JP4180909B2 - High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same - Google Patents

High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same Download PDF

Info

Publication number
JP4180909B2
JP4180909B2 JP2002377097A JP2002377097A JP4180909B2 JP 4180909 B2 JP4180909 B2 JP 4180909B2 JP 2002377097 A JP2002377097 A JP 2002377097A JP 2002377097 A JP2002377097 A JP 2002377097A JP 4180909 B2 JP4180909 B2 JP 4180909B2
Authority
JP
Japan
Prior art keywords
ductility
steel sheet
rolled steel
ferrite
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002377097A
Other languages
Japanese (ja)
Other versions
JP2004204326A (en
Inventor
裕一 谷口
力 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002377097A priority Critical patent/JP4180909B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to EP03786277A priority patent/EP1595965B1/en
Priority to CA2511666A priority patent/CA2511666C/en
Priority to US10/540,418 priority patent/US7780797B2/en
Priority to KR1020057011928A priority patent/KR100756114B1/en
Priority to DE60324333T priority patent/DE60324333D1/en
Priority to KR1020077009825A priority patent/KR20070050108A/en
Priority to AU2003296089A priority patent/AU2003296089A1/en
Priority to PCT/JP2003/016614 priority patent/WO2004059024A1/en
Priority to CNB2003801078060A priority patent/CN100345993C/en
Publication of JP2004204326A publication Critical patent/JP2004204326A/en
Application granted granted Critical
Publication of JP4180909B2 publication Critical patent/JP4180909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、主としてプレス加工される自動車足廻り部品等を対象とし、0.6 〜6.0mm 程度の板厚で、590N/mm2以上の強度を有する穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開平4−88125号公報
【特許文献2】
特開平3−180426号公報
【特許文献3】
特開平6−172924号公報
【特許文献4】
特開平7−11382号公報
【特許文献5】
特開平6−200351号公報
【特許文献6】
特開平6−293910号公報
【特許文献7】
特開2002−180190号公報
【0003】
近年、自動車の環境問題を契機に燃費改善対策としての車体軽量化、部品の一体成形化、加工工程の合理化によるコストダウンのニーズが強まり、プレス加工性に優れた高強度熱延鋼板の開発が進められてきた。従来、かかる高い加工性を有する高強度熱延鋼板としては、フェライト・マルテンサイト組織、フェライト・ベイナイト組織からなる混合組織のもの、或いはベイナイト、フェライト主体のほぼ単相組織のものが広く知られている。
【0004】
しかし、フェライト・マルテンサイト組織においては、変形の初期からマルテンサイトの周囲にミクロボイドが発生して割れを生じるため、穴拡げ性に劣る問題があり、足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。
【0005】
また、特開平4−88125号公報、特開平3−180426号公報には、ベイナイトを主体とした組織を有する鋼板が開示されているが、ベイナイトを主体とした組織であるため穴拡げ性は優れるものの、軟質なフェライト相が少ないので延性に劣る。さらに、特開平6−172924号公報、特開平7−11382号公報ではフェライトを主体とした組織を有する鋼板が開示されているが、同様に穴拡げ性は優れているものの、強度を確保するために硬質な炭化物を析出させているので延性に劣る。
【0006】
また、特開平6−200351号公報にはフェライト・ベイナイト組織を有する穴拡げ性、延性に優れた鋼板が開示されており、特開平6−293910号公報には2段冷却を用いることによってフェライト占有率を制御することで穴拡げ性、延性が両立する鋼板の製造方法が開示されている。しかしながら、自動車のさらなる軽量化、部品の複雑化等を背景にさらに高い穴拡げ性、延性が求められ、最近の高強度熱延鋼板には上記した技術では対応しきれない高度な加工性が求められている。
【0007】
更に、特開2002−180190号公報には、穴拡げ性及び延性に優れた高強度熱延鋼板に関する発明が開示してある。穴拡げ性及び延性の相反する特性には優れた高強度熱延鋼板が得られたが、熱延工程で、Siスケールと呼ばれる表面の凹凸疵が発生する場合があり、製品での外観が損なわれる場合が生じた。また、足回り部品等の高強度熱延鋼板は、通常、プレス成形した後に化成処理と塗装が施される。しかし、化成皮膜の生成が良くない(化成処理性が悪い)ケースや、塗装後の塗膜の密着が悪いケースなどの問題が生じる場合があった。これらの問題は、鋼中の多量のSi含有が原因と考えられている。このように、高強度熱延鋼板には、Siがよく使用されるが、各種のトラブルが生じている。
【0008】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決するためになされたものであって、590N/mm2以上の高強度化に伴う穴拡げ性と延性の低下を防ぎ、かつSiスケールの発生を防いだ、穴拡げ性、延性に優れた高強度熱延鋼板において、化成処理性を格段に向上するものである。即ち、本発明は穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板およびその鋼板の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板は、
(1)質量%で、C :0.02〜0.08%、Si 0.25 %以下、Mn:0.50〜3.50%、P :0.03%以下、S :0.01%以下、Al:0.4 〜2.0 %、かつ Mn+0.5 ×Al<4 ・・・式(A)、及びTi:0.003 〜0.20%、Nb:0.003 〜0.04%、V :0.003 〜0.20%の1種または2種以上を含有し、残部鉄及び不可避的不純物からなる鋼組成の高強度熱延鋼板であって、該鋼板の金属組織が粒径 2μm以上のフェライトの割合が40% 以上、69 %以下であるフェライトとベイナイトの二相組織で、引張強度が590N/mm2以上であることを特徴とする穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。
(2)質量%で、更に、Ca:0.0005〜0.01%、Zr:0.0005〜0.01%、REM :0.0005〜0.05%、の1種または2種以上を含有する前記(1)記載の穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。
(3)質量%で、更に、Mg:0.0005〜0.01%含有する前記(1)または(2)記載の穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。
(4) 質量%で、C :0.02〜0.08%、Si:0.50%以下、Mn:0.50〜3.50%、P :0.03%以下、S :0.01%以下、Mg 0.0005 0.01 %、Al:0.4 〜2.0 %、かつ Mn+0.5 ×Al<4 ・・・式(A)、及びTi:0.003 〜0.20%、Nb:0.003 〜0.04%、V :0.003 〜0.20%の1種または2種以上を含有し、残部鉄及び不可避的不純物からなる鋼組成の鋳片を、圧延終了温度をAr3 点以上として熱間圧延を終了したのち20℃/sec以上の冷却速度にて650 〜800 ℃にまで冷却し、次いで2 〜15秒空冷したのち、さらに20℃/sec以上の冷却速度にて350 〜600 ℃に冷却して巻き取ることを特徴とする穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板の製造方法。
【0010】
【発明の実施の形態】
高強度熱延鋼板において、穴拡げ性と延性とは相反する傾向を示すことは良く知られている。本発明者らは上記課題を解決するために鋭意研究した結果、フェライト・ベイナイト鋼においてフェライト結晶粒をできる限り一定値以上の粒径とすることによって穴拡げ性を劣化させることなく延性が改善できることを知見し、本発明を完成するに至った。即ち、フェライト・ベイナイトの実質的な二相組織鋼において延性を高めるフェライトと強度を確保するTiC 、NbC 、VCからなる析出物に着目し、フェライト粒を十分成長させることにより穴拡げ性を低下させずに延性を改善し、その後に析出物を生成させて強度を確保することによって上記課題を解決したものである。即ち、低C −低Si−高Al−(Ti 、Nb 、V)成分系で、MnとAlが特定の関係のもとで本発明鋼板の特定の金属組織を得ることによって、穴拡げ性、延性及び化成処理性の三つの特性を同時に満足する高強度熱延鋼板が得られることを本発明者らは新たに見出したものである。更にはその工業的に有利な製造方法を見出したものである。尚、(Ti 、Nb 、V)とは、Ti、Nb、V の1種又は2種以上の特定量の含有を意味する。
【0011】
以下、鋼組成の各元素含有量の%は質量%を示す。本発明において高強度熱延鋼板中のCは 0.02 〜0.08%とする。C は炭化物を析出して強度を確保するに必要な元素であって0.02%未満では、たとえ本発明の高Al−(Ti 、Nb 、V)成分系でも所望の強度を確保することが困難になる。一方、0.08%を超えると延性の低下が大きくなるからである。
【0012】
Siは、有害な炭化物の生成を抑えフェライト組織主体+残ベイナイトの複合組織を得るために重要な元素であるが、化成処理性を悪化させ、また、Siスケールも発生するため、0.5 %を上限とする。0.25%超では、熱延鋼板の製造時に前記の金属組織を得るための温度管理が厳しい場合があるので、Si含有量は、0.25%以下とする。
【0013】
Mnは、強度の確保に必要な元素であり、このためには0.50%以上の添加を必要とする。しかし、3.5 %を超えて多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、穴拡げ性を劣化させる。なお、穴拡げ性と延性を効果的に両立させるにはMnの範囲を1.00〜3.50%とするのが望ましい。
【0014】
P はフェライトに固溶してその延性を低下させるので、その含有量は0.03%以下とする。また、S はMnS を形成して破壊の起点として作用し著しく穴拡げ性、延性を低下させるので0.01% 以下とする。
【0015】
Alは、本発明において重要な元素の一つで、延性と化成処理性の両立に必要な元素であり、このため0.4 %以上の添加を必要とする。Alは、従来より熱延鋼板において脱酸に必要な元素であり、通常0.01〜0.07%程度添加してきた。本発明者らは、低C −低Si系でAlを著しく多量に含有させた鋼組成をベースに金属組織の異なる高強度熱延鋼板で各種実験を行い、本発明に至ったものである。すなわち、Alが0.4 %以上で、前記の金属組織を形成することにより化成処理性を損なうことなく、延性を大幅に向上できることを見出した。Alは、2.0 %で延性向上効果が飽和してしまうばかりか、2.0 %超の添加では穴拡げ性、延性と化成処理性の両立が逆に困難になってしまうので、2.0 %超の添加は、経済的に不利である。
【0016】
また、延性と化成処理性の両立には、MnとAlの関係の規定も重要である。図1にMnとAlの含有量と化成処理性の関係を示す。図中の太実線は線上を含むが、破線は線上は除く。また、図1中の○、×は、後述の注4)の化成処理性評価の○、×と同様に評価した。図1に示すように、Mn+0.5 ×Al<4 ・・・式(A)の条件の場合、化成処理性が損なわれない事を本発明者らは新たに見出した。
理由は不明であるが、高Al系で(A)の成分を満足した前記の本発明金属組織の場合には、フェライト・ベイナイトの実質的な二相組織鋼で粒径 2μm以上のフェライトの割合が40% 以上、69 %以下であるフェライト粒にAlが多量に固溶し、下記のTi、Nb、V の炭化物析出強化が、従来の低Al系の異なる金属組織(例えばフェライト・マルテンサイト二相組織、実質的にベイナイト単相からなる組織)の場合よりも有効に発揮されるので、高強度熱延鋼板において化成処理性が良好になると発明者らは推定している。
【0017】
Ti、Nb、V も本発明において最も重要な元素の一つであり、TiC 、NbC 、VCなどの微細な炭化物を析出させて本発明では高強度を可能にする。この目的のためにはTi 0.003 〜0.20%、Nb 0.003〜0.04%、V 0.003〜0.20%の1種または2種以上を添加することが必要である、Tiが0.003 %未満、Nbが0.003 %未満、V 0.003%未満では、本発明の高Al系でも高強度を得ることが困難であり、Tiが0.20%、Nbが0.04%、Vが0.20%を超えると析出物が多量生成しすぎて延性が劣化するからである。尚、Ti、Nb、Vは、析出物を更に有効に活用するには、Ti 0.010%以上、Nb 0.010%以上、V 0.030 %以上の含有が好ましい。
【0018】
Ca、Zr、REM は硫化物系介在物の形態を制御し穴拡げ性の向上に有効な元素である。この形態制御効果を有効ならしめるためにはCa、Zr、REM の1種または2種以上を0.0005%以上添加するのが望ましい。一方、多量の添加は硫化物系介在物の粗大化を招き、清浄度を悪化させて本発明の低C −低Si−高Al−(Ti 、Nb 、V)成分系であっても延性を低下させるのみならず、コストの上昇を招くので、CaとZrの上限を0.01%とし、REM の上限を0.05%とする。尚、REM とは、例えば、元素番号21,39,57〜71の元素である。
【0019】
Mgは、本発明における重要な添加元素の一つである。Mgはこの添加により、酸素と結合して酸化物を形成するが、このとき生成されるMgO、またはMgOを含むAl2 3 、SiO2 、MnO、Ti2 3 の複合酸化物微細化は、Mgを添加しない従来の低Al鋼に比べ、個々の酸化物のサイズが小さく、均一に分散した分布状態となることを本発明者らは新たに見出した。鋼中に微細に分散したこれらの酸化物は、明確ではないが打抜き加工時に微細ボイドを形成し、応力の分散に寄与し応力集中を抑制することで粗大クラックの発生を抑制する効果があり、穴広げ性の向上に効果があると考えられる。ただし、0.0005%未満ではその効果が不十分である。一方で0.01%超を含有せしめても改善効果が飽和するばかりでなく、逆に凝集粗大化した酸化物が生成し易く鋼の清浄度を劣化させ、本発明の低C −低Si−高Al−(Ti 、Nb 、V)成分系であっても穴拡げ性、延性を劣化させるため上限を0.01%とする。
不可避不純物としては、例えば、N≦0.01%、Cu≦0.3 %、Ni≦0.3 %、Cr≦0.3 %、Mo≦0.3 %、Co≦0.05%、Zn≦0.05%、Sn≦0.05%、Na≦0.02%、K≦0.02%、B≦0.0005%で含有していても本発明を逸脱するものではない。
【0020】
フェライト粒径の大きさは、本発明において最も重要な指標の一つである。本発明者らは鋭意研究した結果、粒径が2μm以上のフェライトの占める面積率が40 %以上となると穴拡げ性と延性(例えば伸び)が共に優れた性能になることも見出した。図2は、引張強さ780 〜820N/mm2、λ値100 〜115 の高強度熱延鋼板において、粒径が2μm以上のフェライトの占める面積率が40 %以上(実施例)の引張強度と伸びの関係と,粒径が2μm以上のフェライトの占める面積率が40 %以下(比較例)での引張強度と伸びの関係を示した図である。比較例もMn+0.5 ×Al<4 ・・・式(A)を満足する成分系であるが、製造方法が異なり、粒径が2μm以上のフェライトの占める面積率が40 %以下であった。図2に示すように粒径が2μm以上のフェライトの占める面積率が40 %以上の場合、40%以下に比較して同一強度にて伸びが3〜5%程度高い値を示している。 穴拡げ性、延性を良好にして両立させるには、粒径が2μm以上のフェライト粒の割合を40%以上とする必要がある。なお、より顕著な効果を得るには粒径が3μm以上のフェライト粒の割合を40%以上、69 %以下とするのが望ましい。尚、粒径は各粒の面積を円相当径に換算して求めることができる。この換算には、画像解析装置を用いることが有効である。
【0021】
高強度熱延鋼板における金属組織は実質的にフェライトとベイナイトの二相組織よりなるものとする。ここで、金属組織には粒径2μm以上のフェライトが40%以上 69 %以下含まれるので、金属組織はフェライト40%以上のフェライト・ベイナイトの実質的に二相組織となる。例えば、本発明の金属組織としては、2μm以上の粒径のフェライトが40%以上 69 %以下で、残部が2μm未満の粒径のフェライトとベイナイトのもの、又は、2μm以上の粒径のフェライトが40%以上 69 %以下で残部がベイナイトのみのものとすることができる。このようにベイナイトを60%以下とするのは、ベイナイトの量がこれより多くなると延性の低下が著しく大きくなリ、高Al系であっても良好な引張強度と伸びの関係を得にくくなるからである。但し、残留オーステナイトが通常のX線回折強度で測定した場合に3%以下含有していても、本発明のフェライト・ベイナイトの実質的な二相組織を逸脱するものではない。また、熱延鋼板の表面近傍に、極薄(例えば厚みで0.05〜0.3 mm程度)の炭素等の鋼組成が若干低下した領域が一部存在し、金属組織が若干異なるとしても、熱延鋼板の板厚方向の大部 分が上記のフェライト・ベイナイトの実質的な二相組織で粒径2μm以上のフェライトが40%以上 69 %以下含まれる金属組織であれば本発明の作用効果を有するものである。
【0022】
本発明は上記の鋼組成と金属組織を有する高強度熱延鋼板と、更にその鋼板を工業的に有利に製造するための高強度熱延鋼板の製造方法である。
高強度熱延鋼板を熱間圧延により製造するに際して、本発明の低C −低Si−高Al成分系では、熱間圧延終了温度、即ち熱間圧延の仕上圧延終了温度は、フェライトの生成を抑え穴拡げ性を良好にし、良好な化成処理性を得るにはAr3 点以上とすることが好ましい。Ar3 点は、熱間圧延にてフェライトが生成し始める温度であるが、公知の計算式または経験的に求めた計算式等を用いて決めてかまわない。しかし、あまり高温にすると金属組織の粗大化による強度及び延性の低下を招く場合があるので仕上げ圧延終了温度は1050℃以下が望ましい。鋳片を加熱するか否かは、鋼板の圧延条件により適宜決めればよいし、熱延鋼板を熱間圧延中に次の熱延鋼板又は鋳片を接合して連続圧延するかは、本発明の金属組織が得らるなら適宜選択することができる。尚、鋼溶製は、転炉方式でも電炉方式でも、溶解して鋼組成が得られれば良い。また、不純物などの制御のための、溶銑予備処理、精錬、脱ガス処理などは適宜選択すれば良い。
【0023】
熱間圧延の仕上圧延終了直後に鋼板を急速冷却(一次急冷)することは、本発明の低C −低Si−高Al成分系において高い穴拡げ性を得るために有効であって、その冷却速度は20℃/sec以上が好ましい。20℃/sec未満では穴拡げ性に有害な炭化物形成を抑制するのが困難な場合がある。尚、250 ℃/secで炭化物析出の粗大化抑制効果は飽和するが、250 ℃/sec以上でもフェライト結晶粒が成長してフェライト結晶粒径が2μm以上を金属組織の40%以上確保するには有効である。600 ℃/sec超では、フェライト結晶粒の成長効果も飽和し、逆に、熱延鋼板の形状の維持が現状容易ではないので600 ℃/sec以下が望ましい。
【0024】
鋼板の急速冷却(一次急冷)を一旦停止して空冷を施すことは本発明の低C −低Si−高Al成分系において、フェライトを析出してその占有率を増加させ、延性を向上させるために重要である。しかしながら、空冷開始温度が 650℃未満では穴拡げ性に有害なパーライトが早期より発生する。一方、空冷開始温度が 800℃を超える場合にはフェライトの生成が遅く空冷の効果が得にくいばかりでなく、その後の冷却中におけるパーライトの生成が起こりやすいので望ましくない。従って、空冷開始温度は 650〜800 ℃とするのが好ましい。また、空冷時間が15秒を超えてもフェライトの増加は飽和するばかりでなく、その後の冷却速度、巻取温度の制御に負荷がかかるので工業的に好ましくない。従って、空冷時間は15秒以下とする。なお、空冷時間が2秒未満ではフェライトを十分析出させることはできないので好ましくない。また、本発明の空冷には、その後の金属組織の生成に影響を及ぼさない程度に、熱延鋼板表面付近のスケール改質の目的で霧状の冷媒を少量吹き付けることも含まれる。
【0025】
空冷後は再度該熱延鋼板を急速に冷却(二次急冷)するが、その冷却速度はやはり20℃/sec以上が好ましい。20℃/sec未満では有害なパーライトが生成し易くなるから好ましくない。2 00 ℃/se でベイナイトの生成はほぼ飽和するが、200 ℃/sec以上でもTiC 、NbC 、VCなどの微細な炭化物の粗大化抑制には有効である。尚、600 ℃超では、鋼板が部分的に過冷される場合があり、局部的に硬質なマルテンサイトが生成し易いので好ましくはない。
【0026】
そして、この急冷(二次急冷)の停止温度、即ち巻取温度は350 〜600 ℃とする。巻取温度が350 ℃未満では穴拡げ性に有害な硬質のマルテンサイトが発生するためであり、一方、600 ℃を超えると穴拡げ性に有害なパーライトが生成し易くなるからである。
【0027】
以上のように本鋼組成と熱延条件の組み合わせにより、鋼板の金属組織が粒径 2μm以上のフェライトの割合が40% 以上 69 %以下であるフェライト・ベイナイトの実質的な二相組織であって、引張強度590N/mm2以上である穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板を製造することができる。更に、本発明鋼板の表面に表面処理(例えば亜鉛メッキ、潤滑処理等)が施されていても本発明の効果を有し、本発明を逸脱するものではない。
【0028】
【実施例】
表1に示す化学成分組成(含有量は質量%、空欄は無添加を示す)を有する鋼を転炉溶製して、連続鋳造により鋳片とし、表2に示す熱延条件にて圧延・冷却し、板厚2.6 (実施例1〜16、比較例1〜3)、3.2mm (実施例17〜32、比較例4〜6)の熱延鋼板を製造した。なお、急速冷却の速度を40℃/sec(実施例1〜15、比較例1〜4)、120 ℃/sec(実施例16〜30、比較例5)、300 ℃/sec(実施例31、32、比較例6)、空冷時間は10秒(実施例1〜32、比較例1〜6)とした。 但し、熱間圧延の仕上圧延終了温度は、900℃(実施例1〜32、比較例4〜9)、930℃(比較例1〜3)であった。
【0029】
【表1】

Figure 0004180909
【0030】
【表2】
Figure 0004180909
【0031】
このようにして得られた熱延鋼板について、引張試験、穴拡げ試験、金属組織観察、化成処理性評価を行なった。その結果を表2に示す。
注1) 引張強度、延性
JIS Z 2201に準拠して、試験片はJIS5号を用いて引張試験を行った。
注2)穴拡げ性
穴拡げ試験は初期穴径(d0:10mm) の打抜き穴を60°円錐ポンチにて押し拡げ、クラックが板厚を貫通した時点での穴径(d)から穴拡げ値(λ値)=(d-d0)/d0 ×100 を求めて穴拡げ性を評価した。これらの結果を表2に示す。
注3)鋼板の金属組織
金属組織観察においては、ナイタールで腐食後、走査電子顕微鏡にてフェライト、ベイナイトを同定し、粒径2μm以上のフェライトの面積率を画像解析により測定した。
注4)化成処理性
熱延鋼板の化成処理性は、表面スケールを除去後に、化成処理液SD5000(日本ペイント社製)を用い、処方どおり脱脂、表面調整を行った後化成処理を行った。化成処理皮膜の判定は、SEM (2次電子線像)により、均一に皮膜が形成されているものは○、皮膜が一部形成されていないものは×と判定した。
【0032】
実施例1〜32は、化学成分、仕上圧延終了温度、空冷開始温度、巻取温度の何れも本発明の範囲内であって、金属組織がフェライト・ベイナイト二相よりなり、且つ、粒径2μm以上のフェライトの割合が40%以上 69 %以下である本発明例であり、高いλ値と伸びを有する穴 拡げ性、延性及び化成処理性に優れた高強度熱延鋼板である。一方、比較例1〜9の本発明の条件を外れた比較例のものは強度、穴拡げ性、延性のバランス、化成処理性に劣るものである。
【0033】
また、表1、表2には示していないが、実施例1に示す鋼成分の鋳片を用いて熱間圧延終了温度 920℃、その後625 ℃まで一次急冷(冷却速度40℃/sec )し、空冷開始温度 625℃で10秒空冷し、更に二次急冷(冷却速度20℃/sec )し、巻取温度 460℃として熱間圧延した場合には空冷開始温度が本発明の範囲より低過ぎたために金属組織にパーライトが数%生成し、粒径2μm以上のフェライトの面積率も36%が低く本発明の範囲外であった。従って伸び19%、λ値95%となり、穴拡げ性、延性バランスの劣るものであった。また、同様に実施例1に示す鋼成分の鋳片を用いて熱間圧延終了温度 910℃、その後675 ℃まで一次急冷(冷却速度100 ℃/sec)し、空冷開始温度 680℃で10秒空冷し、更に二次急冷(冷却速度20℃/sec)し、巻取温度 320℃として熱間圧延した場合には巻取温度が本発明の範囲より低過ぎたために金属組織にマルテンサイトが10%程度生成し、粒径2μm以上のフェライトの面積率が33%と低いものであって、このため伸び20%、λ値63%となり、やはり穴拡げ性、延性バランスの劣るものとなってしまった。
【0034】
【発明の効果】
以上に詳述したように、本発明によれば引張強度が590N/mm 2 以上の高強度であって穴拡げ性、延性および化成処理性に優れた高強度熱延鋼板を経済的に提供することができるで本発明は高い加工性を有する高強度熱延鋼板として好適である。また、本発明の高強度熱延鋼板は車体の軽量化、部品の一体成形化、加工工程の合理化が可能であって、燃費の向上、製造コストの低減を図ることができるものとして工業的価値大なものである。
【図面の簡単な説明】
【図1】 穴拡げ性、延性及び化成処理性に優れたMnとAlの関係を示す説明図である。
【図2】 フェライト・ベイナイトの実質的な二相組織の高強度熱延鋼板において、フェライト分布と引張強度−伸びバランスとの関係を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly intended for automobile undercarriage parts to be pressed, has a plate thickness of about 0.6 to 6.0 mm, and has a hole expandability, ductility and chemical conversion processability having a strength of 590 N / mm 2 or more. The present invention relates to a strength hot-rolled steel sheet and a method for producing the same.
[0002]
[Prior art]
[Patent Document 1]
JP-A-4-88125 [Patent Document 2]
Japanese Patent Laid-Open No. 3-180426 [Patent Document 3]
JP-A-6-172924 [Patent Document 4]
JP 7-11382 A [Patent Document 5]
Japanese Patent Laid-Open No. 6-200351 [Patent Document 6]
JP-A-6-293910 [Patent Document 7]
Japanese Patent Laid-Open No. 2002-180190
In recent years, there has been a growing need for cost reduction by reducing the weight of the vehicle body as a measure to improve fuel efficiency, integrating parts, and rationalizing the machining process due to environmental problems in automobiles, and the development of high-strength hot-rolled steel sheets with excellent press workability has been developed. It has been advanced. Conventionally, high strength hot-rolled steel sheet having such high workability is widely known as a ferrite / martensite structure, a mixed structure composed of a ferrite / bainite structure, or a bainite / ferrite-based almost single phase structure. Yes.
[0004]
However, in the ferrite and martensite structure, microvoids are generated around the martensite from the beginning of deformation and cracks occur, so there is a problem that the hole expandability is inferior, and high hole expandability such as undercarriage parts is required. It was unsuitable for use.
[0005]
Further, JP-A-4-88125 and JP-A-3-180426 disclose steel sheets having a structure mainly composed of bainite, but the hole expandability is excellent because the structure is mainly composed of bainite. However, since there are few soft ferrite phases, it is inferior in ductility. Furthermore, although JP-A-6-172924 and JP-A-7-11382 disclose steel sheets having a structure mainly composed of ferrite, the hole expandability is also excellent, but in order to ensure strength. Since hard carbides are deposited on the steel, the ductility is poor.
[0006]
Japanese Patent Laid-Open No. 6-200351 discloses a steel sheet having a ferrite bainite structure and excellent hole expansibility and ductility, and Japanese Patent Laid-Open No. 6-293910 discloses a method of occupying ferrite by using two-stage cooling. A method of manufacturing a steel sheet that has both hole expandability and ductility by controlling the rate is disclosed. However, due to the further weight reduction of automobiles and the complexity of parts, higher hole expansibility and ductility are required, and recent high-strength hot-rolled steel sheets require advanced workability that cannot be handled by the above-mentioned technology. It has been.
[0007]
Furthermore, Japanese Patent Application Laid-Open No. 2002-180190 discloses an invention relating to a high-strength hot-rolled steel sheet excellent in hole expansibility and ductility. A high-strength hot-rolled steel sheet with excellent characteristics in terms of contradictory hole expandability and ductility was obtained, but in the hot-rolling process, irregularities on the surface called Si scale may occur, and the appearance of the product is impaired. There was a case. Further, high strength hot rolled steel sheets such as undercarriage parts are usually subjected to chemical conversion treatment and coating after press forming. However, there have been cases where problems such as a case where the formation of the chemical conversion film is not good (the chemical conversion treatment property is poor) and a case where the adhesion of the coated film after coating is poor. These problems are considered to be caused by a large amount of Si contained in the steel. Thus, Si is often used for high-strength hot-rolled steel sheets, but various troubles have occurred.
[0008]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described conventional problems, and prevents deterioration of hole expansibility and ductility accompanying the increase in strength of 590 N / mm 2 or more, and also prevents the generation of Si scale. In a high-strength hot-rolled steel sheet excellent in hole expansibility and ductility, the chemical conversion processability is remarkably improved. That is, an object of the present invention is to provide a high-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment and a method for producing the steel sheet.
[0009]
[Means for Solving the Problems]
The high-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment of the present invention made to solve the above problems is
(1) By mass%, C: 0.02 to 0.08%, Si : 0.25 % or less , Mn: 0.50 to 3.50%, P: 0.03% or less, S: 0.01% or less, Al: 0.4 to 2.0%, and Mn + 0.5 × Al <4: Contains one or more of formula (A), Ti: 0.003 to 0.20%, Nb: 0.003 to 0.04%, V: 0.003 to 0.20%, and the balance iron and inevitable impurities A high strength hot-rolled steel sheet having a steel composition comprising a ferrite and a bainite two-phase structure in which the ratio of ferrite having a particle size of 2 μm or more is 40% or more and 69 % or less. A high-strength hot-rolled steel sheet excellent in hole expansibility, ductility, and chemical conversion property, characterized by being 590 N / mm 2 or more.
(2) The hole expandability according to the above (1), further containing one or more of Ca: 0.0005 to 0.01%, Zr: 0.0005 to 0.01%, REM: 0.0005 to 0.05%, by mass%. High strength hot rolled steel sheet with excellent ductility and chemical conversion.
(3) The high-strength hot-rolled steel sheet having excellent hole expansibility, ductility, and chemical conversion treatment as described in (1) or (2), further containing Mg: 0.0005 to 0.01% by mass.
(4) By mass%, C: 0.02 to 0.08%, Si: 0.50% or less, Mn: 0.50 to 3.50%, P: 0.03% or less, S: 0.01% or less, Mg : 0.0005 to 0.01 %, Al: 0.4 to 2.0% and Mn + 0.5 × Al <4 Formula (A) and Ti: 0.003 to 0.20%, Nb: 0.003 to 0.04%, V: One or more of 0.003 to 0.20% The steel slab composed of the remaining iron and inevitable impurities is cooled to 650-800 ° C at a cooling rate of 20 ° C / sec or higher after hot rolling is completed with the rolling end temperature set to Ar 3 or higher. Next, after air cooling for 2 to 15 seconds, it is further cooled to 350 to 600 ° C. at a cooling rate of 20 ° C./sec or more, and wound up. High strength excellent in hole expansibility, ductility and chemical conversion treatment A method for producing a hot-rolled steel sheet .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
It is well known that hole expandability and ductility tend to contradict each other in high-strength hot-rolled steel sheets. As a result of diligent research to solve the above problems, the inventors of the present invention can improve ductility without deteriorating hole expansibility by making ferrite crystal grains as large as possible in ferrite bainite steel. As a result, the present invention has been completed. In other words, in ferrite and bainite, a substantially dual phase steel, paying attention to ferrite that enhances ductility and precipitates consisting of TiC, NbC, and VC that ensure strength, the ferrite expands sufficiently to reduce hole expansibility. The problem is solved by improving the ductility and then generating precipitates to ensure the strength. That is, in a low C-low Si-high Al- (Ti, Nb, V) component system, Mn and Al obtain a specific metal structure of the steel sheet of the present invention under a specific relationship, so that the hole expandability, The present inventors have newly found that a high-strength hot-rolled steel sheet that simultaneously satisfies the three characteristics of ductility and chemical conversion treatment can be obtained. Furthermore, the industrially advantageous manufacturing method was discovered. In addition, (Ti, Nb, V) means containing a specific amount of one or more of Ti, Nb, and V.
[0011]
Hereinafter,% of each element content of a steel composition shows the mass%. In the present invention, C in the high-strength hot-rolled steel sheet is 0.02 to 0.08%. C is an element necessary for precipitating carbide and ensuring strength. If it is less than 0.02%, it is difficult to ensure the desired strength even in the high Al- (Ti, Nb, V) component system of the present invention. Become. On the other hand, if it exceeds 0.08%, the ductility will decrease greatly.
[0012]
Si is an important element to suppress the formation of harmful carbides and to obtain a composite structure consisting mainly of ferrite structure + residual bainite. However, it deteriorates the chemical conversion processability and also generates Si scale, so the upper limit is 0.5%. And In 0.25 percent, there is a case where the temperature management for obtaining said metal structure during the production of hot-rolled steel sheet is severe, Si content is 0.25% or less.
[0013]
Mn is an element necessary for securing strength, and for this purpose, addition of 0.50% or more is required. However, if added in a large amount exceeding 3.5%, microsegregation and macrosegregation are likely to occur, and the hole expandability is deteriorated. In order to effectively achieve both hole expandability and ductility, it is desirable that the range of Mn is 1.00 to 3.50%.
[0014]
Since P dissolves in ferrite and lowers its ductility, its content should be 0.03% or less. In addition, S forms MnS and acts as a starting point of fracture, and remarkably reduces hole expansibility and ductility.
[0015]
Al is one of the important elements in the present invention, and is an element necessary for achieving both ductility and chemical conversion treatment. For this reason, addition of 0.4% or more is required. Al is an element necessary for deoxidation in a hot-rolled steel sheet and has been usually added in an amount of about 0.01 to 0.07%. The present inventors have conducted various experiments using high strength hot-rolled steel sheets having different metal structures based on a steel composition containing a very large amount of Al in a low C-low Si system, and have achieved the present invention. That is, it has been found that when the Al content is 0.4% or more, the ductility can be significantly improved by forming the metal structure without impairing the chemical conversion property. Al does not only saturate the effect of improving ductility at 2.0%, but addition of more than 2.0% makes it difficult to achieve both hole expansion and ductility and chemical conversion treatment. , Economically disadvantageous.
[0016]
In addition, the provision of the relationship between Mn and Al is also important for achieving both ductility and chemical conversion treatment. FIG. 1 shows the relationship between the contents of Mn and Al and chemical conversion properties. The bold solid line in the figure includes the line, but the broken line excludes the line. Moreover, (circle) and x in FIG. 1 evaluated similarly to (circle) and x of chemical conversion property evaluation of the below-mentioned note 4). As shown in FIG. 1, the present inventors have newly found that the chemical conversion property is not impaired under the condition of Mn + 0.5 × Al <4 (Equation (A)).
The reason is unknown, but in the case of the metal structure of the present invention satisfying the component (A) with a high Al content, the ratio of ferrite with a grain size of 2 μm or more in a ferrite / bainite substantial duplex steel A large amount of Al is dissolved in ferrite grains having a content of 40% or more and 69 % or less , and the carbide precipitation strengthening of Ti, Nb, and V described below is different from conventional low Al-based metal structures (for example, ferrite and martensite dilute). The present inventors presume that chemical conversion processability is improved in a high-strength hot-rolled steel sheet because it is more effectively exhibited than in the case of a phase structure, a structure consisting essentially of a bainite single phase.
[0017]
Ti, Nb, and V are also one of the most important elements in the present invention, and fine carbides such as TiC, NbC, and VC are precipitated to enable high strength in the present invention. For this purpose, it is necessary to add one or more of Ti 0.003-0.20%, Nb 0.003-0.04%, V 0.003-0.20%, Ti less than 0.003%, Nb less than 0.003% When V is less than 0.003%, it is difficult to obtain high strength even with the high Al system of the present invention. When Ti is 0.20%, Nb is 0.04%, and V is more than 0.20%, a large amount of precipitates are formed, resulting in ductility. This is because it deteriorates. Incidentally, Ti, Nb, and V are preferably contained in an amount of Ti 0.010% or more, Nb 0.010% or more, and V 0.030% or more in order to effectively use the precipitate.
[0018]
Ca, Zr, and REM are effective elements for controlling the morphology of sulfide inclusions and improving hole expansibility. In order to make this form control effect effective, it is desirable to add 0.0005% or more of one or more of Ca, Zr and REM. On the other hand, the addition of a large amount leads to the coarsening of sulfide inclusions and deteriorates the cleanliness, so that even the low C-low Si-high Al- (Ti, Nb, V) component system of the present invention has ductility. Not only lowering but also increasing costs, the upper limit of Ca and Zr is set to 0.01%, and the upper limit of REM is set to 0.05%. In addition, REM is an element of element number 21,39,57-71, for example.
[0019]
Mg is one of the important additive elements in the present invention. Mg is combined with oxygen to form an oxide due to this addition. MgO produced at this time, or composite oxide refinement of Mg 2 containing Al 2 O 3 , SiO 2 , MnO, Ti 2 O 3 The present inventors have newly found that the size of individual oxides is smaller than that of a conventional low Al steel to which no Mg is added and the distribution is uniformly dispersed. These oxides finely dispersed in steel are not clear, but form fine voids at the time of punching and have the effect of suppressing coarse cracks by contributing to stress dispersion and suppressing stress concentration, It is thought that it is effective in improving hole expansibility. However, if it is less than 0.0005%, the effect is insufficient. On the other hand, even if more than 0.01% is contained, not only the improvement effect is saturated, but conversely, agglomerated and coarsened oxides are easily generated, and the cleanliness of the steel is deteriorated. Even if it is a-(Ti, Nb, V) component system, the upper limit is made 0.01% in order to deteriorate the hole expandability and ductility.
As inevitable impurities, for example, N ≦ 0.01%, Cu ≦ 0.3%, Ni ≦ 0.3%, Cr ≦ 0.3%, Mo ≦ 0.3%, Co ≦ 0.05%, Zn ≦ 0.05%, Sn ≦ 0.05%, Na ≦ 0.02 %, K ≦ 0.02%, and B ≦ 0.0005%, it does not depart from the present invention.
[0020]
The size of the ferrite grain size is one of the most important indicators in the present invention. As a result of intensive studies, the present inventors have also found that when the area ratio occupied by ferrite having a particle size of 2 μm or more is 40% or more, both hole expansibility and ductility (for example, elongation) are excellent. FIG. 2 shows the tensile strength of a high strength hot rolled steel sheet having a tensile strength of 780 to 820 N / mm 2 and a λ value of 100 to 115 with an area ratio occupied by ferrite having a grain size of 2 μm or more of 40% or more (Example). It is the figure which showed the relationship between the tensile strength and elongation when the area ratio which a ferrite with a particle size of 2 micrometers or more occupies is 40% or less (comparative example) and the relationship of elongation. The comparative example is also Mn + 0.5 × Al <4 (a component system satisfying the formula (A)), but the manufacturing method is different, and the area ratio of ferrite having a particle size of 2 μm or more was 40% or less. As shown in FIG. 2, when the area ratio occupied by ferrite having a grain size of 2 μm or more is 40% or more, the elongation is 3-5% higher at the same strength than 40% or less. In order to achieve both good hole expansibility and ductility, the proportion of ferrite grains having a grain size of 2 μm or more needs to be 40% or more. In order to obtain a more remarkable effect, it is desirable that the ratio of ferrite grains having a grain size of 3 μm or more is 40% or more and 69 % or less . The particle size can be obtained by converting the area of each particle into an equivalent circle diameter. For this conversion, it is effective to use an image analysis apparatus.
[0021]
The metal structure in the high-strength hot-rolled steel sheet is substantially composed of a two-phase structure of ferrite and bainite. Here, since the metal structure contains 40% or more and 69 % or less of ferrite having a particle size of 2 μm or more , the metal structure is substantially a two-phase structure of ferrite bainite having 40% or more of ferrite. For example, as the metal structure of the present invention, ferrite having a particle size of 2 μm or more is 40% or more and 69 % or less , and the balance is ferrite and bainite having a particle size of less than 2 μm, or ferrite having a particle size of 2 μm or more. 40% or more and 69 % or less , and the balance can be bainite only. The reason why the bainite is made 60% or less in this way is that when the amount of bainite is larger than this, the drop in ductility is remarkably large, and it is difficult to obtain a good tensile strength-elongation relationship even in a high Al system. It is. However, even if the retained austenite is 3% or less when measured by ordinary X-ray diffraction intensity, it does not deviate from the substantial two-phase structure of the ferrite bainite of the present invention. Further, even if there is a region where the steel composition such as carbon of ultra-thin (for example, about 0.05 to 0.3 mm in thickness) is slightly reduced near the surface of the hot-rolled steel plate and the metal structure is slightly different, the hot-rolled steel plate The present invention has the effect of the present invention as long as the metal thickness is substantially a two-phase structure of the above-mentioned ferrite bainite and a metal structure containing 40% or more and 69 % or less of ferrite having a grain size of 2 μm or more . Is.
[0022]
The present invention is a high-strength hot-rolled steel sheet having the above steel composition and metal structure, and a method for producing a high-strength hot-rolled steel sheet for industrially advantageously producing the steel sheet.
When producing a high-strength hot-rolled steel sheet by hot rolling, in the low C-low Si-high Al component system of the present invention, the hot rolling finish temperature, that is, the finish rolling finish temperature of hot rolling, generates ferrite. In order to improve the suppressive hole expansibility and obtain a good chemical conversion treatment property, it is preferable to use Ar 3 points or more. Ar 3 point is the temperature at which ferrite begins to produce by hot rolling, it may be determined using a formula like obtained known formula or empirical. However, if the temperature is too high, the strength and ductility may be reduced due to the coarsening of the metal structure, so the finish rolling finish temperature is desirably 1050 ° C. or lower. Whether or not the slab is heated may be appropriately determined depending on the rolling conditions of the steel sheet, and whether the hot-rolled steel sheet is continuously rolled by joining the next hot-rolled steel sheet or slab during hot rolling is determined according to the present invention. As long as the metal structure is obtained, it can be appropriately selected. It should be noted that steel melting may be achieved by melting and obtaining a steel composition by either a converter method or an electric furnace method. In addition, hot metal preliminary treatment, refining, degassing treatment, and the like for controlling impurities and the like may be appropriately selected.
[0023]
Rapid cooling (primary rapid cooling) of the steel sheet immediately after the finish rolling of the hot rolling is effective for obtaining high hole expansibility in the low C-low Si-high Al component system of the present invention. The speed is preferably 20 ° C./sec or more. If it is less than 20 ° C./sec, it may be difficult to suppress the formation of carbides harmful to the hole expandability. In addition, although the effect of suppressing the coarsening of carbide precipitation is saturated at 250 ° C./sec, ferrite crystal grains grow even at 250 ° C./sec or more to secure a ferrite crystal grain size of 2 μm or more of 40% or more of the metal structure. It is valid. If it exceeds 600 ° C / sec, the growth effect of ferrite crystal grains is saturated, and conversely, it is not easy to maintain the shape of the hot-rolled steel sheet at present, so 600 ° C / sec or less is desirable.
[0024]
The rapid cooling (primary rapid cooling) of the steel sheet is temporarily stopped and air cooling is performed in order to increase the occupancy and improve ductility in the low C-low Si-high Al component system of the present invention. Is important to. However, when the air cooling start temperature is less than 650 ° C., pearlite harmful to hole expansibility occurs from an early stage. On the other hand, if the air cooling start temperature exceeds 800 ° C., it is not desirable because ferrite formation is slow and it is difficult to obtain the effect of air cooling, and pearlite is easily generated during subsequent cooling. Therefore, the air cooling start temperature is preferably 650 to 800 ° C. Further, even if the air cooling time exceeds 15 seconds, the increase in ferrite is not only saturated, but also a load is imposed on the subsequent control of the cooling rate and the coiling temperature, which is not industrially preferable. Therefore, the air cooling time is 15 seconds or less. An air cooling time of less than 2 seconds is not preferable because ferrite cannot be sufficiently precipitated. In addition, the air cooling of the present invention includes spraying a small amount of atomized refrigerant for the purpose of scale modification in the vicinity of the surface of the hot-rolled steel sheet so as not to affect the subsequent formation of the metal structure.
[0025]
After the air cooling, the hot-rolled steel sheet is rapidly cooled again (secondary quenching), and the cooling rate is preferably 20 ° C./sec or more. Less than 20 ° C./sec is not preferable because harmful pearlite is easily generated. The formation of bainite is almost saturated at 200 ° C / se, but it is effective to suppress coarsening of fine carbides such as TiC, NbC, and VC even at 200 ° C / sec or more. It should be noted that if the temperature exceeds 600 ° C., the steel sheet may be partially supercooled, and locally hard martensite is likely to be generated, which is not preferable.
[0026]
The stop temperature of this rapid cooling (secondary rapid cooling), that is, the coiling temperature is set to 350 to 600 ° C. This is because if the coiling temperature is less than 350 ° C., hard martensite that is harmful to the hole expandability is generated, whereas if it exceeds 600 ° C., pearlite that is harmful to the hole expandability is easily generated.
[0027]
As described above, due to the combination of the steel composition and hot rolling conditions, the steel structure has a substantial two-phase structure of ferrite and bainite in which the proportion of ferrite with a grain size of 2 μm or more is 40% or more and 69 % or less. Thus, a high-strength hot-rolled steel sheet having a tensile strength of 590 N / mm 2 or more and excellent in hole expansibility, ductility and chemical conversion treatment can be produced. Furthermore, even if the surface of the steel sheet of the present invention is subjected to a surface treatment (for example, galvanization, lubrication treatment, etc.), the effect of the present invention is obtained and does not depart from the present invention.
[0028]
【Example】
Steel having the chemical composition shown in Table 1 (content is% by mass, blank indicates no addition) is melted into a converter, made into a slab by continuous casting, and rolled under the hot rolling conditions shown in Table 2. It cooled and manufactured the hot-rolled steel plate of thickness 2.6 (Examples 1-16, Comparative Examples 1-3) and 3.2 mm (Examples 17-32, Comparative Examples 4-6). In addition, the rapid cooling rate was 40 ° C / sec (Examples 1 to 15, Comparative Examples 1 to 4), 120 ° C / sec (Examples 16 to 30 and Comparative Example 5), 300 ° C / sec (Example 31, 32, Comparative Example 6), and the air cooling time was 10 seconds (Examples 1 to 32, Comparative Examples 1 to 6). However, the finish rolling finishing temperature of hot rolling was 900 ° C. (Examples 1 to 32, Comparative Examples 4 to 9) and 930 ° C. (Comparative Examples 1 to 3).
[0029]
[Table 1]
Figure 0004180909
[0030]
[Table 2]
Figure 0004180909
[0031]
The hot-rolled steel sheet thus obtained was subjected to a tensile test, a hole expansion test, a metal structure observation, and a chemical conversion treatment evaluation. The results are shown in Table 2.
Note 1) Tensile strength, ductility Based on JIS Z 2201, the test piece was subjected to a tensile test using JIS No. 5.
Note 2) Hole expandability In the hole expansion test, the punched hole with the initial hole diameter (d0: 10mm) is expanded with a 60 ° conical punch, and the hole expansion value is calculated from the hole diameter (d) when the crack penetrates the plate thickness. (Λ value) = (d−d0) / d0 × 100 was determined to evaluate the hole expandability. These results are shown in Table 2.
Note 3) Metal structure of steel sheet In the metal structure observation, after corroding with nital, ferrite and bainite were identified with a scanning electron microscope, and the area ratio of ferrite having a particle size of 2 μm or more was measured by image analysis.
Note 4) Chemical conversion treatment The chemical conversion treatment of the hot-rolled steel sheet was carried out after the surface scale was removed, and then chemical conversion treatment solution SD5000 (manufactured by Nippon Paint Co., Ltd.) was used, followed by degreasing and surface adjustment as prescribed. The chemical conversion coating was judged by SEM (secondary electron beam image) as “◯” when the coating was uniformly formed, and “X” when the coating was not partially formed.
[0032]
In Examples 1 to 32, all of the chemical components, finish rolling finish temperature, air cooling start temperature, and coiling temperature are within the scope of the present invention, the metal structure is composed of two phases of ferrite and bainite, and the particle size is 2 μm. This is an example of the present invention in which the ratio of the ferrite is 40% or more and 69 % or less , and is a high-strength hot-rolled steel sheet having a high λ value and elongation and excellent in hole expansibility, ductility and chemical conversion treatment. On the other hand, the comparative examples of Comparative Examples 1 to 9 that deviate from the conditions of the present invention are inferior in strength, hole expansibility, balance of ductility, and chemical conversion property.
[0033]
Although not shown in Tables 1 and 2, the steel component slab shown in Example 1 was used, and the hot rolling finish temperature was 920 ° C., followed by primary rapid cooling to 625 ° C. (cooling rate 40 ° C./sec). When air-cooled at a starting temperature of 625 ° C for 10 seconds, and then subjected to secondary rapid cooling (cooling rate 20 ° C / sec) and hot rolling at a coiling temperature of 460 ° C, the air-cooling starting temperature is too lower than the range of the present invention. Therefore, several percent of pearlite was generated in the metal structure, and the area ratio of ferrite having a particle size of 2 μm or more was as low as 36%, which was outside the scope of the present invention. Accordingly, the elongation was 19% and the λ value was 95%, and the hole expandability and ductility balance were poor. Similarly, using the slab of steel components shown in Example 1, the hot rolling finish temperature is 910 ° C, then the primary rapid cooling to 675 ° C (cooling rate 100 ° C / sec), and the air cooling start temperature is 680 ° C for 10 seconds. Further, when the secondary rapid cooling (cooling rate 20 ° C./sec) and hot rolling at a coiling temperature of 320 ° C., the coiling temperature was too lower than the range of the present invention, so that the martensite was 10% in the metal structure. The area ratio of ferrite with a grain size of 2 μm or more was as low as 33%. Therefore, the elongation was 20% and the λ value was 63%, and the hole expandability and ductility balance were also inferior. .
[0034]
【The invention's effect】
As described in detail above, the present invention economically provides a high-strength hot-rolled steel sheet having a high tensile strength of 590 N / mm 2 or more and excellent hole expansibility, ductility, and chemical conversion treatment. Therefore, the present invention is suitable as a high-strength hot-rolled steel sheet having high workability. The high-strength hot-rolled steel sheet according to the present invention can reduce the weight of the vehicle body, integrally form parts, and rationalize the machining process, and can be industrially valuable as it can improve fuel efficiency and reduce manufacturing costs. It ’s a big one.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between Mn and Al excellent in hole expansibility, ductility and chemical conversion treatment.
FIG. 2 is an explanatory diagram showing the relationship between ferrite distribution and tensile strength-elongation balance in a high-strength hot-rolled steel sheet having a substantially two-phase structure of ferrite bainite.

Claims (4)

質量%で、C :0.02〜0.08%、Si 0.25 %以下、Mn:0.50〜3.50%、P :0.03%以下、S :0.01%以下、Al:0.4 〜2.0 %、かつ Mn+0.5 ×Al<4 ・・・式(A)、及びTi:0.003 〜0.20%、Nb:0.003 〜0.04%、V :0.003 〜0.20%の1種または2種以上を含有し、残部鉄及び不可避的不純物からなる鋼組成の高強度熱延鋼板であって、該鋼板の金属組織が粒径 2μm以上のフェライトの割合が40% 以上、69 %以下であるフェライトとベイナイトの二相組織で、引張強度が590N/mm2以上であることを特徴とする穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。In mass%, C: 0.02 to 0.08%, Si : 0.25 % or less , Mn: 0.50 to 3.50%, P: 0.03% or less, S: 0.01% or less, Al: 0.4 to 2.0%, and Mn + 0.5 × Al < 4... Steel containing one or more of formula (A), Ti: 0.003 to 0.20%, Nb: 0.003 to 0.04%, V: 0.003 to 0.20%, and the balance iron and inevitable impurities A high-strength hot-rolled steel sheet having a composition, the metal structure of which is a two-phase structure of ferrite and bainite in which the ratio of ferrite having a particle size of 2 μm or more is 40% or more and 69 % or less , and the tensile strength is 590 N / mm A high-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, characterized by being 2 or more. 質量%で、更に、Ca:0.0005〜0.01%、Zr:0.0005〜0.01%、REM :0.0005〜0.05%、の1種または2種以上を含有する請求項1に記載の穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。  The hole expansibility, ductility and chemical conversion according to claim 1, further comprising one or more of Ca: 0.0005-0.01%, Zr: 0.0005-0.01%, REM: 0.0005-0.05%. High-strength hot-rolled steel sheet with excellent processability. 質量%で、更に、Mg:0.0005〜0.01%含有する請求項1または請求項2に記載の穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板。  The high-strength hot-rolled steel sheet excellent in hole expansibility, ductility, and chemical conversion treatment according to claim 1 or 2, further comprising Mg: 0.0005 to 0.01% by mass%. 質量%で、C :0.02〜0.08%、Si:0.50%以下、Mn:0.50〜3.50%、P :0.03%以下、S :0.01%以下、Mg 0.0005 0.01 %、Al:0.4 〜2.0 %、かつ Mn+0.5 ×Al<4 ・・・式(A)、及びTi:0.003 〜0.20%、Nb:0.003 〜0.04%、V :0.003 〜0.20%の1種または2種以上を含有し、残部鉄及び不可避的不純物からなる鋼組成の鋳片を、圧延終了温度をAr3 点以上として熱間圧延を終了したのち20℃/sec以上の冷却速度にて650 〜800 ℃にまで冷却し、次いで2 〜15秒空冷したのち、さらに20℃/sec以上の冷却速度にて350 〜600 ℃に冷却して巻き取ることを特徴とする穴拡げ性、延性及び化成処理性に優れた高強度熱延鋼板の製造方法。In mass%, C: 0.02 to 0.08%, Si: 0.50% or less, Mn: 0.50 to 3.50%, P: 0.03% or less, S: 0.01% or less, Mg : 0.0005 to 0.01 %, Al: 0.4 to 2.0%, And Mn + 0.5 × Al <4 Formula (A) and Ti: 0.003 to 0.20%, Nb: 0.003 to 0.04%, V: 0.003 to 0.20%, or one or more, and the balance iron The steel slab composed of unavoidable impurities is cooled to 650-800 ° C. at a cooling rate of 20 ° C./sec or more after the hot rolling is finished with the rolling end temperature set to Ar 3 or higher, and then 2 High-strength hot-rolled steel sheet with excellent hole expansibility, ductility, and chemical conversion, characterized by air-cooling for 15 seconds and then cooling to 350-600 ° C at a cooling rate of 20 ° C / sec or more. Manufacturing method.
JP2002377097A 2002-12-26 2002-12-26 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same Expired - Fee Related JP4180909B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002377097A JP4180909B2 (en) 2002-12-26 2002-12-26 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same
PCT/JP2003/016614 WO2004059024A1 (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
US10/540,418 US7780797B2 (en) 2002-12-26 2003-12-24 High strength thin steel excellent in hole expansibility, ductility and chemical treatment characteristics
KR1020057011928A KR100756114B1 (en) 2002-12-26 2003-12-24 Method for production of high strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics
DE60324333T DE60324333D1 (en) 2002-12-26 2003-12-24 THIN STAINLESS STEEL WITH HIGH STRENGTH AND EXCELLENT LOCHENESSABILITY, BENDING TOLERANCE AND EXCELLENT CHEMICAL TREATMENT PROPERTIES AND METHOD OF MANUFACTURING THEREOF
KR1020077009825A KR20070050108A (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
EP03786277A EP1595965B1 (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
CA2511666A CA2511666C (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in burring, elongation, and ability of phosphate coating and a method of production of the same
CNB2003801078060A CN100345993C (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof
AU2003296089A AU2003296089A1 (en) 2002-12-26 2003-12-24 High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377097A JP4180909B2 (en) 2002-12-26 2002-12-26 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004204326A JP2004204326A (en) 2004-07-22
JP4180909B2 true JP4180909B2 (en) 2008-11-12

Family

ID=32814376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377097A Expired - Fee Related JP4180909B2 (en) 2002-12-26 2002-12-26 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same

Country Status (2)

Country Link
JP (1) JP4180909B2 (en)
CN (1) CN100345993C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846275B2 (en) 2006-05-24 2010-12-07 Kobe Steel, Ltd. High strength hot rolled steel sheet having excellent stretch flangeability and its production method
CN101191174B (en) * 2006-11-20 2010-05-12 宝山钢铁股份有限公司 Hot-rolling phase change induction plasticity steel with 750MPa-level extension strength and preparation method thereof
JP4923982B2 (en) * 2006-11-29 2012-04-25 Jfeスチール株式会社 High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing
WO2010131303A1 (en) * 2009-05-11 2010-11-18 新日本製鐵株式会社 Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same
CN103147015B (en) * 2011-12-07 2015-08-05 鞍钢股份有限公司 There is the hot rolling acid-cleaning plate of excellent phosphorus characteristic
MX355894B (en) 2012-02-17 2018-05-04 Nippon Steel & Sumitomo Metal Corp Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet.
KR101706441B1 (en) * 2012-04-26 2017-02-13 제이에프이 스틸 가부시키가이샤 High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same
BR112015006077B1 (en) * 2012-09-26 2020-01-28 Nippon Steel & Sumitomo Metal Corp two-phase steel sheet and method of manufacturing it
ES2714316T3 (en) 2012-09-27 2019-05-28 Nippon Steel & Sumitomo Metal Corp Hot rolled steel sheet and method for its production
EP2933346B1 (en) 2012-12-11 2018-09-05 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and production method therefor
JP6201570B2 (en) * 2013-09-25 2017-09-27 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in workability and welding characteristics and manufacturing method thereof
CN103602890B (en) * 2013-11-29 2016-08-24 宝山钢铁股份有限公司 A kind of tensile strength 540MPa level high-chambering steel plate and manufacture method thereof
US10513749B2 (en) 2014-05-28 2019-12-24 Nippon Steel Corporation Hot-rolled steel sheet and production method of therefor
WO2017022027A1 (en) 2015-07-31 2017-02-09 新日鐵住金株式会社 Strain-induced-transformation composite-structure steel plate and method of manufacturing same
CN106609335B (en) * 2015-10-23 2019-02-05 上海梅山钢铁股份有限公司 700MPa grades of tensile strength high reaming hot rolled steel plates and its manufacturing method
CN105925888B (en) * 2016-06-21 2017-12-26 宝山钢铁股份有限公司 A kind of high reaming dual phase steel of 980MPa levels hot-rolled ferrite-bainite and its manufacture method
WO2018033990A1 (en) 2016-08-18 2018-02-22 新日鐵住金株式会社 Hot-rolled steel sheet
CN110656292A (en) * 2018-06-28 2020-01-07 上海梅山钢铁股份有限公司 440 MPa-level tensile strength low-yield-ratio high-hole-expansibility hot-rolled steel plate
CN112779401B (en) * 2019-11-07 2022-11-11 上海梅山钢铁股份有限公司 High-reaming hot-rolled pickled steel plate with yield strength of 550MPa
KR20230156108A (en) 2021-06-22 2023-11-13 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and manufacturing method thereof
CN114015934B (en) * 2021-10-18 2023-02-28 武汉钢铁有限公司 600 MPa-level hot continuous rolling dual-phase structure axle housing steel and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3188787B2 (en) * 1993-04-07 2001-07-16 新日本製鐵株式会社 Method for producing high-strength hot-rolled steel sheet with excellent hole expandability and ductility
CN1072272C (en) * 1997-01-29 2001-10-03 新日本制铁株式会社 High-strength steel sheet highly resistant to dynamic deformation and excellent in workability and process for production thereof
EP2314729B2 (en) * 1997-03-17 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Dual-phase type high-strength steel sheets having high impact energy absorption properties
JP3716629B2 (en) * 1998-08-12 2005-11-16 Jfeスチール株式会社 Manufacturing method of thin two-phase structure hot rolled steel strip
JP4445095B2 (en) * 2000-04-21 2010-04-07 新日本製鐵株式会社 Composite structure steel plate excellent in burring workability and manufacturing method thereof
JP3947354B2 (en) * 2000-12-07 2007-07-18 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof

Also Published As

Publication number Publication date
CN100345993C (en) 2007-10-31
JP2004204326A (en) 2004-07-22
CN1732281A (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP4180909B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same
KR100848203B1 (en) A hihg strength steel excellent in unigorm elongation properties and method of manufacturing the same
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
KR101094594B1 (en) High-yield-ratio high-strength cold rolled steel sheet excelling in weldability and ductility
JP4313591B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
CN109923234B (en) Steel plate for carburizing and method for manufacturing steel plate for carburizing
CN108950383B (en) Cold-rolled steel plate for high-strength high-plasticity reinforced guard plate and production process thereof
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
KR20030055339A (en) High Strength Hot Rolled Steel Plate Excellent In Enlargeability and Ductility and Method for Production thereof
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5482779B2 (en) High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof
JP3947354B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
KR100756114B1 (en) Method for production of high strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics
JP4317417B2 (en) High strength thin steel sheet with excellent hole expandability and ductility
JP3857875B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP6624352B1 (en) High-strength galvanized steel sheet, high-strength member, and method for producing them
JP4205892B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP4203396B2 (en) High-strength hot-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same
JP5884164B2 (en) High-tensile hot-rolled steel sheet excellent in punchability and stretch flangeability and manufacturing method thereof
JP3778107B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2002180189A (en) High strength hot rolled steel sheet having excellent hole expandability and ductility and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R151 Written notification of patent or utility model registration

Ref document number: 4180909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees