにしてもよい。粗圧延終了と仕上げ圧延開始の間にデスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm)≧0.0025の条件を満たすことが望ましい。鋼板表面での高圧水の衝突圧Pは以下のように記述される。(「鉄と鋼」1991 vol.77 No.9 p1450参照)
P(MPa)=5.64×P×V/H
ただし、
(MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
In the present invention, descaling may be performed between the end of rough rolling and the start of finish rolling. When descaling is performed between the end of rough rolling and the start of finish rolling, it is desirable to satisfy the condition of high-pressure water collision pressure P (MPa) × flow rate L (liters / cm 2 ) ≧ 0.0025 on the steel sheet surface. . The collision pressure P of high-pressure water on the steel sheet surface is described as follows. (Refer to "Iron and Steel" 1991 vol. 77 No. 9 p1450)
P (MPa) = 5.64 × P 0 × V / H 2
However,
P 0 (MPa): Liquid pressure V (liter / min): Nozzle flow rate H (cm): Distance between the steel plate surface and the nozzle

流量Lは以下のように記述される。
L(リットル/cm)=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
The flow rate L is described as follows.
L (liter / cm 2 ) = V / (W × v)
However,
V (liter / min): Nozzle flow rate W (cm): Width of spray liquid per nozzle hitting steel plate surface v (cm / min): Plate passing speed

衝突圧P×流量Lの上限は本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが望ましい。   The upper limit of the collision pressure P × the flow rate L is not particularly required to obtain the effects of the present invention, but increasing the nozzle flow rate causes problems such as severe wear of the nozzle, and therefore is 0.02 or less. Is desirable.

さらに、仕上げ圧延後の鋼板表面の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが望ましい。これは、例えば金属材料疲労設計便覧、日本材料学会編、84ページに記載されている通り熱延または酸洗ままの鋼板の疲労強度は鋼板表面の最大高さRyと相関があることから明らかである。また、その後の仕上げ圧延はデスケーリング後に再びスケールが生成してしまうのを防ぐために5秒以内に行うのが望ましい。   Furthermore, it is desirable that the maximum height Ry of the steel sheet surface after finish rolling is 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. This is clear from the fact that the fatigue strength of a hot-rolled or pickled steel sheet correlates with the maximum height Ry of the steel sheet surface, as described in, for example, Metal Material Fatigue Design Handbook, edited by the Japan Society of Materials Science, page 84. is there. Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.

次に、本発明を適用した高ヤング率薄鋼板の実施例について詳細に説明をする。表2に示す化学成分を有する鋼番A〜Kの鋼を転炉にて溶製して、連続鋳造後直送もしくは再加熱し、粗圧延に続く仕上げ圧延で3.2mmの板厚にした後に巻き取った。   Next, the Example of the high Young's modulus thin steel plate to which the present invention is applied will be described in detail. After melting steel Nos. A to K having chemical components shown in Table 2 in a converter and directly feeding or reheating after continuous casting, the thickness of the steel plate is 3.2 mm by finish rolling following rough rolling. Winded up.

Figure 0004837426
Figure 0004837426

この表2において鋼番A〜E、I、Kについては、本発明において限定した化学成分の範囲内にあるが、鋼番FはNb並びにTiを、鋼番GはCを、鋼番HはC並びにTiを、鋼番JはCとNbとTiを、それぞれ本発明において限定した化学成分から逸脱させている。   In Table 2, steel numbers A to E, I, and K are within the range of chemical components limited in the present invention, but steel number F is Nb and Ti, steel number G is C, and steel number H is C and Ti, steel number J deviates C, Nb and Ti from the chemical components defined in the present invention.

また、製造条件の詳細を表3に示す。   Details of the manufacturing conditions are shown in Table 3.

Figure 0004837426
Figure 0004837426

この表3において「加熱温度実績」は、スラブ加熱抽出温度の実績、「粗バー加熱」は粗圧延終了から仕上げ圧延開始までの間又は/及び仕上げ圧延中に粗バーまたは圧延材の誘導加熱による加熱の有無を、「FT」は仕上げ圧延終了温度、「圧延速度」とは仕上げ圧延終了時の通板速度を、「圧下率」とは最終段とその前段での圧延率を、「冷却速度」とは冷却開始温度から巻き取り温度域をまでの平均冷却速度を、「CT」とは巻取温度を示している。またX線ランダム強度比とは、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値を示している。
In this Table 3, “heating temperature results” is the result of slab heating extraction temperature, and “rough bar heating” is from the end of rough rolling to the start of finish rolling or / and during induction rolling by induction heating of the rough bar or rolled material. “FT” is the finish rolling end temperature, “Rolling speed” is the sheet passing speed at the end of finish rolling, “Rolling ratio” is the rolling rate in the last stage and the preceding stage, “Cooling speed” "Represents the average cooling rate from the cooling start temperature to the winding temperature range, and" CT "represents the winding temperature. The X-ray random intensity ratio indicates an average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane.

ここで、鋼番A−1〜A−9は、表1の鋼番Aの成分について各種製造条件を互いに異ならせている。鋼番A−1は、本発明で規定した製造条件の範囲内に含まれるが、鋼番A−2は加熱温度実績を、またA−3、4は、仕上げ圧延終了温度(FT)を、A−5は圧延速度を、A−6は圧下率を、更にA−7は冷却速度を、A−8、9はCTを本発明において限定した範囲から逸脱させている。また鋼番Dについては粗圧延後に衝突圧2.7MPa、流量0.001リットル/cmの条件でデスケーリングを施した。さらに、鋼番Iについては、亜鉛めっき浴中に浸漬して常法通りの亜鉛めっきを施した。ここで、「NbC溶体化温度」は前記SRT(℃)=6670/(2.26−log〔%Nb〕〔%C〕)−273より算出したNbCの溶解に必要な加熱温度を示している。但し、Nbが実質無添加の鋼番F、Jでは「−」とした。 Here, Steel Nos. A-1 to A-9 have different production conditions for the components of Steel No. A in Table 1. Steel No. A-1 is included in the range of manufacturing conditions defined in the present invention, but Steel No. A-2 shows the actual heating temperature, and A-3 and 4 show the finish rolling end temperature (FT), A-5 is the rolling speed, A-6 is the rolling reduction, A-7 is the cooling speed, and A-8 and 9 are the CTs deviating from the scope defined in the present invention. Steel number D was descaled after rough rolling under conditions of a collision pressure of 2.7 MPa and a flow rate of 0.001 liter / cm 2 . Further, Steel No. I was immersed in a galvanizing bath and galvanized as usual. Here, “NbC solution temperature” indicates the heating temperature required for dissolution of NbC calculated from the above SRT (° C.) = 6670 / (2.26-log [% Nb] [% C])-273. . However, it was set to "-" in the steel numbers F and J to which Nb was not substantially added.

このようにして得られた薄鋼板の引張試験は、コイル幅、長手方向に統計的傾向が判別できるに足る数のサンプルを採取し、JIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。また、バーリング加工性は日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従い、穴拡げ値にて評価した。   In the tensile test of the thin steel plate thus obtained, a sufficient number of samples were collected so that a statistical tendency could be discriminated in the coil width and longitudinal direction, and processed into a No. 5 test piece described in JIS Z 2201, and JIS Z The test method described in 2241 was performed. The burring workability was evaluated by the hole expansion value according to the hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T 1001-1996.

鋼番A〜Kの鋼のうち本発明で規定した要件を満たすものは、鋼番A−1、B、C、D、E、I、Kの7鋼であり、所定の量の鋼成分を含有し、そのミクロ組織がフェライト組織、連続冷却変態組織又はこれらの混合組織であり、かつ穴拡げ値が60%以上で、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上であることを特徴とする薄鋼板が得られている。
Among the steels of steel numbers A to K, those satisfying the requirements defined in the present invention are steel numbers A-1, B, C, D, E, I, and K, which are seven steels. And the microstructure is a ferrite structure, a continuous cooling transformation structure or a mixed structure thereof, and the hole expansion value is 60% or more, and the {100} plane X-ray random intensity ratio and the {211} plane A thin steel plate is obtained in which the average value of the X-ray random intensity ratio is 2.5 or more.

上記以外の鋼は、以下の理由によって本発明の範囲外である。すなわち、鋼番A−2は、「加熱温度実績」がNbC溶体温度を超えて本発明の範囲外であるので、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番A−3は、「FT」がAr3変態点温度未満で本発明の範囲外であるので、目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上となっていない。鋼番A−4は、「FT」がAr3変態点温度+100を超え本発明の範囲外であるので、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番A−5は、「圧延速度」が600mpm未満で本発明の範囲外であるので、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番A−6は、「圧下率」が25%未満で本発明の範囲外であるので、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番A−7は、「冷却速度」が20℃/sec未満で本発明の範囲外であるので、目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上となっていない。鋼番A−8は、「CT」が600℃を超え本発明の範囲外であるので、目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上となっていない。鋼番A−9は、「CT」が400℃未満で本発明の範囲外であるので、目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上となっていない。鋼番Fは、NbおよびTiの含有量がそれぞれ0.005質量%以上、0.001質量%以上含有されておらず本発明の範囲外であるので目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上で、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番Gは、Cの含有量が0.01質量%未満で本発明の範囲外であるので目的とするミクロ組織が得られず、さらに、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。鋼番Hは、C含有量が0.2質量%を超え、さらにTiが0.001質量%以上含有されておらず本発明の範囲外であるので目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上となっていない。鋼番Jは、Cの含有量が0.2質量%を超え、NbおよびTiの含有量がそれぞれ0.005質量%以上、0.001質量%以上含有されておらず本発明の範囲外であるので目的とするミクロ組織が得られず、さらに、穴拡げ値が60%以上で、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上となっていない。
Steels other than the above are outside the scope of the present invention for the following reasons. That is, Steel No. A-2 has a “heating temperature record” exceeding the NbC solution temperature and out of the scope of the present invention, so the {100} plane X-ray random intensity ratio of the plate surface and the {211} plane X The average value of the line random intensity ratio is not 2.5 or more. In Steel No. A-3, since “FT” is less than the Ar3 transformation point temperature and outside the scope of the present invention, the target microstructure cannot be obtained, and the hole expansion value is not 60% or more. In Steel No. A-4, since “FT” exceeds the Ar3 transformation temperature +100 and is outside the scope of the present invention, the {100} plane X-ray random intensity ratio of the plate surface and the {211} plane X-ray random intensity The average value of the ratio is not 2.5 or more. Steel No. A-5 has a “rolling speed” of less than 600 mpm and is outside the scope of the present invention, so the average of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane The value is not 2.5 or more. Steel No. A-6 has a “rolling ratio” of less than 25% and is outside the scope of the present invention. Therefore, the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane are The average value is not 2.5 or more. Steel No. A-7 has a “cooling rate” of less than 20 ° C./sec and is outside the scope of the present invention, so that the target microstructure cannot be obtained, and the hole expansion value is not 60% or more. . In Steel No. A-8, since “CT” exceeds 600 ° C. and is outside the scope of the present invention, the target microstructure cannot be obtained, and the hole expansion value is not 60% or more. Steel No. A-9 has a “CT” of less than 400 ° C. and is outside the scope of the present invention. Therefore, the target microstructure cannot be obtained, and the hole expansion value is not 60% or more. Steel No. F does not contain the Nb and Ti contents of 0.005% by mass or more and 0.001% by mass or more, respectively, and is outside the scope of the present invention. The hole expansion value is 60% or more, and the average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane is not 2.5 or more. Steel No. G has a C content of less than 0.01% by mass and is outside the scope of the present invention, so that the desired microstructure cannot be obtained. Further, the X-ray random intensity ratio of the {100} plane of the plate surface And the average value of the X-ray random intensity ratio of the {211} plane is not 2.5 or more. Steel No. H has a C content of more than 0.2% by mass, and further, Ti is not contained in an amount of 0.001% by mass or more and is outside the scope of the present invention. The hole expansion value is not over 60%. Steel No. J has a C content exceeding 0.2% by mass and Nb and Ti contents not exceeding 0.005% by mass and 0.001% by mass, respectively, and are outside the scope of the present invention. Therefore, the target microstructure cannot be obtained, and the hole expansion value is 60% or more. The average value of the X-ray random intensity ratio of the {100} plane of the plate surface and the X-ray random intensity ratio of the {211} plane Is not more than 2.5.

曲げ剛性評価のためのプレス部品を示す図である。It is a figure which shows the press part for bending rigidity evaluation. 板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値と曲げ剛性の関係を示す図である。It is a figure which shows the relationship between the average value of the X-ray random intensity ratio of {100} plane of a plate surface, and the X-ray random intensity ratio of {211} plane, and bending rigidity. スラブ加熱温度と固溶Nb量の関係を示す図であるIt is a figure which shows the relationship between slab heating temperature and the amount of solute Nb. 圧下率と板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を示す図である。It is a figure which shows the relationship between a rolling reduction, the average value of {100} X-ray random intensity ratio of a plate surface, and the X-ray random intensity ratio of {211} surface. 圧延速度と板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を示す図である。It is a figure which shows the relationship between a rolling speed, the average value of {100} X-ray random intensity ratio of a plate surface, and X-ray random intensity ratio of {211} surface. FTと板面の{100}のX線ランダム強度比と{211}面のX線ランダム強度比の平均値の関係を示す図である。It is a figure which shows the relationship between the average value of {100} X-ray random intensity ratio of FT and a plate surface, and X-ray random intensity ratio of {211} surface.

符号の説明Explanation of symbols

1 プレス形状品
2 溝部
1 Press-shaped product 2 Groove

Claims (9)

質量%で、
C :0.01〜0.2%、
Si:0.003〜2%、
Mn:0.1〜2%、
P ≦0.1%(但し0%超)、
S ≦0.03%(但し0%超)、
Al:0.001〜0.1%、
N ≦0.01%(但し0%超)、
Nb:0.005〜0.1%、
Ti:0.001〜0.2%、
を含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が連続冷却変態組織であり、板面の{100}面のX線ランダム強度比と{211}面のX線ランダム強度比の平均値が2.5以上であることを特徴とするバーリング加工性に優れた高ヤング率薄鋼板。
% By mass
C: 0.01-0.2%
Si: 0.003 to 2%,
Mn: 0.1 to 2%,
P ≦ 0.1% (however, over 0%),
S ≦ 0.03% (however, over 0%),
Al: 0.001 to 0.1%,
N ≦ 0.01% (however, over 0%),
Nb: 0.005 to 0.1%,
Ti: 0.001 to 0.2%,
And the balance is Fe and inevitable impurities, the microstructure of which is a continuous cooling transformation structure , the {100} plane X-ray random intensity ratio and the {211} plane X-ray A high Young's modulus thin steel sheet excellent in burring workability, characterized in that the average value of the random strength ratio is 2.5 or more.
さらに質量%で、
B :0.0002〜0.002%、
Cu:0.2〜1.2%、
Ni:0.1〜0.6%、
Mo:0.05〜1%、
V :0.02〜0.2%、
Cr:0.01〜1%、
の一種または二種以上を含有することを特徴とする請求項1記載のバーリング加工性に優れた高ヤング率薄鋼板。
In addition,
B: 0.0002 to 0.002%,
Cu: 0.2 to 1.2%,
Ni: 0.1 to 0.6%,
Mo: 0.05 to 1%
V: 0.02-0.2%,
Cr: 0.01-1%,
The high Young's modulus thin steel sheet excellent in burring workability according to claim 1, comprising one or more of the following.
さらに質量%で、
Ca:0.0005〜0.005%、
REM:0.0005〜0.02%、
の一種または二種を含有することを特徴とする請求項1又は2記載のバーリング加工性に優れた高ヤング率薄鋼板。
In addition,
Ca: 0.0005 to 0.005%,
REM: 0.0005 to 0.02%,
The high Young's modulus thin steel sheet excellent in burring workability according to claim 1 or 2, characterized by containing one or two of the following.
溶融亜鉛めっきが施されていることを特徴とする請求項1〜3の何れか1項記載のバーリング加工性に優れた高ヤング率薄鋼板。   The high Young's modulus thin steel sheet excellent in burring workability according to any one of claims 1 to 3, wherein hot dip galvanizing is applied. 請求項1〜3のいずれか1項に記載の成分を含有する鋼片から薄鋼板を得るための熱間圧延する際に、鋼片をNb炭化物の溶体化温度以上に加熱し、さらに粗圧延後の粗バーを600mpm以上の圧延速度で、最終段とその前段の合計圧下率を25%以上とし、
仕上げ圧延をAr3変態点温度以上Ar3変態点温度+100℃以下の温度域で終了させ、仕上げ圧延後の冷却開始から巻き取るまでの温度域を20℃/sec以上の冷却速度で400℃以上600℃以下の温度域まで冷却し、巻き取ることを特徴とするバーリング加工性に優れた高ヤング率薄鋼板の製造方法。
When hot-rolling to obtain a thin steel plate from a steel slab containing the component according to any one of claims 1 to 3, the steel slab is heated to a temperature equal to or higher than a solution temperature of Nb carbide, and further rough rolling is performed. The subsequent rough bar is rolled at a speed of 600 mpm or more, and the total rolling reduction of the final stage and the preceding stage is 25% or more,
Finish rolling is finished in a temperature range of Ar 3 transformation point temperature or higher and Ar 3 transformation point temperature + 100 ° C. or lower, and the temperature range from the start of cooling after finish rolling to winding is 400 ° C. or higher at a cooling rate of 20 ° C./sec or higher. A method for producing a high Young's modulus thin steel sheet excellent in burring workability, wherein the steel sheet is cooled to a temperature range of 600 ° C. or lower and wound.
仕上げ圧延開始温度を1000℃以上とすることを特徴とする請求項5記載のバーリング加工性に優れた高ヤング率薄鋼板の製造方法。   6. The method for producing a high Young's modulus thin steel sheet excellent in burring workability according to claim 5, wherein the finish rolling start temperature is 1000 ° C. or higher. 鋼片を、粗圧延終了した後の粗バーを仕上げ圧延開始までの間、及び/又は、粗バーの仕上げ圧延中に、1000℃以上に加熱することを特徴とする請求項5又は6記載のバーリング加工性に優れた高ヤング率薄鋼板の製造方法。   The steel slab is heated to 1000 ° C. or more until the rough bar after finishing the rough rolling is finished and / or during the finish rolling of the rough bar. A method for producing a high Young's modulus thin steel sheet with excellent burring workability. 粗圧延終了から仕上げ圧延開始までの間にデスケーリングを行うことを特徴とする請求項5〜7のうち何れか1項記載のバーリング加工性に優れた高ヤング率薄鋼板の製造方法。   Descaling is performed between the end of rough rolling and the start of finish rolling, The method for producing a high Young's modulus thin steel sheet excellent in burring workability according to any one of claims 5 to 7. 請求項5〜8のうち何れか1項記載の製造工程の後、得られた鋼板表面を亜鉛めっきすることを特徴とするバーリング加工性に優れた高ヤング率薄鋼板の製造方法。   The manufacturing method of the high Young's modulus thin steel plate excellent in burring workability characterized by galvanizing the obtained steel plate surface after the manufacturing process of any one of Claims 5-8.
JP2006107314A 2006-04-10 2006-04-10 High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof Active JP4837426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107314A JP4837426B2 (en) 2006-04-10 2006-04-10 High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107314A JP4837426B2 (en) 2006-04-10 2006-04-10 High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007277661A JP2007277661A (en) 2007-10-25
JP4837426B2 true JP4837426B2 (en) 2011-12-14

Family

ID=38679399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107314A Active JP4837426B2 (en) 2006-04-10 2006-04-10 High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4837426B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370016B2 (en) * 2008-09-11 2013-12-18 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility and method for producing the same
BR112012022573B1 (en) 2010-03-10 2018-07-24 Nippon Steel & Sumitomo Metal Corp High strength hot rolled steel plate and method of production thereof.
JP5543814B2 (en) * 2010-03-24 2014-07-09 日新製鋼株式会社 Steel plate for heat treatment and method for producing steel member
CN103249853B (en) 2010-10-18 2015-05-20 新日铁住金株式会社 Hot-rolled steel sheet, cold-olled steel sheet, and plated steel sheet each having exellent uniform ductility and local ductility in high-speed deformation
JP5699860B2 (en) * 2011-08-24 2015-04-15 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
CA2850091C (en) * 2011-09-30 2016-06-28 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet and high-strength alloyed hot-dip galvanized steel sheet having excellent formability and small material anisotropy with ultimate tensile strength of 980 mpa or more and manufacturing method therefor
JP5267638B2 (en) * 2011-11-17 2013-08-21 Jfeスチール株式会社 Hot-rolled steel sheet for high-strength hot-dip galvanized steel sheet or high-strength galvannealed steel sheet and method for producing the same
WO2013115205A1 (en) 2012-01-31 2013-08-08 Jfeスチール株式会社 Hot-rolled steel for power generator rim and method for manufacturing same
JP5610003B2 (en) 2013-01-31 2014-10-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5821864B2 (en) * 2013-01-31 2015-11-24 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
JP5637225B2 (en) 2013-01-31 2014-12-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in burring workability and manufacturing method thereof
KR101657835B1 (en) 2014-12-24 2016-09-20 주식회사 포스코 High strength hot-rolled steel sheet having excellent press formability and method for manufacturing the same
WO2021070951A1 (en) * 2019-10-10 2021-04-15 日本製鉄株式会社 Cold-rolled steel sheet and method for producing same
CN113957325A (en) * 2021-09-06 2022-01-21 包头钢铁(集团)有限责任公司 Method for solving brittle failure of construction steel bar
CN115198181B (en) * 2022-06-28 2024-01-19 马鞍山钢铁股份有限公司 Hot-rolled coiled plate without edge crack for 355 Mpa-grade thick-specification pipe making and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144314A (en) * 1998-11-02 2000-05-26 Nippon Steel Corp Hot rolled steel sheet excellent in square cylinder drawability and its production
JP3775279B2 (en) * 2000-12-15 2006-05-17 Jfeスチール株式会社 Structural steel with excellent brittle crack propagation stoppage and fatigue crack propagation after plastic deformation and its manufacturing method
JP4276482B2 (en) * 2003-06-26 2009-06-10 新日本製鐵株式会社 High-strength hot-rolled steel sheet with excellent ultimate deformability and shape freezing property and its manufacturing method

Also Published As

Publication number Publication date
JP2007277661A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4837426B2 (en) High Young's modulus thin steel sheet with excellent burring workability and manufacturing method thereof
CN110312814B (en) High-strength hot-rolled steel sheet and method for producing same
US8430975B2 (en) High strength galvanized steel sheet with excellent formability
JP4555694B2 (en) Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
JP5967319B2 (en) High strength steel plate and manufacturing method thereof
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5053157B2 (en) High strength high Young's modulus steel plate with good press formability, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
WO2011004779A1 (en) High-strength steel sheet and manufacturing method therefor
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
KR20130083481A (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
WO2013034317A1 (en) Low density high strength steel and method for producing said steel
KR20200124739A (en) High-strength steel sheet and its manufacturing method
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
US20190185955A1 (en) High-strength steel sheet and method for manufacturing the same
WO2016157258A1 (en) High-strength steel sheet and production method therefor
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP4116901B2 (en) Burring high strength thin steel sheet and method for producing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4288146B2 (en) Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4837426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350