JP4923982B2 - High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing - Google Patents

High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing Download PDF

Info

Publication number
JP4923982B2
JP4923982B2 JP2006321280A JP2006321280A JP4923982B2 JP 4923982 B2 JP4923982 B2 JP 4923982B2 JP 2006321280 A JP2006321280 A JP 2006321280A JP 2006321280 A JP2006321280 A JP 2006321280A JP 4923982 B2 JP4923982 B2 JP 4923982B2
Authority
JP
Japan
Prior art keywords
less
ferrite
steel sheet
mass
stretch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006321280A
Other languages
Japanese (ja)
Other versions
JP2008133514A (en
Inventor
功一 中川
毅 横田
一洋 瀬戸
哲史 城代
克美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006321280A priority Critical patent/JP4923982B2/en
Publication of JP2008133514A publication Critical patent/JP2008133514A/en
Application granted granted Critical
Publication of JP4923982B2 publication Critical patent/JP4923982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の足回り部材やトラック用フレームなどに最適な加工後の伸びフランジ特性および伸び特性に優れた引張強度(TS)が780MPa以上の高強度熱延鋼板に関する。 The present invention is, stretch flangeability and elongation properties to the excellent tensile strength after optimal processed into suspension member or truck frame of a motor vehicle (TS) is concerned to the above high-strength hot-rolled steel sheet 780 MPa.

自動車の足回り部材やトラック用フレームなどには、優れた伸びフランジ特性および伸び特性が必要とされるため、従来よりTSが590MPa級の熱延鋼板が使用されてきた。しかし、近年、自動車の環境負荷低減や衝撃特性向上の観点から、自動車用鋼板の高強度化が推進されており、TSが780MPa級の熱延鋼板の使用が検討され始めている。鉄鋼材料では、一般に、強度が上昇するに伴い、加工性が低下するため、優れた加工性を有する高強度熱延鋼板の研究が行われてきたが、伸びフランジ特性や伸び特性を向上させる技術としては、例えば、特許文献1には、ベイナイトを体積率で5〜70%含み、残部が実質的にフェライトからなる複合組織を有し、フェライト中に(Mo/96)/{(Ti/48)+(Mo/96)}≧0.25を満たす範囲でTiおよびMoを含む析出物が分散析出しているTSが690MPa以上の加工性に優れた高張力熱延鋼板が開示されている。特許文献2には、実質的にフェライト単相組織であり、平均粒径10nm未満のTiとMoを含む炭化物が分散析出しているTSが590MPa以上の加工性に優れた高張力鋼板が開示されている。特許文献3には、C:0.03質量%以下を含有し、熱間圧延もしくは熱処理によって製造される高強度鋼板において、ミクロ組織の主相がフェライトもしくはベイナイトであり、粒界における鉄炭化物の占有率が0.1以下で、かつこの鉄炭化物の最大粒子径が1μm以下である疲労特性と局部変形能に優れた良加工性高強度鋼板が開示されている。特許文献4には、質量%にて、C:0.01〜0.07%、N:0.005%以下、S:0.005%以下、Ti:0.03〜0.2%、B:0.0002〜0.002%を含み、残部がFeおよび不可避的不純物からなる鋼であって、フェライトまたはベイニティックフェライト組織を面積率最大の相とし、硬質第二相およびセメンタイトが面積率で3%以下であり、TSが690MPa以上である打ち抜き加工性に優れた高強度熱延鋼板が開示されている。特許文献5には、質量%で、C:0.02〜0.20%、Mo:0.1〜0.8%、Ti:0.02〜0.40%およびZr:0.0005〜0.005%を含有し、実質的にフェライト単相組織であり、平均粒径が10nm以下のTiとMoを含む炭化物が析出しているr値の異方性が小さいTSが780MPa以上の加工性に優れた高強度熱延鋼板が開示されている。特許文献6には、鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板において、前記鋼板の化学組成が、質量%で、C:0.02%を超え0.20%以下、Si:0.01〜2.0%、Mn:0.1〜3.0%、P:0.003〜0.10%、S:0.020%以下、Al:0.001〜1.0%、N:0.0004〜0.015%、Ti:0.03〜0.2%を含有し、残部がFeおよび不可避的不純物であるとともに、前記鋼板の金属組織がフェライトを面積率で30〜95%含有し、残部の第二相がマルテンサイト、ベイナイト、パーライト、セメンタイトおよび残留オーステナイトのうちの1種または2種以上からなり、かつマルテンサイトを含有するときのマルテンサイトの面積率は0〜50%であり、そして、前記鋼板が粒径2〜30nmのTi系炭窒化析出物を平均粒子間距離30〜300nmで含有し、かつ粒径3μm以上の晶出系TiNを平均粒子間距離50〜500μmで含有する高張力溶融亜鉛めっき鋼板が開示されている。特許文献7には、質量%で、C:0.0002〜0.25%、Si:0.003〜3.0%、Mn:0.003〜3.0%およびAl:0.002〜2.0%を含有し、残部はFeおよび不純物からなり、不純物中のPは0.15%以下、Sは0.05%以下およびNは0.01%以下であり、面積割合で金属組織の70%以上がフェライト相で、その平均結晶粒径が20μm以下、アスペクト比が3以下であり、さらにフェライト粒界の70%以上が大角粒界からなり、大角粒界で形成されたフェライト相の最大径が30μm以下であり、かつ最小径が5nm以上の析出物の面積割合が金属組織の2%以下で、フェライト相と析出物とを除く残部相のなかで面積割合が最大である第二相の平均結晶粒径が20μm以下であり、最も近い第二相間にフェライト相の大角粒界が存在する熱延鋼板が開示されている。特許文献8には、質量%で、C:0.01〜0.1%、S≦0.03%、N≦0.005%、Ti:0.05〜0.5%を含み、さらにTi-(48/12)C-(48/14)N-(48/32)S≧0%を満たすTiを含有し、残部がFeおよび不可避的不純物からなる鋼であって、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが10〜1000nmで最小間隔が10nm超え10000nm以下であるバーリング加工性と疲労特性に優れた熱延鋼板が開示されている。
特開2003-321739号公報 特許第3591502号公報 特開平5-295485号公報 特開2004-315857号公報 特開2006-124789号公報 特開2006-63360号公報 特開2003-293083号公報 特開2002-161340号公報
For automobile undercarriage members and truck frames, since excellent stretch flange characteristics and stretch characteristics are required, hot rolled steel sheets with a TS of 590 MPa have been used in the past. However, in recent years, from the viewpoint of reducing the environmental load of automobiles and improving impact characteristics, the strength of automobile steel sheets has been increased, and the use of hot-rolled steel sheets with a TS of 780 MPa class has begun to be studied. In steel materials, workability generally decreases as strength increases, so research on high-strength hot-rolled steel sheets with excellent workability has been conducted, but technology to improve stretch flange characteristics and stretch characteristics For example, Patent Document 1 includes a composite structure containing 5 to 70% by volume of bainite and the balance being substantially made of ferrite, and (Mo / 96) / {(Ti / 48 ) + (Mo / 96)} ≧ 0.25 A high-tensile hot-rolled steel sheet having excellent workability with TS of 690 MPa or more in which precipitates containing Ti and Mo are dispersed and precipitated is disclosed. Patent Document 2 discloses a high-tensile steel sheet having a workability of 590 MPa or more with a TS of 590 MPa or more, in which carbides containing Ti and Mo having an average particle diameter of less than 10 nm are dispersed and precipitated, which is substantially a ferrite single-phase structure. ing. Patent Document 3 contains C: 0.03% by mass or less, and in a high-strength steel sheet manufactured by hot rolling or heat treatment, the main phase of the microstructure is ferrite or bainite, and the occupation ratio of iron carbide at the grain boundaries No. 0.1 or less and the maximum particle size of this iron carbide is 1 μm or less, and a high workability high-strength steel sheet excellent in fatigue characteristics and local deformability is disclosed. Patent Document 4 includes, in mass%, C: 0.01 to 0.07%, N: 0.005% or less, S: 0.005% or less, Ti: 0.03 to 0.2%, B: 0.0002 to 0.002%, the balance being Fe and Punching workability with inevitable impurities, with ferrite or bainitic ferrite structure as the largest area ratio phase, hard second phase and cementite less than 3% area ratio, and TS of 690 MPa or more A high-strength hot-rolled steel sheet excellent in the above is disclosed. Patent Document 5 contains, in mass%, C: 0.02 to 0.20%, Mo: 0.1 to 0.8%, Ti: 0.02 to 0.40% and Zr: 0.0005 to 0.005%, and is substantially a ferrite single phase structure. A high-strength hot-rolled steel sheet having excellent workability with TS having a small anisotropy of r-value where carbides containing Ti and Mo having an average particle diameter of 10 nm or less are precipitated is disclosed. In Patent Document 6, in the hot dip galvanized steel sheet provided with a hot dip galvanized layer on the surface of the steel sheet, the chemical composition of the steel sheet is, by mass%, C: more than 0.02% and 0.20% or less, Si: 0.01 to 2.0%, Contains Mn: 0.1-3.0%, P: 0.003-0.10%, S: 0.020% or less, Al: 0.001-1.0%, N: 0.0004-0.015%, Ti: 0.03-0.2%, the balance being Fe and inevitable While being an impurity, the metal structure of the steel sheet contains ferrite in an area ratio of 30 to 95%, and the remaining second phase is from one or more of martensite, bainite, pearlite, cementite, and retained austenite. When the martensite is contained, the area ratio of martensite is 0 to 50%, and the steel sheet contains Ti carbonitride precipitates having a particle size of 2 to 30 nm with an average interparticle distance of 30 to 300 nm. High-tensile hot-dip galvanizing containing crystallized TiN with a particle size of 3 μm or more with an average inter-particle distance of 50 to 500 μm The plate is disclosed. Patent Document 7 contains, in mass%, C: 0.0002 to 0.25%, Si: 0.003 to 3.0%, Mn: 0.003 to 3.0% and Al: 0.002 to 2.0%, and the balance consists of Fe and impurities, impurities Among them, P is 0.15% or less, S is 0.05% or less and N is 0.01% or less, and 70% or more of the metal structure in the area ratio is a ferrite phase, the average crystal grain size is 20 μm or less, and the aspect ratio is 3 or less. Furthermore, 70% or more of the ferrite grain boundaries are composed of large-angle grain boundaries, the maximum diameter of the ferrite phase formed at the large-angle grain boundaries is 30 μm or less, and the area ratio of precipitates with a minimum diameter of 5 nm or more is metal. The average crystal grain size of the second phase, which is 2% or less of the structure and has the largest area ratio among the remaining phases excluding the ferrite phase and precipitates, is 20 μm or less, and the large angle of the ferrite phase between the closest second phases A hot-rolled steel sheet having grain boundaries is disclosed. Patent Document 8 contains, in mass%, C: 0.01 to 0.1%, S ≦ 0.03%, N ≦ 0.005%, Ti: 0.05 to 0.5%, and Ti- (48/12) C- (48/14 ) N- (48/32) S is a steel containing Ti that satisfies S ≧ 0%, the balance being Fe and unavoidable impurities, and the average size of precipitates containing Ti of 5 nm or more with particles in the steel A hot-rolled steel sheet having excellent burring workability and fatigue characteristics, which has a minimum interval of 10 nm to 10000 nm and a thickness of 10 to 1000 nm, is disclosed.
Japanese Patent Laid-Open No. 2003-321739 Japanese Patent No. 3595502 Japanese Patent Laid-Open No. 5-295485 JP 2004-315857 JP JP 2006-124789 A JP 2006-63360 A JP 2003-293083 JP JP 2002-161340 A

しかしながら、上記の従来技術には、次のような問題がある。
特許文献1、2、5:近年価格が高騰しているMoが使用されているため、著しいコスト増を招く。
特許文献3、4、6、7、8:近年のプレス技術の進歩により、伸びフランジ変形部位では、ドロー(絞りおよび張り出し)→トリム(穴抜き)→リストライク(穴広げ)のような加工工程の採用が増加している。そのため、このような加工工程を経て成形させる鋼板には、ドロー・トリム後、すなわち加工後の伸びフランジ特性や伸び特性が重要であるが、特許文献3、4、6、7、8の鋼板では、780MPa以上のTSを得ようとすると、必ずしも十分な加工後の伸びフランジ特性や伸び特性が得られない。
However, the above prior art has the following problems.
Patent Documents 1, 2, and 5: Mo, which has been increasing in price in recent years, is used, resulting in a significant increase in cost.
Patent Documents 3, 4, 6, 7, and 8: Due to recent advances in press technology, a process such as drawing (drawing and overhanging) → trimming (hole punching) → restriking (hole expanding) is performed at the stretched flange deformation site. The adoption of is increasing. Therefore, the stretch flange characteristics and stretch characteristics after draw trimming, that is, after the process, are important for the steel sheets to be formed through such processing steps, but in the steel sheets of Patent Documents 3, 4, 6, 7, and 8, When trying to obtain TS of 780 MPa or more, it is not always possible to obtain sufficient stretch flange characteristics and stretch characteristics after processing.

本発明は、高価なMoを用いずに、加工後の伸びフランジ特性および伸び特性に優れたTSが780MPa以上の高強度熱延鋼板を提供することを目的とする。 The present invention, without using an expensive Mo, stretch flangeability and elongation properties superior TS after processing and to provide a more high-strength hot-rolled steel sheet 780 MPa.

なお、本発明の目標とする特性は次のとおりである。
TS≧780MPa
伸長率10%で圧延後の伸びフランジ特性(λ10)≧60%
伸長率10%で圧延後の伸び特性(El10)≧17%
The target characteristics of the present invention are as follows.
TS ≧ 780MPa
Stretch flange characteristics after rolling at an elongation rate of 10% (λ 10 ) ≧ 60%
Elongation characteristics after rolling at an elongation of 10% (El 10 ) ≧ 17%

本発明者等は、高価なMoを用いずに、加工後の伸びフランジ特性および伸び特性に優れたTSが780MPa以上の高強度熱延鋼板について検討したところ、以下のことを見出した。   The inventors of the present invention have studied the high strength hot-rolled steel sheet having a TS of 780 MPa or more, which is excellent in stretch flange characteristics and stretch characteristics after processing without using expensive Mo, and found the following.

i)Zrを添加すると、フェライト中にTiおよび/またはVを含む析出物が微細に分散して形成され、高強度化に効果的である。   i) When Zr is added, precipitates containing Ti and / or V in the ferrite are finely dispersed, which is effective in increasing the strength.

ii)Zrを添加すると、加工後の伸びフランジ性や伸び特性が向上する。   ii) When Zr is added, stretch flangeability and stretch characteristics after processing are improved.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.20%、V:0.03〜0.15%、Zr:0.0005〜0.005%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトの体積率が50〜95%、前記フェライトの粒界に析出するセメンタイトの体積率が4%以下、残部が実質的にベイナイトであり、前記フェライト中にはTiおよび/またはVを含む析出物が析出し、該析出物の平均直径が20nm以下であるミクロ組織を有することを特徴とする加工後の伸びフランジ特性および伸び特性に優れたTSが780MPa以上の高強度熱延鋼板を提供する。   The present invention has been made based on such knowledge, in mass%, C: 0.06-0.15%, Si: 1.2% or less, Mn: 0.5-1.6%, P: 0.04% or less, S: 0.005% or less , Al: 0.05% or less, Ti: 0.03-0.20%, V: 0.03-0.15%, Zr: 0.0005-0.005%, the balance is composed of Fe and inevitable impurities, and the volume fraction of ferrite Is 50 to 95%, the volume fraction of cementite precipitated at the ferrite grain boundaries is 4% or less, the balance is substantially bainite, and precipitates containing Ti and / or V are precipitated in the ferrite, Provided is a high-strength hot-rolled steel sheet having a TS of 780 MPa or more excellent in stretch flange characteristics and elongation characteristics after processing, characterized by having a microstructure in which the average diameter of the precipitate is 20 nm or less.

本発明の高強度熱延鋼板には、さらに、質量%で、Nb:0.001〜0.10%およびCr:0.01〜0.5%のうち少なくとも1種を含有することができる。   The high-strength hot-rolled steel sheet of the present invention can further contain at least one of Nb: 0.001 to 0.10% and Cr: 0.01 to 0.5% by mass%.

また、下記のMsが0.5以上で、かつ下記のM0が0.4以下であることが好ましい。
Ms=(Ti20/Titotal+V20/Vtotal)/2
M0=(Tisol/Ti+Vsol/V)/2
上記式で、Ti20、V20は、直径が20nm以下の析出物中の各元素の含有量(鋼に対する質量%)を、Titotal、Vtotalは、総析出物中の各元素の含有量(鋼に対する質量%)を、Tisol、Vsolは、鋼中の各元素の固溶量(質量%)を、そしてTi、Vは、鋼中の各元素の含有量(質量%)を表す。
Further, it is preferable that the following Ms is 0.5 or more and the following M 0 is 0.4 or less.
Ms = (Ti 20 / Ti total + V 20 / V total ) / 2
M 0 = (Ti sol / Ti + V sol / V) / 2
In the above formula, Ti 20 and V 20 are the contents of each element in the precipitate having a diameter of 20 nm or less (mass% relative to steel), Ti total and V total are the contents of each element in the total precipitate. (Mass% relative to steel), Ti sol and V sol represent the solid solution amount (mass%) of each element in the steel, and Ti and V represent the content (mass%) of each element in the steel. .

本発明の高強度熱延鋼板は、上記の成分組成を有する鋼スラブを、1150〜1300℃に加熱後、850〜1100℃の仕上圧延温度で熱間圧延を行い、650〜800℃の冷却停止温度まで平均冷却速度30℃/s以上で第一の強制冷却を行い、3〜15s間空冷後、平均冷却速度20℃/s以上で第二の強制冷却を行って、300〜600℃の巻取温度で巻取る製造方法により製造できる。   The high-strength hot-rolled steel sheet of the present invention is a steel slab having the above component composition, heated to 1150-1300 ° C, hot-rolled at a finishing rolling temperature of 850-1100 ° C, and stopped at 650-800 ° C. The first forced cooling is performed at an average cooling rate of 30 ° C / s or higher until the temperature, and after air cooling for 3 to 15 seconds, the second forced cooling is performed at an average cooling rate of 20 ° C / s or higher, and the winding is performed at 300 to 600 ° C. It can manufacture by the manufacturing method wound up at the taking temperature.

上記の製造方法では、第一の強制冷却の冷却停止温度を680〜770℃にすることが好ましい。 In the above manufacturing method, it is preferable that the cooling stop temperature of the first forced cooling is 680 to 770 ° C.

本発明により、高価なMoを用いずに、加工後の伸びフランジ特性および伸び特性に優れたTSが780MPa以上の高強度熱延鋼板を製造できるようになった。本発明の高強度熱延鋼板を用いることにより、自動車の足回り部材やトラック用フレームなどの板厚減少が可能となり、自動車の環境負荷が低減され、衝撃特性が大きく向上することが期待される。   According to the present invention, a high-strength hot-rolled steel sheet having a TS of 780 MPa or more excellent in stretch flange characteristics and stretch characteristics after processing can be produced without using expensive Mo. By using the high-strength hot-rolled steel sheet of the present invention, it is possible to reduce the plate thickness of automobile underbody members, truck frames, etc., and it is expected that the environmental load of the automobile will be reduced and the impact characteristics will be greatly improved. .

以下、本発明を具体的に説明する。なお、成分に関する「%」表示は特に断らない限り「質量%」を意味するものとする。   Hereinafter, the present invention will be specifically described. Unless otherwise specified, “%” in relation to ingredients means “% by mass”.

1)成分
C:0.06〜0.15%
Cは、TiやVを含む炭化物としてフェライト中に析出するとともに、ベイナイトを生成させて高強度化に寄与する元素である。TSを780MPa以上にするにはC量を0.06%以上とする必要がある。しかしながら、C量が0.15%を超えると溶接性が劣化するため、その上限を0.15%とする。より好ましいC量の範囲は0.07〜0.12%である。
1) ingredients
C: 0.06-0.15%
C is an element that precipitates in the ferrite as a carbide containing Ti and V, and generates bainite to contribute to high strength. In order to increase TS to 780 MPa or more, the C amount needs to be 0.06% or more. However, if the C content exceeds 0.15%, weldability deteriorates, so the upper limit is made 0.15%. A more preferable range of C content is 0.07 to 0.12%.

Si:1.2%以下
Siは、フェライト変態を促進させる働きや固溶強化する働きを有するので、Si量は0.1%以上とすることが好ましい。ただし、その量が1.2%を超えると鋼板の表面性状が著しく劣化し、耐食性も低下するため、Si量の上限を1.2%とする。より好ましいSi量の範囲は0.2〜1.0%である。
Si: 1.2% or less
Since Si has a function of promoting ferrite transformation and a function of strengthening solid solution, the Si content is preferably 0.1% or more. However, if the amount exceeds 1.2%, the surface properties of the steel sheet are remarkably deteriorated and the corrosion resistance is also lowered. Therefore, the upper limit of the Si amount is set to 1.2%. A more preferable range of Si content is 0.2 to 1.0%.

Mn:0.5〜1.6%
Mnは、固溶強化による高強度化に有効な元素である。しかしながら、その量が0.5%に満たないと780MPa以上のTSが得られない。一方、その量が1.6%を超えると溶接性を著しく低下させる。そのため、Mn量は0.5〜1.6%、好ましくは0.8〜1.2%とする必要がある。
Mn: 0.5-1.6%
Mn is an element effective for increasing the strength by solid solution strengthening. However, if the amount is less than 0.5%, a TS of 780 MPa or more cannot be obtained. On the other hand, if the amount exceeds 1.6%, the weldability is significantly reduced. Therefore, the amount of Mn needs to be 0.5 to 1.6%, preferably 0.8 to 1.2%.

P:0.04%以下
Pは、旧γ粒界に偏析して低温靭性を劣化させるとともに、加工性を低下させるので、P量は0.04%以下とする必要があるが、極力低減することが好ましい。
P: 0.04% or less
P segregates at the prior γ grain boundaries to deteriorate the low temperature toughness and lower the workability. Therefore, the amount of P needs to be 0.04% or less, but it is preferable to reduce it as much as possible.

S:0.005%以下
Sは、旧γ粒界に偏析したり、MnSとして多量に析出すると、低温靭性を低下させたり、また、加工の有無に関わらず伸びフランジ性を著しく低下させる。そのため、S量は0.005%以下とする必要があるが、極力低減することが好ましい。
S: 0.005% or less
When S segregates at the old γ grain boundary or precipitates in a large amount as MnS, the low temperature toughness is lowered, and the stretch flangeability is remarkably lowered regardless of the presence or absence of processing. Therefore, the S amount needs to be 0.005% or less, but it is preferable to reduce it as much as possible.

Al:0.05%以下
Alは、鋼の脱酸剤として添加され、鋼の清浄度を向上させるのに有効な元素である。この効果を得るためには0.001%以上含有させることが好ましい。しかし、その量が0.05%を超えると介在物が多量に発生し、鋼板の表面疵の原因になるため、Al量は0.05%以下とする。より好ましいAl量の範囲は0.01〜0.04%である。
Al: 0.05% or less
Al is added as a steel deoxidizer, and is an effective element for improving the cleanliness of steel. In order to acquire this effect, it is preferable to make it contain 0.001% or more. However, if the amount exceeds 0.05%, a large amount of inclusions are generated, causing surface flaws on the steel sheet. Therefore, the Al amount is 0.05% or less. A more preferable range of Al content is 0.01 to 0.04%.

Ti:0.03〜0.20%
Tiは、炭化物として析出してフェライトを強化する非常に重要な元素である。その量が、0.03%未満では780MPa以上のTSを得ることが困難であり、0.20%を超えると高強度化の効果は飽和し、コストアップとなる。そのため、Ti量は0.03〜0.20%、好ましくは0.08〜0.18%とする。
Ti: 0.03-0.20%
Ti is a very important element that precipitates as carbides and strengthens ferrite. If the amount is less than 0.03%, it is difficult to obtain a TS of 780 MPa or more, and if it exceeds 0.20%, the effect of increasing the strength is saturated and the cost increases. Therefore, the Ti content is 0.03 to 0.20%, preferably 0.08 to 0.18%.

V:0.03〜0.15%
Vは、Ti同様、炭化物として析出して、あるいは固溶状態でフェライトを強化する非常に重要な元素である。その量が、0.03%未満では780MPa以上のTSを得ることが困難であり、0.15%を超えると高強度化の効果は飽和し、コストアップとなる。そのため、V量は0.03〜0.15%、好ましくは0.05〜0.10%とする。
V: 0.03-0.15%
V, like Ti, is a very important element that precipitates as a carbide or strengthens ferrite in a solid solution state. If the amount is less than 0.03%, it is difficult to obtain a TS of 780 MPa or more, and if it exceeds 0.15%, the effect of increasing the strength is saturated and the cost is increased. Therefore, the V amount is 0.03 to 0.15%, preferably 0.05 to 0.10%.

Zr:0.0005〜0.005%
Zrは、本発明において最も重要な元素であり、フェライト中にTiおよび/またはVを含む析出物を微細に分散させて高強度化を促進するとともに、加工後の伸びフランジ特性および伸び特性を著しく向上させる。この理由は、Zrを添加すると、フェライト粒界において、セメンタイトの析出が抑制され、Zr炭化物が析出するためと考えられる。このような効果を得るには、Zr量を0.0005%以上にする必要がある。また、その量が0.005%超えるとZr炭化物が粗大化するために、加工時にZr炭化物の界面にクラックが生成し、加工後の伸びフランジ特性、伸び特性が不十分となる、すなわちλ10が60%未満、El10が17%未満となるので、Zr量は0.005%以下とする。より好ましいZr量の範囲は0.0007〜0.003%である。
Zr: 0.0005-0.005%
Zr is the most important element in the present invention, and precipitates containing Ti and / or V in the ferrite are finely dispersed to promote high strength, and the stretch flange characteristics and stretch characteristics after processing are remarkably improved. Improve. The reason for this is considered that when Zr is added, precipitation of cementite is suppressed at the ferrite grain boundary, and Zr carbide precipitates. In order to obtain such an effect, the Zr amount needs to be 0.0005% or more. Further, if the amount exceeds 0.005%, the Zr carbide coarsens, so that cracks are generated at the interface of the Zr carbide during processing, and the stretch flange characteristic and elongation characteristic after processing become insufficient, that is, λ 10 is 60 %, El 10 is less than 17%, so the Zr content is 0.005% or less. A more preferable range of the amount of Zr is 0.0007 to 0.003%.

残部は、Feおよび不可避的不純物残部にする必要があるが、以下の理由により、さらにNb:0.001〜0.10%およびCr:0.01〜0.5%のうち少なくとも1種を含有させることができる。   The balance needs to be Fe and the inevitable impurities balance, but at least one of Nb: 0.001 to 0.10% and Cr: 0.01 to 0.5% can be further contained for the following reason.

Nb:0.001〜0.10%、Cr:0.01〜0.5%
NbおよびCrは、Vと同様、析出物を形成して、あるいは固溶状態でフェライトを強化する働きを有する。Nb量が0.001%未満、あるいはCr量が0.01%未満では高強度化にほとんど寄与せず、Nb量が0.10%超え、あるいはCr量が0.5%超えると加工性が劣化する。したがって、Nb量は0.001〜0.10%、好ましくは0.01〜0.7%と、また、Cr量は0.01〜0.5%、好ましくは0.02〜0.4%とする。
Nb: 0.001 to 0.10%, Cr: 0.01 to 0.5%
Nb and Cr, like V, have a function of forming a precipitate or strengthening ferrite in a solid solution state. If the Nb content is less than 0.001% or the Cr content is less than 0.01%, it will hardly contribute to the increase in strength, and if the Nb content exceeds 0.10% or the Cr content exceeds 0.5%, the workability deteriorates. Therefore, the Nb content is 0.001 to 0.10%, preferably 0.01 to 0.7%, and the Cr content is 0.01 to 0.5%, preferably 0.02 to 0.4%.

2)ミクロ組織
2-1)フェライトの体積率:50〜95%
フェライトの体積率が50%未満の場合は、硬質第二相が過多となり、伸びフランジ特性が低下して、λ10≧60%を満足することができなくなる。一方、フェライトの体積率が95%を超えた場合は第二相が少な過ぎて加工後の伸び特性が向上せず、TS≧780MPaかつEl10≧17%を満足できなくなる。したがって、フェライトの体積率は50〜95%、好ましいくは65〜88%とする。
2) Microstructure
2-1) Volume ratio of ferrite: 50-95%
When the volume fraction of ferrite is less than 50%, the hard second phase is excessive, the stretch flange characteristic is deteriorated, and λ 10 ≧ 60% cannot be satisfied. On the other hand, when the volume fraction of ferrite exceeds 95%, the second phase is too small and the elongation characteristics after processing are not improved, and TS ≧ 780 MPa and El 10 ≧ 17% cannot be satisfied. Therefore, the volume ratio of ferrite is 50 to 95%, preferably 65 to 88%.

2-2)フェライト粒界に析出するセメンタイトの体積率:4%以下
フェライト粒界に析出するセメンタイトは、打ち抜き加工時にクラック発生の起点となり、加工後の伸びフランジ特性を低下させる。λ10を60%以上にするには、このセメンタイトの体積率を4%以下、好ましくは3%以下にする必要がある。なお、フェライト粒界に析出するセメンとは、フェライト粒の界面または三重点に存在する粒状やフィルム状のセメンタイトのことであり、次に述べるベイナイト中に生成するセメンタイトではない。
2-2) Volume ratio of cementite precipitated at ferrite grain boundaries: 4% or less Cementite precipitated at ferrite grain boundaries is a starting point for cracking during punching and reduces the stretch flange characteristics after machining. The lambda 10 to 60% or more, the volume ratio of cementite 4% or less, it is preferably to be 3% or less. The cementite precipitated at the ferrite grain boundaries is granular or film-like cementite existing at the ferrite grain interface or triple point, and is not cementite produced in bainite described below.

ここで、フェライトの体積率およびセメンタイトの体積率は、圧延方向に平行な板厚断面のミクロ組織を3%ナイタールで現出し、走査型電子顕微鏡(SEM)を用いて1500倍で板厚1/4位置を観察し、住友金属テクノロジー株式会社製の画像処理ソフト「粒子解析II」を用いてフェライトの面積率、セメンタイトの面積率を測定し、それぞれフェライトの体積率、セメンタイトの体積率とした。   Here, the volume fraction of ferrite and the volume fraction of cementite are expressed in 3% nital as the microstructure of the plate thickness section parallel to the rolling direction, and the plate thickness is 1/500 times using a scanning electron microscope (SEM). The four positions were observed, and the area ratio of ferrite and the area ratio of cementite were measured using image processing software “Particle Analysis II” manufactured by Sumitomo Metal Technology Co., Ltd. The volume ratio of ferrite and the volume ratio of cementite were measured, respectively.

また、フェライトとフェライト粒界に析出するセメンタイト以外の残部のミクロ組織は、780MPa以上のTSと60%以上のλ10を得るために、実質的にベイナイトとする必要がある。なお、ここで、残部のミクロ組織を実質的にベイナイトとするとは、残部において不可避的に混在する相以外をベイナイトとすることを意味し、具体的には、残部におけるベイナイトの占める割合を体積率で90%以上とすることを意味する。 Further, the remaining microstructure other than cementite precipitated at the ferrite and ferrite grain boundaries needs to be substantially bainite in order to obtain TS of 780 MPa or more and λ 10 of 60% or more. Here, the fact that the remaining microstructure is substantially bainite means that bainite other than the phase inevitably mixed in the remainder, specifically, the proportion of the bainite in the remainder is the volume ratio Means 90% or more.

2-3)フェライト中に析出するTiおよび/またはVを含む析出物の平均直径:20nm以下
本発明の鋼板においては、Tiおよび/またはVを含む析出物が、主に炭化物としてフェライト中に析出している。これは、フェライトにおけるCの固溶限がオーステナイトの固溶限より小さく、過飽和のCがフェライト中に炭化物として析出しやすいためと考えられる。そして、こうした析出物により軟質のフェライトが硬質化(高強度化)し、硬質のベイナイトとの硬度差が低減されるため、加工後の伸びフランジ性が向上すると考えられる。しかし、Tiおよび/またはVを含む析出物の平均直径が20nm超えると、転位の移動を抑制する効果が小さく、フェライトを十分に硬質化できないため、優れた加工後の伸びフランジ性が得られなくなる。したがって、Tiおよび/またはVを含む析出物の平均直径は20nm以下とする必要がある。
2-3) Average diameter of precipitates containing Ti and / or V precipitated in ferrite: 20 nm or less In the steel sheet of the present invention, precipitates containing Ti and / or V are mainly precipitated in ferrite as carbides. is doing. This is presumably because the solid solubility limit of C in ferrite is smaller than the solid solubility limit of austenite, and supersaturated C is likely to precipitate as carbide in the ferrite. And, such a precipitate hardens (strengthens) soft ferrite, and the hardness difference from hard bainite is reduced. Therefore, it is considered that stretch flangeability after processing is improved. However, if the average diameter of precipitates containing Ti and / or V exceeds 20 nm, the effect of suppressing the movement of dislocations is small, and ferrite cannot be hardened sufficiently, so excellent stretch flangeability after processing cannot be obtained. . Therefore, the average diameter of the precipitate containing Ti and / or V needs to be 20 nm or less.

ここで、Tiおよび/またはVを含む析出物の平均直径は、透過型電子顕微鏡(TEM)により観察し、TEMに装備されたエネルギー分散型X線分光装置(EDX)での分析によりTiおよび/またはVを含む析出物であることを確認した後、上記の画像処理ソフト「粒子解析II」を用いて画像解析し、個々の析出物について球形近似により直径を求めた。このときのTEM観察の試料の厚みは約50nm、観察倍率は10万倍で、観察視野数は5とした。このようにして求めたTiおよび/またはVを含む析出物の直径を平均して析出物の平均直径を求めた。   Here, the average diameter of the precipitate containing Ti and / or V is observed by a transmission electron microscope (TEM), and analyzed by an energy dispersive X-ray spectrometer (EDX) equipped in the TEM. Alternatively, after confirming that the precipitate contains V, image analysis was performed using the above-described image processing software “Particle Analysis II”, and the diameter of each precipitate was obtained by spherical approximation. At this time, the thickness of the sample for TEM observation was about 50 nm, the observation magnification was 100,000 times, and the number of observation fields was five. The average diameters of the precipitates containing Ti and / or V thus obtained were averaged to determine the average diameter of the precipitates.

析出物の分散により高強度化を達成するためには、析出物の量とサイズとその分散の程度が極めて重要である。鋼中の析出物は析出温度域によって種々のサイズ分布を持つが、一般に製造工程の高温域で析出する直径が20nm越えのものは、ほとんど強化能がないと考えられる。本発明者等は、前記MsおよびM0、すなわち総析出物中のTi量(Titotal)に対する直径が20nm以下の析出物中のTi量(Ti20)の比と総析出物中のV量(Vtotal)に対する直径が20nm以下の析出物中のV量(V20)の比の平均値Msを0.5以上、好ましくは0.6以上とし、かつ鋼中のTi含有量に対する固溶Ti量(Tisol)の比と鋼中のV含有量に対する固溶V量(Vsol)の比の平均値M0を0.4以下、好ましくは0.3以下とすると、確実に800MPa以上のTSが確実に得られることを見出した。Msが0.5未満、M0が0.4を超える場合では直径20nm以下の微細析出物が少ないため、800MPa以上のTSが得られない。 In order to achieve high strength by dispersing the precipitates, the amount and size of the precipitates and the degree of the dispersion are extremely important. Precipitates in steel have various size distributions depending on the precipitation temperature range, but in general, those with a diameter exceeding 20 nm that precipitate in the high temperature range of the production process are considered to have little strengthening ability. The inventors of the present invention have said Ms and M 0 , that is, the ratio of the amount of Ti (Ti 20 ) in the precipitate having a diameter of 20 nm or less to the amount of Ti in the total precipitate (Ti total ) and the amount of V in the total precipitate. The average value Ms of the ratio of the amount of V (V 20 ) in the precipitate having a diameter of 20 nm or less with respect to (V total ) is 0.5 or more, preferably 0.6 or more, and the amount of solid solution Ti with respect to the Ti content in the steel (Ti sol ) and the average value M 0 of the ratio of the solid solution V amount (V sol ) to the V content in the steel, when TS is 0.4 or less, preferably 0.3 or less, a TS of 800 MPa or more is surely obtained. I found. When Ms is less than 0.5 and M 0 exceeds 0.4, TS of 800 MPa or more cannot be obtained because there are few fine precipitates having a diameter of 20 nm or less.

ここで、Titotal、Vtotal、Ti20、V20、Tisol、Vsolは次のようにして求めた。
Titotal、Vtotal:従来の抽出残査法である10%A-A(アセチルアセトン電解溶液)を用いた抽出残渣法により求めた。すなわちTitotalは鋼中の析出Ti量(質量%)、Vtotalは鋼中の析出V量(質量%)として求まる値である。
Ti20、V20:上記TEM像中に観察された析出物のうち直径が20nm以下の析出物を画像解析によって抽出し、その直径からこれらの析出物の体積率を求めて合計し、鋼中における20nm以下の析出物の体積率を計算した。また、EDX分析したところ、20nm以下の析出物はその多くがTi-Vの複合炭化物であり、TiとVの組成比は3:1であった。この結果から、20nm以下の析出物は全てTi-Vの複合炭化物(Ti3V1C4)であるとして、下記i)〜iii)の仮定のもとにTi-Vの複合炭化物の格子定数を4.265Åと算出して密度(5.19g/cm3)を求め、上記で求めた体積率およびFeの密度(7.86g/cm3)を用いて鋼中の20nm以下の析出物中に含有されるTi量、V量であるTi20、V20を求めた。
i)Ti-V-CはNaCl型の結晶構造
ii)格子定数は、VC(4.130Å)、TiC(4.310Å)を基に、TiとVの比で分配
iii)組成比Ti:V=3:1
Tisol、Vsol:鋼中の固溶Ti量であるTisolは、鋼中のTi含有量と上記のようにして求めたTitotalとの差(=Ti-Titotal)として求めた。Vsolも同様にして求めた。
Here, Ti total , V total, Ti 20 , V 20, Ti sol , and V sol were determined as follows.
Ti total , V total : It was determined by an extraction residue method using 10% AA (acetylacetone electrolytic solution) which is a conventional extraction residue method. That is, Ti total is a value determined as the amount of precipitated Ti in steel (mass%) and V total is the amount of precipitated V in steel (mass%).
Ti 20 , V 20 : Of the precipitates observed in the above TEM image, precipitates with a diameter of 20 nm or less were extracted by image analysis, and the volume fraction of these precipitates was obtained from the diameters and totaled, The volume fraction of precipitates of 20 nm or less was calculated. As a result of EDX analysis, most of the precipitates of 20 nm or less were Ti-V composite carbide, and the composition ratio of Ti and V was 3: 1. From this result, it is assumed that all precipitates of 20 nm or less are Ti-V composite carbides (Ti 3 V 1 C 4 ), and the lattice constants of Ti-V composite carbides under the assumptions of i) to iii) below. It was calculated to 4.265Å determined density (5.19g / cm 3) and is contained 20nm in the following precipitates in steel by using the density of the volume ratio and Fe obtained (7.86g / cm 3) above Ti 20 and V 20 which were Ti amount and V amount were determined.
i) Ti-VC is NaCl type crystal structure
ii) Lattice constant is distributed by the ratio of Ti and V based on VC (4.130mm) and TiC (4.310mm)
iii) Composition ratio Ti: V = 3: 1
Ti sol, V sol: Ti sol is dissolved Ti content in steel was determined as the difference between Ti total obtained as Ti content and the in the steel (= Ti-Ti total). V sol was determined in the same manner.

3)製造方法
3-1)鋼スラブの加熱温度:1150〜1300℃
TiあるいはVなどの炭化物形成元素は、鋼スラブ中ではほとんどが炭化物として存在している。熱間圧延後にフェライト中に目標どおりに析出させるためには熱間圧延前に炭化物として析出している析出物を一旦溶解させる必要がある。そのためには1150℃以上で鋼スラブを加熱する必要があるが、1300℃を超えて加熱すると、熱間圧延後の結晶粒径が粗大になりすぎて、加工後の伸びフランジ特性、伸び特性ともに劣化するので、鋼スラブの加熱温度は1150〜1300℃、好ましくは1170〜1260℃とする。
3) Manufacturing method
3-1) Heating temperature of steel slab: 1150 ~ 1300 ℃
Most carbide-forming elements such as Ti and V are present as carbides in steel slabs. In order to cause precipitation in ferrite as desired after hot rolling, it is necessary to once dissolve precipitates that have precipitated as carbides before hot rolling. For that purpose, it is necessary to heat the steel slab at 1150 ° C or higher, but if it is heated above 1300 ° C, the crystal grain size after hot rolling becomes too coarse, and both the stretch flange characteristics and elongation characteristics after processing Since it deteriorates, the heating temperature of steel slab shall be 1150-1300 degreeC, Preferably it shall be 1170-1260 degreeC.

3-2)熱間圧延における仕上圧延温度:850〜1100℃
加熱後の鋼スラブは、熱間圧延の終了温度である仕上圧延温度850〜1100℃で熱間圧延される。仕上圧延温度が850℃未満では、フェライト+オーステナイトの領域で圧延され、展伸したフェライト組織となるため、加工後の伸びフランジ特性や伸び特性が劣化する。仕上圧延温度が1100℃超えでは、圧延で導入された歪が回復し、フェライト変態の核生成サイトが減少するためフェライトの体積率が50%以上にならない。よって、仕上圧延温度は850〜1100℃、好ましくは870〜960℃とする。
3-2) Finishing rolling temperature in hot rolling: 850-1100 ° C
The steel slab after heating is hot-rolled at a finish rolling temperature of 850 to 1100 ° C., which is the end temperature of hot rolling. If the finish rolling temperature is less than 850 ° C., the ferrite structure is rolled and expanded in the ferrite + austenite region, so that the stretch flange characteristics and elongation characteristics after processing deteriorate. When the finish rolling temperature exceeds 1100 ° C., the strain introduced by rolling recovers and the nucleation sites of ferrite transformation decrease, so the ferrite volume fraction does not exceed 50%. Therefore, the finish rolling temperature is 850 to 1100 ° C, preferably 870 to 960 ° C.

3-3)第一の強制冷却条件:650〜800℃の冷却停止温度まで平均冷却速度30℃/s以上で冷却
熱間圧延後は、仕上圧延温度から650〜800℃の冷却停止温度まで、平均冷却速度30℃/s以上で第一の強制冷却を行う必要がある。冷却停止温度が800℃超えでは、核生成が起こりにくいためフェライトの体積率が50%以上にならず、Tiおよび/またはVを含む析出物の所定の析出状態が得られない。冷却停止温度が650℃未満では、C、Tiの拡散速度が低下するため、フェライトの体積率が50%以上にならず、Tiおよび/またはVを含む析出物の所定の析出状態が得られない。したがって、冷却停止温度は650〜800℃とする。特に、680〜770℃とすると、Msが0.5以上、M0が0.4以下となり、確実に800MPa以上のTSが得られる。また、仕上圧延温度から冷却停止温度までの平均冷却速度が30℃/s未満では、パーライトが生成するため、加工後の伸びフランジ特性や伸び特性が劣化する。したがって、平均冷却速度は30℃/s以上、好ましくは70℃/s以上とする。なお、冷却速度の上限は、特に限定するものではないが、上記の冷却停止温度範囲内に正確に停止させるためには、300℃/s程度とすることが好ましい。
3-3) First forced cooling condition: cooling at an average cooling rate of 30 ° C./s or more to a cooling stop temperature of 650 to 800 ° C. After hot rolling, from the finish rolling temperature to a cooling stop temperature of 650 to 800 ° C., The first forced cooling must be performed at an average cooling rate of 30 ° C / s or higher. When the cooling stop temperature exceeds 800 ° C., nucleation hardly occurs, so the volume fraction of ferrite does not exceed 50%, and a predetermined precipitation state of precipitates containing Ti and / or V cannot be obtained. When the cooling stop temperature is less than 650 ° C, the diffusion rate of C and Ti decreases, so the ferrite volume fraction does not exceed 50%, and the predetermined precipitation state of precipitates containing Ti and / or V cannot be obtained. . Therefore, the cooling stop temperature is set to 650 to 800 ° C. In particular, when the temperature is 680 to 770 ° C., Ms is 0.5 or more and M 0 is 0.4 or less, and a TS of 800 MPa or more can be reliably obtained. In addition, when the average cooling rate from the finish rolling temperature to the cooling stop temperature is less than 30 ° C./s, pearlite is generated, so that the stretch flange characteristics and elongation characteristics after processing deteriorate. Therefore, the average cooling rate is 30 ° C./s or higher, preferably 70 ° C./s or higher. The upper limit of the cooling rate is not particularly limited, but is preferably about 300 ° C./s in order to accurately stop the cooling rate within the above cooling stop temperature range.

3-4)第一の強制冷却後の空冷:3〜15s
第一の強制冷却後は、3〜15sの間、強制冷却を停止して空冷する。この空冷している時間が3s未満ではフェライトの体積率が50%以上にならず、15sを超えるとパーライトが生成し、加工後の伸びフランジ特性や伸び特性が劣化する。なお、空冷時の冷却速度は概ね15℃/s以下である。
3-4) Air cooling after the first forced cooling: 3-15s
After the first forced cooling, forced cooling is stopped and air cooled for 3 to 15 seconds. If the air cooling time is less than 3 s, the volume fraction of ferrite does not exceed 50%, and if it exceeds 15 s, pearlite is generated, and the stretch flange characteristics and elongation characteristics after processing deteriorate. The cooling rate during air cooling is approximately 15 ° C./s or less.

3-5)第二の強制冷却条件:巻取温度300〜600℃まで平均冷却速度20℃/s以上で冷却
空冷後は、巻取温度300〜600℃まで平均冷却速度20℃/s以上で第二の強制冷却を行う。このとき、平均冷却速度が20℃/s未満では冷却中にパーライトが析出するため、平均冷却速度は20℃/s以上、好ましくは80℃/s以上とする。なお、冷却速度の上限は、特に限定するものではないが、上記の巻取温度範囲内に正確に停止させるためには、300℃/s程度とすることが好ましい。また、巻取温度が300℃未満では、焼きが入るために残部がマルテンサイトとなり、加工後の伸びフランジ特性や伸び特性が劣化する。巻取温度が600℃超えでは、パーライトが生成し、加工後の伸びフランジ特性や伸び特性が劣化する。したがって、巻取温度は300〜600℃、好ましくは350〜550℃とする。
3-5) Second forced cooling condition: Cooling at an average cooling rate of 20 ° C / s or higher up to a winding temperature of 300 to 600 ° C After air cooling, at an average cooling rate of 20 ° C / s or higher from a winding temperature of 300 to 600 ° C Perform a second forced cooling. At this time, if the average cooling rate is less than 20 ° C./s, pearlite precipitates during cooling, so the average cooling rate is 20 ° C./s or more, preferably 80 ° C./s or more. The upper limit of the cooling rate is not particularly limited, but is preferably about 300 ° C./s in order to accurately stop the cooling rate within the above winding temperature range. On the other hand, when the coiling temperature is less than 300 ° C., the remaining portion becomes martensite because of quenching, and the stretch flange characteristics and stretch characteristics after processing deteriorate. When the coiling temperature exceeds 600 ° C, pearlite is generated, and the stretch flange characteristics and stretch characteristics after processing deteriorate. Therefore, the coiling temperature is 300 to 600 ° C, preferably 350 to 550 ° C.

表1に示す組成の鋼A1〜2、B1〜5、C1〜8、D1〜2、E1〜2、F1を転炉で溶製し、連続鋳造により鋼スラブとした。その後これらの鋼スラブを表2に示す条件で加熱、熱間圧延、冷却後、巻取って板厚2.0mmの熱延鋼板1〜28を作製した。そして、上述した方法でミクロ組織を解析し、M0とMsを求め、次の方法でTS、λ10、El10を求めた。
TS:圧延方向を引張方向としてJIS 5号試験片を用いてJIS Z 2241に準拠した方法で引張試験を行い、TSを求めた。
λ10:伸長率10%で圧延後、鉄連規格JFST 1001に準じて穴拡げ試験を行い、λ10を求めた。
El10:伸長率10%で圧延後、圧延方向を引張方向としてJIS 5号試験片を用いてJIS Z 2241に準拠した方法で引張試験を行い、El10を求めた。
Steels A1 to 2, B1 to 5, C1 to 8, D1 to 2, E1 to 2, and F1 having compositions shown in Table 1 were melted in a converter and formed into a steel slab by continuous casting. Thereafter, these steel slabs were heated, hot-rolled and cooled under the conditions shown in Table 2, and wound to produce hot-rolled steel sheets 1 to 28 having a thickness of 2.0 mm. Then, the microstructure was analyzed by the method described above to determine M 0 and Ms, and TS, λ 10 , and El 10 were determined by the following method.
TS: A tensile test was performed by a method based on JIS Z 2241 using a JIS No. 5 test piece with the rolling direction as the tensile direction, and TS was obtained.
λ 10 : After rolling at an elongation rate of 10%, a hole expansion test was performed according to the iron standard JFST 1001, and λ 10 was obtained.
El 10 : After rolling at an elongation rate of 10%, a tensile test was performed by a method based on JIS Z 2241 using a JIS No. 5 test piece with the rolling direction as the tensile direction, and El 10 was obtained.

結果を表3に示す。本発明の鋼板1〜3、6、8、11、16、21〜24、26、28は、TSが780MPa以上、λ10が60%以上、El10が17%以上であり、加工後の伸びフランジ特性および伸び特性に優れた高強度熱延鋼板であることがわかる。 The results are shown in Table 3. Steel sheets 1 to 3, 6, 8, 11, 16, 21 to 24, 26, and 28 of the present invention have TS of 780 MPa or more, λ 10 of 60% or more, El 10 of 17% or more, and elongation after processing. It can be seen that this is a high-strength hot-rolled steel sheet having excellent flange characteristics and elongation characteristics.

Figure 0004923982
Figure 0004923982

Figure 0004923982
Figure 0004923982

Figure 0004923982
Figure 0004923982

Claims (3)

質量%で、C:0.06〜0.15%、Si:1.2%以下、Mn:0.5〜1.6%、P:0.04%以下、S:0.005%以下、Al:0.05%以下、Ti:0.03〜0.20%、V:0.03〜0.15%、Zr:0.0005〜0.005%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、フェライトの体積率が50〜95%、前記フェライトの粒界に析出するセメンタイトの体積率が4%以下、残部が実質的にベイナイトであり、前記フェライト中にはTiおよび/またはVを含む析出物が析出し、該析出物の平均直径が20nm以下であるミクロ組織を有することを特徴とする加工後の伸びフランジ特性および伸び特性に優れた引張強度が780MPa以上の高強度熱延鋼板。   In mass%, C: 0.06 to 0.15%, Si: 1.2% or less, Mn: 0.5 to 1.6%, P: 0.04% or less, S: 0.005% or less, Al: 0.05% or less, Ti: 0.03 to 0.20%, V : 0.03 to 0.15%, Zr: 0.0005 to 0.005%, with the balance being a component composition consisting of Fe and inevitable impurities, volume fraction of ferrite being 50 to 95%, cementite precipitated at the ferrite grain boundaries 4% or less, the balance is substantially bainite, and precipitates containing Ti and / or V are precipitated in the ferrite, and the average diameter of the precipitates is 20 nm or less. A high-strength hot-rolled steel sheet with a tensile strength of 780 MPa or more, excellent in stretch flange characteristics and elongation characteristics after processing. さらに、質量%で、Nb:0.001〜0.10%およびCr:0.01〜0.5%のうち少なくとも1種を含有する成分組成を有することを特徴とする請求項1に記載の加工後の伸びフランジ特性および伸び特性に優れた引張強度が780MPa以上の高強度熱延鋼板。   The stretch flange characteristic and elongation after processing according to claim 1, further comprising a component composition containing at least one of Nb: 0.001 to 0.10% and Cr: 0.01 to 0.5% in mass%. A high-strength hot-rolled steel sheet with excellent tensile strength of 780 MPa or more. 下記のMsが0.5以上で、かつ下記のM0が0.4以下であることを特徴とする請求項1または2に記載の加工後の伸びフランジ特性および伸び特性に優れた引張強度が780MPa以上の高強度熱延鋼板;
Ms=(Ti20/Titotal+V20/Vtotal)/2
M0=(Tisol/Ti+Vsol/V)/2
上記式で、
Ti20、V20は、直径が20nm以下の析出物中の各元素の含有量(鋼に対する質量%)を、
Titotal、Vtotalは、総析出物中の各元素の含有量(鋼に対する質量%)を、
Tisol、Vsolは、鋼中の各元素の固溶量(質量%)を、そして
Ti、Vは、鋼中の各元素の含有量(質量%)を、
表す。
The following Ms is 0.5 or more, and the following M 0 is 0.4 or less.The tensile strength excellent in stretch flange characteristics and elongation characteristics after processing according to claim 1 or 2, wherein the tensile strength is 780 MPa or more. High strength hot rolled steel sheet;
Ms = (Ti 20 / Ti total + V 20 / V total ) / 2
M 0 = (Ti sol / Ti + V sol / V) / 2
Where
Ti 20 , V 20 is the content of each element in the precipitate having a diameter of 20 nm or less (mass% relative to steel),
Ti total , V total is the content of each element in the total precipitate (mass% relative to steel),
Ti sol and V sol are the solid solution amount (% by mass) of each element in steel, and
Ti and V are the contents (mass%) of each element in steel.
To express.
JP2006321280A 2006-11-29 2006-11-29 High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing Expired - Fee Related JP4923982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321280A JP4923982B2 (en) 2006-11-29 2006-11-29 High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321280A JP4923982B2 (en) 2006-11-29 2006-11-29 High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing

Publications (2)

Publication Number Publication Date
JP2008133514A JP2008133514A (en) 2008-06-12
JP4923982B2 true JP4923982B2 (en) 2012-04-25

Family

ID=39558557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321280A Expired - Fee Related JP4923982B2 (en) 2006-11-29 2006-11-29 High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing

Country Status (1)

Country Link
JP (1) JP4923982B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636346B2 (en) * 2011-08-17 2014-12-03 株式会社神戸製鋼所 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
CN103732779B (en) 2011-08-17 2015-11-25 株式会社神户制钢所 High tensile hot rolled steel sheet
JP5316634B2 (en) * 2011-12-19 2013-10-16 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP7472992B2 (en) * 2021-03-31 2024-04-23 Jfeスチール株式会社 Cold-rolled steel sheet and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08143952A (en) * 1994-11-21 1996-06-04 Sumitomo Metal Ind Ltd Production of high strength hot rolled steel plate excellent in workability, fatigue characteristic, and surface characteristic
JP4180909B2 (en) * 2002-12-26 2008-11-12 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same
JP4525299B2 (en) * 2004-10-29 2010-08-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008133514A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP2258886B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
JP5348268B2 (en) High-strength cold-rolled steel sheet having excellent formability and method for producing the same
EP2014781B1 (en) High-strength hot-rolled steel plate having excellent stretch properties, stretch flanging properties and tension fatigue properties, and method for production thereof
JP5070732B2 (en) High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
JP5029748B2 (en) High strength hot rolled steel sheet with excellent toughness and method for producing the same
KR101604963B1 (en) High-strength steel sheet with excellent workability and manufacturing method therefor
WO2012036309A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP5487984B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
WO2012036308A1 (en) High-strength hot-rolled steel sheet having superior punchability and method for producing same
KR20130012081A (en) High-strength hot-rolled steel sheet having excellent stretch flangeability and method for producing same
JP6973694B1 (en) High-strength steel plate and its manufacturing method
JPH06293910A (en) Production of high strength hot rolled steel plate excellent in bore expandability and ductility
WO2016113781A1 (en) High-strength steel sheet and production method therefor
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2003193188A (en) High tensile strength galvannealed, cold rolled steel sheet having excellent stretch-flanging property and production method therefor
JP2003253385A (en) Cold-rolled steel sheet superior in high-velocity deformation characteristic and bending characteristic, and manufacturing method therefor
JP5958668B1 (en) High strength steel plate and manufacturing method thereof
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4923982B2 (en) High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees