WO2021187238A1 - Steel sheet - Google Patents

Steel sheet Download PDF

Info

Publication number
WO2021187238A1
WO2021187238A1 PCT/JP2021/009279 JP2021009279W WO2021187238A1 WO 2021187238 A1 WO2021187238 A1 WO 2021187238A1 JP 2021009279 W JP2021009279 W JP 2021009279W WO 2021187238 A1 WO2021187238 A1 WO 2021187238A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
content
ferrite
steel
Prior art date
Application number
PCT/JP2021/009279
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 充
俊介 谷口
林 宏太郎
洋志 首藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180020970.6A priority Critical patent/CN115298342B/en
Priority to EP21772047.3A priority patent/EP4123046B1/en
Priority to JP2022508240A priority patent/JP7277860B2/en
Priority to KR1020227031055A priority patent/KR20220138402A/en
Priority to US17/908,581 priority patent/US20230140358A1/en
Priority to MX2022011351A priority patent/MX2022011351A/en
Publication of WO2021187238A1 publication Critical patent/WO2021187238A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the present invention relates to a steel sheet.
  • the present application claims priority based on Japanese Patent Application No. 2020-049120 filed in Japan on March 19, 2020, the contents of which are incorporated herein by reference.
  • a steel sheet applied to an automobile part is formed into a part shape, but when the strength of the steel sheet increases, the formability usually deteriorates. Therefore, it is strongly desired that a steel sheet applied to an automobile part has both high strength and excellent moldability.
  • steel sheets used for inner plate members, structural members, suspension members, etc. of automobiles are often subjected to stretch flange processing (hole expansion processing) and bending processing, so that they have high strength and are stretched and stretched flanges. It is required to have excellent properties and bendability.
  • Patent Document 1 As a steel sheet capable of obtaining excellent elongation, a dual phase steel sheet (hereinafter referred to as DP steel) composed of a composite structure of a soft ferrite phase and a hard martensite phase is known. ..
  • DP steel dual phase steel sheet
  • voids may be generated from the interface between the ferrite phase and the martensite phase, which have significantly different hardness, and cracks may occur, so that the elongation flangeability and bending workability may be inferior. rice field.
  • Patent Document 2 it is obtained by setting the cooling rate in the temperature range from solidification of the slab to 1300 ° C. to 10 to 300 ° C./min and winding it at 500 ° C. or higher and 700 ° C. or lower after finish rolling.
  • a high-strength hot-rolled steel sheet having a steel structure composed of a ferrite single phase and a tensile strength of 1180 MPa or more has been proposed.
  • Patent Document 2 discloses that this high-strength hot-rolled steel sheet is excellent in bending workability.
  • the high-strength hot-rolled steel sheet described in Patent Document 2 is manufactured by reheating the slab to less than 900 ° C. at which the ferrite phase begins to form and subjecting it to hot rolling. Therefore, there is a problem that the segregation formed at the time of solidification is not sufficiently reduced and the bending workability may not be stable. Further, in Patent Document 2, stretch flangeability is not considered.
  • Patent Document 3 states that Ti exceeding the solubility is solid-solved in ⁇ by completing hot rolling within 5 hours after continuous casting, and fine TiC is formed along with ferrite transformation during winding at 550 ° C or higher and 700 ° C or lower.
  • a method for producing a steel sheet having a ferrite area fraction of 80% or more and a tensile strength of 980 MPa or more by precipitating the above, and a high-strength hot-rolled steel sheet obtained by the manufacturing method have been proposed.
  • Patent Document 3 in order to suppress the precipitation of coarse TiC, since continuous casting to completion of hot finish rolling are performed in the austenite region, bending workability may be deteriorated due to Mn segregation. Further, in Patent Document 3, as in Patent Document 2, the stretch flangeability is not considered.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a steel sheet having high strength and excellent elongation, stretch flangeability, and bending workability.
  • the steel sheet of the present invention also includes a steel sheet having a coating such as a plating layer on the surface.
  • the present inventors examined a steel sheet having high strength, elongation, stretch flangeability and bending workability. As a result, by optimizing the chemical composition and manufacturing conditions, the metallographic structure of the steel sheet and the Mn segregation are controlled, and by controlling the precipitation form of Ti-based carbides, the strength is high and the elongation and elongation flanges are stretched. It was found that a steel sheet having excellent properties and bendability can be produced.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the steel sheet according to one aspect of the present invention has a chemical composition of% by mass, C: 0.050 to 0.250%, Si: 0.005 to 2.000%, Mn: 0.10 to 3 .00%, P: 0.100% or less, S: 0.0100% or less, sol.
  • Al 0.001 to 1.00%, Ti: 0.150 to 0.400%, N: 0.0010 to 0.0100%, Nb: 0 to 0.100%, V: 0 to 1.000% , Mo: 0 to 1.000%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Cr: 0 to 2.00%, W: 0 to 1.000%, B: 0 to It contains 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, REM: 0 to 0.0100%, Bi: 0 to 0.0200%, and the balance is Fe and impurities.
  • the metal structure at a depth of 1/4 of the plate thickness from the surface is 60% or more for ferrite, 0 to 5% for MA, and total of pearlite and cementite in area division.
  • the average crystal grain size is 10.0 ⁇ m or less
  • the average aspect ratio of the crystal grains is 0.30 or more
  • the standard deviation of the Mn concentration is Ti-based carbides having a Baker-Nutting orientation relationship in the ferrite, which is 0.60% by mass or less, are precipitated in a semi-matched state, and the tensile strength is 980 MPa or more.
  • the steel sheet according to [1] has a chemical composition of Nb: 0.001 to 0.100%, V: 0.005 to 1.000%, Mo: 0.001 to 1 in mass%. .000%, Cu: 0.02 to 1.00%, Ni: 0.02 to 1.00%, Cr: 0.02 to 2.00%, W: 0.02 to 1.000%, B: 0.0001 to 0.0020%, Ca: 0.0002 to 0.0100%, Mg: 0.0002 to 0.0100%, REM: 0.0002 to 0.0100%, and Bi: 0.0001 to It may contain one or more selected from the group consisting of 0.0200%.
  • the steel sheet according to [1] or [2] may have a plating layer formed on its surface.
  • the plating layer may be a hot-dip galvanized layer.
  • the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
  • the steel plate of the present invention is suitable as a material used for applications such as automobiles, home appliances, mechanical structures, and constructions, and in particular, as a material for parts such as inner plate members, structural members, and suspension members of automobiles. If used, it not only contributes to weight reduction of the vehicle body and improvement of collision resistance characteristics, but is also easy to process into a part shape.
  • the steel plate according to the embodiment of the present invention (the steel plate according to the present embodiment) will be described in detail below.
  • the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • C ⁇ Chemical composition of steel sheet> (C: 0.050 to 0.250%)
  • C is an element that enhances the tensile strength of steel by combining with Ti and the like to generate carbides. If the C content is less than 0.050%, it becomes difficult to obtain a tensile strength of 980 MPa or more. Therefore, the C content is set to 0.050% or more. It is preferably 0.070% or more. On the other hand, if the C content exceeds 0.250%, there is a concern that the weldability may decrease. Therefore, the C content is set to 0.250% or less. The C content is preferably 0.220% or less, more preferably 0.200% or less, and even more preferably 0.180% or less.
  • Si is an element that has the effect of increasing the tensile strength of steel by strengthening the solid solution and increasing the hardenability. Si is an element that also has an effect of suppressing the precipitation of cementite. If the Si content is less than 0.005%, it becomes difficult to exert the above action. Therefore, the Si content is set to 0.005% or more. The Si content is preferably 0.010% or more. On the other hand, when the Si content exceeds 2.000%, the surface properties of the steel sheet are significantly deteriorated due to surface oxidation in the hot rolling process. Therefore, the Si content is set to 2.000% or less. The Si content is preferably 1.500% or less, more preferably 1.300% or less.
  • Mn is an element that has the effect of increasing the tensile strength of steel by strengthening the solid solution and increasing the hardenability. If the Mn content is less than 0.10%, the ferrite transformation is excessively promoted, and at high temperatures, Ti-based carbides are coarsely precipitated together with the ferrite transformation. In this case, it becomes difficult to obtain the tensile strength of the steel sheet of 980 MPa or more. Therefore, the Mn content is set to 0.10% or more. The Mn content is preferably 0.30% or more, more preferably 0.50% or more.
  • the Mn content is set to 3.00% or less.
  • the Mn content is preferably 2.50% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.
  • Al is an element having an action of purifying steel by deoxidation in the steelmaking stage. sol. If the Al content is less than 0.001%, it becomes difficult to exert the above action. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.01% or more, more preferably 0.02% or more, still more preferably 0.03% or more. On the other hand, sol. Even if the Al content exceeds 1.00%, the effect of the above action is saturated and the refining cost increases. Therefore, sol. The Al content is 1.00% or less. sol. The Al content is preferably 0.80% or less, more preferably 0.60% or less. sol. Al means acid-soluble Al.
  • Ti 0.150 to 0.400%
  • Ti is an element that combines with C to form Ti-based carbides and contributes to the improvement of the tensile strength of the steel sheet. Further, Ti is an element having an action of forming a Ti nitride to suppress coarsening of austenite during slab reheating and hot rolling to refine the metal structure. If the Ti content is less than 0.150%, it becomes difficult to obtain a tensile strength of 980 MPa or more due to insufficient precipitation strengthening amount. Therefore, the Ti content is set to 0.150% or more.
  • the Ti content is preferably 0.170% or more, more preferably 0.190% or more, and even more preferably 0.210% or more.
  • the Ti content becomes excessive, coarse Ti-based carbides remain in the austenite in an unsolid solution, so that elongation and bending workability are lowered, and Ti having a Baker-Nutting orientation relationship that contributes to strength.
  • the carbides are reduced and the strength is reduced. Therefore, the Ti content is set to 0.400% or less.
  • the Ti content is preferably 0.380% or less, more preferably 0.350% or less.
  • N is an element having an action of suppressing coarsening of austenite during slab reheating and hot rolling and refining the metal structure by forming Ti nitride. If the N content is less than 0.0010%, it becomes difficult to exert the above action. Therefore, the N content is set to 0.0010% or more.
  • the N content is preferably 0.0015% or more, more preferably 0.0020% or more.
  • the N content is 0.0100% or less.
  • the N content is preferably 0.0060% or less, more preferably 0.0050% or less.
  • P is an element contained in steel as an impurity, and has an action of lowering the stretch flangeability and bending workability of the steel sheet. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.060% or less, more preferably 0.040% or less, and even more preferably 0.020% or less.
  • P is mixed as an impurity from the raw material, it is not necessary to limit the lower limit thereof, and it is preferable that the P content is lower from the viewpoint of ensuring bending workability. However, if the P content is excessively reduced, the manufacturing cost increases. From the viewpoint of production cost, the P content is preferably 0.001% or more, more preferably 0.005% or more.
  • S is an element contained as an impurity and has an action of lowering the stretch flangeability and bending workability of the steel sheet. Therefore, the S content is set to 0.0100% or less.
  • the S content is preferably 0.0080% or less, more preferably 0.0060% or less, and even more preferably 0.0030% or less.
  • S is mixed as an impurity from the raw material, it is not necessary to limit the lower limit thereof, and it is preferable that the S content is lower from the viewpoint of ensuring bending workability. However, if the S content is excessively reduced, the manufacturing cost increases. From the viewpoint of production cost, the S content is preferably 0.0001% or more, more preferably 0.0005% or more, and even more preferably 0.0010% or more.
  • the rest of the chemical composition of the steel sheet according to this embodiment consists of Fe and impurities.
  • the impurities mean those mixed from ore as a raw material, scrap, manufacturing environment, etc., and are allowed as long as they do not adversely affect the steel sheet according to the present embodiment.
  • the steel sheet according to this embodiment may contain the following optional elements instead of a part of Fe. Since the steel sheet according to the present embodiment can solve the problem without containing an arbitrary element, the lower limit of the content of the arbitrary element is 0%.
  • Nb is an arbitrary element.
  • Nb is an element that has the effect of increasing the tensile strength of the steel sheet by suppressing the coarsening of the crystal grain size of the steel sheet, by refining the ferrite grain size, and by precipitating and strengthening as NbC.
  • the Nb content is preferably 0.001% or more.
  • the Nb content is more preferably 0.005% or more, still more preferably 0.010% or more.
  • the Nb content exceeds 0.100%, the above effects are saturated and there is a concern that the rolling load during finish rolling will increase. Therefore, when Nb is contained, the Nb content is set to 0.100% or less.
  • the Nb content is preferably 0.060% or less, more preferably 0.030% or less.
  • V is an arbitrary element.
  • V is an element that dissolves in steel to increase the tensile strength of the steel sheet, and also precipitates in the steel as carbides, nitrides, carbonitrides, etc., and has the effect of improving the tensile strength of the steel sheet by precipitation strengthening. be.
  • the V content is preferably 0.005% or more.
  • the V content is more preferably 0.010% or more, still more preferably 0.050% or more.
  • the V content exceeds 1.000%, the carbides tend to become coarse and the bending workability may decrease. Therefore, when V is contained, the V content is set to 1.000% or less.
  • the V content is preferably 0.800% or less, more preferably 0.600% or less.
  • Mo is an optional element. Mo is an element that has the effect of enhancing the hardenability of steel and forming carbides and carbonitrides to increase the strength of the steel sheet. In order to obtain these effects, the Mo content is preferably 0.001% or more. The Mo content is more preferably 0.005% or more, further preferably 0.010% or more, and even more preferably 0.050% or more. On the other hand, if the Mo content exceeds 1.000%, the crack sensitivity of a steel material such as a slab may increase. Therefore, when Mo is contained, the Mo content is 1.000% or less. The Mo content is more preferably 0.800% or less, still more preferably 0.600% or less.
  • Cu is an optional element.
  • Cu is an element having the effect of improving the toughness of steel and the effect of increasing the tensile strength. In order to obtain these effects, the Cu content is preferably 0.02% or more.
  • the Cu content is set to 1.00% or less.
  • the Cu content is preferably 0.50% or less, more preferably 0.30% or less.
  • Ni is an optional element.
  • Ni is an element that has the effect of improving the toughness of steel and the effect of increasing tensile strength. In order to obtain these effects, the Ni content is preferably 0.02% or more.
  • the Ni content is set to 1.00% or less.
  • the Ni content is preferably 0.50% or less, more preferably 0.30% or less.
  • Cr is an arbitrary element. Cr is an element that has the effect of increasing the tensile strength by increasing the hardenability of steel. In order to obtain this effect, the Cr content is preferably 0.02% or more. The Cr content is more preferably 0.05% or more, still more preferably 0.10% or more. On the other hand, if the Cr content becomes excessive, the chemical conversion processability deteriorates. Therefore, when Cr is contained, the Cr content is set to 2.00% or less. The Cr content is preferably 1.50% or less, more preferably 1.00% or less, still more preferably 0.50% or less.
  • W is an arbitrary element.
  • W is an element having the effect of forming carbides and carbonitrides and increasing the tensile strength. In order to obtain this effect, the W content is preferably 0.020% or more. On the other hand, even if W is contained in a certain amount or more, the effect of the above action is saturated and the alloy cost increases. Therefore, when W is contained, the W content is set to 1.000% or less. The W content is preferably 0.800% or less.
  • B is an arbitrary element.
  • B is an element having an effect of increasing the tensile strength of the steel sheet by strengthening the grain boundaries and solid solution.
  • the B content is preferably 0.0001% or more.
  • the B content is more preferably 0.0002% or more.
  • B is set to 0.0020% or less.
  • the B content is more preferably 0.0015% or less.
  • Ca is an optional element.
  • Ca is an element that has the effect of dispersing a large number of fine oxides in molten steel and making the metal structure of the steel sheet finer.
  • Ca is an element having an effect of improving the stretch flangeability of the steel sheet by fixing S in the molten steel as a spherical CaS and suppressing the formation of stretching inclusions such as MnS.
  • the Ca content is preferably 0.0002% or more.
  • the Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Ca content exceeds 0.0100%, the amount of CaO in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when Ca is contained, the Ca content is 0.0100% or less.
  • the Ca content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • Mg is an optional element. Like Ca, Mg forms oxides and sulfides in molten steel to suppress the formation of coarse MnS, and also has the effect of dispersing a large number of fine oxides and refining the metal structure of the steel sheet. Is. In order to obtain these effects, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, if the Mg content exceeds 0.0100%, the oxide in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when Mg is contained, the Mg content is set to 0.0100% or less. The Mg content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • REM 0 to 0.0100%
  • REM is an optional element. Similar to Ca, REM also has the effect of forming oxides and sulfides in molten steel to suppress the formation of coarse MnS, dispersing a large number of fine oxides, and refining the metal structure of the steel sheet. It is an element.
  • the REM content is preferably 0.0002% or more.
  • the REM content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • oxides in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when REM is contained, the REM content is 0.0100% or less.
  • the REM content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • REM rare earth
  • the REM content refers to the total content of these elements.
  • Bi is an arbitrary element.
  • Bi is an element having the effect of refining the solidified structure and improving the formability of the steel sheet.
  • the Bi content is preferably 0.0001% or more.
  • the Bi content is more preferably 0.0005% or more.
  • the Bi content is 0.0200% or less. It is preferably 0.0100% or less, and more preferably 0.0070% or less.
  • Ex.C 0.020% or less
  • C is precipitated as a Ti-based carbide and contributes to increasing the strength of the steel sheet.
  • this excess C produces pearlite, cementite, MA, etc., and as a result, the stretch flangeability and bendability are lowered.
  • Ex. C corresponds to the C content exceeding the amount precipitated as a Ti-based carbide.
  • this Ex. C is 0.020% or less. It is preferably 0.018% or less, and more preferably 0.015% or less. The lower limit is not particularly limited.
  • the metal structure of the steel sheet will be described.
  • the metal structure at a depth of 1/4 of the plate thickness from the surface contains 60% or more of ferrite, 0 to 5% of MA, and 0 to 5% of pearlite and cementite in total, and the balance. Consists of bainite.
  • the average crystal grain size is 10.0 ⁇ m or less
  • the average aspect ratio of the crystal grains is 0.30 or more
  • the standard deviation of the Mn concentration is 0.60 mass% or less.
  • Ti-based carbides having a Baker-Nutting orientation relationship in ferrite are precipitated in a semi-matched state.
  • the reason for defining the metal structure at the position of 1/4 depth of the plate thickness in the plate thickness direction from the surface of the steel plate (the position of t / 4 from the surface when the plate thickness is t) is at this position. This is because the metal structure is a typical metal structure of a steel sheet.
  • Ferrite is required to obtain good elongation. If the surface integral is less than 60%, the elongation will decrease. Therefore, the surface integral of ferrite is set to 60% or more.
  • the surface integral of ferrite is preferably 70% or more, more preferably 80% or more, and may be 100% (that is, ferrite single phase).
  • the metallographic structure may contain a small amount of MA in addition to ferrite, but it is acceptable if the surface integral is 5% or less. It is preferably 4% or less, more preferably 3% or less, and most preferably 2% or less.
  • pearlite and cementite may precipitate, but it is permissible if the total surface integral is 5% or less. It is preferably 4% or less, more preferably 3% or less, and most preferably 2% or less. If the surface integral of MA is more than 5%, the bending workability and the hole expanding property are lowered. Alternatively, if the surface integral of pearlite and cementite is more than 5%, the hole-spreading property is lowered. In the metallographic structure, the rest other than the above consists of bainite. Bainite has a small difference in hardness from ferrite precipitated and strengthened with Ti-based carbides. Therefore, as compared with MA (Martensite-Austenite Constituents), pearlite and cementite, the effect of reducing the hole-spreading property is small. Therefore, the rest of the tissue is bainite.
  • MA Martensite-Austenite Constituents
  • the average crystal grain size is set to 10.0 ⁇ m or less. It is preferably 8.0 ⁇ m or less. The smaller the average crystal grain size, the more preferable, so the lower limit is not particularly limited. However, in ordinary hot rolling, it is technically difficult to make the particles finer so that the average crystal grain size is less than 1.0 ⁇ m. Therefore, the average crystal grain size may be 1.0 ⁇ m or more.
  • the "average crystal grain size” means that the crystal structure is bcc, that is, ferrite, bainite, martensite, and pearlite are surrounded by grain boundaries having a crystal orientation difference of 15 ° or more, and the diameter corresponding to a circle is 0. It means the average value of the crystal grain size in which the region of 3 ⁇ m or more is defined as the crystal grain, and the crystal grain size of retained austenite is not included in the average crystal grain size.
  • the average aspect ratio of the bcc crystal grains is 0.30 or more.
  • the aspect ratio is a value obtained by dividing the length of the minor axis of the crystal grain by the length of the major axis, and takes a value from 0 to 1.00.
  • the average aspect ratio of the crystal grains excluding retained austenite is set to 0.30 or more. The closer the crystal grains are to the equiaxed axis, the smaller the anisotropy and the better the processability. Therefore, the average aspect ratio of the crystal grains excluding retained austenite is better as it is closer to 1.00.
  • the average crystal grain size, the average aspect ratio of the crystal grains, and the area division of the metal structure are 1/4 depth from the surface of the steel plate to the plate thickness of the steel plate cross section parallel to the rolling direction and the plate thickness direction.
  • Crystal orientation information is obtained by distinguishing fcc and bcc at intervals of 0.2 ⁇ m in a region of 200 ⁇ m in the rolling direction and 100 ⁇ m in the plate thickness direction centered on a 1/4 depth position of the plate thickness from the surface of the steel plate.
  • the crystal grain boundaries having a crystal orientation difference of 15 ° or more are specified.
  • the average crystal grain size of bcc is surrounded by crystal grain boundaries having a crystal orientation difference of 15 ° or more, and a region having a diameter equivalent to a circle of 0.3 ⁇ m or more is defined as a crystal grain, and the area average diameter is obtained.
  • the grain boundaries having a crystal orientation difference of 15 ° or more are mainly ferrite grain boundaries, martensite, and bainite block boundaries.
  • the grain size may be calculated even for ferrite grains with a crystal orientation difference of less than 15 °, and martensite and bainite blocks are not calculated. .. Therefore, as the average crystal grain size in this embodiment, the value obtained by EBSD analysis as described above is adopted. In the EBSD analysis, the length of the major axis and the length of the minor axis of each crystal grain are also obtained at the same time. Therefore, by adopting this method, the average aspect ratio of the bcc crystal grains can also be obtained.
  • the surface integral of ferrite is measured by the following method.
  • a region surrounded by crystal grain boundaries having a crystal orientation difference of 5 ° or more and having a diameter equivalent to a circle of 0.3 ⁇ m or more is defined as a crystal grain.
  • the surface integral of the crystal grains whose value (GAM value) obtained by the Grain Average Composition analysis equipped in the OIMA analysis is 0.6 ° or less is calculated.
  • the boundary with a crystal orientation difference of 5 ° or more is defined as a grain boundary when determining the surface integral of ferrite is that different metal structures generated by variants close to the same old austenite grain may not be distinguishable. be.
  • the surface integrals of pearlite and cementite are obtained by SEM observation of the metallographic structure exposed by nital corrosion.
  • the surface integral of MA is obtained by observing the structure exposed by the repera corrosion with an optical microscope.
  • the surface integral may be obtained by image analysis or by a point calculation method. For example, pearlite and cementite are observed in a region at a depth of 1/4 of the plate thickness from the surface of the steel sheet at a magnification of 1000 times for 3 or more fields of view (100 ⁇ m ⁇ 100 ⁇ m / field of view), and are obtained by a point calculation method with a lattice spacing of 5 ⁇ m. You can.
  • the surface integral of MA is a point calculation method in which two or more visual fields (200 ⁇ m ⁇ 200 ⁇ m / visual field) are observed at a magnification of 500 times in a region at a depth of 1/4 of the plate thickness from the surface of the steel plate, and the grid spacing is 5 ⁇ m. You can ask for it.
  • the standard deviation of the Mn concentration is 1/4 depth from the surface of the steel sheet after the sample is sampled so that the cross section parallel to the rolling direction and the thickness direction of the steel sheet is the observation surface and the observation surface is mirror-polished. It is obtained by measuring the rolling position with an electron probe microanalyzer (EPMA).
  • the measurement conditions are that the acceleration voltage is 15 kV, the magnification is 5000 times, and the distribution image in the range of 20 ⁇ m in the rolling direction of the sample and 20 ⁇ m in the plate thickness direction of the sample is measured. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40,000 or more points is measured.
  • the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
  • Ti-containing carbides (Ti-based carbides) are precipitated in the ferrite.
  • Ti is an element having a high driving force for precipitation of carbides in ferrite, and it becomes easy to control the precipitation state of carbides by controlling the content and heat treatment.
  • Ti-based carbides also have a high precipitation strengthening ability.
  • the Ti-based carbide refers to a carbide having a NaCl-type crystal structure containing Ti. If the carbide contains Ti, even if a small amount of other carbide-forming alloying elements are contained, the above-mentioned driving force is not significantly reduced, so that an effect can be obtained.
  • the Ti-based carbide may contain other carbide-forming alloying elements such as Mo, Nb, V, Cr and W. Further, in the Ti-based carbide, even if the carbonitride in which a part of the carbon is replaced with nitrogen does not change the precipitation state, the effect can be obtained.
  • Ti-based carbides in ferrite precipitate in a semi-matched state When the ratio of Ti-based carbides whose interface with ferrite is a semi-matching interface to Ti-based carbides precipitated in ferrite with a Baker-Nutting orientation relationship is 50% or more, the stretch flangeability of the steel sheet is It becomes stable and good.
  • the state in which "Ti-based carbides are precipitated in a semi-matched state" in the present embodiment refers to such a case.
  • the Ti-based carbide is not semi-matched precipitation, the hole-spreading property is lowered. Whether or not the Ti-based carbide having the directional relationship of Baker-Nutting is in the semi-matched state is determined as follows.
  • the ring detector is detected by scanning transmission electron microscopy (magnification: 910,000 to 5,100,000 times).
  • An annular dark-field scanning transmission electron microscope image in which the angle is set between 60 mrad and more and 200 mrad or less is photographed by incident an electron beam from the [001] direction of ferrite.
  • the thickness of the Ti-based carbide may be 1 nm or more and 5 nm or less from the viewpoint of ensuring the number density of the Ti-based carbides precipitated in the ferrite having a Baker-Nutting orientation relationship.
  • the thickness of Ti-based carbide is measured by the following method.
  • a thin film sample for a transmission electron microscope is prepared from a depth position of 1/4 in the plate thickness direction from the surface of the steel plate, and observed with a scanning transmission electron microscope (hereinafter, also referred to as "STEM").
  • STEM scanning transmission electron microscope
  • the Ti-based carbides having plate surfaces formed on the (100) plane and (010) plane of the ferrite observed in the STEM image taken by injecting an electron beam in the [001] direction of the ferrite the ferrite [100] and [ Of the sizes of Ti-based carbides measured along the 010] direction, the length of the small side is defined as the thickness.
  • the interatomic distances of 10 unit lattices in the [100] direction and [010] direction of ferrite at locations where precipitates are not seen in the image respectively.
  • the scale is calibrated so that is 2.866 nm.
  • the steel sheet according to the present embodiment has high strength and excellent elongation, stretch flangeability and bending workability by controlling the metallographic structure, the precipitation form of Ti-based carbides and the Mn segregation.
  • the tensile strength (TS) of the steel sheet according to this embodiment is set to 980 MPa or more. It is preferably 1080 MPa or more.
  • the upper limit is not particularly specified, but as the tensile strength increases, press molding becomes difficult. Therefore, the tensile strength may be 1800 MPa or less.
  • the target is TS ⁇ El, which is an index of the balance between strength and elongation, to be 14000 MPa ⁇ % or more, and the index of the balance between strength and elongation and flangeability is used.
  • the purpose is that TS ⁇ ⁇ is 50,000 MPa ⁇ % or more.
  • TS ⁇ El is more preferably 15,000 MPa ⁇ % or more.
  • TS ⁇ ⁇ is more preferably 55,000 MPa ⁇ % or more, further preferably 60,000 MPa ⁇ % or more, and even more preferably 65,000 MPa ⁇ % or more.
  • the tensile strength and elongation of the steel sheet are evaluated by the tensile strength and the total elongation at break (El) using the No. 5 test piece specified in JIS Z 2241: 2011.
  • the stretch flangeability of the steel sheet is evaluated by the hole expansion ratio ( ⁇ ) specified in JIS Z 2256: 2010.
  • a slab or steel piece having the above-mentioned chemical composition is heated.
  • the slab or steel piece may be obtained by continuous casting or casting / slab rolling, but may be obtained by adding hot working or cold working to them.
  • Heating temperature 1280 ° C or higher and SRT (° C) or higher
  • the heating temperature of the slab or steel piece to be subjected to hot rolling shall be 1280 ° C. or higher and the temperature SRT (° C.) or higher represented by the following equation (3). If the heating temperature is less than 1280 ° C., the reduction of the standard deviation of the Mn concentration due to the diffusion of Mn during heating may be insufficient. Further, if it is less than SRT (° C.), the solution of Ti carbonitride becomes insufficient, and in either case, the tensile strength and bending workability of the steel sheet are lowered. Therefore, the temperature of the slab or steel piece to be subjected to hot rolling is 1280 ° C.
  • the temperature of the slab or steel piece is 1280 ° C. or higher and SRT (° C.) or higher.
  • the temperature of the slab or steel piece is 1280 ° C. or higher and SRT (° C.) or higher
  • SRT (° C.) 1630 + 90 ⁇ ln ([C] ⁇ [Ti])... (3)
  • the [element symbol] in the above equation (3) indicates the content of each element in mass%.
  • Hot rolling process In the hot rolling step, the slab or steel piece after the heating step is subjected to multi-pass hot rolling using a plurality of rolling stands to obtain a hot-rolled steel sheet.
  • the hot rolling process is divided into rough rolling and finish rolling performed after rough rolling.
  • Multi-pass hot rolling can be performed using a lever mill or a tandem mill, but from the viewpoint of industrial productivity, it is preferable to use a tandem mill for at least the final several stages.
  • the time from the start of rough rolling to the completion of finish rolling is set to 600 seconds or less. It is preferably within 500 seconds, more preferably within 400 seconds, and most preferably within 320 seconds.
  • the rolling reduction and rolling temperature are controlled according to the specifications of the rolling mill, the thickness and width of the coil to be manufactured, and the desired material, but from the start of rough rolling to the end of finish rolling. There is no overall control over time.
  • the present inventors have newly found that the time from the start of rough rolling to the completion of finish rolling affects the precipitation state of Ti-based carbides.
  • Total reduction rate in the temperature range of 850 to 1100 ° C: 90% or more By performing hot rolling in which the total rolling reduction in the temperature range of 850 to 1100 ° C. is 90% or more, the recrystallized austenite is mainly miniaturized and the strain energy is accumulated in the unrecrystallized austenite. Be promoted. As a result, the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, and the standard deviation of the Mn concentration becomes small. Therefore, in hot rolling, the total reduction rate (cumulative reduction rate) in the temperature range of 850 to 1100 ° C. is set to 90% or more.
  • the total reduction rate in the temperature range of 850 to 1100 ° C. is when the inlet plate thickness before the first pass in rolling in this temperature range is t0 and the outlet plate thickness after the final pass in rolling in this temperature range is t1. , (T0-t1) / t0 ⁇ 100 (%).
  • the FT (° C.) exceeds 1080 ° C., the structure becomes coarse and the bendability of the steel sheet deteriorates. Therefore, the FT (° C.) is 1080 ° C. or lower.
  • the FT (° C.) is preferably 1060 ° C. or lower.
  • the temperature during finish rolling refers to the surface temperature of the steel material and can be measured with a radiation thermometer or the like.
  • TR (° C.) 805 + 385 x [Ti] + 584 x [Nb] (4)
  • the [element symbol] in the above equation (4) indicates the content of each element in mass%, and if it is not contained, 0 is substituted.
  • the hot-rolled steel sheet is cooled with water at an average cooling rate of 45 ° C./sec or more to a temperature range of 650 to 800 ° C. Has a cooling process. Further, in the method for manufacturing a steel sheet according to the present embodiment, the cooling step is started within 3.0 seconds after the completion of the hot rolling step (after the completion of finish rolling).
  • water cooling is started within 3.0 seconds after the completion of finish rolling. It is preferably within 2.0 seconds, more preferably within 1.5 seconds.
  • the average cooling rate is 45 ° C./sec or higher. It is preferably 50 ° C./sec or higher, more preferably 55 ° C./sec or higher.
  • the upper limit is not particularly limited, but is preferably 300 ° C./sec or less from the viewpoint of equipment cost.
  • the average cooling rate is a value obtained by dividing the amount of temperature drop from the start of water cooling to the stop of water cooling by the required time after the completion of hot rolling.
  • the steel sheet is cooled to 650 to 800 ° C. at an average cooling rate of 45 ° C./sec or higher, and then retained in the temperature range. If the residence time at 650 to 800 ° C. is short, it becomes difficult to obtain the desired ferrite surface integral, so the residence time needs to be 5 seconds or more.
  • the residence time is preferably 7 seconds or more.
  • the residence time is set to 50 seconds or less in this temperature range.
  • the residence time is preferably 40 seconds or less.
  • the ferrite transformation progresses and Ti-based carbides having a semi-matched interface are precipitated in the ferrite to obtain a steel sheet having excellent tensile strength and hole expandability.
  • Ti-based carbides are precipitated at a temperature higher than 800 ° C., they are coarsely precipitated and a desired number density cannot be obtained, making it difficult to obtain a desired tensile strength.
  • the Ti-based carbide is precipitated at a temperature lower than 650 ° C., the Ti-based carbide having a matching interface is precipitated and the hole expanding property is deteriorated.
  • the steel sheet is cooled to a temperature of 550 ° C. or lower (winding temperature) so that the average cooling rate in the temperature range of 550 to 650 ° C. is 45 ° C./sec or more. If the average cooling rate is less than 45 ° C./sec, Ti-based carbides having a matching interface are precipitated during cooling, and the hole-spreading property is deteriorated.
  • the upper limit of the average cooling rate is not particularly limited, but is preferably 300 ° C./sec or less from the viewpoint of equipment cost.
  • Winding process (Taking temperature: 350 ° C or more and less than 550 ° C) After the cooling step, the steel sheet is wound at 350 ° C. or higher and lower than 550 ° C. If the winding temperature is less than 350 ° C., untransformed austenite is transformed into martensite, and the hole-expanding property and bending workability are deteriorated. On the other hand, when the winding temperature is 550 ° C. or higher, Ti-based carbide having a matching interface is generated after winding, and the hole expanding property is lowered.
  • the winding temperature is preferably 400 ° C. or higher and lower than 500 ° C.
  • a plated steel sheet having a plating layer may be obtained by plating the surface of the steel sheet after the winding step. Even in the case of plating, there is no problem as long as the plating is performed after satisfying the conditions of the steel sheet manufacturing method according to the present embodiment.
  • the plating may be either electroplating or hot-dip plating, and the type of plating is not particularly limited, but is generally zinc-based plating including zinc plating and zinc alloy plating.
  • Examples of the plated steel sheet include an electrogalvanized steel sheet, an electrozinc-nickel alloy plated steel sheet, a hot dip galvanized steel sheet, an alloyed hot dip galvanized steel sheet, and a hot dip galvanized steel sheet.
  • the amount of plating adhered may be a general amount. Before plating, Ni or the like may be applied to the surface as pre-plating. When producing the steel sheet according to the present embodiment, known temper rolling may be appropriately performed for the purpose of shape correction.
  • the plate thickness of the steel sheet according to the present embodiment is not particularly limited, but if the plate thickness is too thick, the metallographic structure generated between the surface layer of the steel sheet and the inside is significantly different, so 8.0 mm or less is preferable. More preferably, it is 6.0 mm or less. On the other hand, if the plate thickness is too thin, it becomes difficult to pass the plate during hot rolling, so 1.0 mm or more is generally preferable. More preferably, it is 1.2 mm or more.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • the present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • a steel material having a chemical composition shown in Tables 1A and 1B (unit mass%, the balance is Fe and impurities) and having a plate thickness of 250 mm is hot-rolled under the conditions shown in Tables 2A and 2B to obtain a plate thickness of 2.
  • a hot-rolled steel sheet of 5 to 3.5 mm was used.
  • a part of the obtained hot-dip steel sheet was subjected to hot-dip galvanizing treatment at a quenching temperature of 700 ° C. and further alloying treatment to obtain a hot-dip galvanized steel sheet (GI) or an alloyed hot-dip galvanized steel sheet (GA).
  • the metal structure was observed at a position at a depth of 1/4 of the plate thickness from the surface of the steel sheet, and the area fraction of each structure and the average of the crystal grains having a bcc structure were observed.
  • the crystal grain size, average aspect ratio, and standard deviation of Mn concentration were determined.
  • the area fraction of the metal structure at a depth of 1/4 of the plate thickness from the surface of the steel plate, the average crystal grain size and average aspect ratio of the crystal grains having a bcc structure are determined by the cross-section of the steel plate parallel to the rolling direction and the plate thickness direction.
  • the metallographic structure at a depth of 1/4 of the plate thickness from the surface of the steel plate can be observed with a scanning electron microscope (SEM) using an EBSD analyzer composed of a thermal electric field radiation scanning electron microscope and an EBSD detector. It was determined by EBSD (Electron Backscattering Diffraction) analysis.
  • crystal orientation information is obtained by distinguishing fcc and bcc in a region of 200 ⁇ m in the rolling direction centered on the 1/4 depth position of the sheet thickness from the surface of the steel sheet and 100 ⁇ m in the plate thickness direction at 0.2 ⁇ m intervals. rice field.
  • the crystal grain boundaries having a crystal orientation difference of 15 ° or more were identified using the software attached to the EBSD analyzer (“OIMAnalesis (registered trademark)” manufactured by AMETEK, Inc.).
  • the average crystal grain size of bcc is surrounded by crystal grain boundaries having a crystal orientation difference of 15 ° or more, and a region having a circle-equivalent diameter determined to be bcc and having a diameter of 0.3 ⁇ m or more is defined as a crystal grain, and the area average diameter is defined as the crystal grain. I asked.
  • the surface integral of ferrite was measured by the following method. A region surrounded by a grain boundary having a crystal orientation difference of 5 ° or more and having a diameter equivalent to a circle determined to be bcc and having a diameter of 0.3 ⁇ m or more was defined as a crystal grain.
  • the metallographic structure exposed by nital corrosion in the region at a depth of 1/4 of the plate thickness from the surface of the steel plate was observed in 3 fields at a magnification of 1000 times using SEM. It was obtained by a point calculation method with a lattice spacing of 5 ⁇ m.
  • the area fraction of MA the structure exposed by the repera corrosion in the region at a depth of 1/4 of the plate thickness from the surface of the steel plate was observed in two fields at a magnification of 500 times using an optical microscope. It was obtained by a point calculation method with a lattice spacing of 5 ⁇ m.
  • the rest of the metallographic structure was bainite.
  • the standard deviation of the Mn concentration is determined by mirror-polishing the cross section of the steel sheet parallel to the rolling direction and the sheet thickness direction, and then measuring the 1/4 depth position of the sheet thickness from the surface of the steel sheet with an electron probe microanalyzer (EPMA). Obtained.
  • the acceleration voltage was 15 kV
  • the magnification was 5000 times
  • the distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction was measured. More specifically, the measurement interval was set to 0.1 ⁇ m, and the Mn concentration was measured at 40,000 or more places.
  • the standard deviation of the Mn concentration was obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
  • the tensile strength TS (MPa) and the total elongation at break El (%) were measured in accordance with JIS Z 2241: 2011.
  • the hole expansion ratio ( ⁇ ) was measured according to JIS Z 2256: 2010.
  • the bending workability was evaluated by a 90 ° V bending test in which the bending radius was twice the plate thickness. Tables 3A and 3B show the test results of metallographic structure and mechanical properties.
  • the tensile strength was considered to be high when it was 980 MPa or more.
  • the elongation was considered to be excellent when the product of the tensile strength and the total elongation at break (TS ⁇ El) was 14,000 MPa ⁇ % or more. Further, when TS ⁇ ⁇ is 50,000 MPa ⁇ % or more, the stretch flangeability is considered to be excellent. Bending workability was tested three times, and all test pieces that did not crack during the bending test were considered to have excellent bending workability (OK), and those that had one or more cracks were bent. The sex was not sufficient (NG).
  • the invention examples satisfying the requirements of the present invention were excellent in all of TS, TS ⁇ El and bending workability.
  • the comparative example which does not satisfy at least one of the requirements of the present invention at least one of TS, TS ⁇ El and bending workability was inferior.
  • the steel plate of the present invention is suitable as a material used for applications such as automobiles, home appliances, mechanical structures, and constructions, and in particular, as a material for parts such as inner plate members, structural members, and suspension members of automobiles. If used, it not only contributes to weight reduction of the vehicle body and improvement of collision resistance characteristics, but is also easy to process into a part shape. Therefore, the steel sheet of the present invention has an extremely remarkable industrial contribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This steel sheet has a predetermined chemical composition, Ex. C determined by the formula Ex. C = (%C) – 12[(%Ti*)/48 + (%V)/51 + (%Nb)/93 + (%Mo)/96 + (%W)/184] is 0.020% or less, the metallographic structure in a position at a depth of 1/4 of the sheet thickness from the surface thereof includes, in terms of area fraction, 60% or more of ferrite, 0-5% MA, and a total of 0-5% of pearlite and cementite, the remainder comprising bainite, and, in the metallographic structure, the average crystal grain size is 10.0 µm or less, the average aspect ratio of crystal grains is 0.30 or greater, the standard deviation of the Mn concentration is 0.60% by mass or less, Ti-based carbides having the Baker-Nutting orientation relationship in the ferrite are deposited in a semi-matched state, and the tensile strength of the steel sheet is 980 MPa or greater.

Description

鋼板Steel plate
 本発明は、鋼板に関する。
 本願は、2020年03月19日に、日本に出願された特願2020-049120号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steel sheet.
The present application claims priority based on Japanese Patent Application No. 2020-049120 filed in Japan on March 19, 2020, the contents of which are incorporated herein by reference.
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量削減に取り組んでいる。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。鋼板の板厚を薄くするなど、使用する鋼材の重量を軽くすれば、容易に車体を軽量化することができる。しかしながら、自動車の場合、乗員安全確保のために耐衝突特性の向上にも重点が置かれるので、安易な鋼材の使用重量の低減などによる車体軽量化は採用できず、車体軽量化は容易ではない。そこで、車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。一方で、自動車部品へ適用される鋼板は、部品形状に成形されるが、鋼板の強度が上昇すると、通常、成形性が劣化する。このため、自動車部品へ適用される鋼板に対しては、高い強度と優れた成形性とを兼備することが強く望まれている。具体的には、自動車の内板部材、構造部材、足廻り部材等に用いられる鋼板では、伸びフランジ加工(穴広げ加工)や曲げ加工が多用されるため、高強度でかつ、伸び、伸びフランジ性、及び曲げ加工性に優れることが求められる。 In recent years, from the perspective of protecting the global environment, we have been working to reduce carbon dioxide emissions in many fields. Automakers are also actively developing technologies for reducing the weight of vehicle bodies with the aim of reducing fuel consumption. By reducing the weight of the steel material used, such as by reducing the thickness of the steel plate, the weight of the vehicle body can be easily reduced. However, in the case of automobiles, since the emphasis is also placed on improving collision resistance in order to ensure occupant safety, it is not possible to adopt weight reduction of the vehicle body by easily reducing the weight of steel used, and it is not easy to reduce the weight of the vehicle body. .. Therefore, in order to achieve both weight reduction of the vehicle body and collision resistance, it is being studied to thin the member by using a high-strength steel plate. On the other hand, a steel sheet applied to an automobile part is formed into a part shape, but when the strength of the steel sheet increases, the formability usually deteriorates. Therefore, it is strongly desired that a steel sheet applied to an automobile part has both high strength and excellent moldability. Specifically, steel sheets used for inner plate members, structural members, suspension members, etc. of automobiles are often subjected to stretch flange processing (hole expansion processing) and bending processing, so that they have high strength and are stretched and stretched flanges. It is required to have excellent properties and bendability.
 例えば特許文献1に示されるように、優れた伸びを得られる鋼板として、軟質なフェライト相と硬質なマルテンサイト相との複合組織で構成されるDual Phase鋼板(以下DP鋼)が知られている。しかしながら、DP鋼板は伸びに優れる一方で、著しく硬度の異なるフェライト相とマルテンサイト相との界面からボイドが発生して割れが生じる場合があるので、伸びフランジ性や曲げ加工性に劣る場合があった。 For example, as shown in Patent Document 1, as a steel sheet capable of obtaining excellent elongation, a dual phase steel sheet (hereinafter referred to as DP steel) composed of a composite structure of a soft ferrite phase and a hard martensite phase is known. .. However, while the DP steel sheet is excellent in elongation, voids may be generated from the interface between the ferrite phase and the martensite phase, which have significantly different hardness, and cracks may occur, so that the elongation flangeability and bending workability may be inferior. rice field.
 また、特許文献2には、スラブが凝固してから1300℃までの温度域の冷却速度を10~300℃/分とし、仕上げ圧延後は500℃以上700℃以下で巻き取ることにより得られる、鋼組織がフェライト単相からなり、引張強度が1180MPa以上である高強度熱延鋼板が提案されている。特許文献2には、この高強度熱延鋼板が曲げ加工性に優れると開示されている。しかしながら、特許文献2に記載の高強度熱延鋼板は、スラブをフェライト相が生成し始める900℃未満に冷却することなく再加熱し、熱間圧延に供されていることで製造される。そのため、凝固時に形成された偏析が十分に軽減されておらず、曲げ加工性が安定しない場合があるという課題があった。また、特許文献2において、伸びフランジ性は考慮されていない。 Further, in Patent Document 2, it is obtained by setting the cooling rate in the temperature range from solidification of the slab to 1300 ° C. to 10 to 300 ° C./min and winding it at 500 ° C. or higher and 700 ° C. or lower after finish rolling. A high-strength hot-rolled steel sheet having a steel structure composed of a ferrite single phase and a tensile strength of 1180 MPa or more has been proposed. Patent Document 2 discloses that this high-strength hot-rolled steel sheet is excellent in bending workability. However, the high-strength hot-rolled steel sheet described in Patent Document 2 is manufactured by reheating the slab to less than 900 ° C. at which the ferrite phase begins to form and subjecting it to hot rolling. Therefore, there is a problem that the segregation formed at the time of solidification is not sufficiently reduced and the bending workability may not be stable. Further, in Patent Document 2, stretch flangeability is not considered.
 特許文献3には、連続鋳造後5時間以内に熱間圧延を完了させることにより溶解度を超えるTiをγ中に固溶させ、550℃以上700℃以下の巻取り中にフェライト変態と共に微細なTiCを析出させることにより、フェライト面積分率が80%以上で980MPa以上の引張強度を有する鋼板を製造する方法、及びその製造方法によって得られる高強度熱延鋼板が提案されている。しかしながら、特許文献3においても粗大なTiCの析出を抑制するために、連続鋳造から熱間仕上げ圧延完了までをオーステナイト域で行うため、Mn偏析による曲げ加工性の低下が生じる場合があった。また、特許文献3においても、特許文献2と同様、伸びフランジ性は考慮されていない。 Patent Document 3 states that Ti exceeding the solubility is solid-solved in γ by completing hot rolling within 5 hours after continuous casting, and fine TiC is formed along with ferrite transformation during winding at 550 ° C or higher and 700 ° C or lower. A method for producing a steel sheet having a ferrite area fraction of 80% or more and a tensile strength of 980 MPa or more by precipitating the above, and a high-strength hot-rolled steel sheet obtained by the manufacturing method have been proposed. However, also in Patent Document 3, in order to suppress the precipitation of coarse TiC, since continuous casting to completion of hot finish rolling are performed in the austenite region, bending workability may be deteriorated due to Mn segregation. Further, in Patent Document 3, as in Patent Document 2, the stretch flangeability is not considered.
日本国特開平6-128688号公報Japanese Patent Application Laid-Open No. 6-128688 日本国特開2014-194053号公報Japanese Patent Application Laid-Open No. 2014-194053 日本国特開2014-208876号公報Japanese Patent Application Laid-Open No. 2014-208876
 本発明は、上述した課題に鑑みてなされたものであり、高強度であり、且つ、伸び、伸びフランジ性、及び曲げ加工性に優れた鋼板を提供することを目的とする。ここで、本発明の鋼板は、表面にめっき層などの被覆を有する鋼板も含む。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a steel sheet having high strength and excellent elongation, stretch flangeability, and bending workability. Here, the steel sheet of the present invention also includes a steel sheet having a coating such as a plating layer on the surface.
 本発明者らは、強度、伸び、伸びフランジ性及び曲げ加工性の全てが高い鋼板について検討した。その結果、化学組成及び製造条件の最適化により、鋼板の金属組織とMn偏析とを制御し、かつ、Ti系炭化物の析出形態を制御することにより、高強度であり、且つ、伸び、伸びフランジ性及び曲げ加工性に優れた鋼板を製造できることを知見した。 The present inventors examined a steel sheet having high strength, elongation, stretch flangeability and bending workability. As a result, by optimizing the chemical composition and manufacturing conditions, the metallographic structure of the steel sheet and the Mn segregation are controlled, and by controlling the precipitation form of Ti-based carbides, the strength is high and the elongation and elongation flanges are stretched. It was found that a steel sheet having excellent properties and bendability can be produced.
 本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
[1]本発明の一態様に係る鋼板は、化学組成が、質量%で、C:0.050~0.250%、Si:0.005~2.000%、Mn:0.10~3.00%、P:0.100%以下、S:0.0100%以下、sol.Al:0.001~1.00%、Ti:0.150~0.400%、N:0.0010~0.0100%、Nb:0~0.100%、V:0~1.000%、Mo:0~1.000%、Cu:0~1.00%、Ni:0~1.00%、Cr:0~2.00%、W:0~1.000%、B:0~0.0020%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.0100%、Bi:0~0.0200%、を含有し、残部がFe及び不純物からなり、下記(1)式で求められるEx.Cが0.020%以下であり、表面から板厚の1/4深さの位置における金属組織が、面積分率で、フェライトを60%以上、MAを0~5%、パーライト及びセメンタイトを合計で0~5%含み、残部がベイナイトからなり、前記金属組織において、平均結晶粒径が10.0μm以下であり、結晶粒の平均アスペクト比が0.30以上であり、Mn濃度の標準偏差が0.60質量%以下であり、前記フェライト中におけるBaker-Nuttingの方位関係を有するTi系炭化物が、半整合状態で析出しており、引張強度が980MPa以上である。
Ex.C=(%C)-12{(%Ti)/48+(%V)/51+(%Nb)/93+(%Mo)/96+(%W)/184} (1)式
ここで、前記(1)式中の「%Ti」は、以下の(2)式から求める。
%Ti=%Ti-48×{(%N)/14+(%S)/32}  (2)式
 前記(1)式、前記(2)式中の%C、%V、%Nb、%Mo、%W、%Ti、%N、%Sは、鋼板中の質量%でのC、V、Nb、Mo、W、Ti、N、Sの含有量である。
[2][1]に記載の鋼板は、前記化学組成が、質量%で、Nb:0.001~0.100%、V:0.005~1.000%、Mo:0.001~1.000%、Cu:0.02~1.00%、Ni:0.02~1.00%、Cr:0.02~2.00%、W:0.02~1.000%、B:0.0001~0.0020%、Ca:0.0002~0.0100%、Mg:0.0002~0.0100%、REM:0.0002~0.0100%、および、Bi:0.0001~0.0200%からなる群から選択される1種または2種以上を含有してもよい。
[3][1]または[2]に記載の鋼板は、表面に、めっき層が形成されていてもよい。[4][3]に記載の鋼板は、前記めっき層が、溶融亜鉛めっき層であってもよい。
[5][4]に記載の鋼板は、前記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層であってもよい。
[1] The steel sheet according to one aspect of the present invention has a chemical composition of% by mass, C: 0.050 to 0.250%, Si: 0.005 to 2.000%, Mn: 0.10 to 3 .00%, P: 0.100% or less, S: 0.0100% or less, sol. Al: 0.001 to 1.00%, Ti: 0.150 to 0.400%, N: 0.0010 to 0.0100%, Nb: 0 to 0.100%, V: 0 to 1.000% , Mo: 0 to 1.000%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Cr: 0 to 2.00%, W: 0 to 1.000%, B: 0 to It contains 0.0020%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, REM: 0 to 0.0100%, Bi: 0 to 0.0200%, and the balance is Fe and impurities. Ex. C is 0.020% or less, and the metal structure at a depth of 1/4 of the plate thickness from the surface is 60% or more for ferrite, 0 to 5% for MA, and total of pearlite and cementite in area division. In the metal structure, the average crystal grain size is 10.0 μm or less, the average aspect ratio of the crystal grains is 0.30 or more, and the standard deviation of the Mn concentration is Ti-based carbides having a Baker-Nutting orientation relationship in the ferrite, which is 0.60% by mass or less, are precipitated in a semi-matched state, and the tensile strength is 980 MPa or more.
Ex. C = (% C) -12 {(% Ti * ) / 48+ (% V) / 51+ (% Nb) / 93+ (% Mo) / 96+ (% W) / 184} Equation (1) Here, the above (1) "% Ti * " in Eq. 1) is calculated from Eq. (2) below.
% Ti * =% Ti-48 × {(% N) / 14+ (% S) / 32} (2) Equation% C,% V,% Nb,% in the above equation (1) and the above equation (2) Mo,% W,% Ti,% N, and% S are the contents of C, V, Nb, Mo, W, Ti, N, and S in mass% in the steel sheet.
[2] The steel sheet according to [1] has a chemical composition of Nb: 0.001 to 0.100%, V: 0.005 to 1.000%, Mo: 0.001 to 1 in mass%. .000%, Cu: 0.02 to 1.00%, Ni: 0.02 to 1.00%, Cr: 0.02 to 2.00%, W: 0.02 to 1.000%, B: 0.0001 to 0.0020%, Ca: 0.0002 to 0.0100%, Mg: 0.0002 to 0.0100%, REM: 0.0002 to 0.0100%, and Bi: 0.0001 to It may contain one or more selected from the group consisting of 0.0200%.
[3] The steel sheet according to [1] or [2] may have a plating layer formed on its surface. [4] In the steel sheet according to [3], the plating layer may be a hot-dip galvanized layer.
[5] In the steel sheet according to [4], the hot-dip galvanized layer may be an alloyed hot-dip galvanized layer.
 本発明の上記態様によれば、高強度であり、且つ、伸び、伸びフランジ性及び曲げ加工性に優れた鋼板を提供することができる。本発明の鋼板は、自動車用、家電用、機械構造用、建築用などの用途に用いられる素材として好適であり、特に、自動車の内板部材、構造部材、足廻り部材等の部品の素材として使用すれば、車体軽量化及び耐衝突特性の向上に寄与するだけでなく、部品形状に加工することが容易である。 According to the above aspect of the present invention, it is possible to provide a steel sheet having high strength and excellent elongation, stretch flangeability and bending workability. The steel plate of the present invention is suitable as a material used for applications such as automobiles, home appliances, mechanical structures, and constructions, and in particular, as a material for parts such as inner plate members, structural members, and suspension members of automobiles. If used, it not only contributes to weight reduction of the vehicle body and improvement of collision resistance characteristics, but is also easy to process into a part shape.
 以下、本発明の一実施形態に係る鋼板(本実施形態に係る鋼板)について以下に詳しく説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 Hereinafter, the steel plate according to the embodiment of the present invention (the steel plate according to the present embodiment) will be described in detail below. However, the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
 まず、本実施形態に係る鋼板の化学組成について説明する。
 以下に記載する「~」を挟んで表示される数値限定範囲には、その両端の値が、下限値および上限値として範囲に含まれる。ただし、「未満」または「超」と示す数値は、その値が数値範囲に含まれない。以下の説明において、鋼板の化学組成に関する%はいずれも質量%である。
First, the chemical composition of the steel sheet according to the present embodiment will be described.
In the numerical limitation range displayed with "~" described below, the values at both ends are included in the range as the lower limit value and the upper limit value. However, the numerical value indicated as "less than" or "greater than" is not included in the numerical range. In the following description, all%s related to the chemical composition of the steel sheet are mass%.
 <鋼板の化学組成>
 (C:0.050~0.250%)
 Cは、Ti等と結合して炭化物を生成させることで鋼の引張強度を高める元素である。C含有量が0.050%未満では980MPa以上の引張強度が得難くなる。したがって、C含有量は0.050%以上とする。好ましくは0.070%以上とする。
 一方、C含有量が0.250%超では溶接性の低下が懸念される。したがって、C含有量は0.250%以下とする。C含有量は、好ましくは0.220%以下、より好ましくは0.200%以下、より一層好ましくは0.180%以下である。
<Chemical composition of steel sheet>
(C: 0.050 to 0.250%)
C is an element that enhances the tensile strength of steel by combining with Ti and the like to generate carbides. If the C content is less than 0.050%, it becomes difficult to obtain a tensile strength of 980 MPa or more. Therefore, the C content is set to 0.050% or more. It is preferably 0.070% or more.
On the other hand, if the C content exceeds 0.250%, there is a concern that the weldability may decrease. Therefore, the C content is set to 0.250% or less. The C content is preferably 0.220% or less, more preferably 0.200% or less, and even more preferably 0.180% or less.
 (Si:0.005~2.000%)
 Siは、固溶強化によって、および焼入性を高めることによって、鋼の引張強度を高める作用を有する元素である。また、Siは、セメンタイトの析出を抑制する作用も有する元素である。Si含有量が0.005%未満では、上記作用を発揮させることが困難となる。したがって、Si含有量は0.005%以上とする。Si含有量は、好ましくは0.010%以上である。
 一方、Si含有量が2.000%超では、熱間圧延工程における表面酸化により、鋼板の表面性状が著しく劣化する。したがって、Si含有量は2.000%以下とする。Si含有量は、好ましくは1.500%以下、より好ましくは1.300%以下である。
(Si: 0.005 to 2.000%)
Si is an element that has the effect of increasing the tensile strength of steel by strengthening the solid solution and increasing the hardenability. Si is an element that also has an effect of suppressing the precipitation of cementite. If the Si content is less than 0.005%, it becomes difficult to exert the above action. Therefore, the Si content is set to 0.005% or more. The Si content is preferably 0.010% or more.
On the other hand, when the Si content exceeds 2.000%, the surface properties of the steel sheet are significantly deteriorated due to surface oxidation in the hot rolling process. Therefore, the Si content is set to 2.000% or less. The Si content is preferably 1.500% or less, more preferably 1.300% or less.
 (Mn:0.10~3.00%)
 Mnは、固溶強化によって、および焼入性を高めることによって、鋼の引張強度を高める作用を有する元素である。Mn含有量が0.10%未満ではフェライト変態が過度に促進されてしまい、高温でフェライト変態と共にTi系炭化物が粗大に析出する。この場合、980MPa以上の鋼板の引張強度が得難くなる。したがって、Mn含有量は0.10%以上とする。Mn含有量は、好ましくは0.30%以上であり、より好ましくは0.50%以上である。
 一方、Mn含有量が3.00%超では、フェライト変態及びベイナイト変態が遅延して、所望のフェライト面積分率が得られない。この場合、伸びが低下したり、MAが生成することによって伸びフランジ性や曲げ加工性が低下したりする。したがって、Mn含有量は3.00%以下とする。Mn含有量は、好ましくは2.50%以下、より好ましくは2.00%以下、より一層好ましくは1.50%以下である。
(Mn: 0.10 to 3.00%)
Mn is an element that has the effect of increasing the tensile strength of steel by strengthening the solid solution and increasing the hardenability. If the Mn content is less than 0.10%, the ferrite transformation is excessively promoted, and at high temperatures, Ti-based carbides are coarsely precipitated together with the ferrite transformation. In this case, it becomes difficult to obtain the tensile strength of the steel sheet of 980 MPa or more. Therefore, the Mn content is set to 0.10% or more. The Mn content is preferably 0.30% or more, more preferably 0.50% or more.
On the other hand, if the Mn content exceeds 3.00%, the ferrite transformation and the bainite transformation are delayed, and the desired ferrite surface integral cannot be obtained. In this case, the elongation is lowered, or the stretch flangeability and the bending workability are lowered due to the generation of MA. Therefore, the Mn content is set to 3.00% or less. The Mn content is preferably 2.50% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.
 (sol.Al:0.001~1.00%)
 Alは、製鋼段階で脱酸により鋼を清浄化する作用を有する元素である。sol.Al含有量が0.001%未満では、上記作用を発揮させることが困難となる。したがって、sol.Al含有量は0.001%以上とする。sol.Al含有量は、好ましくは0.01%以上、より好ましくは0.02%以上、さらに好ましくは0.03%以上である。
 一方、sol.Al含有量を1.00%超としても、上記作用による効果が飽和するとともに、精錬コストが上昇する。したがって、sol.Al含有量は1.00%以下とする。sol.Al含有量は、好ましくは0.80%以下、より好ましくは0.60%以下である。sol.Alは酸可溶性Alを意味する。
(Sol.Al: 0.001 to 1.00%)
Al is an element having an action of purifying steel by deoxidation in the steelmaking stage. sol. If the Al content is less than 0.001%, it becomes difficult to exert the above action. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.01% or more, more preferably 0.02% or more, still more preferably 0.03% or more.
On the other hand, sol. Even if the Al content exceeds 1.00%, the effect of the above action is saturated and the refining cost increases. Therefore, sol. The Al content is 1.00% or less. sol. The Al content is preferably 0.80% or less, more preferably 0.60% or less. sol. Al means acid-soluble Al.
 (Ti:0.150~0.400%)
 Tiは、Cと結合してTi系炭化物を形成し、鋼板の引張強度の向上に寄与する元素である。また、Tiは、Ti窒化物を形成してスラブ再加熱時及び熱間圧延中のオーステナイトの粗大化を抑制して、金属組織を微細化する作用を有する元素である。Ti含有量が0.150%未満では析出強化量の不足により980MPa以上の引張強度が得難くなる。したがって、Ti含有量は0.150%以上とする。Ti含有量は、好ましくは0.170%以上であり、より好ましくは0.190%以上であり、より一層好ましくは0.210%以上である。
 一方、Ti含有量が過剰になると、オーステナイト中に粗大なTi系炭化物が未固溶で残存することによって伸びや曲げ加工性が低下するとともに、強度に寄与するBaker-Nuttingの方位関係を有するTi系炭化物が減少して強度が低下する。したがって、Ti含有量は0.400%以下とする。Ti含有量は、好ましくは0.380%以下であり、より好ましくは0.350%以下である。
(Ti: 0.150 to 0.400%)
Ti is an element that combines with C to form Ti-based carbides and contributes to the improvement of the tensile strength of the steel sheet. Further, Ti is an element having an action of forming a Ti nitride to suppress coarsening of austenite during slab reheating and hot rolling to refine the metal structure. If the Ti content is less than 0.150%, it becomes difficult to obtain a tensile strength of 980 MPa or more due to insufficient precipitation strengthening amount. Therefore, the Ti content is set to 0.150% or more. The Ti content is preferably 0.170% or more, more preferably 0.190% or more, and even more preferably 0.210% or more.
On the other hand, when the Ti content becomes excessive, coarse Ti-based carbides remain in the austenite in an unsolid solution, so that elongation and bending workability are lowered, and Ti having a Baker-Nutting orientation relationship that contributes to strength. The carbides are reduced and the strength is reduced. Therefore, the Ti content is set to 0.400% or less. The Ti content is preferably 0.380% or less, more preferably 0.350% or less.
 (N:0.0010~0.0100%)
 Nは、Ti窒化物を形成することによって、スラブ再加熱時及び熱間圧延中のオーステナイトの粗大化を抑制して、金属組織を微細化する作用を有する元素である。N含有量が0.0010%未満では上記作用を発揮させることが困難となる。したがって、N含有量は0.0010%以上とする。N含有量は、好ましくは0.0015%以上、より好ましくは0.0020%以上である。
 一方、N含有量が0.0100%超では、粗大なTi窒化物が形成され、鋼板の伸びフランジ性が劣化する。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0060%以下、より好ましくは0.0050%以下である。
(N: 0.0010 to 0.0100%)
N is an element having an action of suppressing coarsening of austenite during slab reheating and hot rolling and refining the metal structure by forming Ti nitride. If the N content is less than 0.0010%, it becomes difficult to exert the above action. Therefore, the N content is set to 0.0010% or more. The N content is preferably 0.0015% or more, more preferably 0.0020% or more.
On the other hand, when the N content exceeds 0.0100%, coarse Ti nitride is formed and the stretch flangeability of the steel sheet deteriorates. Therefore, the N content is 0.0100% or less. The N content is preferably 0.0060% or less, more preferably 0.0050% or less.
 (P:0.100%以下)
 Pは、不純物として鋼中に含有される元素であり、鋼板の伸びフランジ性や曲げ加工性を低下させる作用を有する。そのため、P含有量は0.100%以下とする。P含有量は、好ましくは0.060%以下、より好ましくは0.040%以下、より一層好ましくは0.020%以下である。Pは原料から不純物として混入するが、その下限を特に制限する必要はなく、曲げ加工性を確保する観点からはP含有量はより低い方が好ましい。ただし、P含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、P含有量は、好ましくは0.001%以上、より好ましくは0.005%以上である。
(P: 0.100% or less)
P is an element contained in steel as an impurity, and has an action of lowering the stretch flangeability and bending workability of the steel sheet. Therefore, the P content is set to 0.100% or less. The P content is preferably 0.060% or less, more preferably 0.040% or less, and even more preferably 0.020% or less. Although P is mixed as an impurity from the raw material, it is not necessary to limit the lower limit thereof, and it is preferable that the P content is lower from the viewpoint of ensuring bending workability. However, if the P content is excessively reduced, the manufacturing cost increases. From the viewpoint of production cost, the P content is preferably 0.001% or more, more preferably 0.005% or more.
 (S:0.0100%以下)
 Sは、不純物として含有される元素であり、鋼板の伸びフランジ性や曲げ加工性を低下させる作用を有する。そのため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下、より好ましくは0.0060%以下、より一層好ましくは0.0030%以下である。Sは原料から不純物として混入するが、その下限を特に制限する必要はなく、曲げ加工性を確保する観点からはS含有量はより低い方が好ましい。ただし、S含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、S含有量は好ましくは0.0001%以上、より好ましくは0.0005%以上、より一層好ましくは、0.0010%以上である。
(S: 0.0100% or less)
S is an element contained as an impurity and has an action of lowering the stretch flangeability and bending workability of the steel sheet. Therefore, the S content is set to 0.0100% or less. The S content is preferably 0.0080% or less, more preferably 0.0060% or less, and even more preferably 0.0030% or less. Although S is mixed as an impurity from the raw material, it is not necessary to limit the lower limit thereof, and it is preferable that the S content is lower from the viewpoint of ensuring bending workability. However, if the S content is excessively reduced, the manufacturing cost increases. From the viewpoint of production cost, the S content is preferably 0.0001% or more, more preferably 0.0005% or more, and even more preferably 0.0010% or more.
 本実施形態に係る鋼板の化学組成の残部は、Feおよび不純物からなる。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるものであって、本実施形態に係る鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る鋼板は、Feの一部に代え、以下の任意元素を含有してもよい。任意元素を含有させなくても本実施形態に係る鋼板はその課題を解決することができるので、任意元素の含有量の下限は0%である。
The rest of the chemical composition of the steel sheet according to this embodiment consists of Fe and impurities. In the present embodiment, the impurities mean those mixed from ore as a raw material, scrap, manufacturing environment, etc., and are allowed as long as they do not adversely affect the steel sheet according to the present embodiment.
The steel sheet according to this embodiment may contain the following optional elements instead of a part of Fe. Since the steel sheet according to the present embodiment can solve the problem without containing an arbitrary element, the lower limit of the content of the arbitrary element is 0%.
 (Nb:0~0.100%)
 Nbは任意元素である。Nbは、鋼板の結晶粒径の粗大化を抑制するとともに、フェライト粒径を微細化することにより、またNbCとして析出して析出強化により、鋼板の引張強度を高める効果を有する元素である。これらの効果を得るには、Nb含有量を0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.005%以上、さらに好ましくは0.010%以上である。
 一方、Nb含有量が0.100%を超えると、上記効果が飽和するとともに、仕上げ圧延時の圧延荷重の増加が懸念される。そのため、Nbを含有する場合、Nb含有量は、0.100%以下とする。Nb含有量は、好ましくは0.060%以下、より好ましくは0.030%以下である。
(Nb: 0 to 0.100%)
Nb is an arbitrary element. Nb is an element that has the effect of increasing the tensile strength of the steel sheet by suppressing the coarsening of the crystal grain size of the steel sheet, by refining the ferrite grain size, and by precipitating and strengthening as NbC. In order to obtain these effects, the Nb content is preferably 0.001% or more. The Nb content is more preferably 0.005% or more, still more preferably 0.010% or more.
On the other hand, if the Nb content exceeds 0.100%, the above effects are saturated and there is a concern that the rolling load during finish rolling will increase. Therefore, when Nb is contained, the Nb content is set to 0.100% or less. The Nb content is preferably 0.060% or less, more preferably 0.030% or less.
 (V:0~1.000%)
 Vは任意元素である。Vは、鋼中に固溶して鋼板の引張強度を高めるとともに、炭化物や窒化物、炭窒化物等として鋼中に析出し、析出強化によっても鋼板の引張強度を向上させる効果を有する元素である。これらの効果を得るには、V含有量を0.005%以上とすることが好ましい。V含有量は、より好ましくは0.010%以上、更に好ましくは0.050%以上である。
 一方、V含有量が1.000%を超えると炭化物が粗大化しやすくなり、曲げ加工性が低下する場合がある。そのため、Vを含有する場合、V含有量は1.000%以下とする。V含有量は、好ましくは0.800%以下、より好ましくは0.600%以下である。
(V: 0 to 1.000%)
V is an arbitrary element. V is an element that dissolves in steel to increase the tensile strength of the steel sheet, and also precipitates in the steel as carbides, nitrides, carbonitrides, etc., and has the effect of improving the tensile strength of the steel sheet by precipitation strengthening. be. In order to obtain these effects, the V content is preferably 0.005% or more. The V content is more preferably 0.010% or more, still more preferably 0.050% or more.
On the other hand, if the V content exceeds 1.000%, the carbides tend to become coarse and the bending workability may decrease. Therefore, when V is contained, the V content is set to 1.000% or less. The V content is preferably 0.800% or less, more preferably 0.600% or less.
 (Mo:0~1.000%)
 Moは任意元素である。Moは、鋼の焼入れ性を高めるとともに、炭化物や炭窒化物を形成して鋼板を高強度化する効果を有する元素である。これらの効果を得るには、Mo含有量を0.001%以上とすることが好ましい。Mo含有量は、より好ましくは0.005%以上、さらに好ましくは0.010%以上、より一層好ましくは0.050%以上である。
 一方、Mo含有量が1.000%を超えると、スラブなどの鋼素材の割れ感受性が高まる場合がある。そのため、Moを含有する場合、Mo含有量は1.000%以下とする。Mo含有量は、より好ましくは0.800%以下、さらに好ましくは0.600%以下である。
(Mo: 0 to 1.000%)
Mo is an optional element. Mo is an element that has the effect of enhancing the hardenability of steel and forming carbides and carbonitrides to increase the strength of the steel sheet. In order to obtain these effects, the Mo content is preferably 0.001% or more. The Mo content is more preferably 0.005% or more, further preferably 0.010% or more, and even more preferably 0.050% or more.
On the other hand, if the Mo content exceeds 1.000%, the crack sensitivity of a steel material such as a slab may increase. Therefore, when Mo is contained, the Mo content is 1.000% or less. The Mo content is more preferably 0.800% or less, still more preferably 0.600% or less.
 (Cu:0~1.00%)
 Cuは任意元素である。Cuは、鋼の靭性を改善する効果および引張強度を高める効果を有する元素である。これらの効果を得るには、Cu含有量を0.02%以上とすることが好ましい。
 一方、Cuを過剰に含有させると鋼板の溶接性が低下する場合がある。そのため、Cuを含有する場合、Cu含有量は1.00%以下とする。Cu含有量は、好ましくは0.50%以下、より好ましくは0.30%以下である。
(Cu: 0 to 1.00%)
Cu is an optional element. Cu is an element having the effect of improving the toughness of steel and the effect of increasing the tensile strength. In order to obtain these effects, the Cu content is preferably 0.02% or more.
On the other hand, if Cu is excessively contained, the weldability of the steel sheet may decrease. Therefore, when Cu is contained, the Cu content is set to 1.00% or less. The Cu content is preferably 0.50% or less, more preferably 0.30% or less.
 (Ni:0~1.00%)
 Niは任意元素である。Niは、鋼の靭性を改善する効果および引張強度を高める効果を有する元素である。これらの効果を得るには、Ni含有量を0.02%以上とすることが好ましい。
 一方、Niを過剰に含有させると合金コストが嵩み、また、鋼板の溶接熱影響部の靭性が劣化する場合がある。そのため、Niを含有する場合、Ni含有量は1.00%以下とする。Ni含有量は好ましくは0.50%以下、より好ましくは0.30%以下である。
(Ni: 0 to 1.00%)
Ni is an optional element. Ni is an element that has the effect of improving the toughness of steel and the effect of increasing tensile strength. In order to obtain these effects, the Ni content is preferably 0.02% or more.
On the other hand, if Ni is excessively contained, the alloy cost increases, and the toughness of the weld heat-affected zone of the steel sheet may deteriorate. Therefore, when Ni is contained, the Ni content is set to 1.00% or less. The Ni content is preferably 0.50% or less, more preferably 0.30% or less.
 (Cr:0~2.00%)
 Crは任意元素である。Crは、鋼の焼入れ性を高めることにより、引張強度を高める効果を有する元素である。この効果を得るには、Cr含有量を0.02%以上とすることが好ましい。Cr含有量は、より好ましくは0.05%以上、さらに好ましくは0.10%以上である。
 一方、Cr含有量が過剰になると、化成処理性が劣化する。そのため、Crを含有する場合、Cr含有量は、2.00%以下とする。Cr含有量は、好ましくは1.50%以下、より好ましくは1.00%以下、さらに好ましくは0.50%以下である。
(Cr: 0 to 2.00%)
Cr is an arbitrary element. Cr is an element that has the effect of increasing the tensile strength by increasing the hardenability of steel. In order to obtain this effect, the Cr content is preferably 0.02% or more. The Cr content is more preferably 0.05% or more, still more preferably 0.10% or more.
On the other hand, if the Cr content becomes excessive, the chemical conversion processability deteriorates. Therefore, when Cr is contained, the Cr content is set to 2.00% or less. The Cr content is preferably 1.50% or less, more preferably 1.00% or less, still more preferably 0.50% or less.
 (W:0~1.000%)
 Wは任意元素である。Wは、炭化物や炭窒化物を形成して引張強度を高める効果を有する元素である。この効果を得るには、W含有量を0.020%以上とすることが好ましい。
 一方、Wを一定以上含有させても、上記作用の効果は飽和する上、合金コストが上昇する。そのため、Wを含有する場合、W含有量は1.000%以下とする。W含有量は、好ましくは0.800%以下である。
(W: 0 to 1.000%)
W is an arbitrary element. W is an element having the effect of forming carbides and carbonitrides and increasing the tensile strength. In order to obtain this effect, the W content is preferably 0.020% or more.
On the other hand, even if W is contained in a certain amount or more, the effect of the above action is saturated and the alloy cost increases. Therefore, when W is contained, the W content is set to 1.000% or less. The W content is preferably 0.800% or less.
 (B:0~0.0020%)
 Bは任意元素である。Bは、粒界強化や固溶強化により鋼板の引張強度を高める効果を有する元素である。この効果を得るには、B含有量を0.0001%以上とすることが好ましい。B含有量は、より好ましくは0.0002%以上である。
 一方、0.0020%を超えてBを含有させても上記効果が飽和するだけでなく、合金コストが増加する。そのため、Bを含有する場合、B含有量は0.0020%以下とする。B含有量は、より好ましくは0.0015%以下である。
(B: 0 to 0.0020%)
B is an arbitrary element. B is an element having an effect of increasing the tensile strength of the steel sheet by strengthening the grain boundaries and solid solution. In order to obtain this effect, the B content is preferably 0.0001% or more. The B content is more preferably 0.0002% or more.
On the other hand, if B is contained in excess of 0.0020%, not only the above effect is saturated but also the alloy cost increases. Therefore, when B is contained, the B content is set to 0.0020% or less. The B content is more preferably 0.0015% or less.
 (Ca:0~0.0100%)
 Caは任意元素である。Caは溶鋼中に微細な酸化物を多数分散させ、鋼板の金属組織を微細化させる効果を有する元素である。また、Caは、溶鋼中のSを球状のCaSとして固定して、MnSなどの延伸介在物の生成を抑制することにより、鋼板の伸びフランジ性を向上させる効果を有する元素である。これらの効果を得るには、Ca含有量を0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
 一方、Ca含有量が0.0100%を超えると、鋼中のCaOの量が増加し、鋼板の靭性が劣化する場合がある。そのため、Caを含有する場合、Ca含有量は0.0100%以下とする。Ca含有量は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。
(Ca: 0 to 0.0100%)
Ca is an optional element. Ca is an element that has the effect of dispersing a large number of fine oxides in molten steel and making the metal structure of the steel sheet finer. Further, Ca is an element having an effect of improving the stretch flangeability of the steel sheet by fixing S in the molten steel as a spherical CaS and suppressing the formation of stretching inclusions such as MnS. In order to obtain these effects, the Ca content is preferably 0.0002% or more. The Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
On the other hand, if the Ca content exceeds 0.0100%, the amount of CaO in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when Ca is contained, the Ca content is 0.0100% or less. The Ca content is preferably 0.0050% or less, more preferably 0.0030% or less.
 (Mg:0~0.0100%)
 Mgは任意元素である。MgはCaと同様に溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制するとともに、微細な酸化物を多数分散させ、鋼板の金属組織を微細化する効果を有する元素である。これらの効果を得るには、Mg含有量を0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
 一方、Mg含有量が0.0100%を超えると、鋼中の酸化物が増加し、鋼板の靭性が劣化する場合がある。そのため、Mgを含有する場合、Mg含有量は、0.0100%以下とする。Mg含有量は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。
(Mg: 0 to 0.0100%)
Mg is an optional element. Like Ca, Mg forms oxides and sulfides in molten steel to suppress the formation of coarse MnS, and also has the effect of dispersing a large number of fine oxides and refining the metal structure of the steel sheet. Is. In order to obtain these effects, the Mg content is preferably 0.0002% or more. The Mg content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
On the other hand, if the Mg content exceeds 0.0100%, the oxide in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when Mg is contained, the Mg content is set to 0.0100% or less. The Mg content is preferably 0.0050% or less, more preferably 0.0030% or less.
 (REM:0~0.0100%)
 REMは任意元素である。REMもCaと同様に、溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制するとともに、微細な酸化物を多数分散させ、鋼板の金属組織を微細化する効果を有する元素である。これらの効果を得る場合、REM含有量を0.0002%以上とすることが好ましい。REM含有量は、より好ましくは0.0005%以上、さらに好ましくは0.0010%以上である。
 一方、REM含有量が0.0100%を超えると鋼中の酸化物が増加し、鋼板の靭性が劣化する場合がある。そのため、REMを含有する場合、REM含有量は0.0100%以下とする。REM含有量は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。
 ここで、REM(希土類)とは、Sc、Y及びランタノイドからなる合計17元素を指す。本実施形態では、REM含有量とはこれらの元素の合計含有量を指す。
(REM: 0 to 0.0100%)
REM is an optional element. Similar to Ca, REM also has the effect of forming oxides and sulfides in molten steel to suppress the formation of coarse MnS, dispersing a large number of fine oxides, and refining the metal structure of the steel sheet. It is an element. When these effects are obtained, the REM content is preferably 0.0002% or more. The REM content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
On the other hand, if the REM content exceeds 0.0100%, oxides in the steel may increase and the toughness of the steel sheet may deteriorate. Therefore, when REM is contained, the REM content is 0.0100% or less. The REM content is preferably 0.0050% or less, more preferably 0.0030% or less.
Here, REM (rare earth) refers to a total of 17 elements composed of Sc, Y and lanthanoids. In this embodiment, the REM content refers to the total content of these elements.
 (Bi:0~0.0200%)
 Biは、任意元素である。Biは、凝固組織を微細化して、鋼板の成形性を向上させる効果を有する元素である。この効果を得るには、Bi含有量は、0.0001%以上とすることが好ましい。Bi含有量は、より好ましくは0.0005%以上である。
 一方、Bi含有量が0.0200%を超えると、上記効果が飽和するとともに合金コストが増加する。そのため、Biを含有する場合、Bi含有量は0.0200%以下とする。好ましくは0.0100%以下であり、より好ましくは0.0070%以下である。
(Bi: 0 to 0.0200%)
Bi is an arbitrary element. Bi is an element having the effect of refining the solidified structure and improving the formability of the steel sheet. In order to obtain this effect, the Bi content is preferably 0.0001% or more. The Bi content is more preferably 0.0005% or more.
On the other hand, when the Bi content exceeds 0.0200%, the above effects are saturated and the alloy cost increases. Therefore, when Bi is contained, the Bi content is 0.0200% or less. It is preferably 0.0100% or less, and more preferably 0.0070% or less.
 (Ex.C:0.020%以下)
 Cは、Ti系炭化物として析出し、鋼板の高強度化に寄与する。しかしながら、Ti系炭化物として析出する量を超えてCが含有されていると、この過剰なCが、パーライトやセメンタイト、MAなどを生成させて、その結果、伸びフランジ性や曲げ加工性が低下する。
 下記(1)式で求められるEx.Cは、Ti系炭化物として析出する量を超えたC含有量に相当する。本実施形態に係る鋼板では、このEx.Cを、0.020%以下とする。好ましくは0.018%以下であり、より好ましくは0.015%以下である。下限は特に限定しない。
Ex.C=(%C)-12{(%Ti)/48+(%V)/51+(%Nb)/93+(%Mo)/96+(%W)/184} (1)式
 ここで、(1)式中の「%Ti」は、以下の(2)式から求める。
%Ti=%Ti-48×{(%N)/14+(%S)/32}  (2)式
 (1)式、(2)式中の%C、%V、%Nb、%Mo、%W、%Ti、%N、%Sは、それぞれ、鋼板中の質量%でのC、V、Nb、Mo、W、Ti、N、Sの含有量である。
(Ex.C: 0.020% or less)
C is precipitated as a Ti-based carbide and contributes to increasing the strength of the steel sheet. However, if C is contained in an amount exceeding the amount precipitated as a Ti-based carbide, this excess C produces pearlite, cementite, MA, etc., and as a result, the stretch flangeability and bendability are lowered. ..
Ex. Ex. C corresponds to the C content exceeding the amount precipitated as a Ti-based carbide. In the steel sheet according to this embodiment, this Ex. C is 0.020% or less. It is preferably 0.018% or less, and more preferably 0.015% or less. The lower limit is not particularly limited.
Ex. C = (% C) -12 {(% Ti * ) / 48+ (% V) / 51+ (% Nb) / 93+ (% Mo) / 96+ (% W) / 184} Equation (1) Here, (1) ) "% Ti * " in the formula is calculated from the following formula (2).
% Ti * =% Ti-48 × {(% N) / 14+ (% S) / 32} (2) Equations (1),% C,% V,% Nb,% Mo in equations (2), % W,% Ti,% N, and% S are the contents of C, V, Nb, Mo, W, Ti, N, and S in mass%, respectively, in the steel sheet.
 次に、鋼板の金属組織について説明する。本実施形態に係る鋼板は、表面から板厚の1/4深さ位置における金属組織が、フェライトを60%以上、MAを0~5%、パーライト及びセメンタイトを合計で0~5%含み、残部がベイナイトからなる。また、金属組織において、平均結晶粒径が10.0μm以下であり、結晶粒の平均アスペクト比が0.30以上であり、Mn濃度の標準偏差が0.60質量%以下である。また、フェライト中におけるBaker-Nuttingの方位関係を有するTi系炭化物が、半整合状態で析出している。
 ここで、鋼板の表面から板厚方向に板厚の1/4深さの位置(板厚をtとした場合に表面からt/4の位置)における金属組織を規定する理由は、この位置における金属組織が、鋼板の代表的な金属組織であるためである。
Next, the metal structure of the steel sheet will be described. In the steel sheet according to the present embodiment, the metal structure at a depth of 1/4 of the plate thickness from the surface contains 60% or more of ferrite, 0 to 5% of MA, and 0 to 5% of pearlite and cementite in total, and the balance. Consists of bainite. Further, in the metal structure, the average crystal grain size is 10.0 μm or less, the average aspect ratio of the crystal grains is 0.30 or more, and the standard deviation of the Mn concentration is 0.60 mass% or less. In addition, Ti-based carbides having a Baker-Nutting orientation relationship in ferrite are precipitated in a semi-matched state.
Here, the reason for defining the metal structure at the position of 1/4 depth of the plate thickness in the plate thickness direction from the surface of the steel plate (the position of t / 4 from the surface when the plate thickness is t) is at this position. This is because the metal structure is a typical metal structure of a steel sheet.
(フェライトの面積分率:60%以上)
(MAの面積分率:0~5%)
(パーライト及びセメンタイトの合計面積分率:0~5%)
(残部:ベイナイト組織)
 フェライトは、良好な伸びを得るために必要である。面積分率が60%未満では伸びが低下する。したがって、フェライトの面積分率は60%以上とする。フェライトの面積分率は、好ましくは70%以上であり、より好ましくは80%以上であり、100%(すなわち、フェライト単相)であってもよい。
 金属組織は、フェライト以外に、少量のMAを含む場合があるが、面積分率が5%以下であれば許容される。好ましくは4%以下、より好ましくは3%以下、最も好ましくは2%以下である。また、パーライト及びセメンタイトが析出する場合があるが、合計の面積分率が5%以下であれば許容される。好ましくは4%以下、より好ましくは3%以下、最も好ましくは2%以下である。MAの面積分率が5%超であると、曲げ加工性及び穴広げ性が低下する。または、パーライト及びセメンタイトの面積分率が5%超であると、穴広げ性が低下する。
 金属組織において、上記以外の残部はベイナイトからなる。ベイナイトはTi系炭化物で析出強化されたフェライトとの硬度差が小さい。そのため、MA(Martensite-Austenite constituents)、パーライト及びセメンタイトと比較して、穴広げ性を低下させる効果が小さい。したがって、残部組織はベイナイトとする。
(Surface integral of ferrite: 60% or more)
(MA area fraction: 0-5%)
(Total surface integral of pearlite and cementite: 0-5%)
(Remaining: Bainite organization)
Ferrite is required to obtain good elongation. If the surface integral is less than 60%, the elongation will decrease. Therefore, the surface integral of ferrite is set to 60% or more. The surface integral of ferrite is preferably 70% or more, more preferably 80% or more, and may be 100% (that is, ferrite single phase).
The metallographic structure may contain a small amount of MA in addition to ferrite, but it is acceptable if the surface integral is 5% or less. It is preferably 4% or less, more preferably 3% or less, and most preferably 2% or less. In addition, pearlite and cementite may precipitate, but it is permissible if the total surface integral is 5% or less. It is preferably 4% or less, more preferably 3% or less, and most preferably 2% or less. If the surface integral of MA is more than 5%, the bending workability and the hole expanding property are lowered. Alternatively, if the surface integral of pearlite and cementite is more than 5%, the hole-spreading property is lowered.
In the metallographic structure, the rest other than the above consists of bainite. Bainite has a small difference in hardness from ferrite precipitated and strengthened with Ti-based carbides. Therefore, as compared with MA (Martensite-Austenite Constituents), pearlite and cementite, the effect of reducing the hole-spreading property is small. Therefore, the rest of the tissue is bainite.
 (平均結晶粒径:10.0μm以下)
 平均結晶粒径が大きいと曲げ加工性が低下する。そのため、金属組織において、平均結晶粒径は10.0μm以下とする。好ましくは8.0μm以下である。平均結晶粒径は小さいほど好ましいので下限は特に限定されない。しかしながら、通常の熱間圧延では、平均結晶粒径が1.0μmを下回るような細粒化は技術的に困難である。そのため、平均結晶粒径は1.0μm以上としてもよい。
 本実施形態において「平均結晶粒径」とは、結晶構造がbccのもの、すなわちフェライト、ベイナイト、マルテンサイト及びパーライトにおいて結晶方位差15°以上の粒界で囲まれ、かつ円相当直径で0.3μm以上の領域を結晶粒と定義した結晶粒径の平均値を意味し、残留オーステナイトの結晶粒径は平均結晶粒径に含めない。
(Average crystal grain size: 10.0 μm or less)
If the average crystal grain size is large, the bending workability is lowered. Therefore, in the metal structure, the average crystal grain size is set to 10.0 μm or less. It is preferably 8.0 μm or less. The smaller the average crystal grain size, the more preferable, so the lower limit is not particularly limited. However, in ordinary hot rolling, it is technically difficult to make the particles finer so that the average crystal grain size is less than 1.0 μm. Therefore, the average crystal grain size may be 1.0 μm or more.
In the present embodiment, the "average crystal grain size" means that the crystal structure is bcc, that is, ferrite, bainite, martensite, and pearlite are surrounded by grain boundaries having a crystal orientation difference of 15 ° or more, and the diameter corresponding to a circle is 0. It means the average value of the crystal grain size in which the region of 3 μm or more is defined as the crystal grain, and the crystal grain size of retained austenite is not included in the average crystal grain size.
 (結晶粒の平均アスペクト比:0.30以上)
 本実施形態では、bcc結晶粒の平均アスペクト比が0.30以上である。アスペクト比とは結晶粒の短軸の長さを長軸の長さで除した値であり、0から1.00の値を取る。結晶粒の平均アスペクト比が小さいほど結晶粒が扁平であり、1.00に近いほど等軸粒であることを表す。結晶粒の平均アスペクト比が0.30未満では扁平な結晶粒が多く、材質の異方性が大きくなり伸びフランジ性及び曲げ加工性が低下する。そのため、残留オーステナイトを除く結晶粒の平均アスペクト比は0.30以上とする。結晶粒が等軸に近づくほど異方性が小さくなり、加工性に優れるため、残留オーステナイトを除く結晶粒の平均アスペクト比は1.00に近いほど良い。
(Average aspect ratio of crystal grains: 0.30 or more)
In this embodiment, the average aspect ratio of the bcc crystal grains is 0.30 or more. The aspect ratio is a value obtained by dividing the length of the minor axis of the crystal grain by the length of the major axis, and takes a value from 0 to 1.00. The smaller the average aspect ratio of the crystal grains, the flatter the crystal grains, and the closer to 1.00, the equiaxed grains. When the average aspect ratio of the crystal grains is less than 0.30, there are many flat crystal grains, the anisotropy of the material becomes large, and the stretch flangeability and the bending workability deteriorate. Therefore, the average aspect ratio of the crystal grains excluding retained austenite is set to 0.30 or more. The closer the crystal grains are to the equiaxed axis, the smaller the anisotropy and the better the processability. Therefore, the average aspect ratio of the crystal grains excluding retained austenite is better as it is closer to 1.00.
 本実施形態において、平均結晶粒径、結晶粒の平均アスペクト比、及び金属組織の面積分率は、圧延方向及び板厚方向に平行な鋼板断面の、鋼板の表面から板厚の1/4深さ位置における金属組織を、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、走査電子顕微鏡(SEM)観察とEBSD(Electron Back Scattering DiffracTion:電子線後方散乱回折法)解析により求める。鋼板の表面から板厚の1/4深さ位置を中心とする、圧延方向に200μm、板厚方向に100μmの領域を、0.2μm間隔でfccとbccとを区別して結晶方位情報を得る。EBSD解析装置の付属ソフトウェア(AMETEK社製「OIMAnalysis(登録商標)」)を用いて、結晶方位差が15°以上である結晶粒界を特定する。bccの平均結晶粒径は、結晶方位差15°以上である結晶粒界で囲まれ、円相当直径で0.3μm以上の領域を結晶粒と定義して、面積平均径を求める。 In the present embodiment, the average crystal grain size, the average aspect ratio of the crystal grains, and the area division of the metal structure are 1/4 depth from the surface of the steel plate to the plate thickness of the steel plate cross section parallel to the rolling direction and the plate thickness direction. Electron backscatter diffraction (Electron Backscatter Diffraction) and EBSD (Electron Backscattering Diffraction) observation and EBSD (Electron Backscatter Diffraction) Method) Obtained by analysis. Crystal orientation information is obtained by distinguishing fcc and bcc at intervals of 0.2 μm in a region of 200 μm in the rolling direction and 100 μm in the plate thickness direction centered on a 1/4 depth position of the plate thickness from the surface of the steel plate. Using the software attached to the EBSD analyzer (“OIMAnaisys®” manufactured by AMETEK, Inc.), the crystal grain boundaries having a crystal orientation difference of 15 ° or more are specified. The average crystal grain size of bcc is surrounded by crystal grain boundaries having a crystal orientation difference of 15 ° or more, and a region having a diameter equivalent to a circle of 0.3 μm or more is defined as a crystal grain, and the area average diameter is obtained.
 15°以上の結晶方位差を有する結晶粒界は主に、フェライト粒界、マルテンサイト及びベイナイトのブロック境界である。JIS G 0552:2013に準じたフェライト粒径の測定方法では、結晶方位差が15°未満のフェライト粒についても粒径が算定されてしまう場合があり、さらに、マルテンサイトやベイナイトのブロックは算定されない。したがって、本実施形態における平均結晶粒径は、上述のようにEBSD解析により求めた値を採用する。EBSD解析では、同時に、各々の結晶粒の長軸の長さ及び短軸の長さも求められるため、本方法を採用することにより、bccの結晶粒の平均アスペクト比も求められる。 The grain boundaries having a crystal orientation difference of 15 ° or more are mainly ferrite grain boundaries, martensite, and bainite block boundaries. In the method for measuring the ferrite grain size according to JIS G 0552: 2013, the grain size may be calculated even for ferrite grains with a crystal orientation difference of less than 15 °, and martensite and bainite blocks are not calculated. .. Therefore, as the average crystal grain size in this embodiment, the value obtained by EBSD analysis as described above is adopted. In the EBSD analysis, the length of the major axis and the length of the minor axis of each crystal grain are also obtained at the same time. Therefore, by adopting this method, the average aspect ratio of the bcc crystal grains can also be obtained.
 フェライトの面積分率は、次のような方法で測定する。ここで、結晶方位差が5°以上の結晶粒界で囲まれ、かつ円相当直径で0.3μm以上の領域を結晶粒と定義する。その結晶粒内の、OIMAnalysisに装備されているGrain Average Misorientation解析により求められる値(GAM値)が0.6°以下である結晶粒の面積分率を算出する。このような方法により、フェライトの面積分率を得る。フェライトの面積分率を求める際に結晶方位差5°以上の境界を結晶粒界と定義する理由は、同一の旧オーステナイト粒から近いバリアントで生成した異なる金属組織が区別出来ない場合があるためである。
 パーライトおよびセメンタイトの面積分率はナイタール腐食により現出した金属組織をSEM観察することで得る。MAの面積分率は、レペラ腐食により現出した組織を光学顕微鏡で観察することにより得る。面積分率は、画像解析により求めてもよく、点算法で求めてもよい。例えば、パーライト及びセメンタイトは、鋼板の表面から板厚の1/4深さ位置の領域において1000倍の倍率にて3視野以上(100μm×100μm/視野)観察し、格子間隔5μmの点算法で求めてよい。また、MAの面積分率は、鋼板の表面から板厚の1/4深さ位置の領域において500倍の倍率にて2視野以上(200μm×200μm/視野)観察し、格子間隔5μmの点算法で求めてよい。
The surface integral of ferrite is measured by the following method. Here, a region surrounded by crystal grain boundaries having a crystal orientation difference of 5 ° or more and having a diameter equivalent to a circle of 0.3 μm or more is defined as a crystal grain. In the crystal grains, the surface integral of the crystal grains whose value (GAM value) obtained by the Grain Average Composition analysis equipped in the OIMA analysis is 0.6 ° or less is calculated. By such a method, the surface integral of ferrite is obtained. The reason why the boundary with a crystal orientation difference of 5 ° or more is defined as a grain boundary when determining the surface integral of ferrite is that different metal structures generated by variants close to the same old austenite grain may not be distinguishable. be.
The surface integrals of pearlite and cementite are obtained by SEM observation of the metallographic structure exposed by nital corrosion. The surface integral of MA is obtained by observing the structure exposed by the repera corrosion with an optical microscope. The surface integral may be obtained by image analysis or by a point calculation method. For example, pearlite and cementite are observed in a region at a depth of 1/4 of the plate thickness from the surface of the steel sheet at a magnification of 1000 times for 3 or more fields of view (100 μm × 100 μm / field of view), and are obtained by a point calculation method with a lattice spacing of 5 μm. You can. The surface integral of MA is a point calculation method in which two or more visual fields (200 μm × 200 μm / visual field) are observed at a magnification of 500 times in a region at a depth of 1/4 of the plate thickness from the surface of the steel plate, and the grid spacing is 5 μm. You can ask for it.
 (Mn濃度の標準偏差:0.60質量%以下)
 本実施形態に係る鋼板の表面から板厚の1/4深さ位置における、Mn濃度の標準偏差は0.60質量%以下である。これにより、Mn偏析に伴う局所的な引張強度のバラツキが低減されて、良好な曲げ加工性を安定して得ることができる。Mn濃度の標準偏差の値は小さいほど望ましいが、製造プロセスの制約より、実質的な下限は0.10質量%である。
(Standard deviation of Mn concentration: 0.60% by mass or less)
The standard deviation of the Mn concentration at a depth of 1/4 of the thickness of the steel sheet according to the present embodiment is 0.60% by mass or less. As a result, the local variation in tensile strength due to Mn segregation is reduced, and good bending workability can be stably obtained. The smaller the standard deviation value of the Mn concentration is, the more desirable it is, but due to the restrictions of the manufacturing process, the practical lower limit is 0.10% by mass.
 Mn濃度の標準偏差は、鋼板の圧延方向及び板厚方向に平行な断面が観察面となるように試料を採取し、観察面を鏡面研磨した後に、鋼板の表面から板厚の1/4深さ位置を電子プローブマイクロアナライザ(EPMA)で測定することにより得られる。測定条件は加速電圧を15kVとし、倍率を5000倍として試料の圧延方向に20μm及び試料の板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得る。 The standard deviation of the Mn concentration is 1/4 depth from the surface of the steel sheet after the sample is sampled so that the cross section parallel to the rolling direction and the thickness direction of the steel sheet is the observation surface and the observation surface is mirror-polished. It is obtained by measuring the rolling position with an electron probe microanalyzer (EPMA). The measurement conditions are that the acceleration voltage is 15 kV, the magnification is 5000 times, and the distribution image in the range of 20 μm in the rolling direction of the sample and 20 μm in the plate thickness direction of the sample is measured. More specifically, the measurement interval is set to 0.1 μm, and the Mn concentration at 40,000 or more points is measured. Next, the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
(Ti系炭化物)
 本実施形態に係る鋼板では、フェライト中に、Tiを含有する炭化物(Ti系炭化物)が析出する。Tiは、フェライト中での炭化物の析出の駆動力が高い元素であり、含有量の制御および熱処理により炭化物の析出状態を制御することが容易となる。また、Ti系炭化物は、析出強化能も高い。ここで、Ti系炭化物は、Tiを含有するNaCl型の結晶構造を有する炭化物を指す。かかる炭化物がTiを含有していれば、その他の炭化物生成合金元素が少量含有されていても、上記の駆動力を大きく低下させることはないので、効果が得られる。本実施形態で規定される化学組成の範囲において、Ti系炭化物は、その他の炭化物生成合金元素、例えばMo、Nb、V、Cr、Wを含んでもよい。さらに、Ti系炭化物において、その炭素の一部が窒素に置換された炭窒化物であっても析出状態は変化しないので、効果が得られる。
(Ti carbide)
In the steel sheet according to the present embodiment, Ti-containing carbides (Ti-based carbides) are precipitated in the ferrite. Ti is an element having a high driving force for precipitation of carbides in ferrite, and it becomes easy to control the precipitation state of carbides by controlling the content and heat treatment. In addition, Ti-based carbides also have a high precipitation strengthening ability. Here, the Ti-based carbide refers to a carbide having a NaCl-type crystal structure containing Ti. If the carbide contains Ti, even if a small amount of other carbide-forming alloying elements are contained, the above-mentioned driving force is not significantly reduced, so that an effect can be obtained. Within the range of chemical composition defined in this embodiment, the Ti-based carbide may contain other carbide-forming alloying elements such as Mo, Nb, V, Cr and W. Further, in the Ti-based carbide, even if the carbonitride in which a part of the carbon is replaced with nitrogen does not change the precipitation state, the effect can be obtained.
(フェライト中のTi系炭化物が半整合状態で析出)
 フェライト中にBaker-Nuttingの方位関係を有して析出するTi系炭化物に対する、フェライトとの界面が半整合界面であるTi系炭化物の占める割合が50%以上である場合、鋼板の伸びフランジ性は安定して良好となる。本実施形態でいう「Ti系炭化物が半整合状態で析出している」状態は、このような場合を指す。Ti系炭化物が半整合析出ではない場合、穴広げ性が低下する。
 Baker-Nuttingの方位関係を有するTi系炭化物が半整合状態であるかどうかは、以下のように判断する。すなわち、表面から板厚の1/4深さ位置から作製した透過電子顕微鏡用薄膜試料において、走査透過電子顕微鏡法(倍率:910,000倍~5,100,000倍)で環状検出器の検出角を60mrad以上200mrad以下の間に設定する環状暗視野走査透過電子顕微鏡像を、電子ビームをフェライトの[001]方位から入射して撮影する。マトリックスのフェライトの(100)面を晶癖面とする板状の形態をなした粒子、およびフェライトの(010)面を晶癖面とする板状の形態をなした粒子をBaker-Nuttingの方位関係を有するTi系炭化物として、フェライトの(100)面を晶癖面とする板状の形態をなした粒子の(100)面の晶癖面、またはフェライトの(010)面を晶癖面とする板状の形態をなした粒子の(010)面の晶癖面を挟むフェライトの{010}面とTi系炭化物の{01-1}面の結晶面の数が一致する場合は整合状態とし、結晶面の数が一致しない場合は半整合状態と判断する。20個以上のTi系炭化物を観察し、50%以上が半整合状態の場合に、観察した透過電子顕微鏡用薄膜試料を採取した鋼材のBaker-Nuttingの方位関係を有するTi系炭化物は半整合状態であると判断する。
(Ti-based carbides in ferrite precipitate in a semi-matched state)
When the ratio of Ti-based carbides whose interface with ferrite is a semi-matching interface to Ti-based carbides precipitated in ferrite with a Baker-Nutting orientation relationship is 50% or more, the stretch flangeability of the steel sheet is It becomes stable and good. The state in which "Ti-based carbides are precipitated in a semi-matched state" in the present embodiment refers to such a case. When the Ti-based carbide is not semi-matched precipitation, the hole-spreading property is lowered.
Whether or not the Ti-based carbide having the directional relationship of Baker-Nutting is in the semi-matched state is determined as follows. That is, in a thin film sample for a transmission electron microscope prepared from a depth of 1/4 of the plate thickness from the surface, the ring detector is detected by scanning transmission electron microscopy (magnification: 910,000 to 5,100,000 times). An annular dark-field scanning transmission electron microscope image in which the angle is set between 60 mrad and more and 200 mrad or less is photographed by incident an electron beam from the [001] direction of ferrite. Baker-Nutting orientation of plate-shaped particles with the ferrite (100) plane of the matrix as the crystal habit plane and plate-shaped particles with the (010) plane of the ferrite as the crystal habit plane. As the Ti-based carbide having a relationship, the crystal habit plane of the (100) plane of the particles having a plate-like shape with the (100) plane of ferrite as the crystal habit plane, or the (010) plane of ferrite as the crystal habit plane. If the number of crystal planes of the {010} plane of ferrite sandwiching the crystal habit plane of the (010) plane of the plate-shaped particles and the {01-1} plane of the Ti-based carbide are the same, it is considered to be in a matched state. If the number of crystal planes does not match, it is judged to be in a semi-matched state. When 20 or more Ti-based carbides are observed and 50% or more are in a semi-matched state, the Ti-based carbides having a Baker-Nutting orientation relationship of the steel material from which the observed thin film sample for a transmission electron microscope is collected are in a semi-matched state. Judge that.
 Ti系炭化物のサイズについて、一般的に、炭化物が大きくなればその個数密度は小さくなる傾向がある。本発明では、フェライト中にBaker-Nuttingの方位関係を有して析出するTi系炭化物の個数密度を確保する観点から、Ti系炭化物の厚さは1nm以上5nm以下であればよい。 Regarding the size of Ti-based carbides, in general, the larger the carbides, the smaller the number density tends to be. In the present invention, the thickness of the Ti-based carbide may be 1 nm or more and 5 nm or less from the viewpoint of ensuring the number density of the Ti-based carbides precipitated in the ferrite having a Baker-Nutting orientation relationship.
 Ti系炭化物の厚さは、以下の方法により測定する。
 鋼板の表面から板厚方向に1/4の深さ位置より透過電子顕微鏡用薄膜試料を作製して、走査透過電子顕微鏡(Scanning Transmission Electron Microscope、以下では「STEM」ともいう。)で観察する。フェライトの[001]方向に電子ビームを入射して撮影したSTEM像で観察されたフェライトの(100)面、(010)面に板面を形成したTi系炭化物において、フェライトの[100]、[010]方向に沿って測定したTi系炭化物の大きさのうち、小さい辺の長さを厚さとする。また、Ti系炭化物の厚さを評価する際には、像の中の析出物の見られない箇所にてフェライトの[100]方向、[010]方向にそれぞれ単位格子10個分の原子間距離が2.866nmとなるように、スケールの校正を行う。
The thickness of Ti-based carbide is measured by the following method.
A thin film sample for a transmission electron microscope is prepared from a depth position of 1/4 in the plate thickness direction from the surface of the steel plate, and observed with a scanning transmission electron microscope (hereinafter, also referred to as "STEM"). In the Ti-based carbides having plate surfaces formed on the (100) plane and (010) plane of the ferrite observed in the STEM image taken by injecting an electron beam in the [001] direction of the ferrite, the ferrite [100] and [ Of the sizes of Ti-based carbides measured along the 010] direction, the length of the small side is defined as the thickness. In addition, when evaluating the thickness of Ti-based carbides, the interatomic distances of 10 unit lattices in the [100] direction and [010] direction of ferrite at locations where precipitates are not seen in the image, respectively. The scale is calibrated so that is 2.866 nm.
 <機械特性>
 (引張強度:980MPa以上)
 本実施形態に係る鋼板は、金属組織、Ti系炭化物の析出形態およびMn偏析の制御により、高強度であり、且つ優れた伸び、伸びフランジ性及び曲げ加工性を有する。しかしながら、鋼板の引張強度が小さいと、車体軽量化や剛性向上などの効果が小さい。そのため、本実施形態に係る鋼板の引張強度(TS)は980MPa以上とする。好ましくは1080MPa以上である。上限は特に規定しないが、引張強度が高くなるに伴いプレス成形が困難となる。そのため、引張強度は1800MPa以下としてもよい。
 本実施形態に係る鋼板では、成形性の点で、強度と伸びとのバランスの指標となるTS×Elが14000MPa・%以上であることを目標とし、強度と伸びフランジ性とのバランスの指標となるTS×λが50000MPa・%以上であることを目的とする。TS×Elは、15000MPa・%以上であることがより好ましい。TS×λは、55000MPa・%以上であることがより好ましく、60000MPa・%以上であることがさらに好ましく、65000MPa・%以上であることが一層好ましい。
<Mechanical characteristics>
(Tensile strength: 980 MPa or more)
The steel sheet according to the present embodiment has high strength and excellent elongation, stretch flangeability and bending workability by controlling the metallographic structure, the precipitation form of Ti-based carbides and the Mn segregation. However, if the tensile strength of the steel sheet is small, the effects of reducing the weight of the vehicle body and improving the rigidity are small. Therefore, the tensile strength (TS) of the steel sheet according to this embodiment is set to 980 MPa or more. It is preferably 1080 MPa or more. The upper limit is not particularly specified, but as the tensile strength increases, press molding becomes difficult. Therefore, the tensile strength may be 1800 MPa or less.
In the steel sheet according to the present embodiment, in terms of formability, the target is TS × El, which is an index of the balance between strength and elongation, to be 14000 MPa ·% or more, and the index of the balance between strength and elongation and flangeability is used. The purpose is that TS × λ is 50,000 MPa ·% or more. TS × El is more preferably 15,000 MPa ·% or more. TS × λ is more preferably 55,000 MPa ·% or more, further preferably 60,000 MPa ·% or more, and even more preferably 65,000 MPa ·% or more.
 鋼板の引張強度及び伸びは、JIS Z 2241:2011に規定された5号試験片を用いて、引張強度と破断全伸び(El)とにより評価する。鋼板の伸びフランジ性は、JIS Z 2256:2010に規定された穴広げ率(λ)により評価する。 The tensile strength and elongation of the steel sheet are evaluated by the tensile strength and the total elongation at break (El) using the No. 5 test piece specified in JIS Z 2241: 2011. The stretch flangeability of the steel sheet is evaluated by the hole expansion ratio (λ) specified in JIS Z 2256: 2010.
 <製造方法>
 本実施形態に係る鋼板の製造条件の限定理由を説明する。
 本発明者らは、本実施形態に係る鋼板が、以下のような加熱工程、熱間圧延工程、冷却工程及び巻取工程を含む製造方法によって得られることを確認している。
<Manufacturing method>
The reason for limiting the manufacturing conditions of the steel sheet according to the present embodiment will be described.
The present inventors have confirmed that the steel sheet according to the present embodiment can be obtained by a manufacturing method including the following heating step, hot rolling step, cooling step and winding step.
 [加熱工程]
 まず、上述した化学組成を有するスラブまたは鋼片を加熱する。スラブまたは鋼片は、連続鋳造や鋳造・分塊圧延により得たものでよいが、それらに熱間加工または冷間加工を加えたものであってもよい。
[Heating process]
First, a slab or steel piece having the above-mentioned chemical composition is heated. The slab or steel piece may be obtained by continuous casting or casting / slab rolling, but may be obtained by adding hot working or cold working to them.
 (加熱時の700~850℃の温度域の滞留時間:900秒以上)
 熱間圧延に供するスラブまたは鋼片を加熱するときは、700~850℃の温度域に900秒以上滞留させる。700~850℃の温度域で生じるオーステナイト変態において、Mnがフェライトとオーステナイトとの間で分配される。そのため、滞留時間を長くしてその変態時間を長くすることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析が解消され、Mn濃度の標準偏差が著しく小さくなる。
(Dwelling time in the temperature range of 700 to 850 ° C during heating: 900 seconds or more)
When heating a slab or a piece of steel to be subjected to hot rolling, it is allowed to stay in a temperature range of 700 to 850 ° C. for 900 seconds or more. In the austenite transformation that occurs in the temperature range of 700 to 850 ° C., Mn is partitioned between ferrite and austenite. Therefore, Mn can be diffused in the ferrite region by lengthening the residence time and lengthening the transformation time. As a result, the Mn microsegregation unevenly distributed in the slab is eliminated, and the standard deviation of the Mn concentration becomes remarkably small.
 (加熱温度:1280℃以上かつSRT(℃)以上)
 熱間圧延に供するスラブまたは鋼片の加熱温度は、1280℃以上かつ下記(3)式により表される温度SRT(℃)以上とする。加熱温度が1280℃未満では加熱時のMn拡散によるMn濃度の標準偏差低減が不十分となる場合が有る。また、SRT(℃)未満ではTi炭窒化物の溶体化が不十分となり、いずれの場合も鋼板の引張強度や曲げ加工性が低下する。したがって、熱間圧延に供するスラブまたは鋼片の温度は1280℃以上かつSRT(℃)以上とする。ここで、「スラブまたは鋼片の温度が1280℃以上かつSRT(℃)以上」とは、1280℃とSRT(℃)との高い方の温度よりも、スラブまたは鋼片の温度の方が高い、または1280℃とSRT(℃)との高い方の温度と、スラブまたは鋼片の温度が同じであることを意味する。
 一方、加熱温度が1400℃超では、厚いスケールが生成して歩留まりが低下したり、加熱炉に著しい損傷を与えたりする場合がある。そのため、加熱温度は1400℃以下が好ましい。
 SRT(℃)=1630+90×ln([C]×[Ti])…(3)
 但し、上記(3)式中の[元素記号]は、各元素の質量%での含有量を示す。
(Heating temperature: 1280 ° C or higher and SRT (° C) or higher)
The heating temperature of the slab or steel piece to be subjected to hot rolling shall be 1280 ° C. or higher and the temperature SRT (° C.) or higher represented by the following equation (3). If the heating temperature is less than 1280 ° C., the reduction of the standard deviation of the Mn concentration due to the diffusion of Mn during heating may be insufficient. Further, if it is less than SRT (° C.), the solution of Ti carbonitride becomes insufficient, and in either case, the tensile strength and bending workability of the steel sheet are lowered. Therefore, the temperature of the slab or steel piece to be subjected to hot rolling is 1280 ° C. or higher and SRT (° C.) or higher. Here, "the temperature of the slab or steel piece is 1280 ° C. or higher and SRT (° C.) or higher" means that the temperature of the slab or steel piece is higher than the higher temperature of 1280 ° C. and SRT (° C.). , Or the higher temperature of 1280 ° C and SRT (° C), which means that the temperature of the slab or piece of steel is the same.
On the other hand, if the heating temperature exceeds 1400 ° C., a thick scale may be generated to reduce the yield or significantly damage the heating furnace. Therefore, the heating temperature is preferably 1400 ° C. or lower.
SRT (° C.) = 1630 + 90 × ln ([C] × [Ti])… (3)
However, the [element symbol] in the above equation (3) indicates the content of each element in mass%.
 [熱間圧延工程]
 熱間圧延工程では、加熱工程後のスラブまたは鋼片に、複数の圧延スタンドを用いて多パス熱間圧延を施して熱延鋼板とする。熱間圧延工程は、粗圧延と、粗圧延に続いて行われる仕上げ圧延とに分けられる。
 多パス熱間圧延はレバースミルまたはタンデムミルを用いて行うことができるが、工業的生産性の観点からは、少なくとも最終の数段はタンデムミルを用いることが好ましい。
[Hot rolling process]
In the hot rolling step, the slab or steel piece after the heating step is subjected to multi-pass hot rolling using a plurality of rolling stands to obtain a hot-rolled steel sheet. The hot rolling process is divided into rough rolling and finish rolling performed after rough rolling.
Multi-pass hot rolling can be performed using a lever mill or a tandem mill, but from the viewpoint of industrial productivity, it is preferable to use a tandem mill for at least the final several stages.
 (粗圧延開始から仕上げ圧延完了までの時間:600秒以下)
 圧延によりTi系炭化物の析出が促進されて析出し始めるので、仕上げ圧延完了までの時間が長すぎると、オーステナイト中に粗大なTi系炭化物が多量に析出する。この場合、高強度化に寄与する、仕上げ圧延後にフェライト中に析出する微細なTi系炭化物が減少して、鋼板の引張強度が著しく減少すると共に、曲げ加工性が低下する。したがって、粗圧延開始から仕上げ圧延完了までの時間は600秒以内とする。好ましくは500秒以内、より好ましくは400秒以内、最も好ましくは320秒以内である。
 通常、熱間圧延工程は、圧延機の仕様や製造するコイルの板厚と板幅及び所望の材質に応じて、圧下率及び圧延温度が制御されるが、粗圧延開始から仕上げ圧延終了までの時間を総合的に制御することはされてない。本発明者らは、粗圧延開始から仕上げ圧延完了までの時間が、Ti系炭化物の析出状態に影響することを新たに見出した。
(Time from the start of rough rolling to the completion of finish rolling: 600 seconds or less)
Since the precipitation of Ti-based carbides is promoted by rolling and starts to precipitate, if the time until the finish rolling is completed is too long, a large amount of coarse Ti-based carbides are precipitated in the austenite. In this case, the fine Ti-based carbides precipitated in the ferrite after finish rolling, which contribute to increasing the strength, are reduced, the tensile strength of the steel sheet is remarkably reduced, and the bending workability is lowered. Therefore, the time from the start of rough rolling to the completion of finish rolling is set to 600 seconds or less. It is preferably within 500 seconds, more preferably within 400 seconds, and most preferably within 320 seconds.
Normally, in the hot rolling process, the rolling reduction and rolling temperature are controlled according to the specifications of the rolling mill, the thickness and width of the coil to be manufactured, and the desired material, but from the start of rough rolling to the end of finish rolling. There is no overall control over time. The present inventors have newly found that the time from the start of rough rolling to the completion of finish rolling affects the precipitation state of Ti-based carbides.
 (850~1100℃の温度域の合計圧下率:90%以上)
 850~1100℃の温度域の合計圧下率が90%以上となる熱間圧延を行うことにより、主に再結晶オーステナイトの微細化が図られるとともに、未再結晶オーステナイト内へのひずみエネルギーの蓄積が促進される。その結果、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、Mn濃度の標準偏差が小さくなる。したがって、熱間圧延において、850~1100℃の温度域の合計圧下率(累積圧下率)を90%以上とする。
 850~1100℃の温度域の合計圧下率とは、この温度域の圧延における最初のパス前の入口板厚をt0とし、この温度域の圧延における最終パス後の出口板厚をt1としたとき、(t0-t1)/t0×100(%)で表すことができる。
(Total reduction rate in the temperature range of 850 to 1100 ° C: 90% or more)
By performing hot rolling in which the total rolling reduction in the temperature range of 850 to 1100 ° C. is 90% or more, the recrystallized austenite is mainly miniaturized and the strain energy is accumulated in the unrecrystallized austenite. Be promoted. As a result, the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, and the standard deviation of the Mn concentration becomes small. Therefore, in hot rolling, the total reduction rate (cumulative reduction rate) in the temperature range of 850 to 1100 ° C. is set to 90% or more.
The total reduction rate in the temperature range of 850 to 1100 ° C. is when the inlet plate thickness before the first pass in rolling in this temperature range is t0 and the outlet plate thickness after the final pass in rolling in this temperature range is t1. , (T0-t1) / t0 × 100 (%).
 (仕上げ圧延完了温度FT(℃):TR(℃)以上1080℃以下)
 FT(℃)が下記(4)式で表されるTR(℃)未満では、仕上げ圧延後の冷却前において著しく扁平なオーステナイトが形成されて、最終製品の鋼板において、圧延方向に伸長した金属組織となって、残留オーステナイトを除くbcc構造を有する結晶粒の平均アスペクト比が小さくなると共に塑性異方性が大きくなる。この場合、鋼板の伸び、伸びフランジ性及び/または曲げ加工性が低下する。したがって、FT(℃)はTR(℃)以上とする。
 一方、FT(℃)が1080℃を超えると、組織が粗大化して、鋼板の曲げ加工性が低下する。したがって、FT(℃)は1080℃以下とする。FT(℃)は、好ましくは1060℃以下である。
 仕上げ圧延中の温度は、鋼材の表面温度を指し、放射温度計等により測定することができる。
 TR(℃)=805+385×[Ti]+584×[Nb]   (4)
 但し、上記(4)式中の[元素記号]は、各元素の質量%での含有量を示し、含有しない場合は0を代入する。
(Finish rolling completion temperature FT (° C): TR (° C) or higher and 1080 ° C or lower)
When the FT (° C.) is less than TR (° C.) represented by the following equation (4), remarkably flat austenite is formed before cooling after finish rolling, and the metal structure elongated in the rolling direction is formed in the final product steel sheet. As a result, the average aspect ratio of the crystal grains having a bcc structure excluding retained austenite becomes smaller and the plastic anisotropy becomes larger. In this case, the elongation, stretch flangeability and / or bendability of the steel sheet is reduced. Therefore, the FT (° C.) is set to TR (° C.) or higher.
On the other hand, when the FT (° C.) exceeds 1080 ° C., the structure becomes coarse and the bendability of the steel sheet deteriorates. Therefore, the FT (° C.) is 1080 ° C. or lower. The FT (° C.) is preferably 1060 ° C. or lower.
The temperature during finish rolling refers to the surface temperature of the steel material and can be measured with a radiation thermometer or the like.
TR (° C.) = 805 + 385 x [Ti] + 584 x [Nb] (4)
However, the [element symbol] in the above equation (4) indicates the content of each element in mass%, and if it is not contained, 0 is substituted.
 [冷却工程]
 本実施形態に係る鋼板の製造方法は、熱間圧延工程の次の工程として、熱延鋼板を、45℃/秒以上の平均冷却速度で、650~800℃の温度域まで、水で冷却する冷却工程を有する。また、本実施形態に係る鋼板の製造方法では、冷却工程を熱間圧延工程終了後(仕上げ圧延完了後)3.0秒以内に開始する。
[Cooling process]
In the method for manufacturing a steel sheet according to the present embodiment, as a next step of the hot rolling step, the hot-rolled steel sheet is cooled with water at an average cooling rate of 45 ° C./sec or more to a temperature range of 650 to 800 ° C. Has a cooling process. Further, in the method for manufacturing a steel sheet according to the present embodiment, the cooling step is started within 3.0 seconds after the completion of the hot rolling step (after the completion of finish rolling).
 (仕上げ圧延完了後、水冷を開始するまでの時間:3.0秒以内)
 仕上げ圧延完了後、水冷開始までの時間が3.0秒超では、細粒化したオーステナイト結晶粒の成長や、Ti等の炭窒化物の粗大析出により、引張強度や曲げ加工性が低下する。したがって、本実施形態に係る鋼板の製造方法では、仕上げ圧延完了後3.0秒以内に水冷を開始する。好ましくは2.0秒以内、より好ましくは1.5秒以内である。
(Time from the completion of finish rolling to the start of water cooling: within 3.0 seconds)
If the time from the completion of finish rolling to the start of water cooling exceeds 3.0 seconds, the tensile strength and bending workability deteriorate due to the growth of finely divided austenite crystal grains and the coarse precipitation of carbonitrides such as Ti. Therefore, in the method for manufacturing a steel sheet according to the present embodiment, water cooling is started within 3.0 seconds after the completion of finish rolling. It is preferably within 2.0 seconds, more preferably within 1.5 seconds.
 (仕上げ圧延完了後の水冷開始から650~800℃の水冷停止温度までの平均冷却速度:45℃/秒以上)
 650~800℃の間の水冷停止温度までの平均冷却速度が45℃/秒未満では未変態オーステナイト中、または、変態したフェライト粒内に粗大なTi系炭化物が析出して、所望の強度が得難くなる。したがって、平均冷却速度は45℃/秒以上とする。好ましくは50℃/秒以上、より好ましくは55℃/秒以上である。上限は特に限定する必要はないが、設備コストの観点から300℃/秒以下であることが好ましい。平均冷却速度とは、熱間圧延完了後、水冷開始から水冷停止までの温度降下量を所要時間で除した値である。
(Average cooling rate from the start of water cooling after the completion of finish rolling to the water cooling stop temperature of 650 to 800 ° C: 45 ° C / sec or more)
When the average cooling rate to the water cooling stop temperature between 650 and 800 ° C. is less than 45 ° C./sec, coarse Ti-based carbides are precipitated in untransformed austenite or in transformed ferrite grains to obtain the desired strength. It becomes difficult. Therefore, the average cooling rate is 45 ° C./sec or higher. It is preferably 50 ° C./sec or higher, more preferably 55 ° C./sec or higher. The upper limit is not particularly limited, but is preferably 300 ° C./sec or less from the viewpoint of equipment cost. The average cooling rate is a value obtained by dividing the amount of temperature drop from the start of water cooling to the stop of water cooling by the required time after the completion of hot rolling.
 (650~800℃の温度域の滞留時間:5~50秒)
 鋼板を、45℃/秒以上の平均冷却速度で、650~800℃まで冷却した後、当該温度域で滞留させる。650~800℃の滞留時間が短いと所望のフェライト面積分率が得難くなるため、滞留時間は5秒以上が必要である。滞留時間は、好ましくは7秒以上である。一方、滞留時間が長いとパーライトが生成して穴広げ性が低下する。そのため、この温度域で滞留時間は50秒以下とする。滞留時間は、好ましくは40秒以下である。
 また、650~800℃で滞留する間に、フェライト変態が進むと共に半整合界面を有するTi系炭化物がフェライト中に析出して、引張強度と穴広げ性とに優れる鋼板が得られる。Ti系炭化物が800℃より高い温度で析出すると、粗大に析出して所望の個数密度が得られず所望の引張強度が得難くなる。一方、Ti系炭化物が650℃より低い温度で析出すると、整合界面を有するTi系炭化物が析出して穴広げ性が劣化する。
(Dwelling time in the temperature range of 650 to 800 ° C: 5 to 50 seconds)
The steel sheet is cooled to 650 to 800 ° C. at an average cooling rate of 45 ° C./sec or higher, and then retained in the temperature range. If the residence time at 650 to 800 ° C. is short, it becomes difficult to obtain the desired ferrite surface integral, so the residence time needs to be 5 seconds or more. The residence time is preferably 7 seconds or more. On the other hand, if the residence time is long, pearlite is generated and the hole expanding property is lowered. Therefore, the residence time is set to 50 seconds or less in this temperature range. The residence time is preferably 40 seconds or less.
Further, while staying at 650 to 800 ° C., the ferrite transformation progresses and Ti-based carbides having a semi-matched interface are precipitated in the ferrite to obtain a steel sheet having excellent tensile strength and hole expandability. When Ti-based carbides are precipitated at a temperature higher than 800 ° C., they are coarsely precipitated and a desired number density cannot be obtained, making it difficult to obtain a desired tensile strength. On the other hand, when the Ti-based carbide is precipitated at a temperature lower than 650 ° C., the Ti-based carbide having a matching interface is precipitated and the hole expanding property is deteriorated.
(550~650℃の温度域の平均冷却速度:45℃/秒以上)
 上記滞留の後、550~650℃の温度域の平均冷却速度が45℃/秒以上となるように550℃以下の温度(巻取温度)まで鋼板を冷却する。平均冷却速度が45℃/秒未満では冷却中に整合界面を有するTi系炭化物が析出して、穴広げ性が劣化する。平均冷却速度の上限は特に限定する必要はないが、設備コストの観点から300℃/秒以下であることが好ましい。
(Average cooling rate in the temperature range of 550 to 650 ° C: 45 ° C / sec or more)
After the above retention, the steel sheet is cooled to a temperature of 550 ° C. or lower (winding temperature) so that the average cooling rate in the temperature range of 550 to 650 ° C. is 45 ° C./sec or more. If the average cooling rate is less than 45 ° C./sec, Ti-based carbides having a matching interface are precipitated during cooling, and the hole-spreading property is deteriorated. The upper limit of the average cooling rate is not particularly limited, but is preferably 300 ° C./sec or less from the viewpoint of equipment cost.
[巻取工程]
 (巻取温度:350℃以上550℃未満)
 冷却工程後は、鋼板を、350℃以上550℃未満で巻き取る。巻取温度が350℃未満では未変態オーステナイトがマルテンサイトに変態して、穴広げ性や曲げ加工性が低下する。一方、巻取温度が550℃以上になると、巻取り後に整合界面を有するTi系炭化物の生成が起こり、穴広げ性が低下する。巻取温度は、好ましくは400℃以上500℃未満である。
[Winding process]
(Taking temperature: 350 ° C or more and less than 550 ° C)
After the cooling step, the steel sheet is wound at 350 ° C. or higher and lower than 550 ° C. If the winding temperature is less than 350 ° C., untransformed austenite is transformed into martensite, and the hole-expanding property and bending workability are deteriorated. On the other hand, when the winding temperature is 550 ° C. or higher, Ti-based carbide having a matching interface is generated after winding, and the hole expanding property is lowered. The winding temperature is preferably 400 ° C. or higher and lower than 500 ° C.
 本実施形態では、巻取工程後に鋼板表面にめっきを施すことで、めっき層を有するめっき鋼板としてもよい。めっきを施す場合においても、本実施形態に係る鋼板の製造方法の条件を充足した上でめっきを施せば問題ない。めっきは電気めっきおよび溶融めっきのいずれでもよく、めっき種も特に制限はないが、一般的には亜鉛めっきと亜鉛合金めっきとを含む亜鉛系めっきである。めっき鋼板の例としては、電気亜鉛めっき鋼板、電気亜鉛-ニッケル合金めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融亜鉛-アルミニウム合金めっき鋼板などが例示される。めっき付着量は一般的な量でよい。めっきを施す前に、プレめっきとしてNi等を表面につけても良い。
 本実施形態に係る鋼板を製造する際にはまた、形状矯正を目的として公知の調質圧延を適宜施してもよい。
In the present embodiment, a plated steel sheet having a plating layer may be obtained by plating the surface of the steel sheet after the winding step. Even in the case of plating, there is no problem as long as the plating is performed after satisfying the conditions of the steel sheet manufacturing method according to the present embodiment. The plating may be either electroplating or hot-dip plating, and the type of plating is not particularly limited, but is generally zinc-based plating including zinc plating and zinc alloy plating. Examples of the plated steel sheet include an electrogalvanized steel sheet, an electrozinc-nickel alloy plated steel sheet, a hot dip galvanized steel sheet, an alloyed hot dip galvanized steel sheet, and a hot dip galvanized steel sheet. The amount of plating adhered may be a general amount. Before plating, Ni or the like may be applied to the surface as pre-plating.
When producing the steel sheet according to the present embodiment, known temper rolling may be appropriately performed for the purpose of shape correction.
 本実施形態に係る鋼板の板厚は特に限定するものではないが、板厚が厚すぎる場合は、鋼板表層と内部とで生成される金属組織が著しく異なるため、8.0mm以下が好ましい。より好ましくは6.0mm以下である。一方、板厚が薄すぎると熱間圧延時の通板が困難となるため、一般的には1.0mm以上が好ましい。より好ましくは、1.2mm以上である。 The plate thickness of the steel sheet according to the present embodiment is not particularly limited, but if the plate thickness is too thick, the metallographic structure generated between the surface layer of the steel sheet and the inside is significantly different, so 8.0 mm or less is preferable. More preferably, it is 6.0 mm or less. On the other hand, if the plate thickness is too thin, it becomes difficult to pass the plate during hot rolling, so 1.0 mm or more is generally preferable. More preferably, it is 1.2 mm or more.
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 Next, the effect of one aspect of the present invention will be described more specifically by way of examples, but the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention. The present invention is not limited to this one-condition example. The present invention may adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
 表1A及び表1Bに示す化学組成(単位質量%、残部はFe及び不純物)を有する板厚250mmの鋼素材を表2A、表2Bに示す条件で熱間圧延を施して、板厚を2.5~3.5mmの熱延鋼板とした。得られた熱延鋼板の一部は焼鈍温度700℃の溶融亜鉛めっき処理、さらには合金化処理を施し、溶融亜鉛めっき鋼板(GI)または合金化溶融亜鉛めっき鋼板(GA)とした。 A steel material having a chemical composition shown in Tables 1A and 1B (unit mass%, the balance is Fe and impurities) and having a plate thickness of 250 mm is hot-rolled under the conditions shown in Tables 2A and 2B to obtain a plate thickness of 2. A hot-rolled steel sheet of 5 to 3.5 mm was used. A part of the obtained hot-dip steel sheet was subjected to hot-dip galvanizing treatment at a quenching temperature of 700 ° C. and further alloying treatment to obtain a hot-dip galvanized steel sheet (GI) or an alloyed hot-dip galvanized steel sheet (GA).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた鋼板(熱延鋼板、めっき鋼板)について、鋼板の表面から板厚の1/4深さの位置における金属組織を観察し、各組織の面積分率、bcc構造を有する結晶粒の平均結晶粒径及び平均アスペクト比、並びにMn濃度の標準偏差を求めた。 With respect to the obtained steel sheet (hot-rolled steel sheet, plated steel sheet), the metal structure was observed at a position at a depth of 1/4 of the plate thickness from the surface of the steel sheet, and the area fraction of each structure and the average of the crystal grains having a bcc structure were observed. The crystal grain size, average aspect ratio, and standard deviation of Mn concentration were determined.
 鋼板の表面から板厚の1/4深さ位置における金属組織の面積分率、bcc構造を有する結晶粒の平均結晶粒径及び平均アスペクト比は、圧延方向及び板厚方向に平行な鋼板断面の、鋼板の表面から板厚の1/4深さ位置における金属組織を、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、走査電子顕微鏡(SEM)観察とEBSD(Electron Back Scattering DiffracTion:電子線後方散乱回折法)解析により求めた。
 その際、鋼板の表面から板厚の1/4深さ位置を中心とする圧延方向に200μm、板厚方向に100μmの領域を0.2μm間隔でfccとbccとを区別して結晶方位情報を得た。EBSD解析装置の付属ソフトウェア(AMETEK社製「OIMAnalysis(登録商標)」)を用いて、結晶方位差が15°以上である結晶粒界を特定した。bccの平均結晶粒径は、結晶方位差15°以上である結晶粒界で囲まれ、bccと判別された円相当直径で0.3μm以上の領域を結晶粒と定義して、面積平均径を求めた。
The area fraction of the metal structure at a depth of 1/4 of the plate thickness from the surface of the steel plate, the average crystal grain size and average aspect ratio of the crystal grains having a bcc structure are determined by the cross-section of the steel plate parallel to the rolling direction and the plate thickness direction. The metallographic structure at a depth of 1/4 of the plate thickness from the surface of the steel plate can be observed with a scanning electron microscope (SEM) using an EBSD analyzer composed of a thermal electric field radiation scanning electron microscope and an EBSD detector. It was determined by EBSD (Electron Backscattering Diffraction) analysis.
At that time, crystal orientation information is obtained by distinguishing fcc and bcc in a region of 200 μm in the rolling direction centered on the 1/4 depth position of the sheet thickness from the surface of the steel sheet and 100 μm in the plate thickness direction at 0.2 μm intervals. rice field. The crystal grain boundaries having a crystal orientation difference of 15 ° or more were identified using the software attached to the EBSD analyzer (“OIMAnalesis (registered trademark)” manufactured by AMETEK, Inc.). The average crystal grain size of bcc is surrounded by crystal grain boundaries having a crystal orientation difference of 15 ° or more, and a region having a circle-equivalent diameter determined to be bcc and having a diameter of 0.3 μm or more is defined as a crystal grain, and the area average diameter is defined as the crystal grain. I asked.
 フェライトの面積分率は、次のような方法で測定した。
 結晶方位差が5°以上の結晶粒界で囲まれ、かつbccと判別された円相当直径で0.3μm以上の領域を結晶粒と定義した。その結晶粒内の、OIMAnalysisに装備されているGrain Average Misorientation解析により求められる値(GAM値)が0.6°以下である結晶粒の面積分率を算出した。
The surface integral of ferrite was measured by the following method.
A region surrounded by a grain boundary having a crystal orientation difference of 5 ° or more and having a diameter equivalent to a circle determined to be bcc and having a diameter of 0.3 μm or more was defined as a crystal grain. The surface integral of the crystal grains having a value (GAM value) of 0.6 ° or less obtained by the Grain Average Composition analysis equipped in the OIMA analysis was calculated in the crystal grains.
 パーライト及びセメンタイトの面積分率は、鋼板の表面から板厚の1/4深さ位置の領域においてナイタール腐食により現出した金属組織を、SEMを用いて1000倍の倍率にて3視野観察し、格子間隔5μmの点算法で求めた。また、MAの面積分率は、鋼板の表面から板厚の1/4深さ位置の領域においてレペラ腐食により現出した組織を、光学顕微鏡を用いて500倍の倍率にて2視野観察し、格子間隔5μmの点算法で求めた。
 表には示していないが、金属組織の残部はベイナイトであった。
For the area fraction of pearlite and cementite, the metallographic structure exposed by nital corrosion in the region at a depth of 1/4 of the plate thickness from the surface of the steel plate was observed in 3 fields at a magnification of 1000 times using SEM. It was obtained by a point calculation method with a lattice spacing of 5 μm. As for the area fraction of MA, the structure exposed by the repera corrosion in the region at a depth of 1/4 of the plate thickness from the surface of the steel plate was observed in two fields at a magnification of 500 times using an optical microscope. It was obtained by a point calculation method with a lattice spacing of 5 μm.
Although not shown in the table, the rest of the metallographic structure was bainite.
 Mn濃度の標準偏差は、圧延方向及び板厚方向に平行な鋼板断面を鏡面研磨した後に、鋼板の表面から板厚の1/4深さ位置を電子プローブマイクロアナライザ(EPMA)で測定することにより得た。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定した。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定した。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得た。 The standard deviation of the Mn concentration is determined by mirror-polishing the cross section of the steel sheet parallel to the rolling direction and the sheet thickness direction, and then measuring the 1/4 depth position of the sheet thickness from the surface of the steel sheet with an electron probe microanalyzer (EPMA). Obtained. As the measurement conditions, the acceleration voltage was 15 kV, the magnification was 5000 times, and the distribution image in the range of 20 μm in the sample rolling direction and 20 μm in the sample plate thickness direction was measured. More specifically, the measurement interval was set to 0.1 μm, and the Mn concentration was measured at 40,000 or more places. Next, the standard deviation of the Mn concentration was obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
 得られた鋼板の機械特性を評価するため、引張強度TS(MPa)、破断全伸びEl(%)を、JIS Z 2241:2011に準拠して測定した。また、JIS Z 2256:2010に準拠して穴広げ率(λ)を測定した。
曲げ加工性は、曲げ半径を板厚の2倍とした90°V曲げ試験により評価した。
 表3A、表3Bに金属組織、および機械特性の試験結果を示す。
In order to evaluate the mechanical properties of the obtained steel sheet, the tensile strength TS (MPa) and the total elongation at break El (%) were measured in accordance with JIS Z 2241: 2011. In addition, the hole expansion ratio (λ) was measured according to JIS Z 2256: 2010.
The bending workability was evaluated by a 90 ° V bending test in which the bending radius was twice the plate thickness.
Tables 3A and 3B show the test results of metallographic structure and mechanical properties.
 引張強度は、980MPa以上の場合を高強度であるとした。
 伸びは、引張強度と破断全伸びの積(TS×El)が、14000MPa・%以上の場合を伸びに優れるとした。また、TS×λが50000MPa・%以上である場合を、伸びフランジ性に優れるとした。曲げ加工性は、3回の試験を行い、全ての試験片で曲げ試験時に割れが発生しなかったものを曲げ加工性に優れる(OK)とし、1つ以上の割れが発生したものを曲げ加工性が十分ではない(NG)とした。
The tensile strength was considered to be high when it was 980 MPa or more.
The elongation was considered to be excellent when the product of the tensile strength and the total elongation at break (TS × El) was 14,000 MPa ·% or more. Further, when TS × λ is 50,000 MPa ·% or more, the stretch flangeability is considered to be excellent. Bending workability was tested three times, and all test pieces that did not crack during the bending test were considered to have excellent bending workability (OK), and those that had one or more cracks were bent. The sex was not sufficient (NG).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3A、表3Bに示したように、本発明の要件を具備する発明例ではTS、TS×El及び曲げ加工性の全てに優れていた。一方、本発明の要件を少なくとも一つ以上具備しない比較例では、TS、TS×El及び曲げ加工性のうちの少なくとも一つが劣っていた。 As shown in Tables 3A and 3B, the invention examples satisfying the requirements of the present invention were excellent in all of TS, TS × El and bending workability. On the other hand, in the comparative example which does not satisfy at least one of the requirements of the present invention, at least one of TS, TS × El and bending workability was inferior.
 本発明によれば、高強度であり、且つ、伸び、伸びフランジ性及び曲げ加工性に優れた鋼板を提供することができる。本発明の鋼板は、自動車用、家電用、機械構造用、建築用などの用途に用いられる素材として好適であり、特に、自動車の内板部材、構造部材、足廻り部材等の部品の素材として使用すれば、車体軽量化及び耐衝突特性の向上に寄与するだけでなく、部品形状に加工することが容易である。そのため、本発明の鋼板は、産業上の貢献が極めて顕著である。 According to the present invention, it is possible to provide a steel sheet having high strength and excellent elongation, stretch flangeability and bending workability. The steel plate of the present invention is suitable as a material used for applications such as automobiles, home appliances, mechanical structures, and constructions, and in particular, as a material for parts such as inner plate members, structural members, and suspension members of automobiles. If used, it not only contributes to weight reduction of the vehicle body and improvement of collision resistance characteristics, but is also easy to process into a part shape. Therefore, the steel sheet of the present invention has an extremely remarkable industrial contribution.

Claims (5)

  1.  化学組成が、質量%で、
     C:0.050~0.250%、
     Si:0.005~2.000%、
     Mn:0.10~3.00%、
     P:0.100%以下、
     S:0.0100%以下、
     sol.Al:0.001~1.00%、
     Ti:0.150~0.400%、
     N:0.0010~0.0100%、
     Nb:0~0.100%、
     V:0~1.000%、
     Mo:0~1.000%、
     Cu:0~1.00%、
     Ni:0~1.00%、
     Cr:0~2.00%、
     W:0~1.000%、
     B:0~0.0020%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     REM:0~0.0100%、
     Bi:0~0.0200%、
    を含有し、残部がFe及び不純物からなり、
     下記(1)式で求められるEx.Cが0.020%以下であり、
     表面から板厚の1/4深さの位置における金属組織が、面積分率で、フェライトを60%以上、MAを0~5%、パーライト及びセメンタイトを合計で0~5%含み、残部がベイナイトからなり、
     前記金属組織において、
      平均結晶粒径が10.0μm以下であり、
      結晶粒の平均アスペクト比が0.30以上であり、
      Mn濃度の標準偏差が0.60質量%以下であり、
      前記フェライト中におけるBaker-Nuttingの方位関係を有するTi系炭化物が、半整合状態で析出しており、
     引張強度が980MPa以上である、
    ことを特徴とする鋼板。
    Ex.C=(%C)-12{(%Ti)/48+(%V)/51+(%Nb)/93+(%Mo)/96+(%W)/184} (1)式
    ここで、前記(1)式中の「%Ti」は、以下の(2)式から求める。
    %Ti=%Ti-48×{(%N)/14+(%S)/32}  (2)式
     前記(1)式、前記(2)式中の%C、%V、%Nb、%Mo、%W、%Ti、%N、%Sは、鋼板中の質量%でのC、V、Nb、Mo、W、Ti、N、Sの含有量である。
    The chemical composition is mass%,
    C: 0.050 to 0.250%,
    Si: 0.005 to 2.000%,
    Mn: 0.10 to 3.00%,
    P: 0.100% or less,
    S: 0.0100% or less,
    sol. Al: 0.001 to 1.00%,
    Ti: 0.150 to 0.400%,
    N: 0.0010-0.0100%,
    Nb: 0 to 0.100%,
    V: 0 to 1.000%,
    Mo: 0 to 1.000%,
    Cu: 0 to 1.00%,
    Ni: 0 to 1.00%,
    Cr: 0 to 2.00%,
    W: 0 to 1.000%,
    B: 0 to 0.0020%,
    Ca: 0-0.0100%,
    Mg: 0 to 0.0100%,
    REM: 0-0.0100%,
    Bi: 0-0.0200%,
    Containing, the balance consists of Fe and impurities,
    Ex. Ex. C is 0.020% or less,
    The metallographic structure at a depth of 1/4 of the plate thickness from the surface contains 60% or more of ferrite, 0 to 5% of MA, 0 to 5% of pearlite and cementite in total, and the balance is bainite. Consists of
    In the metal structure
    The average crystal grain size is 10.0 μm or less,
    The average aspect ratio of the crystal grains is 0.30 or more,
    The standard deviation of the Mn concentration is 0.60% by mass or less,
    Ti-based carbides having a Baker-Nutting orientation relationship in the ferrite are precipitated in a semi-matched state.
    The tensile strength is 980 MPa or more.
    A steel plate characterized by that.
    Ex. C = (% C) -12 {(% Ti * ) / 48+ (% V) / 51+ (% Nb) / 93+ (% Mo) / 96+ (% W) / 184} Equation (1) Here, the above (1) "% Ti * " in Eq. 1) is calculated from Eq. (2) below.
    % Ti * =% Ti-48 × {(% N) / 14+ (% S) / 32} (2) Equation% C,% V,% Nb,% in the above equation (1) and the above equation (2) Mo,% W,% Ti,% N, and% S are the contents of C, V, Nb, Mo, W, Ti, N, and S in mass% in the steel sheet.
  2.  前記化学組成が、質量%で、
     Nb:0.001~0.100%、
     V:0.005~1.000%、
     Mo:0.001~1.000%、
     Cu:0.02~1.00%、
     Ni:0.02~1.00%、
     Cr:0.02~2.00%、
     W:0.02~1.000%、
     B:0.0001~0.0020%、
     Ca:0.0002~0.0100%、
     Mg:0.0002~0.0100%、
     REM:0.0002~0.0100%、および、
     Bi:0.0001~0.0200%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1に記載の鋼板。
    When the chemical composition is mass%,
    Nb: 0.001 to 0.100%,
    V: 0.005 to 1.000%,
    Mo: 0.001 to 1.000%,
    Cu: 0.02 to 1.00%,
    Ni: 0.02 to 1.00%,
    Cr: 0.02-2.00%,
    W: 0.02 to 1.000%,
    B: 0.0001 to 0.0020%,
    Ca: 0.0002 to 0.0100%,
    Mg: 0.0002 to 0.0100%,
    REM: 0.0002 to 0.0100%, and
    Bi: 0.0001-0.0200%
    The steel sheet according to claim 1, wherein the steel sheet contains one kind or two or more kinds selected from the group consisting of.
  3.  表面に、めっき層が形成されていることを特徴とする、請求項1または2に記載の鋼板。 The steel sheet according to claim 1 or 2, wherein a plating layer is formed on the surface of the steel sheet.
  4.  前記めっき層が、溶融亜鉛めっき層であることを特徴とする、請求項3に記載の鋼板。 The steel sheet according to claim 3, wherein the plating layer is a hot-dip galvanized layer.
  5.  前記溶融亜鉛めっき層が、合金化溶融亜鉛めっき層であることを特徴とする、請求項4に記載の鋼板。 The steel sheet according to claim 4, wherein the hot-dip galvanized layer is an alloyed hot-dip galvanized layer.
PCT/JP2021/009279 2020-03-19 2021-03-09 Steel sheet WO2021187238A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180020970.6A CN115298342B (en) 2020-03-19 2021-03-09 steel plate
EP21772047.3A EP4123046B1 (en) 2020-03-19 2021-03-09 Steel sheet
JP2022508240A JP7277860B2 (en) 2020-03-19 2021-03-09 steel plate
KR1020227031055A KR20220138402A (en) 2020-03-19 2021-03-09 grater
US17/908,581 US20230140358A1 (en) 2020-03-19 2021-03-09 Steel sheet
MX2022011351A MX2022011351A (en) 2020-03-19 2021-03-09 Steel sheet.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020049120 2020-03-19
JP2020-049120 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187238A1 true WO2021187238A1 (en) 2021-09-23

Family

ID=77771268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009279 WO2021187238A1 (en) 2020-03-19 2021-03-09 Steel sheet

Country Status (7)

Country Link
US (1) US20230140358A1 (en)
EP (1) EP4123046B1 (en)
JP (1) JP7277860B2 (en)
KR (1) KR20220138402A (en)
CN (1) CN115298342B (en)
MX (1) MX2022011351A (en)
WO (1) WO2021187238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181761A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128688A (en) 1992-10-20 1994-05-10 Sumitomo Metal Ind Ltd Hot rolled steel plate excellent in fatigue characteristic and it production
JP2013124393A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp High-strength hot-rolled steel sheet with excellent weldability, and manufacturing method therefor
WO2013099206A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and process for manufacturing same
JP2013133485A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
WO2013111556A1 (en) * 2012-01-26 2013-08-01 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for producing same
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
JP2014194053A (en) 2013-03-29 2014-10-09 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2014208876A (en) 2013-03-29 2014-11-06 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
WO2017022025A1 (en) * 2015-07-31 2017-02-09 新日鐵住金株式会社 High-strength hot-rolled steel sheet
JP2020049120A (en) 2018-09-28 2020-04-02 コクヨ株式会社 Chair

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347739B2 (en) * 2009-06-11 2013-11-20 新日鐵住金株式会社 Method for producing precipitation-strengthened double-phase cold-rolled steel sheet
JP5041083B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5765080B2 (en) * 2010-06-25 2015-08-19 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
WO2012014926A1 (en) * 2010-07-28 2012-02-02 新日本製鐵株式会社 Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and processes for producing these
JP5541263B2 (en) * 2011-11-04 2014-07-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
CN102618793B (en) * 2012-03-30 2013-11-20 宝山钢铁股份有限公司 Steel plate with yield strength of 960MPa and manufacturing method thereof
ES2663995T3 (en) * 2012-06-26 2018-04-17 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet and process to produce it
JP6123958B1 (en) * 2015-08-19 2017-05-10 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
BR112019000766B8 (en) * 2016-08-05 2023-03-14 Nippon Steel & Sumitomo Metal Corp STEEL SHEET

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128688A (en) 1992-10-20 1994-05-10 Sumitomo Metal Ind Ltd Hot rolled steel plate excellent in fatigue characteristic and it production
JP2013124393A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp High-strength hot-rolled steel sheet with excellent weldability, and manufacturing method therefor
JP2013133485A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in stretch flange formability, and manufacturing method therefor
WO2013099206A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and process for manufacturing same
WO2013111556A1 (en) * 2012-01-26 2013-08-01 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for producing same
WO2014051005A1 (en) * 2012-09-26 2014-04-03 新日鐵住金株式会社 Composite-structure steel sheet and process for producing same
JP2014194053A (en) 2013-03-29 2014-10-09 Jfe Steel Corp High strength hot rolled steel sheet and method for producing the same
JP2014208876A (en) 2013-03-29 2014-11-06 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method therefor
WO2017022025A1 (en) * 2015-07-31 2017-02-09 新日鐵住金株式会社 High-strength hot-rolled steel sheet
JP2020049120A (en) 2018-09-28 2020-04-02 コクヨ株式会社 Chair

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4123046A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181761A1 (en) * 2021-02-26 2022-09-01 日本製鉄株式会社 Steel sheet
JP7486010B2 (en) 2021-02-26 2024-05-17 日本製鉄株式会社 Steel Plate

Also Published As

Publication number Publication date
MX2022011351A (en) 2022-10-07
CN115298342B (en) 2023-11-17
CN115298342A (en) 2022-11-04
EP4123046A4 (en) 2023-08-16
JP7277860B2 (en) 2023-05-19
KR20220138402A (en) 2022-10-12
US20230140358A1 (en) 2023-05-04
EP4123046A1 (en) 2023-01-25
EP4123046B1 (en) 2024-05-01
JPWO2021187238A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US10156005B2 (en) High-yield-ratio, high-strength cold rolled steel sheet and production method therefor
CN113637923B (en) Steel sheet and plated steel sheet
KR101130837B1 (en) High-strength steel sheets which are extreamely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
US11946111B2 (en) Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet
WO2020162561A1 (en) Hot-dip zinc-coated steel sheet and method for manufacturing same
KR102383626B1 (en) Cold Rolled Annealed Steel Sheet and Method of Making Cold Rolled Annealed Steel Sheet
KR102433938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and manufacturing method thereof
US11466350B2 (en) High-strength steel sheet and production method therefor
KR102157430B1 (en) Thin steel sheet and plated steel sheet, and manufacturing method of hot rolled steel sheet, cold rolled full hard steel sheet manufacturing method, thin steel sheet manufacturing method, and plated steel sheet manufacturing method
KR20210095189A (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2020195605A1 (en) Steel sheet, method for manufacturing same and plated steel sheet
US20190127819A1 (en) Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing coated steel sheet
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP2008291314A (en) High-strength hot-dip galvannealed steel sheet and method for manufacturing the same
WO2020196311A1 (en) High-strength steel plate and method for manufacturing same
JP7277860B2 (en) steel plate
WO2021123880A1 (en) Cold-rolled and annealed steel sheet and manufacturing method
JP7277835B2 (en) Steel plate and plated steel plate
JP7252499B2 (en) Steel plate and its manufacturing method
WO2021153037A1 (en) Hot-rolled steel sheet
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
CN113853445A (en) Cold rolled and coated steel sheet and method for manufacturing the same
CN114945690B (en) Steel sheet and method for producing same
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2023032225A1 (en) Hot-rolled steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508240

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227031055

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021772047

Country of ref document: EP

Effective date: 20221019