JP4205892B2 - High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof - Google Patents

High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof Download PDF

Info

Publication number
JP4205892B2
JP4205892B2 JP2002149165A JP2002149165A JP4205892B2 JP 4205892 B2 JP4205892 B2 JP 4205892B2 JP 2002149165 A JP2002149165 A JP 2002149165A JP 2002149165 A JP2002149165 A JP 2002149165A JP 4205892 B2 JP4205892 B2 JP 4205892B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
press formability
hot
punching workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002149165A
Other languages
Japanese (ja)
Other versions
JP2003342683A (en
Inventor
力 岡本
浩幸 岡田
敏光 麻生
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002149165A priority Critical patent/JP4205892B2/en
Publication of JP2003342683A publication Critical patent/JP2003342683A/en
Application granted granted Critical
Publication of JP4205892B2 publication Critical patent/JP4205892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてプレス加工される自動車足廻り部品等を対象とし、1.0 〜6.0mm 程度の板厚で、良好な穴拡げ性を有し、打抜き加工において亀裂が発生することのないプレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
自動車などに使用される高強度熱延鋼板にはプレス成形性に優れていることが要求されるが、これらの特性を向上させる手段として、例えば鋼組織を、フェライト・マルテンサイト組織、ベイナイト主体組織、フェライト主体組織、フェライト・ベイナイト組織とする方法や、鋼中のS を低減し、Ca、REM により硫化物の形態を制御する方法などがある。
【0003】
更に特許第3233743号公報には、Cに対するTiの量を規定して穴拡げ性を改善する方法が開示されている。このようにTi添加によりプレス成形性を改善することはできるが、Ti添加の高強度熱延鋼板をブランク形状に切断(打抜き加工)を行う際、端面の荒れが発生しやすく、この荒れが板厚に対して垂直方向の割れへと進展することも多い。従って、今日の自動車におけるような更なる部品の軽量化、形状の複雑化に十分対応できるだけの特性を備えていなかった。このため従来の高強度熱延鋼板は、足廻り部品等のように高いプレス成形性と打抜き加工性とが要求される用途に対して十分満足できるものではなかった。
【0004】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決するためになされたものであって、高強度化に伴うプレス成形性及び打抜き加工性の劣化を防ぎ、プレス成形性と打抜き加工性に優れた高強度熱延鋼板及びその製造方法を提供するためになされたものである。
【0005】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明のプレス成形性と打抜き加工性に優れた高強度熱延鋼板は、質量%で、C:0.01〜0.30%、Si:0.01 〜2.0 %、Mn:0.5〜3.0%、P ≦0.03%、S ≦0.009 %、N ≦0.010 %、Al:0.002〜0.70%、Ti:0.03 〜0.40%を含有し、残部鉄及び不可避的不純物からなる鋼を、最高加熱温度を 1200 ℃以上とし、且つ 1100 ℃以上の保持時間を 300 分以下として加熱した後熱間圧延して、粒子径が2.0 μm以上のTi系窒化物を1平方mm当り160 個以下とした、フェライトが80%以上のフェライト・ベイナイト組織からなることを特徴とするものである。プレス成形性と打抜き加工性に優れた高強度熱延鋼板。
【0006】
なお、上記した高強度熱延鋼板は、Nbを0.01〜0.10%含有することができ、また、 Ca:O.OOO5 〜0.0100%及びREM:O.OOO5〜0.0100%の何れか一方、又は双方を含有することができ、また、 Mo: 0.01〜0.5 %、V:0.01〜0.2 %、Zr: 0.01〜0.2 %、Cr:0.01〜2.0 %、Cu:0.2〜2.0 %、Ni:0.1〜1.5 %のうちの一種又は2種以上を含有することができる。また、高強度熱延鋼板は、度が780N/mm以上であるものとするのが望ましい。
【0007】
また、本発明のプレス成形性と打ち抜き性に優れた高強度熱延鋼板の製造方法は、上記したようなプレス成形性と打抜き加工性に優れた高強度熱延鋼板の製造方法であって、前記組成の鋼を、最高加熱温度を1200℃以上とし、且つ1100℃以上の保持時間を300分以下として加熱した後、熱間圧延して、鋼組織をフェライトが80%以上のフェライト・ベイナイト組織とすることを特徴とするものであり、この製造方法において、 熱延仕上げ温度をAr変態点〜950 ℃として熱間圧延し、引き続き20℃/sec以上の冷却速度で650 〜800 ℃まで冷却したうえ、2 〜15秒空冷し、さらに、20℃/sec以上の冷却速度で350 〜600 ℃に冷却して巻き取って、鋼組織をフェライトが80%以上のフェライト・ベイナイト組織とするのが望ましい。
【0008】
【発明の実施の形態】
本発明者らは上記課題を解決するために鋭意研究した結果、Ti系窒化物のうち、粒子径が2μmを超えるような大きなものが大量に形成されるのを防ぐことにより、プレス成形性を良好に保持して打抜き加工性を改善できることを知見し、上記課題を解決したものである。なお、本明細書においてTi系窒化物とはTiN と、TiN を含むTi複合化合物とを総称するものであって、Ti複合化合物としてTi(CN)が例示される。
【0009】
本発明において高強度熱延鋼板中のC は 0.01 〜0.30%とする。 Cは炭化物を析出して強度を確保するに必要な元素であって0.01%未満では所望の強度を確保することが困難になる。一方、0.30%を超えると延性の低下が大きくなって打抜き加工性が劣ることになるからである。
【0010】
Siは脱酸剤として有益な元素であり、また、有害な炭化物の生成を抑え組織をフェライト主体で残部ベイナイトの複合組織とするに重要であって、さらにSiの添加により強度を高めてプレス成形性、延性を良好なものとすることができる。このような作用を得るためには0.01%以上の添加が必要である。しかし、添加量が増加すると化成処理性が低下するほか点溶接性も劣化するため2.0 %を上限とする。なお、Siの範囲を0.9 〜1.2 %とするのがプレス成形性と延性を効果的に兼ね備えたものとすることができて望ましい。
【0011】
Mnは強度の確保に必要な元素であり、このためには0.5 %以上の添加を必要とする。しかし、3.0 %を超えて多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、プレス成形性を劣化させる。なお、Mnを1.0 〜1.5 %添加するのが高い強度を確保してプレス成形性を良好なものとすることができるので望ましい。
【0012】
P はフェライトに固溶してその延性を低下させるので、その含有量は0.03%以下とする。また、SはMnSを形成して破壊の起点として作用し著しくプレス成形性、打抜き加工性を低下させるので0.009%以下とする。また、N はTiと窒化物を形成してTiNの生成量を増加し、打抜き加工性を劣化させるほか、C と結合できるTiの量を減少させ,強度の確保が困難となるので、0.010 %以下とする。
【0013】
Alは脱酸剤として有効であり、またSiと同様に組織をフェライト主体で残部ベイナイトの複合組織とするに有効な元素であるが、脱酸剤として用いる場合には0.002 %以上の添加を必要とする。一方、0.70%を超えると鋼の清浄性が低下することになる。従って、Alの範囲は0.002 〜0.70%とする。
【0014】
Tiは結晶粒を微細化するとともに微細なTiC を析出させて強度を確保し、且つプレス成形性を向上させるので、本発明において重要な元素である。Tiが0.03%未満の場合には上記したような効果を得ることが困難であり、一方、Tiが0.40%を超えるとTi系炭化物が多量発生しすぎて延性が低下するほか、TiN生成量が増大し打抜き加工性が劣化する。従って、Tiの範囲は0.03〜0.40%とする。
【0015】
NbはTiと同様に結晶粒を微細化するとともに、NbC などの微細な炭化物を析出させて強度を確保するに有益な元素である。このためにはNbを 0.01 〜0.10%添加するのが望ましい。Nbが0.01%未満では強度を十分高めることができず、Nbが0.10%を超えると析出物が多量生成しすぎて延性が低下し打抜き加工性が劣化するからである。
【0016】
また、Ca、REM(希土類元素) は硫化物系介在物の形態を制御しプレス成形性の向上に有効な元素である。この形態制御効果を有効ならしめるためにはCa、REMの何れか一方、又は双方を0.0005%以上添加するのが望ましい。一方、多量の添加は硫化物系介在物の粗大化を招き、清浄度を悪化させて打抜き加工性を低下させるので、上限を0.0100%とするのが望ましい。
【0017】
本発明においては、合金元素として、Mo: 0.01〜0.5 %、V:0.01〜0.2 %、Zr: 0.01〜0.2 %、Cr: 0.01〜2.0 %、Cu:0.2〜2.0 %、Ni:0.1〜1.5 %のうちの一種又は2種以上を鋼に添加することができる。ここで、Moは鋼の焼入れ性を高めて熱延鋼板を高強度化するのに有効な元素であって、この効果を発揮するためには 0.01 %以上の添加を必要とする。しかし、0.5 %を超えて添加しても効果は飽和するうえ、Moは高価な元素であるので製造コストが高騰する。従って、Moの量は0.01〜0.5 %とするのが望ましい。
【0018】
Crも焼入れ性向上元素であって、この効果を発揮するためには0.01%以上の添加を必要とする。しかし、2.0 %越えて添加しても効果は飽和するのみならずコスト高を招くので、Cr量は0.01〜2.0 %とするのが望ましい。
【0019】
また、Niも焼入れ性向上元素であって、この効果を発揮するためには0.1 %以上の添加を必要とする。しかし、1.5 %超添加しても効果は飽和するのみならずコスト高を招くので、Niの範囲は0.1 〜1.5 %とするのが望ましい。
【0020】
CuもNiと同様に鋼の焼入れ性を高めて熱延鋼板を高強度化するのに有効であるが、この効果を発揮するためには0.2 %以上の添加を必要とする。しかし、2.0%を越えて添加しても効果は飽和するのみならず、熱間延性を低下させて表面疵の発生が顕著になる。従って、Cuの範囲は0.2 〜2.0 %とするのが望ましい。
【0021】
V はNbと同じく微細な炭化物を析出して熱延鋼板の強度を高めるに有効であって、この効果を発揮するためには0.01%以上の添加を必要とする。しかし、0.2%を越えて添加しても効果は飽和するので、V の範囲は0.01〜0.2 %とするのが望ましい。
【0022】
また、ZrはTiと同じく微細な炭化物を析出して熱延鋼板の強度を高めるに有効であって、この効果を発揮するためには0.01%以上の添加を必要とする。しかし、0.2 %を越えて添加しても効果は飽和するので、Zrの範囲は0.01〜0.2%とするのが望ましい。
【0023】
以上に述べたような化学成分組成を有する鋼を転炉などにより調製したうえ、連続鋳造などによりスラブとし、このスラブを加熱して熱間圧延することにより高強度熱延鋼板を製造することができるが、高強度熱延鋼板を優れたプレス成形性と打抜き加工性とを兼ね備えたものとするには、硬くて大きいTi系窒化物の数を少なく抑える必要がある。即ち、粒子径(円相当粒子径)が2.0 μm以上のTi系窒化物の数が1平方mm当り160 個を超えるとTi系窒化物を起点として割れが発生し易くなる。従って、粒子径が2.0 μm以上のTi系窒化物の数が1平方mm当り160 個以下となるように熱間圧延することが必要である。
【0024】
また、高強度熱延鋼板における鋼組織はフェライトが80%以上のフェライト・ベイナイト組織とするのが望ましい。鋼組織をフェライトが80%以上のフェライト・ベイナイト組織とすることにより良好な穴拡げ性と延性を有する高強度熱延鋼板を得ることができる。ベイナイトの量を20%以下とするのは、ベイナイトの量がこれより多くなると延性の低下が大きくなるからである。
【0025】
以上のような高強度熱延鋼板を熱間圧延により製造するに際して、鋼の最高加熱温度を1200℃以上とし、且つ、1100℃以上の加熱時間を300 分以下とする必要がある。鋼の最高加熱温度が1200℃未満の場合には、連続鋳造において製造されたスラブが冷却される際に析出した粗大なTiC を鋼中に溶かし込むことができず、鋼の強化やプレス成形性向上に有効な微細なTiC を析出させることができない。また、1100℃以上の加熱時間が300分を超えて長くなると、小さいTi系窒化物が合体するなどして成長し、その大きさを大きくして、粒子径が2 μmをこえる大きなTi系窒化物が1平方mm当り160 個を超えてしまうことになるからである。
【0026】
熱間圧延において、仕上げ圧延終了温度をAr変態点未満とした時には、フェライトの過剰な生成を抑えることができずプレス成形性が劣化することになる。しかし、仕上げ圧延終了温度が950 ℃を超えて高くなると組織の粗大化による強度及び延性の低下を招くことになるので、仕上げ圧延終了温度はAr変態点〜 950℃とするのが望ましい。
【0027】
また、圧延終了直後に鋼板を急速冷却することは高いプレス成形性を得るために好ましいことであって、その冷却速度は20℃/sec以上とするのが望ましい。20℃/sec未満ではプレス成形性に有害な炭化物形成と抑制するのが困難になるからである。
【0028】
鋼板の急速冷却を一旦停止して空冷を施すことはフェライトを析出してその占有率を増加させ、延性を向上させるために望ましいことである。しかしながら、空冷開始温度が 650℃未満ではプレス成形性に有害なパーライトが早期より発生する。一方、空冷開始温度が 800℃を超える場合にはフェライトの生成が遅く空冷の効果が得にくいばかりでなく、その後の冷却中におけるパーライトの生成が起こりやすい。従って、空冷開始温度は 650〜800 ℃とするのが望ましい。また、空冷時間が2 秒未満ではフェライトを十分析出させることはできず、一方、空冷時間が15秒を超えるとフェライトの増加は飽和するばかりでなく、その後の冷却速度、巻取温度の制御に負荷がかかることとなる。従って、空冷時間は2 〜15秒とするのが望ましい。
【0029】
空冷後は再度鋼板を急速に冷却するが、その冷却速度はやはり20℃/sec以上が望ましい。20℃/sec未満では有害なパーライトが生成し易くなるからである。そして、この急冷の停止温度、即ち巻取温度は350 〜600 ℃とするのが望ましい。巻取温度が350 ℃未満では穴拡げ性に有害な硬質のマルテンサイトが発生するためであり、一方、600 ℃を超えるとプレス成形に有害なパーライト、セメンタイトが生成し易くなるからである。
【0030】
以上のような化学成分と圧延条件の組み合わせにより、強度が780N/mm以上であってプレス成形性と打抜き加工性に優れた高強度熱延鋼板を製造することができる。なお、本発明の高強度熱延鋼板の表面に表面処理(例えば亜鉛メッキ等)が施されていても本発明の効果を有し、本発明の技術的範囲に属するものである。
【0031】
【実施例】
表1に示す化学成分組成を有する鋼を転炉溶製して、連続鋳造によりスラブとし、同じく表2、表3に示す加熱条件にてスラブを加熱して熱間圧延し板厚2.6〜3.2mm の高強度熱延鋼板を製造した。なお、熱延仕上げ温度を895 〜930 ℃として熱間圧延し、引き続き52〜85℃/secの冷却速度で675 〜750 ℃まで冷却したうえ、3 〜10秒空冷し、さらに、52〜85℃/secの冷却速度で400 〜550 ℃に冷却して巻き取って、高強度熱延鋼板を製造した。
【0032】
【表1】

Figure 0004205892
【0033】
【表2】
Figure 0004205892
【0034】
【表3】
Figure 0004205892
【0035】
このようにして得られた熱延鋼板について、組織観察、JIS5号試験片による圧延まま材の引張試験、プレス成形性を評価するための穴拡げ試験、及び打抜き試験を行なった。鋼組織はナイタールで腐食後、光学顕微鏡にて観察した。また、Ti系窒化物の測定に当たっては、鋼の組織観察を行う要領でアルミナ研磨まで実施し、ナイタール等の腐食を行うことなく、そのまま光学顕微鏡×1500の倍率にて合計視野範囲が1mm2となるまでTi系窒化物の測定を行い、画像解析にて円相当径を求めた。穴拡げ試験は初期穴径(d:10mm) の打抜き穴を60°円錐ポンチにて押し拡げ、クラックが板厚を貫通した時点での穴径(d)から穴拡げ値(λ値)=(d-d)/d×100 を求めて評価した。打抜き試験においては、12mmφのポンチを用いて、クリアランス20%の条件で各3個の打抜きを行い(全長113mm)、破断面において板厚方向と垂直に発生する割れの長さを測定した。このうち2mm を超える割れの長さを合計した時、全円周に対して40%を超えるものを×、これ以下のものを○と判定した。これらの結果を表2、表3に併せて示す。
【0036】
表1に示す鋼のうち、鋼aはMnが本発明の範囲より高く、鋼bはC が本発明の範囲より高く、鋼cはS が本発明の範囲より高く、鋼dはTiが本発明の範囲より高いものであって、これら以外の鋼は全て本発明の範囲内の化学成分組成を有するものである。
【0037】
表2、表3に示した試験結果において、試験No.3、7、8、16、22、25、32、37、40のものは、何れも1100℃以上の保持時間が300分を超えて長かったために、2 μmを超える大きさのTi系窒化物の数が160 個/mmを超えて多く存在したので、打抜き加工性に劣るものであった。また、鋼a、b、c、dを圧延した試験No.47、48、49、50のものは、上記したように化学成分が本発明の範囲を外れているために、伸び、穴拡げ値の何れか、又は双方が劣るものとなってしまった。上記したものの他の試験No.1〜2、4〜6、9〜15、17〜21、23〜24、26 〜31、33〜36、38〜39、41〜46のものは、化学成分、鋼の加熱条件の何れもが本発明の範囲内であって、鋼は80%以上のフェライトとベイナイトとからなるフェライト・ベイナイト組織であって、十分高い強度と伸びを有し、高い穴拡げ値と良好な打抜き加工性を有するものであった。
【0038】
【発明の効果】
以上に詳述したように、本発明の高強度熱延鋼板は、C:0.01〜0.30%、Si:0.01 〜2.0 %、Mn:0.5〜3.0 %、P ≦0.03%、S ≦0.009 %、N ≦0.010 %、Al:0.002〜0.70%、Ti:0.03 〜0.40%を含有し、残部鉄及び不可避的不純物からなり、粒子径が2.0 μm以上のTi系窒化物を1平方mm当り160 個以下としたことにより、Ti系窒化物を起点とする割れの発生を抑止することができるので優れたプレス成形性と打抜き加工性を兼ね備えている。また、上記した熱延鋼板にNbを0.01〜0.10%含有させてもプレス成形性と打抜き加工性に優れた高強度熱延鋼板を得ることができる。また、上記したような高強度熱延鋼板が、Ca:O.OOO5 〜0.0100%及びREM:O.OOO5〜0.0100%の何れか一方、又は双方を含有することによって硫化物の形態を制御してプレス成形性と打抜き加工性とをさらに向上させることができる。また、高強度熱延鋼板が、Mo: 0.01〜0.5 %、V:0.01〜0.2 %、Zr: 0.01〜0.2 %、Cr: 0.01〜2.0 %、Cu:0.2〜2.0 %、Ni:0.1〜1.5 %のうちの一種又は2種以上を含有することによっても、鋼組織及び炭化物の析出量を最適にしてプレス成形性と打抜き加工性に優れた高強度熱延鋼板を得ることができる。また、鋼組織を、フェライトを主体とするフェライト・ベイナイト組織とすることにより、強度が780N/mm以上であるプレス成形性と打抜き加工性に優れた高強度熱延鋼板を得ることができる。従って、本発明の高強度熱延鋼板は、車体の軽量化、部品の一体成形化、加工工程の合理化が可能であって、燃費の向上、製造コストの低減を図ることができる。また、本発明の高強度熱延鋼板の製造方法は、上記したような高強度熱延鋼板を製造するに際し、前記組成の鋼を、最高加熱温度を1200℃以上とし、且つ1100℃以上の保持時間を300分以下として加熱した後、熱間圧延することによってTi系窒化物の粗大化を抑止することができてプレス成形性と打抜き加工性に優れた高強度熱延鋼板を製造することができ、この方法において熱延仕上げ温度をAr変態点〜950 ℃として熱間圧延し、引き続き20℃/sec以上の冷却速度で650 〜800 ℃まで冷却したうえ、2 〜15秒空冷し、さらに、20℃/sec以上の冷却速度で350 〜600 ℃に冷却して巻き取ることによって、過剰な炭化物の析出を抑えた最適な鋼組織とすることができる。従って、本発明の高強度熱延鋼板の製造方法は、プレス成形性と打抜き加工性に優れた高強度熱延鋼板を経済的に提供することができるものとして工業的価値大なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly intended for automotive undercarriage parts to be pressed, has a thickness of about 1.0 to 6.0 mm, has good hole expandability, and does not generate cracks in punching. The present invention relates to a high-strength hot-rolled steel sheet excellent in punching workability and a manufacturing method thereof.
[0002]
[Prior art]
High-strength hot-rolled steel sheets used in automobiles and the like are required to be excellent in press formability. As a means for improving these properties, for example, a steel structure, a ferrite martensite structure, a bainite main structure There are a method of forming a ferrite main structure and a ferrite / bainite structure, a method of reducing S in steel and controlling the form of sulfide by Ca and REM.
[0003]
Further, Japanese Patent No. 3233743 discloses a method for improving the hole expandability by defining the amount of Ti with respect to C. Although the press formability can be improved by adding Ti as described above, when the Ti-added high-strength hot-rolled steel sheet is cut into a blank shape (punching), the end face is likely to be rough, and this roughness is the plate. It often develops into cracks perpendicular to the thickness. Therefore, it did not have sufficient characteristics to cope with further weight reduction and shape complexity of parts as in today's automobile. For this reason, the conventional high-strength hot-rolled steel sheet has not been sufficiently satisfactory for applications requiring high press formability and punching workability such as suspension parts.
[0004]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described conventional problems, and prevents deterioration of press formability and punching workability with increasing strength, and has high strength excellent in press formability and punching workability. It is made in order to provide a hot-rolled steel plate and its manufacturing method.
[0005]
[Means for Solving the Problems]
The high-strength hot-rolled steel sheet excellent in press formability and punching workability of the present invention, which has been made to solve the above-mentioned problems, is mass%, C: 0.01 to 0.30%, Si: 0.01 to 2.0%, Mn: 0.5 ~ 3.0%, P ≤0.03%, S ≤0.009%, N ≤0.010%, Al: 0.002 ~ 0.70%, Ti: 0.03 ~ 0.40%, steel with the balance iron and unavoidable impurities is heated to the maximum After heating at a temperature of 1200 ° C or higher and a holding time of 1100 ° C or higher for 300 minutes or less and then hot rolling , the Ti-based nitride having a particle size of 2.0 μm or more was reduced to 160 pieces or less per square mm . The ferrite is composed of a ferrite bainite structure of 80% or more . High-strength hot-rolled steel sheet with excellent press formability and punchability.
[0006]
The above-described high-strength hot-rolled steel sheet can contain 0.01 to 0.10% of Nb, and includes either or both of Ca: O.OOO5 to 0.0100% and REM: O.OOO5 to 0.0100%. Mo: 0.01-0.5%, V: 0.01-0.2%, Zr: 0.01-0.2%, Cr: 0.01-2.0%, Cu: 0.2-2.0%, Ni: 0.1-1.5% One or two or more of them can be contained. The high strength hot rolled steel sheet, the strength degree is desirable to not more 780N / mm 2 or more.
[0007]
A method of manufacturing a high strength hot rolled steel sheet having excellent press formability and punching of the present invention is a method for producing a high-strength hot-rolled steel sheet having excellent press formability and punching workability as described above, The steel having the above composition is heated at a maximum heating temperature of 1200 ° C. or more and a holding time of 1100 ° C. or more for 300 minutes or less, and then hot-rolled to form a ferrite bainite structure having a ferrite structure of 80% or more. In this manufacturing method, the hot rolling finish temperature is Ar 3 transformation point to 950 ° C. and hot rolling is performed, followed by cooling to 650 to 800 ° C. at a cooling rate of 20 ° C./sec or more. In addition, it is air-cooled for 2 to 15 seconds, further cooled to 350 to 600 ° C. at a cooling rate of 20 ° C./sec or more, and wound into a ferrite bainite structure having a ferrite content of 80% or more. desirable.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of diligent research to solve the above problems, the present inventors have prevented press-formability by preventing a large amount of Ti-based nitrides having a particle diameter exceeding 2 μm from being formed. It has been found that the punching processability can be improved with good holding, and the above problems have been solved. In this specification, Ti-based nitride is a general term for TiN and a Ti composite compound containing TiN, and Ti (CN) is exemplified as the Ti composite compound.
[0009]
In the present invention, C in the high-strength hot-rolled steel sheet is set to 0.01 to 0.30%. C is an element necessary for precipitating carbides to ensure strength, and if it is less than 0.01%, it is difficult to ensure a desired strength. On the other hand, if it exceeds 0.30%, the ductility is greatly lowered and the punching workability is deteriorated.
[0010]
Si is an element useful as a deoxidizer, and it is important for suppressing the formation of harmful carbides and making the structure mainly composed of ferrite and the rest of bainite. Further, by adding Si, the strength is increased and press forming is performed. And ductility can be improved. In order to obtain such an action, addition of 0.01% or more is necessary. However, if the added amount increases, the chemical conversion processability decreases and spot weldability also deteriorates, so 2.0% is made the upper limit. Note that it is desirable that the Si range be 0.9 to 1.2% because it can effectively combine press formability and ductility.
[0011]
Mn is an element necessary for securing strength, and for this purpose, addition of 0.5% or more is required. However, if it is added in a large amount exceeding 3.0%, microsegregation and macrosegregation easily occur, and press formability is deteriorated. Note that it is desirable to add Mn in an amount of 1.0 to 1.5% because high strength can be secured and press formability can be improved.
[0012]
Since P dissolves in ferrite and lowers its ductility, its content should be 0.03% or less. Further, S forms MnS and acts as a starting point of fracture, and remarkably deteriorates press formability and punching workability, so it is made 0.009% or less. In addition, N forms Ti and nitride to increase the amount of TiN produced, which deteriorates the punching workability and decreases the amount of Ti that can be combined with C, making it difficult to secure strength. The following.
[0013]
Al is effective as a deoxidizer and, like Si, is an effective element for making the microstructure mainly composed of ferrite and the rest of bainite. However, when used as a deoxidizer, 0.002% or more must be added. And On the other hand, if it exceeds 0.70%, the cleanliness of the steel will decrease. Therefore, the Al range is 0.002 to 0.70%.
[0014]
Ti is an important element in the present invention because it refines crystal grains and precipitates fine TiC to ensure strength and improve press formability. When Ti is less than 0.03%, it is difficult to obtain the effects described above. On the other hand, when Ti exceeds 0.40%, a large amount of Ti-based carbides are generated and ductility is reduced, and TiN production is reduced. Increases and punching workability deteriorates. Therefore, the Ti range is 0.03 to 0.40%.
[0015]
Nb is a useful element for securing strength by refining crystal grains as well as Ti and precipitating fine carbides such as NbC. For this purpose, it is desirable to add 0.01 to 0.10% of Nb. This is because when Nb is less than 0.01%, the strength cannot be sufficiently increased, and when Nb exceeds 0.10%, a large amount of precipitates are formed, resulting in a decrease in ductility and deterioration of punching workability.
[0016]
Ca and REM (rare earth elements) are effective elements for controlling the form of sulfide inclusions and improving press formability. In order to make this form control effect effective, it is desirable to add 0.0005% or more of either Ca or REM or both. On the other hand, addition of a large amount invites coarsening of sulfide inclusions, deteriorates cleanliness and lowers punching workability, so the upper limit is preferably made 0.0100%.
[0017]
In the present invention, Mo: 0.01-0.5%, V: 0.01-0.2%, Zr: 0.01-0.2%, Cr: 0.01-2.0%, Cu: 0.2-2.0%, Ni: 0.1-1.5% 1 type or 2 types or more can be added to steel. Here, Mo is an element effective for enhancing the hardenability of steel and increasing the strength of the hot-rolled steel sheet, and in order to exert this effect, addition of 0.01% or more is required. However, even if added over 0.5%, the effect is saturated, and Mo is an expensive element, so the manufacturing cost increases. Therefore, the amount of Mo is desirably 0.01 to 0.5%.
[0018]
Cr is also an element for improving hardenability, and in order to exert this effect, addition of 0.01% or more is required. However, the addition of more than 2.0% not only saturates the effect but also increases the cost, so the Cr content is preferably 0.01 to 2.0%.
[0019]
Ni is also an element for improving hardenability, and in order to exert this effect, addition of 0.1% or more is necessary. However, adding more than 1.5% not only saturates the effect but also increases the cost, so the range of Ni is desirably 0.1 to 1.5%.
[0020]
Cu, as well as Ni, is effective in increasing the hardenability of steel and increasing the strength of hot-rolled steel sheets, but 0.2% or more is required to exert this effect. However, adding over 2.0% not only saturates the effect, but also reduces hot ductility and the occurrence of surface defects becomes significant. Therefore, the Cu range is preferably 0.2 to 2.0%.
[0021]
V, like Nb, is effective in precipitating fine carbides to increase the strength of the hot-rolled steel sheet, and in order to exert this effect, addition of 0.01% or more is required. However, the effect is saturated even if added over 0.2%, so the V range is preferably 0.01-0.2%.
[0022]
Zr is effective for precipitating fine carbides and increasing the strength of the hot-rolled steel sheet in the same manner as Ti. To exhibit this effect, it is necessary to add 0.01% or more. However, even if added over 0.2%, the effect is saturated, so the Zr range is preferably 0.01-0.2%.
[0023]
It is possible to produce a high strength hot rolled steel sheet by preparing a steel having a chemical composition as described above by a converter or the like and then converting it into a slab by continuous casting or the like and heating and hot rolling the slab. However, in order to make a high-strength hot-rolled steel sheet having both excellent press formability and punchability, it is necessary to reduce the number of hard and large Ti-based nitrides. That is, when the number of Ti nitrides having a particle diameter (equivalent circle particle diameter) of 2.0 μm or more exceeds 160 per square mm, cracks are likely to occur starting from the Ti nitrides. Accordingly, it is necessary to perform hot rolling so that the number of Ti-based nitrides having a particle diameter of 2.0 μm or more is 160 or less per square mm.
[0024]
The steel structure of the high-strength hot-rolled steel sheet is preferably a ferrite bainite structure with 80% or more of ferrite. By making the steel structure a ferrite-bainite structure with 80% or more of ferrite, a high-strength hot-rolled steel sheet having good hole expansibility and ductility can be obtained. The reason why the amount of bainite is 20% or less is that when the amount of bainite is larger than this, the decrease in ductility increases.
[0025]
When manufacturing such a high-strength hot-rolled steel sheet by hot rolling, it is necessary to set the maximum heating temperature of the steel to 1200 ° C. or higher and the heating time of 1100 ° C. or higher to 300 minutes or less. If the maximum heating temperature of the steel is less than 1200 ° C, the coarse TiC that precipitates when the slab produced in continuous casting is cooled cannot be dissolved in the steel. Fine TiC effective for improvement cannot be deposited. In addition, when the heating time of 1100 ° C or more becomes longer than 300 minutes, small Ti-based nitrides grow together, etc., and the size is increased to increase the size of Ti-based nitrides exceeding 2 μm. This is because the number of objects exceeds 160 per square mm.
[0026]
In hot rolling, when the finish rolling finish temperature is less than the Ar 3 transformation point, excessive formation of ferrite cannot be suppressed and press formability deteriorates. However, if the finish rolling end temperature is higher than 950 ° C., the strength and ductility are reduced due to the coarsening of the structure. Therefore, the finish rolling end temperature is preferably Ar 3 transformation point to 950 ° C.
[0027]
Moreover, rapid cooling of the steel sheet immediately after the end of rolling is preferable in order to obtain high press formability, and the cooling rate is desirably 20 ° C./sec or more. This is because if it is less than 20 ° C./sec, it is difficult to suppress and prevent formation of carbides harmful to press formability.
[0028]
It is desirable to temporarily stop the rapid cooling of the steel sheet and apply air cooling in order to precipitate ferrite and increase its occupancy and improve ductility. However, if the air cooling start temperature is less than 650 ° C., pearlite harmful to press formability occurs from an early stage. On the other hand, when the air cooling start temperature exceeds 800 ° C., ferrite formation is slow and it is difficult to obtain the effect of air cooling, and pearlite is easily generated during the subsequent cooling. Therefore, it is desirable that the air cooling start temperature is 650 to 800 ° C. Also, if the air cooling time is less than 2 seconds, ferrite cannot be sufficiently precipitated.On the other hand, if the air cooling time exceeds 15 seconds, the increase in ferrite is not only saturated, but the subsequent cooling rate and coiling temperature are controlled. Will be loaded. Therefore, the air cooling time is desirably 2 to 15 seconds.
[0029]
After air cooling, the steel sheet is rapidly cooled again, but the cooling rate is desirably 20 ° C./sec or more. This is because harmful pearlite is likely to be generated at less than 20 ° C / sec. The quenching stop temperature, that is, the coiling temperature is preferably 350 to 600 ° C. This is because if the coiling temperature is less than 350 ° C., hard martensite harmful to hole expandability is generated, while if it exceeds 600 ° C., pearlite and cementite that are harmful to press molding are likely to be generated.
[0030]
By combining the chemical components and rolling conditions as described above, a high-strength hot-rolled steel sheet having a strength of 780 N / mm 2 or more and excellent in press formability and punching workability can be produced. In addition, even if surface treatment (for example, galvanization etc.) is given to the surface of the high-strength hot-rolled steel sheet of this invention, it has the effect of this invention and belongs to the technical scope of this invention.
[0031]
【Example】
Steel having the chemical composition shown in Table 1 is melted in a converter to form a slab by continuous casting, and the slab is heated and hot-rolled under the heating conditions shown in Tables 2 and 3 to obtain a thickness of 2.6 to 3.2. mm high-strength hot-rolled steel sheet was produced. The hot rolling finish temperature is 895 to 930 ° C, hot rolled, then cooled to 675 to 750 ° C at a cooling rate of 52 to 85 ° C / sec, air cooled for 3 to 10 seconds, and further, 52 to 85 ° C. The steel sheet was cooled to 400 to 550 ° C. at a cooling rate of / sec and wound up to produce a high-strength hot-rolled steel sheet.
[0032]
[Table 1]
Figure 0004205892
[0033]
[Table 2]
Figure 0004205892
[0034]
[Table 3]
Figure 0004205892
[0035]
The hot-rolled steel sheet thus obtained was subjected to a structure observation, a tensile test of the as-rolled material with a JIS No. 5 test piece, a hole expansion test for evaluating press formability, and a punching test. The steel structure was observed with an optical microscope after corrosion with nital. In the measurement of Ti-based nitride, alumina polishing was performed in the same manner as steel structure observation, and the total visual field range was 1 mm 2 at an optical microscope × 1500 magnification without corroding nital or the like. Ti-based nitride was measured until it was, and the equivalent circle diameter was determined by image analysis. In the hole expansion test, the punched hole of the initial hole diameter (d 0 : 10mm) is expanded with a 60 ° conical punch, and the hole expansion value (λ value) = from the hole diameter (d) when the crack penetrates the plate thickness. (dd 0 ) / d 0 × 100 was determined and evaluated. In the punching test, a punch of 12 mmφ was used to punch three pieces each with a clearance of 20% (total length 113 mm), and the length of cracks generated perpendicular to the plate thickness direction at the fracture surface was measured. Of these, when the lengths of cracks exceeding 2 mm were totaled, those exceeding 40% with respect to the entire circumference were evaluated as x, and those below were determined as ◯. These results are also shown in Tables 2 and 3.
[0036]
Among the steels shown in Table 1, steel a has Mn higher than the range of the present invention, steel b has C 2 higher than the range of the present invention, steel c has S 2 higher than the range of the present invention, and steel d has Ti present. All steels other than these, which are higher than the scope of the invention, have chemical composition within the scope of the present invention.
[0037]
In the test results shown in Table 2 and Table 3, the test No. For 3, 7, 8, 16, 22, 25, 32, 37, and 40, the retention time of 1100 ° C or higher was longer than 300 minutes. Was more than 160 pieces / mm 2 , so that the punching workability was poor. Further, test Nos. Obtained by rolling steels a, b, c, and d. As described above, 47, 48, 49, and 50 were inferior in elongation, hole expansion value, or both because the chemical component was outside the scope of the present invention. Other test nos. 1-2, 4-6, 9-15, 17-21, 23-24, 26-31, 33-36, 38-39, 41-46 are both chemical components and steel heating conditions. Within the scope of the present invention, the steel is a ferrite bainite structure composed of 80% or more of ferrite and bainite, has a sufficiently high strength and elongation, and has a high hole expansion value and good punchability. It was a thing.
[0038]
【The invention's effect】
As described in detail above, the high-strength hot-rolled steel sheet according to the present invention has C: 0.01 to 0.30%, Si: 0.01 to 2.0%, Mn: 0.5 to 3.0%, P ≤ 0.03%, S ≤ 0.009%, N ≦ 0.010%, Al: 0.002 to 0.70%, Ti: 0.03 to 0.40%, balance iron and unavoidable impurities, particle size of 2.0 μm or more Ti-based nitride of 160 or less per square mm As a result, it is possible to suppress the occurrence of cracks starting from Ti-based nitrides, and thus have excellent press formability and punching workability. Moreover, even if it contains 0.01 to 0.10% of Nb in the above hot-rolled steel sheet, a high-strength hot-rolled steel sheet excellent in press formability and punching workability can be obtained. Further, the high strength hot-rolled steel sheet as described above contains one or both of Ca: O.OOO5 to 0.0100% and REM: O.OOO5 to 0.0100% to control the form of sulfide. Press formability and punching workability can be further improved. High strength hot-rolled steel sheet is Mo: 0.01-0.5%, V: 0.01-0.2%, Zr: 0.01-0.2%, Cr: 0.01-2.0%, Cu: 0.2-2.0%, Ni: 0.1-1.5% Also by containing one or more of the above, it is possible to obtain a high-strength hot-rolled steel sheet excellent in press formability and punching workability by optimizing the precipitation amount of the steel structure and carbide. Further, by making the steel structure a ferrite-bainite structure mainly composed of ferrite, a high-strength hot-rolled steel sheet excellent in press formability and punching workability having a strength of 780 N / mm 2 or more can be obtained. Therefore, the high-strength hot-rolled steel sheet according to the present invention can reduce the weight of the vehicle body, integrally form parts, and rationalize the machining process, and can improve fuel consumption and reduce manufacturing costs. Further, the method for producing a high-strength hot-rolled steel sheet according to the present invention, when producing a high-strength hot-rolled steel sheet as described above, keeps the steel having the above composition at a maximum heating temperature of 1200 ° C. or higher and 1100 ° C. or higher. After heating for 300 minutes or less, hot rolling can suppress the coarsening of Ti-based nitrides and produce high-strength hot-rolled steel sheets with excellent press formability and punchability In this method, hot rolling is performed at an Ar 3 transformation point of 950 ° C., followed by cooling to 650-800 ° C. at a cooling rate of 20 ° C./sec or more, followed by air cooling for 2-15 seconds, By cooling to 350 to 600 ° C. and winding at a cooling rate of 20 ° C./sec or more, an optimum steel structure in which excessive carbide precipitation is suppressed can be obtained. Therefore, the method for producing a high-strength hot-rolled steel sheet according to the present invention is of great industrial value as it can economically provide a high-strength hot-rolled steel sheet excellent in press formability and punching workability.

Claims (7)

質量%で、C:0.01〜0.30%、Si:0.01 〜2.0 %、Mn:0.5〜3.0%、P ≦0.03%、S ≦0.009 %、N ≦0.010 %、Al:0.002〜0.70%、Ti:0.03 〜0.40%を含有し、残部鉄及び不可避的不純物からなる鋼を、最高加熱温度を 1200 ℃以上とし、且つ 1100 ℃以上の保持時間を 300 分以下として加熱した後熱間圧延して、粒子径が2.0 μm以上のTi系窒化物を1平方mm当り160 個以下とした、フェライトが80%以上のフェライト・ベイナイト組織からなることを特徴とするプレス成形性と打抜き加工性に優れた高強度熱延鋼板。In mass%, C: 0.01 to 0.30%, Si: 0.01 to 2.0%, Mn: 0.5 to 3.0%, P ≤ 0.03%, S ≤ 0.009%, N ≤ 0.010%, Al: 0.002 to 0.70%, Ti: 0.03 The particle size of the steel containing ~ 0.40%, the balance iron and unavoidable impurities is heated to a maximum heating temperature of 1200 ° C or higher and a holding time of 1100 ° C or higher to 300 minutes or less, followed by hot rolling. High strength heat excellent in press formability and punching workability, characterized in that the ferrite is composed of ferrite bainite structure with 80% or more of Ti-based nitride of 2.0 μm or more per square mm. Rolled steel sheet. Nbを0.01〜0.10%含有する請求項1に記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。 The high-strength hot-rolled steel sheet excellent in press formability and punching workability according to claim 1, containing 0.01 to 0.10% of Nb. Ca:O.OOO5 〜0.0100%及びREM:O.OOO5〜0.0100%の何れか一方、又は双方を含有する請求項1又は2に記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。 The high-strength hot-rolled steel sheet excellent in press formability and punching workability according to claim 1 or 2, which contains one or both of Ca: O.OOO5 to 0.0100% and REM: O.OOO5 to 0.0100%. . Mo: 0.01〜0.5 %、V:0.01〜0.2 %、Zr: 0.01〜0.2 %、Cr:0.01〜2.0 %、Cu:0.2〜2.0 %、Ni:0.1〜1.5 %のうちの一種又は2種以上を含有する請求項1〜3の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。 Mo: 0.01-0.5%, V: 0.01-0.2%, Zr: 0.01-0.2%, Cr: 0.01-2.0%, Cu: 0.2-2.0%, Ni: 0.1-1.5% A high-strength hot-rolled steel sheet excellent in press formability and punching workability according to any one of claims 1 to 3. 度が780N/mm以上である請求項1〜4の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板。High strength hot rolled steel sheet having excellent press formability and punching workability according to any one of the strong degree is 780N / mm 2 or more claims 1-4. 請求項1〜5の何れかに記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板の製造方法であって、前記組成の鋼を、最高加熱温度を1200℃以上とし、且つ1100℃以上の保持時間を300分以下として加熱した後、熱間圧延して、鋼組織をフェライトが80%以上のフェライト・ベイナイト組織とすることを特徴とするプレス成形性と打抜き加工性に優れた高強度熱延鋼板の製造方法。A method for producing a high-strength hot-rolled steel sheet excellent in press formability and punching workability according to any one of claims 1 to 5, wherein the steel having the above composition has a maximum heating temperature of 1200 ° C or higher and 1100 Heating was performed at a holding time of ℃ or more for 300 minutes or less, followed by hot rolling , and the steel structure was made into a ferrite bainite structure with ferrite of 80% or more. Excellent in press formability and punching workability Manufacturing method of high-strength hot-rolled steel sheet. 熱延仕上げ温度をAr変態点〜950 ℃として熱間圧延し、引き続き20℃/sec以上の冷却速度で650 〜800 ℃まで冷却したうえ、2 〜15秒空冷し、さらに、20℃/sec以上の冷却速度で350 〜600 ℃に冷却して巻き取って、鋼組織をフェライトが80%以上のフェライト・ベイナイト組織とする請求項6に記載のプレス成形性と打抜き加工性に優れた高強度熱延鋼板の製造方法。Hot-rolling finish temperature is hot rolled at Ar 3 transformation point to 950 ° C, then cooled to 650-800 ° C at a cooling rate of 20 ° C / sec or more, then air-cooled for 2-15 seconds, and then 20 ° C / sec. 7. High strength excellent in press formability and punching workability according to claim 6 , wherein the steel structure is made into a ferrite bainite structure having a ferrite content of 80% or more by being cooled to 350 to 600 ° C. at the above cooling rate. A method for producing a hot-rolled steel sheet.
JP2002149165A 2002-05-23 2002-05-23 High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof Expired - Fee Related JP4205892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149165A JP4205892B2 (en) 2002-05-23 2002-05-23 High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149165A JP4205892B2 (en) 2002-05-23 2002-05-23 High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003342683A JP2003342683A (en) 2003-12-03
JP4205892B2 true JP4205892B2 (en) 2009-01-07

Family

ID=29767420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149165A Expired - Fee Related JP4205892B2 (en) 2002-05-23 2002-05-23 High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4205892B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819489B2 (en) * 2005-11-25 2011-11-24 Jfeスチール株式会社 High strength steel plate with excellent uniform elongation characteristics and method for producing the same
JP6287623B2 (en) * 2013-06-25 2018-03-07 新日鐵住金株式会社 High-strength hot-rolled steel sheet and its manufacturing method
MX2017012309A (en) 2015-03-27 2018-01-18 Jfe Steel Corp High-strength steel sheet and production method therefor.
US10570476B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel sheet and production method therefor
CN105925887B (en) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 A kind of 980MPa levels hot-rolled ferrite-bainite dual-phase steel and its manufacture method

Also Published As

Publication number Publication date
JP2003342683A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
TWI409344B (en) High-strength galvanized steel sheet having excellent formability and method for manufacturing the same
JP5798740B2 (en) High-strength cold-rolled steel sheet with excellent formability and manufacturing method
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
RU2750317C1 (en) Cold-rolled and heat-treated sheet steel and method for its production
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP6973694B1 (en) High-strength steel plate and its manufacturing method
JP6152782B2 (en) Hot rolled steel sheet
KR20030055339A (en) High Strength Hot Rolled Steel Plate Excellent In Enlargeability and Ductility and Method for Production thereof
JP2000199034A (en) High tensile strength hot rolled steel plate excellent in workability and its production
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2004027249A (en) High tensile hot rolled steel sheet and method of producing the same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP4205893B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
CN113544299A (en) High-strength steel sheet and method for producing same
JP3947354B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP4205892B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
KR100756114B1 (en) Method for production of high strength thin steel sheet excellent in hole expansibility, ductility and chemical treatment characteristics
JP2023554449A (en) High-strength steel plate with excellent workability and its manufacturing method
JP3857875B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172299A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
JP2021147646A (en) High-strength steel sheet and method for producing the same
JP3773604B2 (en) High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4205892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees