JP3947354B2 - High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof - Google Patents
High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof Download PDFInfo
- Publication number
- JP3947354B2 JP3947354B2 JP2000372462A JP2000372462A JP3947354B2 JP 3947354 B2 JP3947354 B2 JP 3947354B2 JP 2000372462 A JP2000372462 A JP 2000372462A JP 2000372462 A JP2000372462 A JP 2000372462A JP 3947354 B2 JP3947354 B2 JP 3947354B2
- Authority
- JP
- Japan
- Prior art keywords
- ductility
- ferrite
- steel sheet
- rolled steel
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主としてプレス加工される自動車足廻り部品等を対象とし、1.0 〜6.0mm 程度の板厚で、690N/mm2以上の強度を有する穴拡げ性と延性に優れた高強度熱延鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の環境問題を契機に燃費改善対策としての車体軽量化、部品の一体成形化によるコストダウンのニーズが強まり、プレス加工性に優れた高強度熱延鋼板の開発が進められてきた。従来、かかる加工用高強度熱延鋼板としては、フェライト・マルテンサイト組織、フェライト・ベイナイト組織からなる混合組織のもの、或いはベイナイト、フェライト主体のほぼ単相組織のものが広く知られている。
【0003】
しかし、フェライト・マルテンサイト組織においては、変形の初期からマルテンサイトの周囲にミクロボイドが発生して割れを生じるため、穴拡げ性に劣る問題があり、足廻り部品等の高い穴拡げ性が要求される用途には不向きであった。
【0004】
また、特開平4−88125号公報、特開平3−180426号公報には、ベイナイトを主体とした組織を有する鋼板が開示されているが、ベイナイトを主体とした組織であるため穴拡げ性は優れるものの、軟質なフェライト相が少ないので延性に劣る。さらに、特開平6−172924号公報、特開平7−11382号公報ではフェライトを主体とした組織を有する鋼板が開示されているが、同様に穴拡げ性は優れているものの、強度を確保するために硬質な炭化物を析出させているので延性に劣る。
【0005】
また、特開平6−200351号公報にはフェライト・ベイナイト組織を有する穴拡げ性、延性に優れた鋼板が開示されており、特開平6−293910号公報には2段冷却を用いることによってフェライト占有率を制御することで穴拡げ性、延性が両立する鋼板の製造方法が開示されている。しかしながら、自動車のさらなる軽量化、部品の複雑化等を背景にさらに高い穴拡げ性、延性が求められ、最近の高強度熱延鋼板には上記した技術では対応しきれない高度な加工性が求められている。
【0006】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決するためになされたものであって、690N/mm2以上の高強度化に伴う穴拡げ性と延性の劣化を防ぎ、高強度であっても高い穴拡げ性と延性を有する高強度熱延鋼板およびその鋼板の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の穴拡げ性と延性に優れた高強度熱延鋼板は、質量%で、C 0.01〜0.08%、Si 0.30 〜1.50%、Mn 1.00 〜 1.50 %、P ≦0.03%、S ≦0.005%、及びTi 0.01 〜0.20%、Nb 0.01 〜0.04%の1種または2種を含有し、残部鉄及び不可避的不純物からなる高強度熱延鋼板であって、鋼組織が粒径 2μm以上のフェライトの面積率が80%以上であるフェライト・ベイナイト二相組織で、強度が690N/mm2以上であって且つ初期穴径(d 0 :10mm) の打抜き穴を 60 °円錐ポンチにて押し拡げ、クラックが板厚を貫通した時点での穴径( d) から (d-d 0 )/d 0 × 100 の式で求めた穴拡げ値が100%以上であることを特徴とするものである。なお、高強度熱延鋼板はCa、REM の1種または2種を0.0005〜0.01%含有することができる。
【0008】
【0009】
【発明の実施の形態】
高強度熱延鋼板において、穴拡げ性と延性とは相反する傾向を示すことは良く知られている。本発明者らは上記課題を解決するために鋭意研究した結果、フェライト・ベイナイト鋼においてフェライト結晶粒をできる限り一定値以上の粒径とすることによって穴拡げ性を劣化させることなく延性が改善できることを知見し、本発明を完成するに至った。即ち、フェライト・ベイナイト鋼において延性を高めるフェライトと強度を確保するTiC 、NbC からなる析出物に着目し、フェライト粒を十分成長させることにより穴拡げ性を低下させずに延性を改善し、その後に析出物を生成させて強度を確保することによって上記課題を解決したものである。
【0010】
本発明において高強度熱延鋼板中のC は 0.01 〜0.08%とする。C は炭化物を析出して強度を確保するに必要な元素であって0.01% 未満では所望の強度を確保することが困難になる。一方、0.08%を超えると延性の低下が大きくなるからである。
【0011】
Siは本発明において最も重要な元素の一つであり、有害な炭化物の生成を抑え組織をフェライト主体で残部ベイナイトの複合組織とするに重要であって、またSiの添加により強度と延性を両立させることができる。このような作用を得るためには0.3%以上の添加が必要である。しかし、添加量が増加すると化成処理性が低下するほか点溶接性も劣化するため1.5%を上限とする。なお、Siの範囲を0.9〜1.2%とするのが穴拡げ性と延性を効果的に両立させることができて望ましい。
【0012】
Mnは本発明において重要な元素の一つで、強度の確保に必要な元素であるが、多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、穴拡げ性を劣化させる。穴拡げ性と延性を効果的に両立させるには Mn の範囲を 1.00 〜 1.50 %とする。
【0013】
P はフェライトに固溶してその延性を低下させるので、その含有量は0.03%以下とする。また、S はMnS を形成して破壊の起点として作用し著しく穴拡げ性、延性を低下させるので0.005%以下とする。
【0014】
Ti、Nbも本発明において最も重要な元素の一つであり、TiC 、NbC などの微細な炭化物を析出させて強度を確保するに有効な元素である。この目的のためにはTi 0.05 〜0.20%、Nb 0.01 〜0.04%の1種または2種を添加することが必要である、Tiが0.05%未満、Nbが0.01%未満では強度を確保することが困難であり、Tiが0.20%、Nbが0.04%を超えると析出物が多量生成しすぎて延性が劣化するからである。
【0015】
Ca、REM は硫化物系介在物の形態を制御し穴拡げ性の向上に有効な元素である。この形態制御効果を有効ならしめるためにはCa、REM の1種または2種を0.0005%以上の添加するのが望ましい。一方、多量の添加は硫化物系介在物の粗大化を招き、清浄度を悪化させて延性を低下させるのみならず、コストの上昇を招くので、上限を0.01%とする。
【0016】
フェライト粒径の大きさは、本発明において最も重要な指標の一つである。本発明者らは鋭意研究した結果、粒径が 2μm以上のフェライトの占める面積率が80%以上となると穴拡げ性と延性が共に優れた性能になることも見出した。即ち、図1(引張強さ780 〜820N/mm2、λ値100〜115の高強度熱延鋼板の例)に示すように、粒径が 2μm以上のフェライト粒の割合が80%以上になると鋼板は高い延性を示す。粒径が 2μm未満の場合には結晶粒が十分回復、成長したものとはなっておらず、延性低下の原因となる。このことより、穴拡げ性、延性を良好にして両立させるには、粒径が 2μm以上のフェライト粒の割合を80%以上とする必要がある。なお、より顕著な効果を得るには粒径が 3μm以上のフェライト粒の割合を80%以上とするのが望ましい。尚、粒径は各粒の面積を円相当径に換算して求めることができる。
【0017】
高強度熱延鋼板における鋼組織はフェライトとベイナイトよりなるものとする。ここで、鋼組織には粒径2μm以上のフェライトが80%以上含まれるので、鋼組織はフェライト80%以上のフェライト・ベイナイト二相組織となる。例えば、本発明の組織としては、2μm以上の粒径のフェライトが80%以上で、残部が2μm未満の粒径のフェライトとベイナイトのもの、又は、2μm以上の粒径のフェライトが80%以上で残部がベイナイトのみのものとすることができる。このようにベイナイトを20%以下とするのは、ベイナイトの量がこれより多くなると延性の低下が大きくなるからである。
【0018】
高強度熱延鋼板を熱間圧延により製造するに際して、仕上げ圧延終了温度はフェライトの生成を抑え穴拡げ性を良好にするためAr3 変態点以上とする必要がある。しかし、あまり高温にすると組織の粗大化による強度及び延性の低下を招くことになるので仕上げ圧延終了温度は 950℃以下とする必要がある。
【0019】
圧延終了直後に鋼板を急速冷却することは高い穴拡げ性を得るために重要であって、その冷却速度は20℃/sec以上を必要とする。20℃/sec未満では穴拡げ性に有害な炭化物形成を抑制するのが困難となるからである。
【0020】
鋼板の急速冷却を一旦停止して空冷を施すことはフェライトを析出してその占有率を増加させ、延性を向上させるために重要である。しかしながら、空冷開始温度が 650℃未満では穴拡げ性に有害なパーライトが早期より発生する。一方、空冷開始温度が 800℃を超える場合にはフェライトの生成が遅く空冷の効果が得にくいばかりでなく、その後の冷却中におけるパーライトの生成が起こりやすい。従って、空冷開始温度は 650〜800 ℃とする。また、空冷時間が15秒を超えてもフェライトの増加は飽和するばかりでなく、その後の冷却速度、巻取温度の制御に負荷がかかる。従って、空冷時間は15秒以下とする。なお、空冷時間が2秒未満ではフェライトを十分析出させることはできない。
【0021】
空冷後は再度鋼板を急速に冷却するが、その冷却速度はやはり20℃/sec以上を必要とする。20℃/sec未満では有害なパーライトが生成し易くなるからである。そして、この急冷の停止温度、即ち巻取温度は350 〜600 ℃とする。巻取温度が350 ℃未満では穴拡げ性に有害な硬質のマルテンサイトが発生するためであり、一方、600 ℃を超えると穴拡げ性に有害なパーライト、セメンタイトが生成し易くなるからである。
【0022】
以上のような成分と熱延条件の組み合わせにより、鋼組織が粒径2μm以上のフェライトの割合が80% 以上であるフェライト・ベイナイト二相組織であって、強度690N/mm2以上である穴拡げ性と延性に優れた高強度熱延鋼板を製造することができる。更に、本発明鋼板の表面に表面処理(例えば亜鉛メッキ等) が施されていても本発明の効果を有し、本発明を逸脱するものではない。
【0023】
【実施例】
表1に示す化学成分組成を有する鋼を転炉溶製して、連続鋳造によりスラブとし、同じく表1に示す熱延条件にて圧延・冷却し、板厚2.6 〜3.2mm の熱延鋼板を製造した。なお、急速冷却の速度を40℃/sec、空冷時間は10秒とした。
【0024】
【表1】
【0025】
【表2】
【0026】
このようにして得られた熱延鋼板について、JIS5号試験片による引張試験、穴拡げ試験、組織観察を行なった。組織観察においては、ナイタールで腐食後、走査電子顕微鏡にてフェライト、ベイナイトを同定し、粒径2μm以上のフェライトの面積率を画像解析により測定した。また、穴拡げ試験は初期穴径(d0:10mm) の打抜き穴を60°円錐ポンチにて押し拡げ、クラックが板厚を貫通した時点での穴径(d)から穴拡げ値(λ値)=(d-d0)/d0×100 を求めて評価した。これらの結果を表2に示す。
【0027】
No.1〜11は、化学成分、仕上温度、空冷開始温度、巻取温度の何れも本発明の範囲内であって、組織がフェライト・ベイナイトよりなり、且つ、粒径2μm以上のフェライトの割合が80%以上である本発明例であり、高いλ値と伸びを有する穴拡げ性と延性に優れた高強度熱延鋼板である。一方、No.12〜21の本発明の条件を外れた比較例のものは強度、穴拡げ性、延性のバランスに劣るものである。
【0028】
また、表には示していないが、No.1に示す成分の鋼を用いて仕上温度 920℃、空冷開始温度 625℃、巻取温度 460℃として熱間圧延した場合には空冷開始温度が本発明の範囲より低過ぎたために組織にパーライトが生成し、また粒径2μm以上のフェライトの面積率も75%と低いものであって、従って伸び19%、λ値95%となり、穴拡げ性、延性バランスの劣るものとなってしまった。また、同様にNo.1に示す成分の鋼を用いて仕上温度 910℃、空冷開始温度 680℃、巻取温度 320℃として熱間圧延した場合には巻取温度が本発明の範囲より低過ぎたために組織にマルテンサイトが生成し、また粒径2μm以上のフェライトの面積率も63%と低いものであって、このため伸び20%、λ値63%となり、やはり穴拡げ性、延性バランスの劣るものとなってしまった。
【0029】
【発明の効果】
以上に詳述したように、本発明によれば引張強度が690N/mm2以上の高強度であって穴拡げ性、延性が両立する高強度熱延鋼板を経済的に提供することができるで本発明は高い加工性を有する高強度熱延鋼板として好適である。また、本発明の高強度熱延鋼板は車体の軽量化、部品の一体成形化、加工工程の合理化が可能であって、燃費の向上、製造コストの低減を図ることができるものとして工業的価値大なものである。
【図面の簡単な説明】
【図1】 高強度熱延鋼板における粒径 2μm以上のフェライトの割合と伸びとの相関を示す散布図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly intended for automotive undercarriage parts that are press-worked, and is a high-strength hot-rolled steel sheet having a thickness of about 1.0 to 6.0 mm and a strength of 690 N / mm 2 or more and excellent in hole expansibility and ductility. And a manufacturing method thereof.
[0002]
[Prior art]
In recent years, with the environmental problems of automobiles, there has been an increasing need for weight reduction as a fuel efficiency improvement measure and cost reduction by integral molding of parts, and development of high-strength hot-rolled steel sheets with excellent press workability has been promoted. Conventionally, as such a high-strength hot-rolled steel sheet for processing, one having a mixed structure composed of a ferrite / martensite structure and a ferrite / bainite structure, or one having a substantially single phase structure mainly composed of bainite and ferrite is widely known.
[0003]
However, in the ferrite and martensite structure, microvoids are generated around the martensite from the beginning of deformation and cracks occur, so there is a problem that the hole expandability is inferior, and high hole expandability such as undercarriage parts is required. It was unsuitable for use.
[0004]
Further, JP-A-4-88125 and JP-A-3-180426 disclose steel sheets having a structure mainly composed of bainite, but the hole expandability is excellent because the structure is mainly composed of bainite. However, since there are few soft ferrite phases, it is inferior in ductility. Furthermore, although JP-A-6-172924 and JP-A-7-11382 disclose steel sheets having a structure mainly composed of ferrite, the hole expandability is also excellent, but in order to ensure strength. Since hard carbides are deposited on the steel, the ductility is poor.
[0005]
Japanese Patent Laid-Open No. 6-200351 discloses a steel sheet having a ferrite bainite structure and excellent hole expansibility and ductility, and Japanese Patent Laid-Open No. 6-293910 discloses a method of occupying ferrite by using two-stage cooling. A method of manufacturing a steel sheet that has both hole expandability and ductility by controlling the rate is disclosed. However, due to the further weight reduction of automobiles and the complexity of parts, higher hole expansibility and ductility are required, and recent high-strength hot-rolled steel sheets require advanced workability that cannot be handled by the above-mentioned technology. It has been.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems, and prevents deterioration of hole expansibility and ductility associated with an increase in strength of 690 N / mm 2 or more, and a high hole even at high strength. An object is to provide a high-strength hot-rolled steel sheet having expandability and ductility and a method for producing the steel sheet.
[0007]
[Means for Solving the Problems]
The high-strength hot-rolled steel sheet excellent in hole expansibility and ductility of the present invention, which has been made to solve the above problems, is C% 0.01 to 0.08%, Si 0.30 to 1.50 % , Mn 1.00 to 1.50 % in mass % , A high-strength hot-rolled steel sheet containing one or two of P ≦ 0.03%, S ≦ 0.005%, Ti 0.01 to 0.20%, Nb 0.01 to 0.04%, and the balance iron and unavoidable impurities, A ferrite-bainite two-phase structure with an area ratio of 80% or more of ferrite with a grain size of 2 μm or more, with a strength of 690 N / mm 2 or more and 60 punched holes with an initial hole diameter (d 0 : 10 mm). ° It is expanded by a conical punch , and the hole expansion value calculated by the formula (dd 0 ) / d 0 × 100 from the hole diameter ( d) when the crack penetrates the plate thickness is 100% or more It is what. The high-strength hot-rolled steel sheet can contain 0.0005 to 0.01% of one or two of Ca and REM.
[0008]
[0009]
DETAILED DESCRIPTION OF THE INVENTION
It is well known that hole expandability and ductility tend to contradict each other in high-strength hot-rolled steel sheets. As a result of diligent research to solve the above problems, the inventors of the present invention can improve ductility without deteriorating hole expansibility by making ferrite crystal grains as large as possible in ferrite bainite steel. As a result, the present invention has been completed. That is, paying attention to precipitates consisting of ferrite that increases ductility in ferrite and bainite steel and TiC and NbC that secure strength, by sufficiently growing ferrite grains, ductility is improved without reducing hole expandability, and thereafter The above-mentioned problems are solved by generating precipitates and securing strength.
[0010]
In the present invention, C in the high-strength hot-rolled steel sheet is 0.01 to 0.08%. C is an element necessary for precipitating carbides to ensure strength, and if it is less than 0.01%, it is difficult to ensure the desired strength. On the other hand, if it exceeds 0.08%, the ductility will decrease greatly.
[0011]
Si is one of the most important elements in the present invention and is important for suppressing the formation of harmful carbides and making the structure mainly composed of ferrite and the balance of the remaining bainite. Also, the addition of Si achieves both strength and ductility. Can be made. In order to obtain such an effect, addition of 0.3% or more is necessary. However, if the amount added is increased, the chemical conversion processability is lowered and the spot weldability is also deteriorated, so 1.5% is made the upper limit. Note that it is desirable that the Si range be 0.9 to 1.2% because both the hole expandability and the ductility can be effectively achieved.
[0012]
Mn is one of the important elements in the present invention, and is an element necessary for ensuring the strength. However, when added in a large amount, microsegregation and macrosegregation are liable to occur and the hole expandability is deteriorated. In order to effectively achieve both hole expandability and ductility, the range of Mn is set to 1.00 to 1.50 %.
[0013]
Since P dissolves in ferrite and lowers its ductility, its content should be 0.03% or less. In addition, S forms MnS and acts as a starting point of fracture, which significantly reduces hole expansibility and ductility.
[0014]
Ti and Nb are also one of the most important elements in the present invention, and are effective elements for ensuring strength by precipitating fine carbides such as TiC and NbC. For this purpose, it is necessary to add one or two of Ti 0.05-0.20% and Nb 0.01-0.04%. If Ti is less than 0.05% and Nb is less than 0.01%, strength can be secured. This is because if Ti exceeds 0.20% and Nb exceeds 0.04%, a large amount of precipitates are formed and ductility deteriorates.
[0015]
Ca and REM are effective elements for controlling the morphology of sulfide inclusions and improving hole expansibility. In order to make this form control effect effective, it is desirable to add one or two of Ca and REM in an amount of 0.0005% or more. On the other hand, addition of a large amount invites coarsening of sulfide inclusions, not only deteriorates cleanliness and lowers ductility, but also increases costs. Therefore, the upper limit is made 0.01%.
[0016]
The size of the ferrite grain size is one of the most important indicators in the present invention. As a result of intensive studies, the present inventors have found that when the area ratio occupied by ferrite having a particle size of 2 μm or more is 80% or more, both hole expansibility and ductility are excellent. That is, as shown in FIG. 1 (example of high-strength hot-rolled steel sheet having a tensile strength of 780 to 820 N / mm 2 and a λ value of 100 to 115), the proportion of ferrite grains having a grain size of 2 μm or more becomes 80% or more. The steel sheet exhibits high ductility. When the grain size is less than 2 μm, the crystal grains are not sufficiently recovered and grown, causing a drop in ductility. For this reason, in order to achieve both good hole expansibility and ductility, the proportion of ferrite grains having a grain size of 2 μm or more needs to be 80% or more. In order to obtain a more remarkable effect, it is desirable that the proportion of ferrite grains having a grain size of 3 μm or more is 80% or more. The particle size can be obtained by converting the area of each particle into an equivalent circle diameter.
[0017]
The steel structure in the high-strength hot-rolled steel sheet is composed of ferrite and bainite. Here, since the steel structure contains 80% or more of ferrite having a particle size of 2 μm or more, the steel structure becomes a ferrite-bainite two-phase structure of 80% or more of ferrite. For example, as the structure of the present invention, ferrite having a particle size of 2 μm or more is 80% or more, and the balance is ferrite and bainite having a particle size of less than 2 μm, or ferrite having a particle size of 2 μm or more is 80% or more. The balance can be bainite only. The reason why the bainite is made 20% or less in this way is that the ductility is greatly lowered when the amount of bainite is larger than this.
[0018]
When producing a high-strength hot-rolled steel sheet by hot rolling, the finish rolling finishing temperature needs to be not less than the Ar 3 transformation point in order to suppress the formation of ferrite and improve the hole expandability. However, if the temperature is too high, the strength and ductility are reduced due to the coarsening of the structure, so the finish rolling finish temperature must be 950 ° C or lower.
[0019]
Rapid cooling of the steel sheet immediately after the end of rolling is important for obtaining high hole expansibility, and the cooling rate requires 20 ° C./sec or more. This is because if it is less than 20 ° C./sec, it is difficult to suppress the formation of carbides that are harmful to the hole expandability.
[0020]
It is important to temporarily stop the rapid cooling of the steel sheet and apply air cooling in order to precipitate ferrite and increase its occupancy and improve ductility. However, when the air cooling start temperature is less than 650 ° C., pearlite harmful to hole expansibility occurs from an early stage. On the other hand, when the air cooling start temperature exceeds 800 ° C., ferrite formation is slow and it is difficult to obtain the effect of air cooling, and pearlite is easily generated during the subsequent cooling. Therefore, the air cooling start temperature is 650-800 ° C. Further, even if the air cooling time exceeds 15 seconds, the increase in ferrite not only saturates, but also a load is imposed on the subsequent control of the cooling rate and the coiling temperature. Therefore, the air cooling time is 15 seconds or less. If the air cooling time is less than 2 seconds, ferrite cannot be sufficiently precipitated.
[0021]
After air cooling, the steel sheet is rapidly cooled again, but the cooling rate still requires 20 ° C / sec or more. This is because harmful pearlite is likely to be generated at less than 20 ° C / sec. The quenching stop temperature, that is, the coiling temperature is set to 350 to 600 ° C. This is because if the coiling temperature is less than 350 ° C., hard martensite harmful to the hole expandability is generated, whereas if it exceeds 600 ° C., pearlite and cementite that are harmful to the hole expandability are likely to be generated.
[0022]
Due to the combination of the above components and hot rolling conditions, the steel structure is a ferrite-bainite two-phase structure in which the proportion of ferrite with a particle size of 2 μm or more is 80% or more, and the hole expansion has a strength of 690 N / mm 2 or more. It is possible to produce a high-strength hot-rolled steel sheet having excellent properties and ductility. Furthermore, even if the surface of the steel sheet of the present invention is subjected to surface treatment (for example, galvanizing), the effects of the present invention are obtained and do not depart from the present invention.
[0023]
【Example】
Steel having the chemical composition shown in Table 1 is melted in a converter, made into a slab by continuous casting, rolled and cooled under the hot rolling conditions shown in Table 1, and a hot rolled steel sheet having a thickness of 2.6 to 3.2 mm is obtained. Manufactured. The rapid cooling rate was 40 ° C./sec and the air cooling time was 10 seconds.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
The hot-rolled steel sheet thus obtained was subjected to a tensile test, a hole expansion test, and a structure observation using a JIS No. 5 test piece. In the structure observation, after corrosion with nital, ferrite and bainite were identified with a scanning electron microscope, and the area ratio of ferrite having a particle size of 2 μm or more was measured by image analysis. In the hole expansion test, the punched hole with the initial hole diameter (d 0 : 10mm) was expanded with a 60 ° conical punch, and the hole expansion value (λ value) was calculated from the hole diameter (d) when the crack penetrated the plate thickness. ) = (Dd 0 ) / d 0 × 100 and evaluated. These results are shown in Table 2.
[0027]
No. Nos. 1 to 11 are all within the scope of the present invention in terms of chemical components, finishing temperature, air cooling start temperature, and coiling temperature, and the structure is composed of ferrite bainite and the proportion of ferrite having a particle size of 2 μm or more is 80. % Of the present invention, which is a high-strength hot-rolled steel sheet excellent in hole expansibility and ductility having a high λ value and elongation. On the other hand, no. Comparative examples outside the conditions of the invention of 12 to 21 are inferior in the balance of strength, hole expansibility and ductility.
[0028]
Although not shown in the table, No. In the case of hot rolling using a steel having the composition shown in No. 1 and having a finishing temperature of 920 ° C., an air cooling start temperature of 625 ° C., and a coiling temperature of 460 ° C., the air cooling start temperature was too lower than the range of the present invention, so In addition, the area ratio of ferrite with a grain size of 2 μm or more was as low as 75%. Therefore, the elongation was 19% and the λ value was 95%, resulting in poor hole expandability and ductility balance. Similarly, no. In the case of hot rolling using a steel having the composition shown in No. 1 with a finishing temperature of 910 ° C., an air cooling start temperature of 680 ° C., and a winding temperature of 320 ° C., the winding temperature was too lower than the range of the present invention, and the structure was martensite. In addition, the area ratio of ferrite with a grain size of 2 μm or more is as low as 63%, and as a result, the elongation is 20% and the λ value is 63%, which is also inferior in hole expansibility and ductility balance. It was.
[0029]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to economically provide a high-strength hot-rolled steel sheet having a high tensile strength of 690 N / mm 2 or more and having both hole expandability and ductility. The present invention is suitable as a high-strength hot-rolled steel sheet having high workability. The high-strength hot-rolled steel sheet according to the present invention can reduce the weight of the vehicle body, integrally form parts, and rationalize the machining process, and can be industrially valuable as it can improve fuel efficiency and reduce manufacturing costs. It ’s a big one.
[Brief description of the drawings]
FIG. 1 is a scatter diagram showing the correlation between the proportion of ferrite having a grain size of 2 μm or more and elongation in a high-strength hot-rolled steel sheet.
Claims (2)
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000372462A JP3947354B2 (en) | 2000-12-07 | 2000-12-07 | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof |
CN01820102.4A CN1214127C (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plate excellent in enlargeability and ductlity and method for production thereof |
PCT/JP2001/010739 WO2002046486A1 (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof |
KR1020037007579A KR100979796B1 (en) | 2000-12-07 | 2001-12-07 | High Strength Hot Rolled Steel Plate For Automobil Excellent In Enlargeability and Ductility and Method for Production thereof |
KR1020097014805A KR20090087129A (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof |
EP01999261A EP1348771B1 (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plate excellent in enlargeability and ductility and method for production thereof |
CA002436611A CA2436611C (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plates having excellent bore expandability and ductility and process for producing the same |
US10/433,403 US7615126B2 (en) | 2000-12-07 | 2001-12-07 | High strength hot rolled steel plate excellent in enlargeability and ductility and method for producing thereof |
DE60136741T DE60136741D1 (en) | 2000-12-07 | 2001-12-07 | HIGH-STRENGTH HOT-ROLLED STEEL PLATE WITH EXCELLENT EXPOSURE AND DUCTILITY AND METHOD FOR THE PRODUCTION THEREOF |
ES01999261T ES2317957T3 (en) | 2000-12-07 | 2001-12-07 | HOT LAMINATED STEEL SHEETS OF HIGH RESISTANCE THAT HAVE EXCELLENT EXPANSIBILITY AND DUCTIBILITY AND PROCEDURE FOR THE PRODUCTION OF THE SAME. |
AT01999261T ATE415500T1 (en) | 2000-12-07 | 2001-12-07 | HIGH STRENGTH HOT ROLLED STEEL PLATE HAVING EXCELLENT EXPANDABILITY AND DUCTILITY AND METHOD FOR PRODUCING IT |
TW091109266A TW573020B (en) | 2000-12-07 | 2002-05-03 | High strength hot rolled steel plates having excellent bore expandability and ductility and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000372462A JP3947354B2 (en) | 2000-12-07 | 2000-12-07 | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002180190A JP2002180190A (en) | 2002-06-26 |
JP3947354B2 true JP3947354B2 (en) | 2007-07-18 |
Family
ID=18842002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000372462A Expired - Lifetime JP3947354B2 (en) | 2000-12-07 | 2000-12-07 | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3947354B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4180909B2 (en) * | 2002-12-26 | 2008-11-12 | 新日本製鐵株式会社 | High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same |
KR20070050108A (en) | 2002-12-26 | 2007-05-14 | 신닛뽄세이테쯔 카부시키카이샤 | High strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics, and method for production thereof |
KR100853328B1 (en) | 2003-10-17 | 2008-08-21 | 신닛뽄세이테쯔 카부시키카이샤 | High strength thin steel sheet excellent in hole expansibility and ductility |
JP5867444B2 (en) * | 2013-04-15 | 2016-02-24 | Jfeスチール株式会社 | High strength hot rolled steel sheet with excellent toughness and method for producing the same |
JP5870955B2 (en) * | 2013-04-15 | 2016-03-01 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
EP2987887B1 (en) | 2013-04-15 | 2019-09-11 | JFE Steel Corporation | High strength hot rolled steel sheet and method for producing same |
US11578375B2 (en) | 2015-07-27 | 2023-02-14 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for manufacturing the same |
US11603571B2 (en) | 2017-02-17 | 2023-03-14 | Jfe Steel Corporation | High-strength hot-rolled steel sheet and method for producing the same |
-
2000
- 2000-12-07 JP JP2000372462A patent/JP3947354B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002180190A (en) | 2002-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4324072B2 (en) | Lightweight high strength steel with excellent ductility and its manufacturing method | |
JP4464811B2 (en) | Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility | |
JP4313591B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof | |
JP4180909B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same | |
JP3233743B2 (en) | High strength hot rolled steel sheet with excellent stretch flangeability | |
JP4644075B2 (en) | High-strength steel sheet with excellent hole expansibility and manufacturing method thereof | |
KR100979796B1 (en) | High Strength Hot Rolled Steel Plate For Automobil Excellent In Enlargeability and Ductility and Method for Production thereof | |
JPWO2019103121A1 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP2000199034A (en) | High tensile strength hot rolled steel plate excellent in workability and its production | |
JP2001226741A (en) | High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor | |
JP2001220647A (en) | High strength cold rolled steel plate excellent in workability and producing method therefor | |
JP3947354B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
JP4205893B2 (en) | High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof | |
KR100853328B1 (en) | High strength thin steel sheet excellent in hole expansibility and ductility | |
JP3857875B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof | |
JP4205892B2 (en) | High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JP3947353B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof | |
JP3831137B2 (en) | Manufacturing method of high-strength steel sheet with excellent ductility and stretch flangeability | |
JP2005120435A (en) | High-strength steel sheet superior in hole-expandability and ductility, and manufacturing method therefor | |
JP3945373B2 (en) | Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics | |
JP3870840B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP2555436B2 (en) | Hot-rolled steel sheet with excellent workability and its manufacturing method | |
JP2003034825A (en) | Method for manufacturing high strength cold-rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060117 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070413 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3947354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |