JP4205853B2 - Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same - Google Patents

Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same Download PDF

Info

Publication number
JP4205853B2
JP4205853B2 JP2000357569A JP2000357569A JP4205853B2 JP 4205853 B2 JP4205853 B2 JP 4205853B2 JP 2000357569 A JP2000357569 A JP 2000357569A JP 2000357569 A JP2000357569 A JP 2000357569A JP 4205853 B2 JP4205853 B2 JP 4205853B2
Authority
JP
Japan
Prior art keywords
hot
steel
steel sheet
rolled steel
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000357569A
Other languages
Japanese (ja)
Other versions
JP2002161340A (en
Inventor
龍雄 横井
学 高橋
力 岡本
浩幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000357569A priority Critical patent/JP4205853B2/en
Publication of JP2002161340A publication Critical patent/JP2002161340A/en
Application granted granted Critical
Publication of JP4205853B2 publication Critical patent/JP4205853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バーリング加工性と疲労特性に優れた引張強度640MPa以上の熱延鋼板およびその製造方法に関するものであり、特に、自動車の足廻り部品たとえばサスペンションアーム用素材に好適な、バーリング加工性(穴拡げ性)と疲労特性に優れた熱延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。
ただ、Al合金等の軽金属は比強度が高いという利点があるものの、鋼に比較して著しく高価であるため、その適用は特殊な用途に限られてきた。より広い範囲で自動車の軽量化を推進するためには、安価な高強度鋼板の適用が強く求められている。
【0003】
一般に材料は高強度になるほど延性が低下して加工性(成形性)が悪くなる。鉄鋼材料においても例外ではなく、これまでに高強度と高延性の両立の試みがなされてきた。一方、自動車のサスペンションアーム等の足廻り部品に使用される材料には、これらの特性に加えてバーリング加工性(穴拡げ性)および疲労耐久性が求められている。
しかし、高強度化に伴って穴拡げ性は低下する傾向を示すばかりでなく、高強度化は切り欠き感受性の上昇をも招くため、応力集中部位での疲労耐久性が期待したほどには向上しない。従って、複雑な形状をしている自動車の足廻り部品等への高強度鋼板の適用にあたっては、その穴拡げ性だけでなく、疲労耐久性も重要な検討課題となる。
【0004】
穴拡げ性(伸びフランジ性またはバーリング加工性)に優れた高強度熱延鋼板として、例えば特開平6−200351号公報に、伸びフランジ性の優れた高強度熱延鋼板を、Ti,Nbを添加することにより第二相を低減し、主相であるポリゴナルフェライト中にTiC,NbCを析出強化させることによって得る発明が開示されている。
また特開平7−11382号公報には、Ti,Nbを添加することにより第二相を低減し、ミクロ組織をアシキュラーフェライトとしTiC,NbCで析出強化することによって、伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている。
【0005】
また特開平7−70696号公報には、Ti,NbをC当量以上添加しミクロ組織をフェライト単相にすると共にCuを添加し、TiC,NbCと共にε−Cuを析出させることにより高強度化した、伸びフランジ加工性の優れた高強度熱延鋼板を得る発明が開示されている。
さらに特開平8−157957号公報には、Ti,NbをC当量以上添加しミクロ組織をフェライト単相にすると共に、Ni/Cuの値を規定してフェライトをポリゴナルからベイニティックに変化させて、伸びフランジ性を向上させた伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている。
【0006】
一方、疲労特性に優れた高強度熱延鋼板として、例えば特開平3−82708号公報に、疲労特性の優れた強加工用高強度熱間圧延鋼板を、極低C化によりセメンタイト等の第二相組織を極力低減し、PおよびCuの複合添加により高い強度と優れた疲労特性を得る発明が開示されている。
また特開平6−287685号公報には、Tiを添加することにより第二相を低減しフェライト中の固溶Cを減らすと共に、TiC等の析出強化により690MPa以上の強度を得ることに加えて、Cuを添加することで疲労特性を向上させた、伸びフランジ性及び疲労特性の優れた高強度熱延鋼板を得る発明が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、サスペンションアーム等一部の部品用鋼板においては、バーリング加工性等の加工性と共にせん断、打ち抜き加工ままの端面での疲労耐久性が大変に重要であり、上記従来技術では満足する特性が得られない。また例え両特性が満足されたとしても、安価に安定して製造できる製造方法を提供することが重要であり、上記従来技術では不十分であると言わざるを得ない。
【0008】
すなわち、上記特開平6−200351号公報に記載の発明では、高い伸びフランジ性を得るために面積率で85%以上のポリゴナルフェライトが必須であるが、85%以上のポリゴナルフェライトを得るためには、熱間圧延後にフェライト粒の成長を促進するため長時間の保持が必要であり、操業コスト上好ましくない。
また上記特開平7−11382号公報に記載の発明では、転位密度が高いミクロ組織と微細なTiC及び/又はNbCの析出によって、780MPaで17%程度の延性しかなく成形性が不十分である。
【0009】
また、上記特開平7−70696号公報に記載の発明では、フェライト相にε−Cuを析出させているため、延性が低下して加工性が悪くなる可能性がある。
また、上記特開平8−157957号公報に記載の発明では、転位密度が高いミクロ組織と微細なTiC及び/又はNbCの析出によって、780MPaで20%程度の延性しかなく成形性が不十分である。
【0010】
さらに、これらの発明は疲労特性については何ら言及していない。一方、疲労特性にも言及した発明として、上記特開平3−82708号公報に記載の発明では、結晶粒界に偏析し粒界脆化を引き起こすPが0.04〜0.10%添加されることが必須であるため、疲労破壊の起点となる粒界破壊が起こった場合、疲労特性が著しく劣化する可能性がある。さらに同公報には、Pによる粒界脆化等を抑制するBの添加については何も記載されていない。
さらに、上記特開平6−287685号公報に記載の発明では、疲労特性向上のために主にCuの析出強化を利用しているが、Cuの析出強化は静的強度ほど疲労強度を向上させないので、疲労限度比を低下させてしまうという問題点がある。
【0011】
そこで本発明は、上記従来技術の課題を有利に解決できる、バーリング加工性と疲労特性に優れた引張強度640MPa以上の熱延鋼板、およびその鋼板を安価に安定して製造できる製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者らは、現在通常に採用されている連続熱間圧延設備により工業的規模で生産されている熱延鋼板の製造プロセスを念頭において、熱延鋼板のバーリング加工性と疲労特性の両立を達成すべく鋭意研究を重ねた。
その結果、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが101 〜103 nmで最小間隔が101 nm超104 nm以下であることが、バーリング加工性向上に非常に有効であり、かつ延性も損なわないことを見出した。
同時に上記の析出物の平均サイズ、最小間隔の範囲においてせん断および打ち抜き端面から疲労き裂が進展する場合での疲労特性が向上することを新たに見出し、本発明をなしたものである。
【0013】
即ち、本発明の要旨は以下の通りである。
(1)質量%にて、
C :0.01〜0.1%、 S ≦0.0013%、
N ≦0.005%、 Si:0.01〜2%、
Mn:0.05〜2%、 P ≦0.1%、
Al:0.005〜1.0%、Ti:0.05〜0.240
を含み、さらに
Ti−48/12C−48/14N−48/32S≧0%
を満たす範囲でTiを含有し、残部がFe及び不可避的不純物からなる鋼であって、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下であることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板。
(2)質量%にて、
C :0.01〜0.1%、 S ≦0.0013%、
N ≦0.005%、 Si:0.01〜2%、
Mn:0.05〜2%、 P ≦0.1%、
Al:0.005〜1.0%、Ti:0.05〜0.240%、
Nb:0.01〜0.5%
を含み、さらに
Ti+48/93Nb−48/12C−48/14N−48/32S≧0%
を満たす範囲でTiとNbを含有し、残部がFe及び不可避的不純物からなる鋼であって、鋼中の粒子で5nm以上のTi及びNbのいずれか一方又は両方を含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下であることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板。
【0014】
)前記鋼が、さらに質量%にて、
B :0.0002〜0.002%
を含有することを特徴とする、前記(1)又は(2)に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
)前記鋼が、さらに質量%にて、
Ni:0.1〜1%
を含有することを特徴とする、前記(1)ないし()のいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
【0015】
)前記鋼が、さらに質量%にて、
Ca:0.0005〜0.02%、
REM:0.0005〜0.2%
の一種または二種を含有することを特徴とする、前記(1)ないし()のいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
)前記鋼が、さらに質量%にて、
Mo:0.05〜1%、 V :0.02〜0.2%、
Cr:0.01〜1%、 Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とする、前記(1)ないし()のいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
【0016】
)前記(1)ないし()のいずれか1項に記載の成分を有する鋼片の熱間圧延に際し、Ar変態点以上で熱間仕上圧延を終了した後、350℃から750℃の温度域まで冷却して巻き取り、鋼中の粒子で5nm以上のTi及びNbのいずれか一方又は両方を含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下である鋼板を得ることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板の製造方法。
)前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行い、Ar変態点以上で熱間仕上圧延を終了することを特徴とする、前記()記載のバーリング加工性と疲労特性に優れた熱延鋼板の製造方法。
【0017】
【発明の実施の形態】
以下に、本発明に至った基礎研究結果について説明する。
まず、Ti* (Ti* =Ti−48/12C−48/14N−48/32S)の穴拡げ性に及ぼす効果についての調査を行った。そのための供試材は、次のようにして準備した。
すなわち、0.05%C−1.0%Si−1.4%Mn−0.01%P−0.001%S−0.03%Al−0.001%NをベースにTi添加量を変化させて成分調整し、溶製した鋳片を熱間圧延して常温で巻き取った鋼板を、550℃で1時間等温保持した後、炉冷する熱処理を施し、様々なTi* の鋼板を得た。
これらの鋼板についての穴拡げ試験結果を図1に示す。この結果より、Ti* ≧0%で穴拡げ値(穴拡げ率)が著しく向上することを新規に知見した。ただし、板の長手方向、幅方向いずれにおいても安定して優れた穴拡げ値を得るためには、Ti* ≧0.05%が望ましい。
【0018】
さらに、上記の成分の鋼板を様々な製造条件で圧延、熱処理してTiを含む析出物サイズと析出間隔を変化させ、その析出物の平均サイズおよび析出物の最小間隔と穴拡げ値との関係を調べたところ、その析出物の平均サイズおよび析出物の最小間隔と穴拡げ値とには強い相関があり、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが101 〜103 nmの範囲でかつ析出物の最小間隔が101 nm超104 nm以下で穴拡げ値が著しく向上することを新規に知見した。
穴拡げ値(穴拡げ率)とTiを含む析出物サイズの平均値および析出物の最小間隔との関係を図2に示す。ここでTiを含む析出物とは、炭化物、窒化物、硫化物等Tiを含有する粒子であり酸化物等を含んでもよい。
【0019】
このメカニズムは必ずしも明らかではないが、析出物が大きすぎると析出物と母相の界面にボイドが生じやすく、穴拡げの際にクラックの起点となり、小さすぎると穴拡げ値と相関がある局部延性が低下するため、最適なサイズと析出物間隔において穴拡げ値が向上すると推測される。
ただし、鋼中の粒子でTiを含む析出物の平均サイズが102 nm超では、鋼板表面もしくは打ち抜きやせん断ままの破断面において析出物が表面に現れた場合に腐食の起点となる危険性があるので、鋼中の粒子でTiを含む析出物の平均サイズは101 〜102 nmの範囲が望ましい。
【0020】
次に、せん断や打ち抜き端面が存在する場合の疲労特性の調査を行ったところ、Tiを含む析出物サイズの平均サイズおよび析出物の最小間隔と、せん断や打ち抜き端面が存在する場合の疲労特性には強い相関があり、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが101 〜103 nmの範囲で、かつ析出物の最小間隔が101 nm超104 nm以下で、せん断や打ち抜き端面が存在する場合の疲労特性が著しく向上することを新規に知見した。
せん断や打ち抜き端面が存在する場合の疲労特性と、Tiを含む析出物サイズの平均値および析出物の最小間隔との関係を図3に示す。
【0021】
このメカニズムは必ずしも明らかではないが、析出物が大きすぎると析出物と母相の界面にボイドが生じやすく、そのボイドが疲労き裂の起点となり、小さすぎると延性が低下し、疲労き裂のき起点となりやすい打ち抜き断面における破断面の割合が上昇し、疲労限が低下するため、最適なサイズと析出物間隔においてせん断や打ち抜き端面が存在する場合の疲労特性が向上すると推測される。
【0022】
なお、引張試験による機械的性質については、JIS Z 2201記載の5号試験片にて、JIS Z 2241記載の試験方法で測定した。また、せん断や打ち抜き端面が存在する場合の疲労特性は、図4に示すような長さ98mm、幅38mm、切り欠きの曲率半径が30mm、最小断面部の幅が30mmである疲労試験片の中心にクリアランス11%前後の条件で打ち抜き穴を設けたものを用い、完全両振りの平面曲げ疲労試験によって得られた1.0×107 回での疲労限σWKを鋼板の引張り強さσBで除した値(疲労限度比σWK/σB)で評価した。ただし、疲労試験片の表面は研削など一切行わず酸洗ままの表面とした。
【0023】
また、鋼中のTiを含む析出物は、供試鋼の板幅1/4Wもしくは3/4W位置、1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(Energy Dispersive X-ray Spectroscope:EDS)や、電子エネルギー損失分光(Electron Energy Loss Spectroscope :EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(Field Emission Gun:FEG)を搭載した透過型電子顕微鏡によって観察した。観察される粒子の組成は、上記EDSおよびEELSによりTiを含む析出物であることを確認した。
【0024】
本発明で、規定する析出物のサイズとは、矩形であれば最長片、延伸状であれば最大長さと定義する。また、本発明で規定する平均析出物サイズとは、析出物のサイズを倍率5000〜500000倍で測定したもののうち、5nm以上のものについてのその一視野でのサイズの単純平均である。さらに、本発明で規定する析出物の最小間隔とは、対象である5nm以上の析出物の中心間距離をそれぞれ測定したうちの最小距離である。ここで析出物の中心とは、析出物の観察断面における面積の重心と定義する。
【0025】
次に、本発明における鋼板のミクロ組織について説明する。
鋼板のミクロ組織は、優れたバーリング加工性(伸びフランジ性)を確保するためにフェライト単相が望ましい。ただし、必要に応じ一部ベイナイトを含むことを許容するものである。なお、良好な伸びフランジ性を確保するためには、ベイナイトの体積分率は10%以下が望ましい。ここで、フェライトおよびベイナイトの体積分率とは、鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された、板厚の1/4tにおけるミクロ組織の面積分率である。
【0026】
次に、本発明の化学成分の限定理由について説明する。化学成分の量は質量%である。
Cは、0.1%超含有していると加工性及び溶接性が劣化するので、0.1%以下とする。また0.01%未満であると強度が低下するので0.01%以上とする。
【0027】
Sは、多すぎると熱間圧延時の割れを引き起こすので極力低減させるべきであるが、0.03%以下ならば許容できる範囲である。なお、Sの上限は、実施例の表1のK鋼のSが0.0013%であることに基づき、0.0013%以下とする。
【0028】
Nは、Cよりも高温にてTiおよびNbと析出物を形成し、Cを固定するのに有効なTiおよびNbを減少させる。従って極力低減させるべきであるが、0.005%以下ならば許容できる範囲である。
【0029】
Tiは、本発明における最も重要な元素の一つである。すなわち、Tiは析出強化により鋼板の強度上昇に寄与する。ただし、0.05%未満ではこの効果が不十分であり、0.5%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。従ってTiの含有量は0.05%以上、0.5%以下とする。なお、Ti含有量の上限は、実施例の表1のF及びL鋼のTi含有量が0.240%であることに基づき、0.240%以下とする。
さらに、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となるCを析出固定し、バーリング加工性の向上に寄与するためには、Ti−48/12C−48/14N−48/32S≧0%の条件を満たすことが必要である。
【0030】
Nbは、Tiと同様に析出強化により鋼板の強度上昇に寄与するので、必要に応じて添加する。ただし、0.01%未満ではこの効果が不十分であり、0.5%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。従ってNbの含有量は0.01%以上、0.5%以下とする。
さらに、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となるCを析出固定し、バーリング加工性の向上に寄与するためには、Ti+48/93Nb−48/12C−48/14N−48/32S≧0%の条件を満たすことが必要である。
【0031】
Siは、固溶強化元素として強度上昇に有効であるので、必要に応じて添加する。所望の強度を得るためには0.01%以上含有する必要がある。しかし、2%超含有すると加工性が劣化する。そこで、Siの含有量は0.01%以上、2%以下とする。
【0032】
Mnは、固溶強化元素として強度上昇に有効であるので、必要に応じて添加する。所望の強度を得るためには0.05%以上必要である。また、2%超添加するとスラブ割れを生ずるため、2%以下とする。
【0033】
Pは、0.1%超含有すると加工性や溶接性に悪影響を及ぼすので、0.1%以下とする。
【0034】
Alは、溶鋼脱酸のために必要に応じて添加する。0.005%以上添加する必要があるが、コストの上昇を招くため、その上限を1.0%とする。また、あまり多量に添加すると非金属介在物を増大させ伸びを劣化させるので、好ましくは0.5%以下とする。
【0035】
Bは、Pによる粒界脆化を抑制することによって疲労限を上昇させる効果があるので必要に応じ添加する。ただし、0.0002%未満ではその効果を得るために不十分であり、0.002%超添加するとスラブ割れが起こる。よって、Bの添加は0.0002%以上、0.002%以下とする。
【0036】
Niは、Cu含有による熱間脆性防止のために必要に応じ添加する。ただし、0.1%未満ではその効果が少なく、1%を超えて添加してもその効果が飽和するので、0.1〜1%とする。
【0037】
CaおよびREMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態変化させて無害化する元素である。ただし、0.0005%未満添加してもその効果がなく、Caならば0.02%超、REMならば0.2%超添加してもその効果が飽和するので、Ca:0.0005〜0.02%、REM:0.0005〜0.2%添加することが望ましい。
【0038】
さらに、強度を付与するために、Mo,V,Cr,Zrの析出強化もしくは固溶強化元素の一種または二種以上を添加しても良い。ただし、それぞれ0.05%、0.02%、0.01%、0.02%未満ではその効果を得ることができない。また、それぞれ1.0%、0.2%、1.0%、0.2%を超え添加してもその効果は飽和する。
【0039】
なおSnを添加しても本発明の効果を得ることができ、その含有量は特に定める必要はないが、熱間圧延時に疵が発生する恐れがあるので、0.05%以下が望ましい。
【0040】
次に、本発明の製造方法の限定理由について、以下に詳細に述べる。
本発明では、目的の成分含有量になるように成分調整した溶鋼を鋳込むことによって得たスラブを、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。
再加熱温度については特に制限はないが、1400℃以上であるとスケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。また、1100℃未満での加熱はTiおよび/またはNbを含む析出物がスラブ中で再溶解せず粗大化し、析出強化能を失うばかりでなく、バーリング加工性にとって望ましいサイズと分布のTiおよび/またはNbを含む析出物が析出しなくなるので、再加熱温度は1100℃以上が望ましい。
【0041】
熱間圧延工程は、粗圧延を終了後、仕上げ圧延を行うが、最終パス温度(FT)がAr3 変態点以上の温度域で終了する必要がある。これは、熱間圧延中に圧延温度がAr3 変態点を切るとひずみが残留して延性が低下するためである。仕上げ温度の上限は本発明の効果を得るためには特に定める必要はないが、操業上スケール疵が発生する可能性があるのため、1000℃以下とすることが望ましい。
ここで、粗圧延終了後に高圧デスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm2 )≧0.0025の条件を満たすことが望ましい。
【0042】
鋼板表面での高圧水の衝突圧Pは、以下のように記述される(「鉄と鋼」1991,vol.77,No.9,p1450参照)。
P(MPa)=5.64×PO ×V/H2
ただし、
O (MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
【0043】
流量Lは以下のように記述される。
L(リットル/cm2 )=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
衝突圧P×流量Lの上限は、本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが望ましい。
【0044】
さらに、仕上げ圧延後の鋼板の最大高さRyが15μm(15μmRy,l2.5mm,ln12.5mm)以下であることが望ましい。これは、例えば「金属材料疲労設計便覧」、日本材料学会編、84頁に記載されている通り、熱延または酸洗ままの鋼板の疲労強度は、鋼板表面の最大高さRyと相関があることから明らかである。また、その後の仕上げ圧延はデスケーリング後に再びスケールが生成してしまうのを防ぐために、5秒以内に行うのが望ましい。
【0045】
仕上圧延を終了した後は、指定の巻取温度(CT)まで冷却するが、その冷却速度は本発明の効果を得るためには特に定める必要はない。ただし冷却速度があまりに遅いと、Tiおよび/またはNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなる恐れがあるので、冷却速度の下限は20℃/s以上が望ましい。また、冷却速度の上限は実際の工場設備能力等を考慮すると100℃以下である。
【0046】
次に、巻取温度が350℃未満では十分なTiおよび/またはNbを含む析出物が生じなくなり、鋼中に固溶Cが残留して加工性を低下させる恐れがあり、750℃超ではTiおよび/またはNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなるばかりでなく、析出物が大きすぎると析出物と母相の界面にボイドが生じやすくなり、穴拡性が低下する恐れがある。従って巻取温度は350〜750℃とする。
【0047】
【実施例】
以下に、実施例により本発明をさらに説明する。
表1に示す化学成分を有するA〜Nの鋼は、転炉にて溶製して、連続鋳造後、表2に示す加熱温度(SRT)で再加熱し、粗圧延後に同じく表2に示す仕上げ圧延温度(FT)で1.2〜5.4mmの板厚に圧延した後、表2に示す巻取温度(CT)でそれぞれ巻き取った。なお一部については粗圧延後に衝突圧2.7MPa、流量0.001リットル/cm2 の条件で高圧デスケーリングを行った。ただし、表中の化学組成についての表示は質量%である。
【0048】
このようにして得られた熱延板の引張試験は、供試材を、まずJIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。表2にその試験結果を示す。また、鋼板板幅の1/4Wもしくは3/4W位置から切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された板厚の1/4tにおけるミクロ組織の面積分率を併せて表2に示す。
【0049】
さらに、せん断や打ち抜き端面が存在する場合の疲労特性は、図4に示すような長さ98mm、幅38mm、切り欠きの曲率半径が30mm、最小断面部の幅が30mmである疲労試験片の中心にクリアランス11%前後の条件で打ち抜き穴を設けたものを用い、完全両振りの平面曲げ疲労試験によって得られた1.0×107 回での疲労限σWKを、鋼板の引張り強さσBで除した値(疲労限度比σWK/σB)で評価した。ただし、疲労試験片の表面は研削など一切行わず酸洗ままの表面とした。
一方、バーリング加工性(伸びフランジ性)については、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価した。
【0050】
また、鋼中のTiを含む析出物は、供試鋼の板幅1/4Wもしくは3/4W位置、1/4厚のところから透過型電子顕微鏡サンプルを採取し、エネルギー分散型X線分光(Energy Dispersive X-ray Spectroscope:EDS)や、電子エネルギー損失分光(Electron Energy Loss Spectroscope :EELS)の組成分析機能を加えた、200kVの加速電圧の電界放射型電子銃(Field Emission Gun:FEG)を搭載した透過型電子顕微鏡によって観察した。
【0051】
観察される粒子の組成は、上記EDSおよびEELSによりTiを含む析出物であることを確認した。また、Tiおよび/またはNbを含む析出物のサイズとは、矩形であれば最長片、延伸状であれば最大長さと定義する。また、平均析出物サイズとは、析出物のサイズを倍率5000〜500000倍で測定したもののうち5nm以上のものについてのその一視野でのサイズの単純平均である。
さらに、析出物の最小間隔とは、対象である5nm以上の析出物の中心間距離をそれぞれ測定したうちの最小距離である。ここで析出物の中心とは、析出物の観察断面における面積の重心と定義する。
【0052】
本発明に沿うものは、鋼A−1,B,F,I,J,K,L,M,Nの9鋼であり、所定の量のTiを含有し、鋼中の粒子で5nm以上のTi、又はTiおよびNbを含む析出物の平均サイズが101 〜103 nmで、最小間隔が101 nm超104 nm以下であることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板が得られている。
【0053】
上記以外の鋼は、以下の理由によって本発明の範囲外である。
すなわち、鋼A−2は、仕上圧延終了温度(FT)が本発明の範囲外であるので、ひずみが残留して延性(El)が低下するだけでなく十分な穴拡げ値(λ)が得られていない。鋼A−3は、熱間圧延後の巻取温度(CT)が本発明の範囲より低いので、十分なTi、又はTiおよびNbの析出が生じなくなり、鋼中に固溶Cが残留して十分な延性(El)および穴拡げ値(λ)が得られていない。
鋼A−4は、熱間圧延後の巻取温度(CT)が本発明の範囲より高いので、Ti、又はTiおよびNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなり所望の強度(TS)が得られず、穴拡げ値(λ)も低い。
【0054】
鋼Cは、CおよびTiの含有量が本発明の範囲外であるので、鋼中に固溶Cが残留して十分な延性(El)および穴拡げ値(λ)が得られていない。鋼Dは、Sの含有量が本発明の範囲外であるので、十分な延性および穴拡げ値(λ)が得られていない。
鋼Eは、Nの含有量が本発明の範囲外であるので、十分な延性(El)および穴拡げ値(λ)が得られていない。鋼Gは、Ti* (Ti* =Ti+48/93Nb−48/12C−48/14N−48/32S)の値が本発明の範囲より小さいので、鋼中に固溶Cが残留して十分な延性(El)および穴拡げ値(λ)が得られていない。鋼Hは、Cの含有量が本発明の範囲より少ないので、十分な強度(TS)が得られていない。
【0055】
【表1】

Figure 0004205853
【0056】
【表2】
Figure 0004205853
【0057】
【発明の効果】
以上詳述したように、本発明は、バーリング加工性と疲労特性に優れた引張強度640MPa以上の熱延鋼板、およびその鋼板を安定して製造できる製造方法を提供するものであり、これらの熱延鋼板を用いることにより、バーリング加工性(伸びフランジ性)を十分に確保しつつ疲労特性の大幅な改善が期待できるため、工業的価値が高い発明である。
【図面の簡単な説明】
【図1】本発明に至る予備実験の結果を、Ti* と穴拡げ値(穴拡げ率)の関係で示す図である。
【図2】本発明に至る予備実験の結果を、穴拡げ値(穴拡げ率)の範囲をTi析出物サイズの範囲とTi析出物の最小間隔の関係で示す図である。
【図3】本発明に至る予備実験の結果を、せん断や打ち抜き端面が存在する場合の疲労特性の範囲をTi析出物サイズの範囲とTi析出物の最小間隔の関係で示す図である。
【図4】疲労試験片の形状を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-rolled steel sheet having a tensile strength of 640 MPa or more excellent in burring workability and fatigue characteristics, and a method for producing the same, and particularly suitable for automobile suspension parts such as suspension arm materials ( The present invention relates to a hot-rolled steel sheet having excellent hole expandability and fatigue characteristics and a method for producing the same.
[0002]
[Prior art]
In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of reducing the weight in order to improve the fuel efficiency of automobiles.
However, although light metals such as Al alloys have the advantage of high specific strength, their application has been limited to special applications because they are significantly more expensive than steel. In order to promote weight reduction of automobiles in a wider range, the application of inexpensive high-strength steel sheets is strongly demanded.
[0003]
In general, the higher the strength of a material, the lower the ductility and the worse the workability (formability). Steel materials are no exception, and attempts have been made so far to achieve both high strength and high ductility. On the other hand, in addition to these characteristics, materials used for undercarriage parts such as automobile suspension arms are required to have burring workability (hole expandability) and fatigue durability.
However, not only does the hole expandability tend to decrease with increasing strength, but increasing strength also increases notch sensitivity, so fatigue durability at stress-concentrated sites is improved as expected. do not do. Therefore, in the application of high-strength steel sheets to undercarriage parts and the like of automobiles having complicated shapes, not only the hole expandability but also fatigue durability becomes an important examination subject.
[0004]
As a high-strength hot-rolled steel sheet excellent in hole expansibility (stretch flangeability or burring workability), for example, in JP-A-6-200351, a high-strength hot-rolled steel sheet excellent in stretch flangeability is added with Ti and Nb. Thus, there is disclosed an invention obtained by reducing the second phase and precipitation strengthening TiC and NbC in polygonal ferrite which is the main phase.
Japanese Patent Laid-Open No. 7-11382 discloses that the second phase is reduced by adding Ti and Nb, and the microstructure is made of acicular ferrite and strengthened by precipitation strengthening with TiC and NbC. An invention for obtaining a high-strength hot-rolled steel sheet is disclosed.
[0005]
In JP-A-7-70696, Ti and Nb are added at C equivalents or more to make the microstructure a ferrite single phase and Cu is added, and ε-Cu is precipitated together with TiC and NbC to increase the strength. An invention for obtaining a high-strength hot-rolled steel sheet excellent in stretch flangeability is disclosed.
Further, JP-A-8-157957 discloses that Ti and Nb are added in a C equivalent or more to make the microstructure a ferrite single phase, and the value of Ni / Cu is defined to change the ferrite from polygonal to bainitic. An invention for obtaining a high-strength hot-rolled steel sheet having improved stretch flangeability and improved stretch flangeability is disclosed.
[0006]
  On the other hand, high strength with excellent fatigue propertiesFeverAs a rolled steel sheet, for example, in Japanese Patent Laid-Open No. 3-82708, a high-strength hot-rolled steel sheet having high fatigue properties with excellent fatigue characteristics is reduced as much as possible by reducing the second-phase structure such as cementite by reducing C to a minimum. An invention that obtains high strength and excellent fatigue properties by the combined addition of these is disclosed.
  In addition, in JP-A-6-287865, in addition to reducing the second phase by adding Ti and reducing the solid solution C in the ferrite, in addition to obtaining a strength of 690 MPa or more by precipitation strengthening of TiC or the like, An invention for obtaining a high-strength hot-rolled steel sheet that has improved fatigue characteristics by adding Cu and has excellent stretch flangeability and fatigue characteristics is disclosed.
[0007]
[Problems to be solved by the invention]
However, in some steel plates for parts such as suspension arms, fatigue durability at the end face of shearing and punching as well as workability such as burring workability is very important. I can't. Moreover, even if both characteristics are satisfied, it is important to provide a manufacturing method that can be stably manufactured at low cost, and the above-described conventional technology is insufficient.
[0008]
That is, in the invention described in JP-A-6-200351, polygonal ferrite having an area ratio of 85% or more is essential in order to obtain high stretch flangeability, but in order to obtain 85% or more polygonal ferrite. In order to promote the growth of ferrite grains after hot rolling, it is necessary to hold for a long time, which is not preferable in terms of operation cost.
Further, in the invention described in JP-A-7-11382, due to the microstructure having a high dislocation density and the precipitation of fine TiC and / or NbC, the ductility is only about 17% at 780 MPa and the moldability is insufficient.
[0009]
Further, in the invention described in JP-A-7-70696, since ε-Cu is precipitated in the ferrite phase, ductility may be lowered and workability may be deteriorated.
Further, in the invention described in JP-A-8-157957, due to precipitation of a microstructure having a high dislocation density and fine TiC and / or NbC, there is only about 20% ductility at 780 MPa and moldability is insufficient. .
[0010]
Furthermore, these inventions make no mention of fatigue properties. On the other hand, in the invention described in Japanese Patent Laid-Open No. 3-82708 as an invention that also refers to fatigue characteristics, 0.04 to 0.10% of P that segregates at a grain boundary and causes embrittlement of the grain boundary is added. Therefore, when grain boundary fracture, which is the starting point of fatigue fracture, occurs, fatigue characteristics may be significantly degraded. Furthermore, the publication does not describe anything about the addition of B that suppresses grain boundary embrittlement due to P or the like.
Furthermore, in the invention described in the above-mentioned Japanese Patent Application Laid-Open No. 6-287865, Cu precipitation strengthening is mainly used to improve fatigue characteristics, but Cu precipitation strengthening does not improve fatigue strength as much as static strength. There is a problem that the fatigue limit ratio is lowered.
[0011]
Therefore, the present invention provides a hot-rolled steel sheet having a tensile strength of 640 MPa or more excellent in burring workability and fatigue characteristics, and a manufacturing method capable of stably and inexpensively manufacturing the steel sheet, which can advantageously solve the above-described problems of the prior art. It is for the purpose.
[0012]
[Means for Solving the Problems]
The present inventors have made both the burring workability and fatigue characteristics of hot-rolled steel sheet compatible with the manufacturing process of hot-rolled steel sheet produced on an industrial scale by the continuous hot rolling equipment that is currently normally employed. We worked hard to achieve it.
As a result, the average size of the precipitates containing Ti of 5 nm or more among particles in steel is 101-10ThreeMinimum spacing of 10 at nm1More than 10 nmFourIt has been found that a thickness of not more than nm is very effective for improving the burring workability and does not impair the ductility.
At the same time, the present inventors have newly found out that fatigue characteristics are improved when a fatigue crack propagates from a sheared and punched end face within the range of the average size and the minimum interval of the above-mentioned precipitates.
[0013]
  That is, the gist of the present invention is as follows.
(1) In mass%,
    C: 0.01 to 0.1%, S ≦0.0013%,
    N ≦ 0.005%,Si: 0.01-2%
    Mn: 0.05-2%      P ≦ 0.1%,
    Al: 0.005 to 1.0%,Ti: 0.05-0.240%
  Including
    Ti-48 / 12C-48 / 14N-48 / 32S ≧ 0%
Is a steel containing Ti and the inevitable impurities, and the average size of precipitates containing Ti of 5 nm or more in particles in the steel is 101-103Minimum spacing of 10 at nm1More than 10 nm4A hot-rolled steel sheet excellent in burring workability and fatigue characteristics, characterized by being less than or equal to nm.
(2) In mass%,
    C: 0.01 to 0.1%, S ≦0.0013%,
    N ≦ 0.005%,Si: 0.01-2%
    Mn: 0.05-2%      P ≦ 0.1%,
    Al: 0.005 to 1.0%,Ti: 0.05-0.240%,
    Nb: 0.01 to 0.5%
  Including
  Ti + 48 / 93Nb-48 / 12C-48 / 14N-48 / 32S ≧ 0%
Is a steel containing Ti and Nb in a range satisfying the following, the balance being Fe and inevitable impurities, and the average size of precipitates containing either one or both of Ti and Nb of 5 nm or more in particles in the steel is 101-103Minimum spacing of 10 at nm1More than 10 nm4A hot-rolled steel sheet excellent in burring workability and fatigue characteristics, characterized by being less than or equal to nm.
[0014]
(3) The steel is further mass%,
    B: 0.0002 to 0.002%
(1), characterized by comprisingOr (2)Hot-rolled steel sheet with excellent burring workability and fatigue properties as described in 1.
(4) The steel is further mass%,
    Ni: 0.1 to 1%
(1) to (1) characterized by containing3The hot-rolled steel sheet excellent in burring workability and fatigue properties according to any one of the above.
[0015]
(5) The steel is further mass%,
    Ca: 0.0005 to 0.02%,
    REM: 0.0005 to 0.2%
(1) thru | or (1) characterized by containing 1 type or 2 types of4The hot-rolled steel sheet excellent in burring workability and fatigue properties according to any one of the above.
(6) The steel is further mass%,
    Mo: 0.05 to 1%, V: 0.02 to 0.2%,
    Cr: 0.01 to 1%, Zr: 0.02 to 0.2%
1 type or 2 types or more, (1) thru | or (1) characterized by including5The hot-rolled steel sheet excellent in burring workability and fatigue properties according to any one of the above.
[0016]
(7(1) to (1)6) When hot-rolling a steel slab having the component according to any one of3After finishing the hot finish rolling at the transformation point or higher, the steel is cooled to a temperature range of 350 ° C. to 750 ° C. and wound up, and the precipitates containing one or both of Ti and Nb having a particle size of 5 nm or more are contained in the steel. Average size is 101-103Minimum spacing of 10 at nm1More than 10 nm4A method for producing a hot-rolled steel sheet excellent in burring workability and fatigue characteristics, characterized by obtaining a steel sheet having a thickness of nm or less.
(8) During the hot rolling, after the rough rolling, high pressure descaling is performed, Ar3The hot finish rolling is finished at the transformation point or higher,7) A method for producing a hot-rolled steel sheet having excellent burring workability and fatigue characteristics.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The basic research results that led to the present invention will be described below.
First, the effect of Ti * (Ti * = Ti-48 / 12C-48 / 14N-48 / 32S) on the hole expandability was investigated. The test material for that purpose was prepared as follows.
That is, the amount of Ti added based on 0.05% C-1.0% Si-1.4% Mn-0.01% P-0.001% S-0.03% Al-0.001% N After changing the components and adjusting the components, hot-rolling the molten slab and winding it at room temperature, isothermally holding it at 550 ° C for 1 hour, and then heat-treating it in a furnace, and various Ti * steel plates Obtained.
The hole expansion test result about these steel plates is shown in FIG. From this result, it has been newly found that the hole expansion value (hole expansion ratio) is remarkably improved when Ti * ≧ 0%. However, Ti * ≧ 0.05% is desirable in order to stably obtain an excellent hole expansion value in both the longitudinal direction and the width direction of the plate.
[0018]
Furthermore, the steel plate having the above components is rolled and heat-treated under various production conditions to change the precipitate size and precipitation interval containing Ti, and the relationship between the average size of the precipitate and the minimum interval between the precipitates and the hole expansion value. As a result, there is a strong correlation between the average size of the precipitates and the minimum interval between the precipitates and the hole expansion value.1-10Threein the range of nm and the minimum spacing of precipitates is 101More than 10 nmFourIt has been newly found that the hole expansion value is remarkably improved at nm or less.
FIG. 2 shows the relationship between the hole expansion value (hole expansion ratio), the average value of the precipitate size including Ti, and the minimum interval between the precipitates. Here, the precipitate containing Ti is particles containing Ti, such as carbide, nitride, sulfide, and may contain oxide.
[0019]
This mechanism is not always clear, but if the precipitate is too large, voids are likely to form at the interface between the precipitate and the matrix, and cracks occur when expanding the hole, and if it is too small, the local ductility correlates with the hole expansion value. Therefore, it is estimated that the hole expansion value is improved at the optimum size and precipitate spacing.
However, the average size of precipitates containing Ti among particles in steel is 102If it exceeds nm, there is a risk of starting a corrosion when precipitates appear on the surface of the steel sheet or on the fracture surface as punched or sheared, so the average size of precipitates containing Ti in the particles in steel is 101-102A range of nm is desirable.
[0020]
Next, we investigated the fatigue characteristics in the presence of shear and punched end faces, and found that the average size of precipitates containing Ti and the minimum spacing between the precipitates, and the fatigue characteristics in the presence of shear and punched end faces. Has a strong correlation, and the average size of precipitates containing Ti of 5 nm or more among particles in steel is 101-10Threein the range of nm and the minimum distance between the precipitates is 101More than 10 nmFourIt has been newly found that the fatigue characteristics are significantly improved in the presence of shear and punched end faces at nm or less.
FIG. 3 shows the relationship between the fatigue characteristics in the presence of shear and punched end faces, the average value of the precipitate size including Ti, and the minimum interval between the precipitates.
[0021]
This mechanism is not always clear, but if the precipitate is too large, voids are likely to form at the interface between the precipitate and the parent phase, and the void becomes the starting point for fatigue cracks. Since the ratio of the fractured surface in the punched section that tends to be the starting point increases and the fatigue limit decreases, it is estimated that the fatigue characteristics are improved when shearing or a punched end face exists at the optimal size and precipitate spacing.
[0022]
In addition, about the mechanical property by a tensile test, it measured with the test method of JISZ2241 with the No. 5 test piece of JISZ2201. The fatigue characteristics in the presence of shear or punched end faces are as shown in FIG. 4 in the center of a fatigue test piece having a length of 98 mm, a width of 38 mm, a radius of curvature of the notch of 30 mm, and a minimum cross-sectional width of 30 mm. 1.0 × 10 obtained by a complete double swing plane bending fatigue test using punched holes with a clearance of about 11%.7The fatigue limit σWK at the time was divided by the tensile strength σB of the steel sheet (fatigue limit ratio σWK / σB). However, the surface of the fatigue test piece was left as pickled without any grinding.
[0023]
In addition, a precipitate containing Ti in the steel was obtained by collecting a transmission electron microscope sample from the test steel having a width of 1/4 W or 3/4 W and a thickness of 1/4, and energy dispersive X-ray spectroscopy ( Equipped with a field emission gun (FEG) with an accelerating voltage of 200 kV with the composition analysis function of Energy Dispersive X-ray Spectroscope (EDS) and Electron Energy Loss Spectroscope (EELS) Was observed with a transmission electron microscope. The observed particle composition was confirmed to be a precipitate containing Ti by EDS and EELS.
[0024]
In the present invention, the size of the precipitate to be defined is defined as the longest piece if it is rectangular, and the maximum length if it is stretched. Moreover, the average precipitate size prescribed | regulated by this invention is a simple average of the size in the one visual field about the thing of 5 nm or more among what measured the size of the precipitate with the magnification of 5000-500000 times. Furthermore, the minimum distance between the precipitates defined in the present invention is the minimum distance among the distances measured between the centers of the target precipitates of 5 nm or more. Here, the center of the precipitate is defined as the center of gravity of the area in the observation cross section of the precipitate.
[0025]
Next, the microstructure of the steel sheet in the present invention will be described.
The microstructure of the steel sheet is preferably a single ferrite phase in order to ensure excellent burring workability (stretch flangeability). However, some bainite is allowed as needed. In order to secure good stretch flangeability, the volume fraction of bainite is desirably 10% or less. Here, the volume fraction of ferrite and bainite is a sample cut from a 1/4 W or 3/4 W position of the steel plate width in a rolling direction cross section, etched using a Nital reagent, and 200 using an optical microscope. It is the area fraction of the microstructure at ¼t of the plate thickness, observed at a magnification of ˜500 times.
[0026]
Next, the reasons for limiting the chemical components of the present invention will be described. The amount of chemical component is mass%.
If the C content exceeds 0.1%, workability and weldability deteriorate, so the content is made 0.1% or less. Moreover, since intensity | strength will fall if it is less than 0.01%, it shall be 0.01% or more.
[0027]
  If S is too large, cracks during hot rolling will be caused, so it should be reduced as much as possible. However, it is acceptable if it is 0.03% or less.Note that the upper limit of S is set to 0.0013% or less based on the fact that S of K steel in Table 1 of the examples is 0.0013%.
[0028]
N forms precipitates with Ti and Nb at a higher temperature than C, and reduces Ti and Nb effective for fixing C. Therefore, it should be reduced as much as possible, but 0.005% or less is an acceptable range.
[0029]
  Ti is one of the most important elements in the present invention. That is, Ti contributes to an increase in strength of the steel sheet by precipitation strengthening. However, if it is less than 0.05%, this effect is insufficient, and if it exceeds 0.5%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Ti content is 0.05% or more and 0.5% or less.The upper limit of the Ti content is set to 0.240% or less based on the fact that the Ti content of the F and L steels in Table 1 of the examples is 0.240%.
  Furthermore, Ti-48 / 12C-48 / 14N-48 / 32S ≧ 0% in order to precipitate and fix C which causes carbides such as cementite which deteriorates burring workability and contribute to improvement of burring workability. It is necessary to satisfy the following conditions.
[0030]
Nb contributes to an increase in the strength of the steel sheet by precipitation strengthening, like Ti, and is added as necessary. However, if the content is less than 0.01%, this effect is insufficient. Even if the content exceeds 0.5%, the effect is not only saturated but also the alloy cost is increased. Therefore, the Nb content is 0.01% or more and 0.5% or less.
Furthermore, in order to precipitate and fix C which causes carbides such as cementite which deteriorates burring workability, and contributes to improvement of burring workability, Ti + 48 / 93Nb-48 / 12C-48 / 14N-48 / 32S ≧ It is necessary to satisfy the condition of 0%.
[0031]
Since Si is effective as a solid solution strengthening element for increasing the strength, it is added as necessary. In order to obtain a desired strength, it is necessary to contain 0.01% or more. However, if it exceeds 2%, workability deteriorates. Therefore, the Si content is set to 0.01% or more and 2% or less.
[0032]
Since Mn is effective as a solid solution strengthening element for increasing the strength, it is added as necessary. In order to obtain a desired strength, 0.05% or more is necessary. Further, if added over 2%, slab cracking occurs, so it is made 2% or less.
[0033]
If P is contained in an amount exceeding 0.1%, workability and weldability are adversely affected.
[0034]
Al is added as necessary for molten steel deoxidation. Although it is necessary to add 0.005% or more, since it raises cost, the upper limit shall be 1.0%. Moreover, when adding too much, a nonmetallic inclusion will be increased and elongation will be degraded, Therefore Preferably it is 0.5% or less.
[0035]
Since B has an effect of increasing the fatigue limit by suppressing grain boundary embrittlement due to P, B is added as necessary. However, if it is less than 0.0002%, it is insufficient for obtaining the effect, and if added over 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.
[0036]
Ni is added as necessary to prevent hot brittleness due to Cu inclusion. However, if the content is less than 0.1%, the effect is small, and even if added over 1%, the effect is saturated.
[0037]
Ca and REM are elements that are detoxified by changing the form of non-metallic inclusions that become the starting point of destruction or deteriorate the workability. However, even if less than 0.0005% is added, there is no effect, and if Ca is more than 0.02%, and if REM is added more than 0.2%, the effect is saturated. It is desirable to add 0.02% and REM: 0.0005 to 0.2%.
[0038]
Further, in order to impart strength, one or more of precipitation strengthening or solid solution strengthening elements of Mo, V, Cr, and Zr may be added. However, the effect cannot be obtained if the content is less than 0.05%, 0.02%, 0.01%, and 0.02%, respectively. Moreover, the effect will be saturated even if it adds exceeding 1.0%, 0.2%, 1.0%, and 0.2%, respectively.
[0039]
Even if Sn is added, the effects of the present invention can be obtained, and the content of the Sn is not particularly required. However, since there is a risk of wrinkling during hot rolling, 0.05% or less is desirable.
[0040]
Next, the reasons for limiting the production method of the present invention will be described in detail below.
In the present invention, a slab obtained by casting a molten steel whose components are adjusted so as to have a desired component content may be directly sent to a hot rolling mill as a high-temperature slab, or after being cooled to room temperature, a heating furnace It may be hot-rolled after reheating at.
The reheating temperature is not particularly limited, but if it is 1400 ° C. or higher, the amount of scale-off increases and the yield decreases, so the reheating temperature is preferably less than 1400 ° C. Heating below 1100 ° C. not only re-dissolves precipitates containing Ti and / or Nb in the slab, but coarsens and loses the precipitation strengthening ability, but also has the desired size and distribution of Ti and / or burring processability. Alternatively, since the precipitate containing Nb does not precipitate, the reheating temperature is desirably 1100 ° C. or higher.
[0041]
In the hot rolling process, after the rough rolling is finished, finish rolling is performed, but the final pass temperature (FT) needs to be finished in a temperature range equal to or higher than the Ar3 transformation point. This is because if the rolling temperature falls below the Ar3 transformation point during hot rolling, strain remains and ductility decreases. The upper limit of the finishing temperature is not particularly required to obtain the effect of the present invention, but it is desirable that the upper limit of the finishing temperature is 1000 ° C. or less because scale soot may be generated in operation.
Here, when high-pressure descaling is performed after completion of rough rolling, the collision pressure P (MPa) of high-pressure water on the steel plate surface × flow rate L (liter / cm).2It is desirable to satisfy the condition of ≧ 0.0025.
[0042]
The collision pressure P of high-pressure water on the steel sheet surface is described as follows (see “Iron and Steel” 1991, vol. 77, No. 9, p1450).
P (MPa) = 5.64 × PO× V / H2
However,
PO(MPa): Fluid pressure
V (liter / min): Nozzle flow rate
H (cm): distance between the steel plate surface and the nozzle
[0043]
The flow rate L is described as follows.
L (liters / cm2) = V / (W × v)
However,
V (liter / min): Nozzle flow rate
W (cm): Width of spray liquid per nozzle hitting steel plate surface
v (cm / min): Feeding speed
The upper limit of the collision pressure P × flow rate L is not particularly required to obtain the effect of the present invention. However, increasing the nozzle flow rate causes inconveniences such as severe wear of the nozzle. The following is desirable.
[0044]
Furthermore, it is desirable that the maximum height Ry of the steel sheet after finish rolling is 15 μm (15 μm Ry, l2.5 mm, ln12.5 mm) or less. For example, as described in “Handbook of Fatigue Design for Metallic Materials”, edited by the Japan Society of Materials Science, page 84, the fatigue strength of a hot-rolled or pickled steel sheet correlates with the maximum height Ry of the steel sheet surface. It is clear from this. Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent the scale from being generated again after descaling.
[0045]
After finishing rolling, the steel sheet is cooled to a specified winding temperature (CT), but the cooling rate is not particularly required to obtain the effect of the present invention. However, if the cooling rate is too slow, the size of the precipitate containing Ti and / or Nb becomes coarse and may not contribute to the increase in strength due to precipitation strengthening. Therefore, the lower limit of the cooling rate is preferably 20 ° C./s or more. In addition, the upper limit of the cooling rate is 100 ° C. or less in consideration of actual factory equipment capacity and the like.
[0046]
Next, if the coiling temperature is less than 350 ° C., sufficient Ti and / or Nb-containing precipitates are not generated, and solid solution C may remain in the steel, thereby reducing workability. In addition to the fact that the size of the precipitate containing Nb and / or Nb becomes coarse and does not contribute to the increase in strength due to precipitation strengthening, if the precipitate is too large, voids are likely to occur at the interface between the precipitate and the matrix, and the hole expandability is increased. May decrease. Accordingly, the coiling temperature is 350 to 750 ° C.
[0047]
【Example】
The following examples further illustrate the present invention.
The steels A to N having chemical components shown in Table 1 are melted in a converter, re-heated at the heating temperature (SRT) shown in Table 2 after continuous casting, and also shown in Table 2 after rough rolling. After rolling to a plate thickness of 1.2 to 5.4 mm at the finish rolling temperature (FT), each was wound at the winding temperature (CT) shown in Table 2. In some cases, after rough rolling, the collision pressure is 2.7 MPa, and the flow rate is 0.001 liter / cm.2High pressure descaling was performed under the following conditions. However, the display about the chemical composition in a table | surface is the mass%.
[0048]
The tensile test of the hot-rolled sheet thus obtained was carried out according to the test method described in JIS Z 2241 by first processing the specimen into a No. 5 test piece described in JIS Z 2201. Table 2 shows the test results. In addition, the thickness of the specimen cut from the 1/4 W or 3/4 W position of the steel sheet width was polished into a cross section in the rolling direction, etched using a Nital reagent, and the thickness measured at a magnification of 200 to 500 times using an optical microscope. Table 2 also shows the area fraction of the microstructure at 1/4 t.
[0049]
Furthermore, the fatigue characteristics in the presence of shear and punched end faces are as shown in FIG. 4 for the center of a fatigue test piece having a length of 98 mm, a width of 38 mm, a notch curvature radius of 30 mm, and a minimum cross-sectional width of 30 mm. 1.0 × 10 obtained by a complete double swing plane bending fatigue test using punched holes with a clearance of about 11%.7The value obtained by dividing the fatigue limit σWK at the time by the tensile strength σB of the steel sheet (fatigue limit ratio σWK / σB) was evaluated. However, the surface of the fatigue test piece was left as pickled without any grinding.
On the other hand, the burring workability (stretch flangeability) was evaluated according to the hole expansion test method described in Japan Iron and Steel Federation Standard JFS T 1001-1996.
[0050]
In addition, a precipitate containing Ti in the steel was obtained by collecting a transmission electron microscope sample from the test steel having a width of 1/4 W or 3/4 W and a thickness of 1/4, and energy dispersive X-ray spectroscopy ( Equipped with a field emission gun (FEG) with an accelerating voltage of 200 kV with the composition analysis function of Energy Dispersive X-ray Spectroscope (EDS) and Electron Energy Loss Spectroscope (EELS) Was observed with a transmission electron microscope.
[0051]
The observed particle composition was confirmed to be a precipitate containing Ti by EDS and EELS. Moreover, the size of the precipitate containing Ti and / or Nb is defined as the longest piece if it is rectangular, and the maximum length if it is stretched. The average precipitate size is a simple average of the sizes in one field of view of the precipitates measured at a magnification of 5000 to 500,000 times and having a size of 5 nm or more.
Furthermore, the minimum distance between precipitates is the minimum distance among the distances between the centers of the target precipitates of 5 nm or more. Here, the center of the precipitate is defined as the center of gravity of the area in the observation cross section of the precipitate.
[0052]
Consistent with the present invention are nine steels, steels A-1, B, F, I, J, K, L, M, and N, containing a predetermined amount of Ti and having a particle size in the steel of 5 nm or more. The average size of the precipitate containing Ti or Ti and Nb is 101-10Threenm with a minimum spacing of 101More than 10 nmFourA hot-rolled steel sheet excellent in burring workability and fatigue characteristics, characterized by being not more than nm, has been obtained.
[0053]
Steels other than the above are outside the scope of the present invention for the following reasons.
That is, steel A-2 has a finish rolling finish temperature (FT) outside the range of the present invention, so that not only does strain remain and ductility (El) decreases, but a sufficient hole expansion value (λ) is obtained. It is not done. Steel A-3 has a coiling temperature (CT) after hot rolling lower than the range of the present invention, so that sufficient Ti or Ti and Nb precipitation does not occur, and solid solution C remains in the steel. Sufficient ductility (El) and hole expansion value (λ) are not obtained.
Steel A-4 has a coiling temperature (CT) after hot rolling higher than the range of the present invention, so the size of precipitates containing Ti or Ti and Nb is coarsened and contributes to an increase in strength due to precipitation strengthening. The desired strength (TS) is not obtained, and the hole expansion value (λ) is low.
[0054]
In steel C, the C and Ti contents are outside the scope of the present invention, so that solid solution C remains in the steel, and sufficient ductility (El) and hole expansion value (λ) are not obtained. In Steel D, the content of S is outside the range of the present invention, so that sufficient ductility and hole expansion value (λ) are not obtained.
In Steel E, the content of N is outside the range of the present invention, so that sufficient ductility (El) and hole expansion value (λ) are not obtained. Steel G has a value of Ti * (Ti * = Ti + 48 / 93Nb-48 / 12C-48 / 14N-48 / 32S) smaller than the range of the present invention, so that solid solution C remains in the steel and sufficient ductility is achieved. (El) and the hole expansion value (λ) are not obtained. Steel H does not have sufficient strength (TS) because the C content is less than the range of the present invention.
[0055]
[Table 1]
Figure 0004205853
[0056]
[Table 2]
Figure 0004205853
[0057]
【The invention's effect】
As described above in detail, the present invention provides a hot-rolled steel sheet having a tensile strength of 640 MPa or more excellent in burring workability and fatigue characteristics, and a production method capable of stably producing the steel sheet. By using a rolled steel sheet, a significant improvement in fatigue properties can be expected while sufficiently securing burring workability (stretch flangeability), and therefore the invention has high industrial value.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of a preliminary experiment leading to the present invention in relation to Ti * and a hole expansion value (hole expansion ratio).
FIG. 2 is a diagram showing the results of a preliminary experiment leading to the present invention, showing the range of hole expansion values (hole expansion ratio) in relation to the range of Ti precipitate size and the minimum interval between Ti precipitates.
FIG. 3 is a diagram showing the results of a preliminary experiment leading to the present invention, showing the range of fatigue characteristics in the presence of shearing and punched end faces in relation to the range of Ti precipitate size and the minimum interval between Ti precipitates.
FIG. 4 is a diagram illustrating the shape of a fatigue test piece.

Claims (8)

質量%にて、
C :0.01〜0.1%、
S ≦0.0013%、
N ≦0.005%、
Si:0.01〜2%、
Mn:0.05〜2%、
P ≦0.1%、
Al:0.005〜1.0%、
Ti:0.05〜0.240
を含み、さらに
Ti−48/12C−48/14N−48/32S≧0%
を満たす範囲でTiを含有し、残部がFe及び不可避的不純物からなる鋼であって、鋼中の粒子で5nm以上のTiを含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下であることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板。
In mass%
C: 0.01 to 0.1%,
S ≦ 0.0013 %,
N ≦ 0.005%,
Si: 0.01-2%
Mn: 0.05-2%
P ≦ 0.1%,
Al: 0.005 to 1.0%,
Ti: 0.05 to 0.240 %
Ti-48 / 12C-48 / 14N-48 / 32S ≧ 0%
Is a steel that contains Ti and the balance is Fe and inevitable impurities, and the average size of precipitates containing Ti of 5 nm or more in particles in the steel is 10 1 to 10 3 nm and the minimum interval is A hot-rolled steel sheet excellent in burring workability and fatigue characteristics, characterized by being more than 10 1 nm and not more than 10 4 nm.
質量%にて、
C :0.01〜0.1%、
S ≦0.0013%、
N ≦0.005%、
Si:0.01〜2%、
Mn:0.05〜2%、
P ≦0.1%、
Al:0.005〜1.0%、
Ti:0.05〜0.240%、
Nb:0.01〜0.5%
を含み、さらに
Ti+48/93Nb−48/12C−48/14N−48/32S≧0%
を満たす範囲でTiとNbを含有し、残部がFe及び不可避的不純物からなる鋼であって、鋼中の粒子で5nm以上のTi及びNbのいずれか一方又は両方を含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下であることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板。
In mass%
C: 0.01 to 0.1%,
S ≦ 0.0013 %,
N ≦ 0.005%,
Si: 0.01-2%
Mn: 0.05-2%
P ≦ 0.1%,
Al: 0.005 to 1.0%,
Ti: 0.05 to 0.240 %,
Nb: 0.01 to 0.5%
Ti + 48 / 93Nb-48 / 12C-48 / 14N-48 / 32S ≧ 0%
Is a steel that contains Ti and Nb in the range satisfying the above, the balance is Fe and inevitable impurities, and the average size of precipitates containing either one or both of Ti and Nb of 5 nm or more in the particles in the steel is A hot-rolled steel sheet excellent in burring workability and fatigue properties, characterized in that the minimum interval is 10 1 to 10 3 nm and the minimum interval is more than 10 1 nm and 10 4 nm or less.
前記鋼が、さらに質量%にて、
B :0.0002〜0.002%
を含有することを特徴とする、請求項1又は2に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
The steel is further in mass%,
B: 0.0002 to 0.002%
The hot-rolled steel sheet excellent in burring workability and fatigue characteristics according to claim 1 or 2 , characterized by comprising:
前記鋼が、さらに質量%にて、
Ni:0.1〜1%
を含有することを特徴とする、請求項1ないしのいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
The steel is further in mass%,
Ni: 0.1 to 1%
The hot-rolled steel sheet having excellent burring workability and fatigue characteristics according to any one of claims 1 to 3 , wherein
前記鋼が、さらに質量%にて、
Ca:0.0005〜0.02%、
REM:0.0005〜0.2%
の一種または二種を含有することを特徴とする、請求項1ないしのいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
The steel is further in mass%,
Ca: 0.0005 to 0.02%,
REM: 0.0005 to 0.2%
The hot-rolled steel sheet excellent in burring workability and fatigue characteristics according to any one of claims 1 to 4 , characterized by containing one or two of the following.
前記鋼が、さらに質量%にて、
Mo:0.05〜1%、
V :0.02〜0.2%、
Cr:0.01〜1%、
Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とする、請求項1ないしのいずれか1項に記載のバーリング加工性と疲労特性に優れた熱延鋼板。
The steel is further in mass%,
Mo: 0.05 to 1%
V: 0.02-0.2%,
Cr: 0.01-1%,
Zr: 0.02 to 0.2%
The hot-rolled steel sheet excellent in burring workability and fatigue properties according to any one of claims 1 to 5 , characterized by containing one or more of the following.
請求項1ないしのいずれか1項に記載の成分を有する鋼片の熱間圧延に際し、Ar変態点以上で熱間仕上圧延を終了した後、350℃から750℃の温度域まで冷却して巻き取り、鋼中の粒子で5nm以上のTi及びNbのいずれか一方又は両方を含む析出物の平均サイズが10〜10nmで最小間隔が10nm超10nm以下である鋼板を得ることを特徴とする、バーリング加工性と疲労特性に優れた熱延鋼板の製造方法。In the hot rolling of the steel slab having the component according to any one of claims 1 to 6 , after finishing the hot finish rolling at an Ar 3 transformation point or higher, the steel slab is cooled to a temperature range of 350 ° C to 750 ° C. A steel plate having an average size of 10 1 to 10 3 nm and a minimum interval of more than 10 1 nm and not more than 10 4 nm with precipitates containing either one or both of Ti and Nb of 5 nm or more as particles in the steel A method for producing a hot-rolled steel sheet excellent in burring workability and fatigue characteristics. 前記熱間圧延に際し、粗圧延終了後、高圧デスケーリングを行ない、Ar変態点以上で熱間仕上圧延を終了することを特徴とする、請求項記載のバーリング加工性と疲労特性に優れた熱延鋼板の製造方法。In the hot rolling, high pressure descaling is performed after the end of the rough rolling, and the hot finish rolling is finished at the Ar 3 transformation point or more, and excellent in burring workability and fatigue characteristics according to claim 7 A method for producing a hot-rolled steel sheet.
JP2000357569A 2000-11-24 2000-11-24 Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same Expired - Fee Related JP4205853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357569A JP4205853B2 (en) 2000-11-24 2000-11-24 Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357569A JP4205853B2 (en) 2000-11-24 2000-11-24 Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002161340A JP2002161340A (en) 2002-06-04
JP4205853B2 true JP4205853B2 (en) 2009-01-07

Family

ID=18829608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357569A Expired - Fee Related JP4205853B2 (en) 2000-11-24 2000-11-24 Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4205853B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116901B2 (en) * 2003-02-20 2008-07-09 新日本製鐵株式会社 Burring high strength thin steel sheet and method for producing the same
JP4901623B2 (en) * 2007-07-20 2012-03-21 新日本製鐵株式会社 High-strength steel sheet with excellent punching hole expandability and manufacturing method thereof
JP5326403B2 (en) * 2007-07-31 2013-10-30 Jfeスチール株式会社 High strength steel plate
JP4955497B2 (en) * 2007-09-28 2012-06-20 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability balance
JP5194857B2 (en) 2008-02-08 2013-05-08 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP5194858B2 (en) * 2008-02-08 2013-05-08 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP5609786B2 (en) 2010-06-25 2014-10-22 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5532186B2 (en) 2012-01-13 2014-06-25 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method thereof
WO2016132549A1 (en) 2015-02-20 2016-08-25 新日鐵住金株式会社 Hot-rolled steel sheet
KR101957078B1 (en) 2015-02-20 2019-03-11 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet
WO2016135898A1 (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Hot-rolled steel sheet or plate
PL3263729T3 (en) 2015-02-25 2020-05-18 Nippon Steel Corporation Hot-rolled steel sheet
EP3495529B1 (en) 2016-08-05 2021-03-03 Nippon Steel Corporation Steel sheet and plated steel sheet
KR102186320B1 (en) 2016-08-05 2020-12-03 닛폰세이테츠 가부시키가이샤 Steel plate and plated steel plate
CN110475889A (en) * 2017-03-31 2019-11-19 日本制铁株式会社 Hot rolled steel plate and steel forged part and its manufacturing method

Also Published As

Publication number Publication date
JP2002161340A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP4894863B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
KR101424859B1 (en) High-strength steel sheet and manufacturing method therefor
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2013099136A1 (en) High-strength hot-rolled steel sheet and manufacturing method therefor
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
EP3757242B1 (en) High-strength steel sheet and manufacturing method therefor
JP2013127099A (en) High-strength steel sheet excellent in workability and method for manufacturing the same
TW202016327A (en) Hot rolled steel plate and manufacturing method thereof
JP3769143B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP7136335B2 (en) High-strength steel plate and its manufacturing method
JP3781344B2 (en) Manufacturing method of hot-rolled steel sheet with excellent burring workability and fatigue characteristics
JP4923982B2 (en) High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing
JP3790357B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP3769146B2 (en) High burring hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP3831146B2 (en) Manufacturing method of hot-rolled steel sheet for processing with excellent fatigue characteristics
JP3771747B2 (en) Hot-rolled steel sheet for machining excellent in fatigue characteristics and method for producing the same
JP4205892B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP3296591B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
JP3887161B2 (en) High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same
JP2021147645A (en) High-strength steel sheet and method for producing the same
JP2021147646A (en) High-strength steel sheet and method for producing the same
JPH11199975A (en) Hot rolled steel sheet for working excellent in fatigue characteristic and its production
WO2022259697A1 (en) Steel sheet pile and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4205853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees