WO2010131303A1 - Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same - Google Patents

Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same Download PDF

Info

Publication number
WO2010131303A1
WO2010131303A1 PCT/JP2009/005029 JP2009005029W WO2010131303A1 WO 2010131303 A1 WO2010131303 A1 WO 2010131303A1 JP 2009005029 W JP2009005029 W JP 2009005029W WO 2010131303 A1 WO2010131303 A1 WO 2010131303A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
rolled steel
less
rolling
Prior art date
Application number
PCT/JP2009/005029
Other languages
French (fr)
Japanese (ja)
Inventor
丸山直紀
吉永直樹
東昌史
佐久間康治
伊丹淳
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN200980157539.5A priority Critical patent/CN102333899B/en
Priority to BRPI0924410A priority patent/BRPI0924410B1/en
Priority to JP2011513132A priority patent/JP4917186B2/en
Publication of WO2010131303A1 publication Critical patent/WO2010131303A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention is a hot-rolled steel sheet having a tensile strength of 590 MPa or more, which can prevent damage accompanied by unevenness on the punched end face even when punched under severe processing conditions, and further has excellent fatigue properties of the base material and the punched portion.
  • the present invention relates to a plated steel sheet and a method for producing them.
  • This steel plate is suitable as a material for automobiles, truck frames, members, chassis, and the like.
  • Patent Documents 1 and 2 disclose a technique for improving fatigue characteristics by forming a DP structure containing ferrite and martensite. These techniques are characterized by adding a specific amount of a ferrite-forming element such as Si. However, if Si is high, the roughness of the base material / scale interface may increase and the fatigue characteristics may deteriorate. Moreover, when galvanizing the hot-rolled steel sheet, there is a problem that the adhesion of the plating is lowered due to the Si concentrated layer on the surface. Furthermore, these techniques are characterized in that ferrite is formed by providing an air cooling process in the middle of cooling after hot rolling. However, since it is difficult to make the air-cooling conditions uniform over the entire length of the hot-rolled coil, there has been a problem that the variation in structure and material is large along the length of the coil (Problem 1).
  • Patent Document 3 proposes a method of obtaining a hot-rolled steel sheet having a high notch fatigue strength by forming a composite structure of ferrite and bainite and suppressing banding of bainite.
  • it is necessary to perform air cooling during the cooling after hot rolling, and there is a problem that the material cannot be made constant over the entire length of the coil (Problem 1).
  • Patent Documents 4 to 7 propose a method for improving cracking and fatigue characteristics of a punched portion in a steel sheet to which a carbide forming element such as Ti, Nb, or V is added.
  • a carbide forming element such as Ti, Nb, or V
  • the plating does not adhere due to the Si concentrated layer on the surface (Problem 4).
  • Patent Documents 8 to 10 propose a method of improving cracking and fatigue characteristics of a punched portion by utilizing B in a steel sheet to which carbide forming elements such as Ti, Nb, and V are added.
  • carbide forming elements such as Ti, Nb, and V are added.
  • the effect is not sufficient. For this reason, when punching with a worn punch or shear that can be used in an actual member forming processing line, there is a problem that cracks or large irregularities are generated on the end face and the fatigue characteristics of the punched portion deteriorate (problem 5). .
  • Patent Document 11 discloses that ferrite and bainite are main structures, and by controlling the grain size and fraction of precipitates in ferrite and the form of bainite, high strength excellent in elongation characteristics, stretch flange characteristics, and fatigue characteristics.
  • a method for obtaining a hot-rolled steel sheet has been proposed.
  • this method when punched with a worn punch or shear, cracks and large irregularities may occur on the end face (Problem 5).
  • it is necessary to provide air cooling holding in the middle of cooling after hot rolling there was a problem in productivity.
  • Patent Document 12 proposes a method for improving surface defects and productivity in a continuous casting process in a steel sheet to which carbide forming elements such as Ti, Nb, and V are added.
  • carbide forming elements such as Ti, Nb, and V are added.
  • this method since the hot rolling conditions are not optimized, there is a problem that when punching with a worn punch or shear, cracks or large irregularities are generated on the end face, and the fatigue characteristics of the punched portion deteriorate. (Problem 5).
  • JP 2007-321201 A JP 05-179346 A JP 2002-161340 A JP 2002-317246 A JP 2003-342684 A JP 2004-250749 A JP 2004-315857 A JP 2005-298924 A JP 2008-266726 A JP 2007-9322 A JP 2007-138238 A
  • the present invention has been made in view of the above problems 1 to 5, and prevents damage caused by unevenness on the punched end face even when punching is performed under severe processing conditions such as a tight clearance and a worn shear or punch. It is excellent in fatigue characteristics of the base material and punched parts, and can be manufactured with high productivity without variation in the material in the longitudinal direction of the coil without providing air cooling during cooling after hot rolling. It is an object of the present invention to provide a hot-rolled steel sheet, a hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, and a method for producing them.
  • the hot-rolled steel sheet having excellent punchability and fatigue characteristics according to the present invention is C: 0.025 to 0.15%, Si: 1.0% or less, and Mn: 1.0 to 2.5% by mass.
  • P 0.02% or less
  • S 0.005% or less
  • Al 0.5% or less
  • Ti 0.04 to 0.10%
  • N 0.007% or less
  • the balance is It has a component composition consisting of Fe and inevitable impurities, Mn / Ti ratio: 15 or more, Nb is not added, the ferrite volume fraction is 30% or more, and the balance is one of pearlite and bainite Or it is composed of two types, the average aspect ratio of the equivalent ellipse of the crystal grains is 5 or less, the average distribution density of Ti carbides of 20 nm or more on the grain interface is 10 pieces / ⁇ m or less, and the brittle fracture of the punched fracture surface The area ratio is less than 20%, and the maximum tensile strength is 590 MPa or more.
  • the hot-rolled steel sheet having excellent punchability and fatigue characteristics of the present invention may have a thickness of 5 to 10 mm. Furthermore, 0.0003 to 0.005 mass% of B may be contained. Further, one or both of Zr and V may be contained in a total amount of 0.002 to 0.08 mass%. Further, one or more selected from Cr, Cu, Ni, Mo and W may be contained in a total amount of 0.02 to 2.0% by mass. Further, one or more selected from Ca, Mg, La and Ce may be contained in a total amount of 0.0003 to 0.01% by mass.
  • the hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics of the present invention has the above-described hot-rolled steel sheet of the present invention and a plating layer or alloyed plating layer provided on the surface of the hot-rolled steel sheet.
  • the method for producing a hot-rolled steel sheet excellent in punching workability and fatigue characteristics comprises heating a steel slab comprising the above-described composition of the hot-rolled steel sheet according to the present invention to 1100-1300 ° C. and then a temperature of 1000 ° C. or higher.
  • the rough bar is finished under the conditions that the rough rolling is carried out under the conditions ending in step 1 and the cumulative rolling reduction of the final three-stage rolling is 25% or more and the final rolling temperature Tf satisfies the formula (1).
  • a step of rolling into a rolled material, and after the finish rolling, the rolled material is air-cooled for 1 to 5 seconds, and subsequently cooled to a temperature of 700 ° C.
  • the time from the end of the rough rolling to the start of the finish rolling may be 45 seconds or more. You may further have the process of annealing at Ac3 temperature or less with respect to the said rolling material or the said hot-rolled steel plate after the said finish rolling.
  • the method for producing a hot-dip galvanized steel sheet having excellent punchability and fatigue characteristics comprises the steps of producing a hot-rolled steel sheet by the above-described method for producing a hot-rolled steel sheet, and pickling the hot-rolled steel sheet. Then, it has the process of heating below Ac3 temperature, and the process of immersing in a galvanization bath and then galvanizing the steel plate surface.
  • the method may further include a step of performing galvanizing alloying treatment on the hot dip galvanized steel sheet.
  • the present invention it is possible to provide a hot-rolled steel sheet and a galvanized steel sheet having a tensile strength of 590 MPa or more, little end face damage in the punched portion, and excellent fatigue characteristics of the base material and the punched portion at a low cost. Therefore, the industrial contribution is extremely remarkable. In particular, even when the punching hole is drilled under severe conditions such as punching with a worn punch or shear with strict clearance, the end face damage of the punched portion is small and excellent fatigue characteristics can be obtained. Furthermore, since the steel plate of the present invention has excellent paint corrosion resistance, the thickness of the undercarriage members and frame members of automobiles and trucks can be reduced, which can greatly contribute to the weight reduction of the vehicle body. In addition, since air cooling is not maintained during cooling after hot rolling, the occurrence of variations in structure and material in the longitudinal direction of the coil can be suppressed, and high-quality steel sheets can be manufactured stably. Thus, the present invention has a very remarkable effect.
  • the inventors first investigated the cause of damage formation on the punched fracture surface that occurs when punched or punched. As a result, it was found that the punched fracture surface has two forms, a ductile fracture surface and a brittle fracture surface, and when a brittle fracture surface appears, large irregularities or microcracks are generated on the fracture surface. It was also found that the greater the unevenness, the easier the fatigue fracture starting from the punched portion. *
  • the inventors observed the brittle fracture surface in detail and investigated the structural factors that cause brittle fracture.
  • factors that affect the brittle fracture surface ratio of the punched fracture surface (a) the form of crystal grains, (b) the amount and size of alloy carbides such as TiC on the grain boundaries, and (c) the steel sheet It was found that there is a texture and that all these factors are within the proper range, so that no brittle fracture surface appears on the fracture surface even under severe processing conditions. For example, as shown in FIG. 1, the degree of elongation of crystal grains in the rolling direction and the amount of precipitated TiC have a strong correlation with the degree of occurrence of brittle fracture surfaces.
  • the inventors have a tensile strength of 590 MPa or more, and can be manufactured under manufacturing conditions in which air cooling is not performed during the cooling after hot rolling, and the brittle fracture of the punched fracture surface at a Si content that can be galvanized.
  • a search was made for the component conditions that would result in a steel plate that is less likely to occur.
  • the inventors have found that desired characteristics can be obtained by containing an appropriate amount of Ti without containing Nb and further optimizing the Mn / Ti ratio as shown in FIG.
  • the component content is% by mass.
  • C is necessary as an element for precipitating carbides and controlling the microstructure. If it is less than 0.025%, it is difficult to obtain a tensile strength of 590 MPa or more. If it exceeds 0.15%, the unevenness of the punched fracture surface becomes large and the fatigue characteristics are deteriorated. Therefore, the C content is 0.025 to 0.15%. From the viewpoint of weldability, a more preferable upper limit is 0.12%.
  • Si has a function of improving the fatigue characteristics of the material.
  • the Si content is 1.0% or less.
  • plating adhesion may be lowered, so 0.6% or less is a preferred range. From the viewpoint of fatigue and plating adhesion, a more preferable range is 0.1% or less.
  • the minimum of Si amount is 0.01%.
  • Mn has a function of controlling the fraction of the microstructure and the precipitation of the alloy carbide that occurs with the transformation by controlling the transformation. If it is less than 1.0%, sufficient punching workability cannot be secured. On the other hand, if it exceeds 2.5%, macro segregation of Mn becomes prominent, and the punched portion cracks due to segregation. Therefore, the Mn content is 1.0 to 2.5%. A more preferable upper limit of the Mn content is 2.0%.
  • P acts as a solid solution strengthening element and can be used to adjust the strength of the steel sheet. However, since it segregates at the grain boundary and causes grain boundary cracking during punching, the upper limit was made 0.02%. Although the minimum of P amount is not limited, Usually, 0.001% or more is contained. *
  • S When S is precipitated as sulfides such as MnS, it induces brittle fracture of the punched fracture surface, so it is desirable to reduce it as much as possible. However, up to 0.005% is acceptable, so the upper limit was made 0.005%. Although the minimum of S amount is not limited, Usually, 0.0003% or more is contained.
  • Al is added as an element that promotes the formation of ferrite. However, if it exceeds 0.5%, the ⁇ ⁇ ⁇ transformation temperature increases, the size of the alloy carbide such as TiC formed along with the ⁇ ⁇ ⁇ transformation increases, and the brittle fracture of the punched fracture surface is promoted. For this reason, the upper limit was limited to 0.5%. 0.1% or less is a more preferable range.
  • Al is an element effective for improving the cleanliness of steel as a deoxidizing element. In order to acquire this effect, it is desirable to make it contain 0.003% or more.
  • Ti is an important element in the present invention, and mainly adjusts the strength of the steel sheet by being dispersed in the steel as TiC.
  • the Ti content is less than 0.04%, it is difficult to obtain a tensile strength of 590 MPa or more.
  • the Ti content is 0.04 to 0.10%.
  • a more preferable upper limit is 0.08% or less. In this case, good fatigue characteristics can be obtained even under more severe punching conditions.
  • N combines with Ti to form TiN. If it exceeds 0.007%, the punching workability is lowered, and the amount of fine alloy carbides such as TiC that contribute to strengthening of steel is reduced. Therefore, the N content is 0.007% or less. A more desirable upper limit is 0.004% or less. Although a minimum is not specifically limited, Usually, 0.001% or more is contained.
  • Nb is not added.
  • Nb is known as an element that suppresses recrystallization of ⁇ during finish rolling, but when Nb is contained within the content range of other elements in the present invention, the crystal grains of the steel sheet are flattened. Furthermore, the size and amount of alloy carbides precipitated on the grain boundaries are increased. For this reason, the brittle fracture surface ratio of the punched fracture surface is remarkably increased. Therefore, it is desirable not to contain Nb, but the upper limit is 0.003% which can be contained as an inevitable impurity. *
  • the Mn / Ti ratio is an important component parameter in the present invention.
  • TiC existing at the ferrite grain boundary is adjusted to be less than 20 nm.
  • TiC starts to precipitate, so when ferrite transformation occurs at a high temperature, coarse TiC is precipitated.
  • the TiC to the ferrite grain boundary is suppressed at a temperature as low as possible to suppress the grain growth. It is necessary to promote precipitation.
  • the ferrite transformation temperature decreases. Therefore, the particle size of TiC precipitated at the ferrite grain boundary can be reduced. Therefore, it is necessary to increase the Mn content so as to suppress the ferrite transformation. Furthermore, in order to suppress the production
  • the Mn / Ti ratio is 15 or more. In order to make the brittle fracture surface ratio of the punched end face 5% or less, the Mn / Ti ratio is preferably 15 or more. Furthermore, in order to make the brittle fracture surface ratio of the punched end face 3% or less, the Mn / Ti ratio is more preferably 18 or more.
  • one or more of B, Zr, V, Cr, Cu, Ni, Mo, W, Ca, Mg, La, and Ce may be included as necessary.
  • the B can be used to suppress the ⁇ ⁇ ⁇ transformation and adjust the metal structure. If it is less than 0.0003%, the effect may not be sufficiently obtained. Moreover, when it exceeds 0.005%, workability will deteriorate. Therefore, the B content is set to 0.0003 to 0.005%.
  • Zr and V can form alloy carbide together with Ti and can be used for adjusting the strength of the steel sheet. If the total amount of one or both is less than 0.002%, the effect may not be sufficiently obtained. On the other hand, if it exceeds 0.08%, the fatigue characteristics of the punched portion will deteriorate. Therefore, the content of one of Zr and V or the total amount of both is set to 0.002 to 0.08%, and the amount is preferably 0.03% or less.
  • Cr, Cu, Ni, Mo, and W are solid solution strengthening elements useful for adjusting the strength of the steel sheet, and contain 0.02% or more in total of one or more of Cr, Cu, Ni, Mo, and W. Can be made. On the other hand, if the content exceeds 2.0% in total, the surface quality is lowered and the fatigue characteristics may be lowered. *
  • Ca, Mg, La, and Ce are elements useful for controlling the form and distribution of inclusions, and one or more of these elements can be contained in a total of 0.0003% or more.
  • the total of one or more of Ca, Mg, La, and Ce exceeds 0.01%, the surface quality may deteriorate, so the upper limit is preferably made 0.01% or less.
  • the hot-rolled steel sheet of the present invention has ferrite as a main phase, and the balance consists of either one or both of pearlite and bainite.
  • the observation of the metal structure of the steel sheet may be performed with an optical microscope in accordance with JIS G 0551. Since the degree of elongation of crystal grains in the rolling direction correlates with the occurrence of unevenness in the punched portion, a sample for observing the structure is taken with a plate thickness section (referred to as an L section) parallel to the rolling direction as the observation surface.
  • the observation surface may be etched with a nital etchant after polishing.
  • the area ratio of ferrite, bainite, and pearlite can be measured by a point count method or image analysis using a structural photograph taken with an optical microscope. Further, the ferrite particle size may be measured by a cutting method or a comparison method in accordance with JIS G 0551, and a structure photograph taken with an optical microscope can be obtained by image analysis.
  • the ferrite is a mixed structure of polygonal ferrite (PF) and pseudo-polygonal ferrite (Quasi-Polygonal Ferrite, hereinafter referred to as ⁇ q).
  • PF polygonal ferrite
  • ⁇ q pseudo-polygonal Ferrite
  • the volume ratio of ferrite is 30% or more.
  • the volume ratio of this ferrite is more preferably 50% or more.
  • the upper limit is not particularly limited, but is substantially 98% or less.
  • the pseudo-polygonal ferrite does not show an internal structure by etching like the polygonal ferrite (PF), but the shape is ash and is clearly distinguished from the polygonal ferrite.
  • PF polygonal ferrite
  • the perimeter of the target crystal grain is lq and the equivalent circle diameter is dq
  • the crystal grain whose ratio (lq / dq) satisfies lq / dq ⁇ 3.5 is a pseudopolygonal. Ferrite.
  • the structure other than ferrite consists of one or two of pearlite and bainite.
  • bainite has better fatigue characteristics at the punched portion.
  • the pearlite volume fraction is preferably 0 to 15%, and in this case, a better punched end face can be obtained.
  • martensite and residual ⁇ are not particularly included, but each may contain up to 2% in volume fraction as a lower limit that can be observed with an optical microscope.
  • the average aspect ratio of the equivalent ellipse of the crystal grains is related to the cracking and unevenness generation behavior of the punched end face.
  • the average aspect ratio of the equivalent ellipse of crystal grains is set to 5 or less.
  • the average aspect ratio is preferably 3.5 or less, so that cracking does not occur even in a more severe punching process.
  • the lower limit is not particularly limited, but 1 corresponding to a circle is a substantial lower limit.
  • the average aspect ratio is a value obtained by observing the structure of the L cross-section, measuring (ellipse major axis length) / (elliptical minor axis length), and averaging about 50 or more crystal grains.
  • the crystal grain here refers to a grain surrounded by a large tilt grain boundary having a grain boundary tilt angle of 10 ° or more.
  • the fracture surface form of the punched fracture surface correlates with the unevenness of the punched fracture surface and the occurrence of microcracking, and affects the fatigue characteristics of the member having the punched portion.
  • the brittle fracture surface ratio in the fracture surface is 20% or more, irregularities on the fracture surface become large, and minute cracks may occur. This promotes the generation of fatigue cracks in the punched portion, so the appropriate range is limited to less than 20%.
  • the brittle fracture surface ratio in the fracture surface is preferably 10% or less.
  • the brittle fracture surface ratio in the fracture surface is a value measured by punching a sample steel plate with a shear or a punch under a clearance condition of 10 to 15% of the plate thickness and observing the fracture surface formed.
  • the texture of the steel sheet affects the fatigue characteristics of the punched part through the occurrence of cracks in the fractured surface of the punched part and the residual stress distribution. If the X-ray random intensity ratio of the ⁇ 112 ⁇ ⁇ 110> orientation and ⁇ 332 ⁇ ⁇ 113> orientation of the plate surface at the center portion of the plate thickness exceeds 5, respectively, cracking of the punched portion fracture surface may occur. Therefore, the X-ray random intensity ratio in the above orientation is preferably 5 or less. More preferably, it is 4 or less. In this case, cracks do not occur even when punched with a worn punch used in mass production. 1 which is completely random is a practical lower limit.
  • Ti-based carbides having a particle size of 20 nm or more tend to induce void generation at the time of strain concentration and cause grain boundary destruction.
  • the average distribution density of Ti carbides of 20 nm or more exists on the grain interface exceeding 10 per grain boundary length of 1 ⁇ m, the brittle fracture surface ratio increases and the fatigue characteristics of the member are lowered.
  • the upper limit is 10 / ⁇ m. 6 / ⁇ m or less is a more preferable range.
  • the thickness of the hot-rolled steel sheet of the present invention is less than 5 mm, the elongation of crystal grains tends to be slightly advanced, and the brittle fracture surface ratio of the punched fracture surface may increase.
  • the plate thickness exceeds 10 mm, the cooling rate after finish rolling to 700 ° C. or less is decreased, and the brittle fracture surface ratio of the punched fracture surface may increase. Therefore, the thickness of the hot rolled steel sheet is preferably 5 to 10 mm.
  • the reason for limitation of the manufacturing method of the hot rolled steel plate and plated steel plate concerning this invention is demonstrated.
  • the steel slab Prior to hot rolling, the steel slab needs to be heated to 1100 ° C or higher. If this temperature is less than 1100 ° C., it is difficult to obtain sufficient strength. This is considered to be because when the temperature is lower than 1100 ° C., the Ti-based carbide is not sufficiently dissolved, and as a result, the precipitate becomes coarse.
  • the heating temperature of a steel piece 1140 degreeC or more is more preferable. If it exceeds 1300 ° C., the unevenness of the scale / base metal interface becomes large and the fatigue characteristics of the base material deteriorate, so the upper limit is 1300 ° C.
  • the heated steel slab is roughly rolled into a rough bar. This rough rolling needs to be completed at 1000 ° C. or higher. This is because if the finish temperature is less than 1000 ° C., the crystal grains after finish hot rolling are flattened and cracks in the punched portion fracture surface occur.
  • the rough bar is finish-rolled to obtain a rolled material.
  • the heating method is not particularly specified. What is necessary is just to perform by methods, such as a furnace heating, induction heating, electrical heating, and high frequency heating.
  • descaling may be performed. This may reduce the surface roughness and improve the fatigue characteristics.
  • the descaling method is not particularly specified, but the most common method is a high-pressure water stream.
  • the time from rough rolling to finish rolling affects the fracture surface morphology of the punched fracture surface through the recrystallization behavior of the ⁇ phase during rolling. If the time from the end of rough rolling to the start of finish rolling is less than 45 seconds, the brittle fracture surface ratio of the punched end surface may increase. For this reason, it is preferable to set the time from the end of rough rolling to the start of finish rolling to 45 seconds or more, thereby further promoting recrystallization of austenite and making the crystal grains more spherical. *
  • the final three-stage cumulative reduction ratio and final rolling temperature are important conditions in the present invention because they affect the flattening of crystal grains after transformation. If the final three-stage cumulative rolling reduction is less than 25%, the recrystallization of ⁇ does not proceed sufficiently, and the crystal grains become flat after transformation. For this reason, the range is limited to 25% or more to promote recrystallization of austenite so that the crystal grains become spherical.
  • the final three-stage cumulative reduction ratio is calculated by the following equation, where N is the total number of rolling mills in finish rolling.
  • the final rolling temperature Tf is changed according to the Ti content (% Ti) because it affects the aspect ratio of the crystal grains and the distribution state of the alloy carbide, which affect the fracture surface form of the punched end face.
  • the final rolling temperature Tf is set so as to satisfy the following formula (1).
  • the more preferable range of the final rolling temperature Tf is 840 + 1000 ⁇ [% Ti] or more.
  • the hot rolling roll is likely to be worn out at high temperatures, and is usually performed at 1000 ° C. or lower.
  • the rolled material is air-cooled immediately after the final rolling.
  • This air cooling time affects the flattening of the crystal grains after transformation in connection with the recrystallization of ⁇ . If the air cooling time immediately after the final rolling is less than 1 second, the brittle fracture surface ratio of the punched end face increases. Therefore, this air cooling time is 1 second or more. More preferably, it is 2 seconds or more. If the air cooling time exceeds 5 seconds, coarse TiC will precipitate and it will be difficult to ensure the strength, and the properties of the punched end face will deteriorate, so this is the upper limit.
  • the rolled material is cooled to form a hot-rolled steel sheet.
  • This cooling is an important process affecting the properties of the punched end face and the strength fluctuation in the coil longitudinal direction. Cooling to 700 ° C. or lower at a minimum cooling rate of 8 ° C./s or higher. When the cooling stop temperature exceeds 700 ° C., alloy carbide tends to precipitate coarsely on the grain boundaries, and the brittle fracture surface ratio of the punched end face increases. On the other hand, even when the minimum cooling rate up to 700 ° C.
  • the minimum cooling rate of 8 ° C./s or more means that the cooling rate between the temperatures from the air cooling end temperature to 700 ° C. is not always lower than 8 ° C./s. For this reason, for example, it means that air cooling is not performed within this temperature section. Thus, in the present invention, air cooling is not performed in the middle of the cooling process by water cooling as in the prior art.
  • the cooling stop temperature is more preferably 680 ° C.
  • the minimum cooling rate is more preferably 15 ° C./s or higher.
  • the upper limit of the minimum cooling rate is not particularly defined, but if it exceeds 80 ° C./s, it becomes difficult to cool uniformly in the hot-rolled coil, and the strength fluctuation in the coil becomes large. For this reason, it is preferable that it is 80 degrees C / s or less.
  • the winding temperature is 540 to 650 ° C.
  • the coiling temperature is less than 540 ° C.
  • the ferrite fraction decreases and the fatigue characteristics of the base material deteriorate.
  • it exceeds 650 degreeC TiC coarsens and precipitates in large quantities. As a result, it becomes difficult to ensure a tensile strength of 590 MPa or more, and fatigue cracks starting from the punched portion are likely to occur.
  • the hot-rolled steel sheet thus obtained may be reheated (annealed).
  • the reheating temperature exceeds the Ac3 temperature, TiC precipitates at the grain boundaries, and the tensile strength of the steel sheet and the fatigue strength of the punched portion are reduced.
  • the suitable range of reheating temperature is restrict
  • the heating method is not particularly specified, and may be performed by methods such as furnace heating, induction heating, current heating, and high frequency heating.
  • the heating time is not particularly defined, but when the heating and holding time of 550 ° C. or higher exceeds 30 minutes, the maximum heating temperature is desirably 700 ° C. or lower in order to obtain a tensile strength of 590 MPa or higher.
  • the reheating (annealing) may be performed after the hot-rolled steel sheet is wound up and before the temperature reaches room temperature.
  • skin pass rolling or leveler rolling is effective in improving shape correction, aging, and fatigue properties, it may be performed after pickling or before pickling.
  • the upper limit of the rolling reduction be 3%. This is because if it exceeds 3%, the formability of the steel sheet is impaired. Moreover, you may perform pickling according to the objective.
  • the hot dip galvanized steel sheet of the present invention is a steel sheet in which a plated layer or an alloyed plated layer is provided on the surface of the above-described hot rolled steel sheet of the present invention. After pickling the hot-rolled steel sheet obtained by the above-described method, the steel sheet is heated using a continuous galvanizing facility or a continuous annealing galvanizing facility, hot-plated, and a plated layer is formed on the surface of the hot-rolled steel plate. .
  • the heating temperature of the steel plate exceeds the Ac3 temperature, the tensile strength and fatigue limit of the steel plate are lowered, so the appropriate range of the heating temperature is limited to the Ac3 temperature or lower.
  • the heating temperature is more preferably in the range of Ac3-30 ° C. or lower from the viewpoint of the fatigue characteristics of the punched part. Further, after galvanizing, galvanizing alloying treatment may be performed to form an alloyed galvanized layer.
  • the plating type is not limited to galvanizing, and other plating types may be used as long as the upper limit of the heating temperature is Ac3 temperature. Moreover, you may abbreviate
  • the production method preceding hot rolling is not particularly limited. That is, following the smelting by a blast furnace, a converter, an electric furnace or the like, the components are adjusted so that the desired component content is obtained by various secondary scouring. Then, it may be cast by a method such as thin continuous slab casting in addition to normal continuous casting and casting by ingot method. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be sent directly to a hot rolling mill as it is at a high temperature slab, or may be hot rolled after being cooled to room temperature and then reheated in a heating furnace.
  • a to R steels having the chemical components shown in Table 1 were produced by the following method. First, a steel slab was produced by casting, and then the steel slab was reheated and rough-rolled under the conditions shown in Tables 2 to 4 to form a rough bar. Next, the rough bar was finish-rolled to form a rolled material having a thickness of 5 to 10 mm, and then cooled and wound up as a hot-rolled steel plate. Steels F-1 and G-2 were produced by further reheating the hot-rolled steel sheet.
  • % C,% Si,% Mn,% Cr,% P,% Al, and% Ti indicate the contents of C, Si, Mn, Cr, P, Al, and Ti, respectively.
  • the chemical composition of the steel in the table is the steel no. Steel No. 1 in Table 1 with the same alphabet. It corresponds to the chemical composition of steel.
  • SRT in the table indicates the slab heating temperature.
  • RFT indicates the rough rolling end temperature.
  • T1 indicates the time from the end of rough rolling to the start of finish rolling.
  • Red3 indicates the cumulative reduction ratio of the final three stages in finish rolling.
  • Tf indicates the final finish rolling temperature.
  • T2 indicates an air cooling time immediately after the final finish rolling.
  • CRmin indicates the minimum cooling rate between SCTs after air cooling.
  • SCT indicates the water cooling stop temperature.
  • CT indicates a winding temperature.
  • Steels A-5, B-5, C-5, G-1, H-2, I-1, J-2, and R-1 are hot dip galvanized steel sheets, and after pickling hot rolled steel sheets In the continuous annealing galvanization line, it annealed at the annealing temperature shown in Table 5, and then performed galvanization and manufactured.
  • the galvanizing immersion temperature was 450 ° C. and the plating alloying temperature was 500 ° C.
  • the metal structure, texture, and grain boundary of the produced steel plate were observed.
  • the observation of the metal structure of the steel sheet was performed with an optical microscope in accordance with JIS G 0551 as described above.
  • the area ratio of each tissue was measured by a point count method or image analysis using a tissue photograph.
  • the average aspect ratio of the crystal grains is obtained by observing the structure of the L cross-section, measuring (ellipse major axis length) / (elliptical minor axis length) and averaging for 50 or more crystal grains. Asked.
  • the number of Ti-based carbides existing on the grain boundaries was measured by SEM observation.
  • Tables 6-8 Note that “Ngb” in the table indicates the distribution density of Ti-based carbides having a particle size of 20 nm or more on the grain interface.
  • the strength characteristics of the steel sheet were evaluated by the following method.
  • the specimen was processed into a No. 5 test piece described in JIS Z 2201.
  • the tensile test was done with respect to this No. 5 test piece according to the method of JISZ2241, and the maximum tensile strength (TS), yield strength (YS), and elongation (EI) were calculated
  • the fatigue characteristics of the punched portion were evaluated by the following method.
  • the coating corrosion resistance of black-skinned hot-rolled steel sheets and plated steel sheets is determined by applying a cut wrinkle to the sample surface that has been subjected to chemical conversion treatment and electrodeposition coating, performing a 240 hr SST (salt spray) test, and having a peel width of 3 mm or less. Good (Good) was evaluated and those exceeding 3 mm were evaluated as bad (Bad).
  • Tables 9-11 As described above, “ ⁇ wp” in the table indicates the bending fatigue limit of the original plate, and “ ⁇ wpp” indicates the bending fatigue limit of the punched hole material.
  • Steel A-2 to 4, Steel B-3 to 4, Steel C-2 to 4, Steel D-2, Steel E-2, Steel H-2, Steel K-2, Steel L-2 This is an example in which a brittle fracture surface is generated on the punched end face because the conditions and the cooling condition after finish rolling are outside the proper range.
  • Steel A-6 is an example in which the air-cooling time after finish rolling is outside the proper range, so that the tensile strength is less than 590 MPa and the brittle fracture surface ratio of the punched end face is high.
  • Steel B-4 and Steel C-4 are examples in which the coiling temperature of the hot-rolled steel sheet is out of the range, the tensile strength is less than 590 MPa, and a brittle fracture surface is generated on the punched fracture surface.
  • Steel I-2 is an example in which the tensile strength is less than 590 MPa because the winding temperature is low.
  • Steel B-2 and Steel K-2 are examples in which a brittle fracture surface was generated on the punched fracture surface because the rough rolling end temperature was out of the range.
  • Steel F-2 is an example in which a brittle fracture surface was generated on the punched fracture surface because the slab heating temperature was outside the range.
  • Steel G-2 is an example in which the post-heat treatment (annealing) temperature is higher than the Ac3 temperature, and a brittle fracture surface is generated on the punch fracture surface.
  • Steels N to S are examples in which a brittle fracture surface is generated on the punched fracture surface because the amount of Ti, Nb, or Mn / Ti ratio is outside the proper range.
  • Steel L-1 was an example of the present invention, but had an Al content of 0.3% and Ngb of 8 pieces / ⁇ m.
  • the Al content was 0.1% or less and the Ngb was 0.7 to 5 / ⁇ m.
  • the Al content is preferably 0.1% or less. This suppresses the increase in the size of alloy carbides such as TiC formed with the ⁇ ⁇ ⁇ transformation, and keeps the average distribution density (Ngb) of Ti-based carbides having a particle size of 20 nm or more on the ferrite grain interface low. Can do.
  • the hot-rolled steel sheet of the present invention is excellent in fatigue characteristics of the base material and the punched portion. Moreover, the manufacturing method of the hot-rolled steel sheet of the present invention does not require air cooling during the cooling after hot rolling, and can manufacture the hot-rolled steel sheet of the present invention with high productivity. For this reason, the present invention can be suitably applied to a member that requires good fatigue characteristics in a punched portion, such as an undercarriage member or a frame member of an automobile or a truck, and a manufacturing process thereof.

Abstract

Provided is a hot rolled steel sheet comprising, by mass%, 0.025 to 0.15% of C, 0.01 to 1.0% or less of Si, 1.0 to 2.5% of Mn, 0.02% or less of P, 0.005% or less of S, 0.5% or less of Al, 0.04 to 0.10% of Ti, and 0.007% or less of N, as well as Fe and inevitable impurities as the balance, wherein the Mn/Ti ratio is 15 or greater; Nb is not added; the ferrite volume percentage is 30% or greater and the balance comprises one of or both pearlite and bainite; the average aspect ratio of the crystal grain corresponding ellipsoid is 5 or less; the average distribution density on the ferrite grain boundary surface of Ti carbide having a grain size of 20 nm or greater is 10 grains/µm or less; the brittle fracture rate of surface fractured by punching is less than 20%; and the maximum tensile strength is 590 MPa or greater.

Description

打抜き加工性と疲労特性に優れた熱延鋼板、溶融亜鉛めっき鋼板、およびそれらの製造方法Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
 本発明は、厳しい加工条件で打ち抜き加工を行った場合でも、打抜き端面における凹凸を伴う損傷を防止でき、さらには母材および打ち抜き加工部の疲労特性に優れた、引張強度590MPa以上の熱延鋼板、めっき鋼板、並びにそれらの製造方法に関する。本鋼板は、自動車やトラックのフレームやメンバー、シャシーなどの素材として好適である。 
 本願は、2009年5月11日に、日本に出願された特願2009-114633号に基づき優先権を主張し、その内容をここに援用する。
The present invention is a hot-rolled steel sheet having a tensile strength of 590 MPa or more, which can prevent damage accompanied by unevenness on the punched end face even when punched under severe processing conditions, and further has excellent fatigue properties of the base material and the punched portion. The present invention relates to a plated steel sheet and a method for producing them. This steel plate is suitable as a material for automobiles, truck frames, members, chassis, and the like.
This application claims priority on May 11, 2009 based on Japanese Patent Application No. 2009-114633 filed in Japan, the contents of which are incorporated herein by reference.
 CO排出量抑制の観点から、自動車やトラックの軽量化への取り組みが進められており、部材への高強度鋼板の適用が急速に進んでいる。一方で、材料を高強度化すると、打抜き破面に凹凸を伴う欠陥が発生し、この部分を破壊起点とする疲労特性の劣化が発生する場合がある。特に自動車やトラックの足回り部材やフレーム部材では、打抜き部における良好な疲労特性を確保する技術の確立が強く求められている。 From the viewpoint of reducing CO 2 emissions, efforts are being made to reduce the weight of automobiles and trucks, and the application of high-strength steel sheets to members is advancing rapidly. On the other hand, when the strength of the material is increased, defects with irregularities are generated on the punched fracture surface, and fatigue characteristics may be deteriorated starting from this portion. In particular, in the undercarriage members and frame members of automobiles and trucks, establishment of a technique for ensuring good fatigue characteristics in the punched portion is strongly demanded.
 このような課題を克服する方法として、特許文献1,2には、フェライトとマルテンサイトを含むDP組織とすることにより、疲労特性を向上させる技術が開示されている。これらの技術では、Si等のフェライト形成元素を特定量添加することを特徴とするが、Siが高いと、母材/スケール界面の粗さが増大して、疲労特性が劣化する場合がある。また熱延鋼板に亜鉛めっきを施す場合には、表面のSi濃化層により、めっきの密着性が低下するという問題があった。さらに、これら技術では、熱延後の冷却の途中に空冷過程を設けることにより、フェライトを形成させることを特徴とする。しかし熱延コイル全長で空冷条件を均一にすることが難しいため、コイルの長手で組織および材質のばらつきが大きいという課題があった(課題1)。 As a method for overcoming such a problem, Patent Documents 1 and 2 disclose a technique for improving fatigue characteristics by forming a DP structure containing ferrite and martensite. These techniques are characterized by adding a specific amount of a ferrite-forming element such as Si. However, if Si is high, the roughness of the base material / scale interface may increase and the fatigue characteristics may deteriorate. Moreover, when galvanizing the hot-rolled steel sheet, there is a problem that the adhesion of the plating is lowered due to the Si concentrated layer on the surface. Furthermore, these techniques are characterized in that ferrite is formed by providing an air cooling process in the middle of cooling after hot rolling. However, since it is difficult to make the air-cooling conditions uniform over the entire length of the hot-rolled coil, there has been a problem that the variation in structure and material is large along the length of the coil (Problem 1).
 特許文献3には、フェライトとベイナイトの複合組織とし、かつベイナイトのバンド化を抑制することにより、切り欠き疲労強度の高い熱延鋼板を得る方法が提案されている。しかしながら、熱延後の冷却途中に空冷保持を行う必要があり、コイル全長に亘り材質を一定にできないという問題点があった(課題1)。 Patent Document 3 proposes a method of obtaining a hot-rolled steel sheet having a high notch fatigue strength by forming a composite structure of ferrite and bainite and suppressing banding of bainite. However, it is necessary to perform air cooling during the cooling after hot rolling, and there is a problem that the material cannot be made constant over the entire length of the coil (Problem 1).
 特許文献4~7には、Ti、NbやV等の炭化物形成元素を添加した鋼板において、打ち抜き加工部の割れや疲労特性を向上する方法が提案されている。しかしながら、特許文献4~7に示された方法では、実際の部材におけるクリアランス状況では、打ち抜き端面に割れが発生する場合があるか(課題2)、あるいは高いSiを含有するために、母材/スケール界面の粗さが増大して疲労特性が劣化する場合があった(課題3)。さらに熱延鋼板に亜鉛めっきを施す場合には、表面のSi濃化層により、めっきが付着しないという問題があった(課題4)。 Patent Documents 4 to 7 propose a method for improving cracking and fatigue characteristics of a punched portion in a steel sheet to which a carbide forming element such as Ti, Nb, or V is added. However, in the methods shown in Patent Documents 4 to 7, there is a case where cracks may occur in the punched end face in the clearance situation in the actual member (Problem 2), or because of containing high Si, In some cases, the roughness of the scale interface increased and the fatigue characteristics deteriorated (Problem 3). Furthermore, when galvanizing the hot-rolled steel sheet, there is a problem that the plating does not adhere due to the Si concentrated layer on the surface (Problem 4).
 特許文献8~10には、Ti、NbやV等の炭化物形成元素を添加した鋼板において、Bを活用することにより、打ち抜き加工部の割れや疲労特性を向上する方法が提案されている。しかしながら、特許文献8~10の方法では、割れが抑制される傾向は観られるものの効果は十分でない。このため、実際の部材成形加工ラインで使用されうる磨耗したパンチやシャーで打抜くと、端面に割れあるいは大きな凹凸が発生し、打ち抜き部の疲労特性が劣化するという課題があった(課題5)。 Patent Documents 8 to 10 propose a method of improving cracking and fatigue characteristics of a punched portion by utilizing B in a steel sheet to which carbide forming elements such as Ti, Nb, and V are added. However, in the methods of Patent Documents 8 to 10, although the tendency to suppress cracking is observed, the effect is not sufficient. For this reason, when punching with a worn punch or shear that can be used in an actual member forming processing line, there is a problem that cracks or large irregularities are generated on the end face and the fatigue characteristics of the punched portion deteriorate (problem 5). .
 特許文献11には、フェライトとベイナイトを主な組織として、フェライト中の析出物の粒径と分率、およびベイナイトの形態を制御することにより、伸び特性、伸びフランジ特性、疲労特性に優れる高強度熱延鋼板を得る方法が提案されている。しかしながら、この方法でも、磨耗したパンチやシャーで打ち抜くと、端面に割れや大きな凹凸が発生する場合がある(課題5)。また熱延後の冷却の途中において空冷保持を設ける必要があるため、生産性に課題があった。 Patent Document 11 discloses that ferrite and bainite are main structures, and by controlling the grain size and fraction of precipitates in ferrite and the form of bainite, high strength excellent in elongation characteristics, stretch flange characteristics, and fatigue characteristics. A method for obtaining a hot-rolled steel sheet has been proposed. However, even with this method, when punched with a worn punch or shear, cracks and large irregularities may occur on the end face (Problem 5). Moreover, since it is necessary to provide air cooling holding in the middle of cooling after hot rolling, there was a problem in productivity.
 特許文献12には、Ti、Nb、V等の炭化物形成元素を添加した鋼板において、連続鋳造工程における表面欠陥や生産性を向上させる方法が提案されている。しかしながら、この方法では、熱延条件が適正化されていないために、磨耗したパンチやシャーで打抜くと、端面に割れあるいは大きな凹凸が発生し、打ち抜き部の疲労特性が劣化するという課題があった(課題5)。 Patent Document 12 proposes a method for improving surface defects and productivity in a continuous casting process in a steel sheet to which carbide forming elements such as Ti, Nb, and V are added. However, in this method, since the hot rolling conditions are not optimized, there is a problem that when punching with a worn punch or shear, cracks or large irregularities are generated on the end face, and the fatigue characteristics of the punched portion deteriorate. (Problem 5).
特開平11-158547号公報Japanese Patent Laid-Open No. 11-158547 特開2007-321201号公報JP 2007-321201 A 特開平05-179346号公報JP 05-179346 A 特開2002-161340号公報JP 2002-161340 A 特開2002-317246号公報JP 2002-317246 A 特開2003-342684号公報JP 2003-342684 A 特開2004-250749号公報JP 2004-250749 A 特開2004-315857号公報JP 2004-315857 A 特開2005-298924号公報JP 2005-298924 A 特開2008-266726号公報JP 2008-266726 A 特開2007-9322号公報JP 2007-9322 A 特開2007-138238号公報JP 2007-138238 A
 本発明は上記課題1~5に鑑みてなされたものであり、クリアランスが厳しく、摩耗したシャーやパンチを用いるという厳しい加工条件で打ち抜き加工を行った場合でも、打抜き端面における凹凸を伴う損傷を防止でき、母材および打ち抜き加工部の疲労特性に優れ、さらに熱延後の冷却の途中において空冷保持を設けることなくコイルの長手方向で材質のばらつきが無く高い生産性で製造でき、また熱延鋼板のメッキ後にもメッキ剥離の無い引張強度590MPa以上の熱延鋼板、溶融亜鉛めっき鋼板並びにそれらの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems 1 to 5, and prevents damage caused by unevenness on the punched end face even when punching is performed under severe processing conditions such as a tight clearance and a worn shear or punch. It is excellent in fatigue characteristics of the base material and punched parts, and can be manufactured with high productivity without variation in the material in the longitudinal direction of the coil without providing air cooling during cooling after hot rolling. It is an object of the present invention to provide a hot-rolled steel sheet, a hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more, and a method for producing them.
 上記課題を解決するために検討した結果、本発明者等は、Nbを含有させずにTiを適正量含有させ、Mn/Ti比、組織分率、結晶粒の形態、Ti系炭化物の分布・サイズ、及び集合組織を適正化することにより、クリアランスや摩耗したシャーやパンチを用いた厳しい打ち抜き加工条件下においても優れた疲労特性を有する熱延鋼板および亜鉛めっき鋼板を高い生産性で製造できることを見出した。本発明は、前記知見に基づいてなされたものであり、その要旨は以下のとおりである。 As a result of studying to solve the above problems, the present inventors incorporated an appropriate amount of Ti without containing Nb, Mn / Ti ratio, structure fraction, crystal grain form, Ti-based carbide distribution, By optimizing the size and texture, it is possible to produce hot rolled steel sheets and galvanized steel sheets with excellent fatigue characteristics even under severe punching conditions using clearance and worn shears and punches with high productivity. I found it. This invention is made | formed based on the said knowledge, The summary is as follows.
 本発明の打抜き加工性と疲労特性に優れた熱延鋼板は、質量%で、C:0.025~0.15%、Si:1.0%以下、Mn:1.0~2.5%、P:0.02%以下、S:0.005%以下、Al:0.5%以下、Ti:0.04~0.10%、及びN:0.007%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、Mn/Ti比:15以上であり、Nbが添加されておらず、フェライトの体積率が30%以上で、残部がパーライトとベイナイトのうち1種又は2種からなり、結晶粒の相当楕円の平均アスペクト比が5以下であり、粒界面上における20nm以上のTi系炭化物の平均分布密度が10個/μm以下であり、打ち抜き破断面の脆性破面率が20%未満であり、最大引張強度が590MPa以上である。
 本発明の打抜き加工性と疲労特性に優れた熱延鋼板では、板厚が5~10mmでもよい。
 さらにBを0.0003~0.005質量%含有してもよい。
 さらにZr、Vの一方または双方を合計で0.002~0.08質量%含有してもよい。
 さらにCr、Cu、Ni、Mo、Wから選択される1種又は2種以上を合計で0.02~2.0質量%含有してもよい。
 さらにCa、Mg、La、Ceから選択される1種又は2種以上を合計で0.0003~0.01質量%含有してもよい。
The hot-rolled steel sheet having excellent punchability and fatigue characteristics according to the present invention is C: 0.025 to 0.15%, Si: 1.0% or less, and Mn: 1.0 to 2.5% by mass. P: 0.02% or less, S: 0.005% or less, Al: 0.5% or less, Ti: 0.04 to 0.10%, and N: 0.007% or less, with the balance being It has a component composition consisting of Fe and inevitable impurities, Mn / Ti ratio: 15 or more, Nb is not added, the ferrite volume fraction is 30% or more, and the balance is one of pearlite and bainite Or it is composed of two types, the average aspect ratio of the equivalent ellipse of the crystal grains is 5 or less, the average distribution density of Ti carbides of 20 nm or more on the grain interface is 10 pieces / μm or less, and the brittle fracture of the punched fracture surface The area ratio is less than 20%, and the maximum tensile strength is 590 MPa or more. .
The hot-rolled steel sheet having excellent punchability and fatigue characteristics of the present invention may have a thickness of 5 to 10 mm.
Furthermore, 0.0003 to 0.005 mass% of B may be contained.
Further, one or both of Zr and V may be contained in a total amount of 0.002 to 0.08 mass%.
Further, one or more selected from Cr, Cu, Ni, Mo and W may be contained in a total amount of 0.02 to 2.0% by mass.
Further, one or more selected from Ca, Mg, La and Ce may be contained in a total amount of 0.0003 to 0.01% by mass.
 本発明の打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板は、前記した本発明の熱延鋼板と、前記熱延鋼板の表面に設けられためっき層又は合金化めっき層とを有する。    The hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics of the present invention has the above-described hot-rolled steel sheet of the present invention and a plating layer or alloyed plating layer provided on the surface of the hot-rolled steel sheet. *
 本発明の打抜き加工性と疲労特性に優れた熱延鋼板の製造方法は、前記した本発明の熱延鋼板の成分組成からなる鋼片を、1100~1300℃に加熱後、1000℃以上の温度で終了する条件で粗圧延して粗バーとする工程と、最終3段の圧延の累積圧下率が25%以上であり、最終圧延温度Tfが式(1)を満たす条件で前記粗バーを仕上げ圧延して圧延材とする工程と、前記仕上げ圧延の終了後に前記圧延材に対して1~5秒の空冷を行い、引き続き、最低冷却速度8℃/s以上で700℃以下まで冷却して熱延鋼板とする工程と、500~650℃の範囲内で前記熱延鋼板を巻き取る工程を有する。
 Tf>840+800×[%Ti]    (1)
 本発明の打抜き加工性と疲労特性に優れた熱延鋼板の製造方法では、前記粗圧延終了から前記仕上げ圧延開始までの時間が45秒以上であってもよい。
 前記仕上げ圧延後に、前記圧延材又は前記熱延鋼板に対してAc3温度以下で焼鈍を行う工程を更に有してもよい。
The method for producing a hot-rolled steel sheet excellent in punching workability and fatigue characteristics according to the present invention comprises heating a steel slab comprising the above-described composition of the hot-rolled steel sheet according to the present invention to 1100-1300 ° C. and then a temperature of 1000 ° C. or higher. The rough bar is finished under the conditions that the rough rolling is carried out under the conditions ending in step 1 and the cumulative rolling reduction of the final three-stage rolling is 25% or more and the final rolling temperature Tf satisfies the formula (1). A step of rolling into a rolled material, and after the finish rolling, the rolled material is air-cooled for 1 to 5 seconds, and subsequently cooled to a temperature of 700 ° C. or lower at a minimum cooling rate of 8 ° C./s or higher. A step of forming a rolled steel sheet, and a step of winding the hot-rolled steel sheet within a range of 500 to 650 ° C.
Tf> 840 + 800 × [% Ti] (1)
In the method for producing a hot-rolled steel sheet having excellent punchability and fatigue characteristics according to the present invention, the time from the end of the rough rolling to the start of the finish rolling may be 45 seconds or more.
You may further have the process of annealing at Ac3 temperature or less with respect to the said rolling material or the said hot-rolled steel plate after the said finish rolling.
 本発明の打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板の製造方法は、前記した本発明の熱延鋼板の製造方法により、熱延鋼板を製造する工程と、前記熱延鋼板を酸洗の後、Ac3温度以下で加熱する工程と、次いで亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきする工程を有する。
 本発明の打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板の製造方法では、前記溶融亜鉛めっき鋼板に対して亜鉛めっき合金化処理を行う工程をさらに有してもよい。
The method for producing a hot-dip galvanized steel sheet having excellent punchability and fatigue characteristics according to the present invention comprises the steps of producing a hot-rolled steel sheet by the above-described method for producing a hot-rolled steel sheet, and pickling the hot-rolled steel sheet. Then, it has the process of heating below Ac3 temperature, and the process of immersing in a galvanization bath and then galvanizing the steel plate surface.
In the manufacturing method of the hot dip galvanized steel sheet excellent in the punching workability and fatigue characteristics of the present invention, the method may further include a step of performing galvanizing alloying treatment on the hot dip galvanized steel sheet.
 本発明によれば、引張強度が590MPa以上であり、打ち抜き加工部の端面損傷が少なく、母材および打ち抜き加工部の疲労特性に優れた熱延鋼板、亜鉛めっき鋼板を安価に提供することが可能になり、産業上の貢献が極めて顕著である。特に、クリアランスが厳しく、かつ磨耗したパンチやシャーで打抜くような厳しい条件で打ち抜き穴を開けた場合であっても、打ち抜き加工部の端面損傷が少なく、かつ優れた疲労特性が得られる。更に、本発明の鋼板は、優れた塗装耐食性を有するため、自動車やトラックの足回り部材やフレーム部材の板厚を低減でき、車体の軽量化等に大きく貢献できる。また、熱延後の冷却途中に空冷保持を行わないため、コイルの長手方向における組織および材質のばらつきの発生を抑制でき、高品質の鋼板を安定して製造できる。
 このように本発明は、極めて顕著な効果を奏する。
According to the present invention, it is possible to provide a hot-rolled steel sheet and a galvanized steel sheet having a tensile strength of 590 MPa or more, little end face damage in the punched portion, and excellent fatigue characteristics of the base material and the punched portion at a low cost. Therefore, the industrial contribution is extremely remarkable. In particular, even when the punching hole is drilled under severe conditions such as punching with a worn punch or shear with strict clearance, the end face damage of the punched portion is small and excellent fatigue characteristics can be obtained. Furthermore, since the steel plate of the present invention has excellent paint corrosion resistance, the thickness of the undercarriage members and frame members of automobiles and trucks can be reduced, which can greatly contribute to the weight reduction of the vehicle body. In addition, since air cooling is not maintained during cooling after hot rolling, the occurrence of variations in structure and material in the longitudinal direction of the coil can be suppressed, and high-quality steel sheets can be manufactured stably.
Thus, the present invention has a very remarkable effect.
熱延鋼板の打抜き破断面の脆性破面率と、結晶粒平均アスペクト比及び析出Ti量との関係(C量:0.08%、巻取り温度:600℃の場合)を示す図である。It is a figure which shows the relationship (in the case of C amount: 0.08%, coiling temperature: 600 degreeC) with the brittle fracture surface ratio of the punching fracture surface of a hot-rolled steel plate, a crystal grain average aspect-ratio, and precipitation Ti amount. 熱延鋼板の打抜き破断面の脆性破面率と、Mn含有量及びTi含有量との関係(C量:0.08%、巻取り温度:600℃の場合)を示す図である。It is a figure which shows the relationship (in the case of C amount: 0.08%, coiling temperature: 600 degreeC) with the brittle fracture surface ratio of the punching fracture surface of a hot-rolled steel plate, Mn content, and Ti content.
 発明者らは、まず始めに、パンチやシャーで打ち抜いた際に生じる打ち抜き破断面の損傷形成原因について調査を行った。その結果、打ち抜き破断面は延性破面と脆性破面の2種類の形態があり、脆性破面が現れる場合に、破面に大きな凹凸あるいは微小割れを生じることが判った。また凹凸が大きいほど、打抜き部を起点とする疲労破壊が起き易いことが明らかとなった。  The inventors first investigated the cause of damage formation on the punched fracture surface that occurs when punched or punched. As a result, it was found that the punched fracture surface has two forms, a ductile fracture surface and a brittle fracture surface, and when a brittle fracture surface appears, large irregularities or microcracks are generated on the fracture surface. It was also found that the greater the unevenness, the easier the fatigue fracture starting from the punched portion. *
 次いで、発明者らは、脆性破面を詳細に観察し、脆性破壊を生じる組織要因について調査をした。その結果、打ち抜き破断面の脆性破面率に影響を及ぼす個別因子として、(a)結晶粒の形態、(b)粒界上のTiC等の合金炭化物の量・サイズ、および(c)鋼板の集合組織があり、さらにこれら因子を全て適正範囲内にすることにより、厳しい加工条件でも破断面に脆性破面が現れないことを見出した。
 例えば、図1に示すように、結晶粒の圧延方向への伸長度と、析出したTiCの量とは、脆性破面の発生程度と強い相関関係がある。この原因については定かではないが、結晶粒が伸長しているほど、打ち抜き加工時の歪集中が粒界に局在化する。さらにこの粒界上に多量かつ大きな合金炭化物が析出していると、加工時のボイド発生が促進される。以上により、粒界に沿って容易に剥離破壊し、脆性的な破面になるためと推測される。   
Next, the inventors observed the brittle fracture surface in detail and investigated the structural factors that cause brittle fracture. As a result, as individual factors that affect the brittle fracture surface ratio of the punched fracture surface, (a) the form of crystal grains, (b) the amount and size of alloy carbides such as TiC on the grain boundaries, and (c) the steel sheet It was found that there is a texture and that all these factors are within the proper range, so that no brittle fracture surface appears on the fracture surface even under severe processing conditions.
For example, as shown in FIG. 1, the degree of elongation of crystal grains in the rolling direction and the amount of precipitated TiC have a strong correlation with the degree of occurrence of brittle fracture surfaces. Although the cause of this is not clear, the more the crystal grains are elongated, the more the strain concentration during punching is localized at the grain boundaries. Further, when a large amount and large alloy carbide are precipitated on the grain boundary, generation of voids during processing is promoted. From the above, it is presumed that it is easily peeled and broken along the grain boundary to become a brittle fracture surface.
 次いで発明者らは、引張強度が590MPa以上になり、さらに熱延後の冷却中において途中空冷を行わない製造条件で製造でき、かつ亜鉛めっきが可能なSi含有量において、打ち抜き破断面の脆性破壊が起こりにくい鋼板が得られる成分条件の探索を行った。
 その結果、Nbを含有させずにTiを適正量含有させ、さらに図2に示すようにMn/Ti比を適正化することにより、所望の特性が得られることを見出し、本発明に至った。   
Next, the inventors have a tensile strength of 590 MPa or more, and can be manufactured under manufacturing conditions in which air cooling is not performed during the cooling after hot rolling, and the brittle fracture of the punched fracture surface at a Si content that can be galvanized. A search was made for the component conditions that would result in a steel plate that is less likely to occur.
As a result, the inventors have found that desired characteristics can be obtained by containing an appropriate amount of Ti without containing Nb and further optimizing the Mn / Ti ratio as shown in FIG.
 以下、本発明について詳細に説明する。
 まず成分の限定理由について説明する。成分含有量は質量%である。
 Cは、炭化物を析出させ、またミクロ組織を制御する元素として必要である。0.025%未満であると、590MPa以上の引張強度を得ることが難しい。0.15%を越えると、打ち抜き破面の凹凸が大きくなり疲労特性が低下する。従って、Cの含有量は、0.025~0.15%とする。溶接性の観点から、より好ましい上限は0.12%である。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the components will be described. The component content is% by mass.
C is necessary as an element for precipitating carbides and controlling the microstructure. If it is less than 0.025%, it is difficult to obtain a tensile strength of 590 MPa or more. If it exceeds 0.15%, the unevenness of the punched fracture surface becomes large and the fatigue characteristics are deteriorated. Therefore, the C content is 0.025 to 0.15%. From the viewpoint of weldability, a more preferable upper limit is 0.12%.
 Siは、素材の疲労特性を向上させる働きがある。しかし、1.0%を越えて含有すると、母材/スケール界面の凹凸が増大して疲労特性が低下するとともに、黒皮鋼板(スケール付き)の場合には赤スケール起因の塗装耐食性低下が観られる。従って、Siの含有量は,1.0%以下とする。
 一方、亜鉛めっきを行う場合は、0.6%を越えて含有すると、めっき密着性が低下する場合があるので、0.6%以下が好ましい範囲である。疲労及びめっき密着性の観点から、より好ましい範囲は0.1%以下である。 Siの含有量が0.01%未満であると、溶接部の形状が劣化し、溶接部の疲労特性が低下する。このため、Si量の下限は0.01%であることが好ましい。
Si has a function of improving the fatigue characteristics of the material. However, if the content exceeds 1.0%, the unevenness of the base material / scale interface increases and the fatigue characteristics deteriorate, and in the case of black skin steel plate (with scale), the coating corrosion resistance decreases due to the red scale. It is done. Therefore, the Si content is 1.0% or less.
On the other hand, when performing galvanization, if it exceeds 0.6%, plating adhesion may be lowered, so 0.6% or less is a preferred range. From the viewpoint of fatigue and plating adhesion, a more preferable range is 0.1% or less. When the content of Si is less than 0.01%, the shape of the welded portion is deteriorated, and the fatigue characteristics of the welded portion are deteriorated. For this reason, it is preferable that the minimum of Si amount is 0.01%.
 Mnは、変態を制御することによって、ミクロ組織の分率と、変態に伴い起こる合金炭化物の析出とを制御する働きがある。1.0%未満であると、打ち抜き加工性が十分に確保できない。一方、2.5%を超えると、Mnのマクロ偏析が顕著になり、偏析に起因した打ち抜き加工部の割れが起こる。従って、Mnの含有量は、1.0~2.5%とする。Mnの含有量のより好ましい上限は2.0%である。 Mn has a function of controlling the fraction of the microstructure and the precipitation of the alloy carbide that occurs with the transformation by controlling the transformation. If it is less than 1.0%, sufficient punching workability cannot be secured. On the other hand, if it exceeds 2.5%, macro segregation of Mn becomes prominent, and the punched portion cracks due to segregation. Therefore, the Mn content is 1.0 to 2.5%. A more preferable upper limit of the Mn content is 2.0%.
 Pは、固溶強化元素として働き、鋼板強度の調整に用いることができる。しかしながら、粒界に偏析して打抜き加工時の粒界割れを引き起こすため、その上限を0.02%とした。P量の下限は限定しないが、通常、0.001%以上を含有する。    P acts as a solid solution strengthening element and can be used to adjust the strength of the steel sheet. However, since it segregates at the grain boundary and causes grain boundary cracking during punching, the upper limit was made 0.02%. Although the minimum of P amount is not limited, Usually, 0.001% or more is contained. *
 Sは、MnS等の硫化物として析出すると、打ち抜き破面の脆性破壊を誘発するので、極力低減することが望ましい。しかし0.005%までは許容できるので、上限を0.005%とした。S量の下限は限定しないが、通常、0.0003%以上を含有する。 When S is precipitated as sulfides such as MnS, it induces brittle fracture of the punched fracture surface, so it is desirable to reduce it as much as possible. However, up to 0.005% is acceptable, so the upper limit was made 0.005%. Although the minimum of S amount is not limited, Usually, 0.0003% or more is contained.
 Alは、フェライトの形成を促進させる元素として添加される。しかしながら、0.5%を超えると、γ→α変態温度が増加し、γ→α変態に伴って形成するTiC等の合金炭化物のサイズが大きくなり、打ち抜き破断面の脆性破壊を促進させる。このため、上限を0.5%に限定した。0.1%以下がより好ましい範囲である。
 なお、Alは脱酸元素として、鋼の清浄度を向上させるために有効な元素である。この効果を得るためには、0.003%以上含有させることが望ましい。
Al is added as an element that promotes the formation of ferrite. However, if it exceeds 0.5%, the γ → α transformation temperature increases, the size of the alloy carbide such as TiC formed along with the γ → α transformation increases, and the brittle fracture of the punched fracture surface is promoted. For this reason, the upper limit was limited to 0.5%. 0.1% or less is a more preferable range.
In addition, Al is an element effective for improving the cleanliness of steel as a deoxidizing element. In order to acquire this effect, it is desirable to make it contain 0.003% or more.
 Tiは、本発明において重要な元素であり、主にTiCとして鋼中に分散させることで、鋼板の強度を調整する。しかしながら、Ti含有量が0.04%未満であると、590MPa以上の引張強度を得ることが難しい。また0.10%を超えると、打ち抜き破断面の脆性破面率が増加し、打抜き部を起点とする疲労破壊が起き易い。従って、Tiの含有量は、0.04~0.10%とする。より好ましい上限は、0.08%以下であり、この場合、より厳しい打抜き条件でも良好な疲労特性を得ることができる。    Ti is an important element in the present invention, and mainly adjusts the strength of the steel sheet by being dispersed in the steel as TiC. However, when the Ti content is less than 0.04%, it is difficult to obtain a tensile strength of 590 MPa or more. On the other hand, if it exceeds 0.10%, the brittle fracture surface ratio of the punched fracture surface increases, and fatigue failure starting from the punched portion tends to occur. Therefore, the Ti content is 0.04 to 0.10%. A more preferable upper limit is 0.08% or less. In this case, good fatigue characteristics can be obtained even under more severe punching conditions. *
 Nは、Tiと結合しTiNを形成する。0.007%を超えると、打ち抜き加工性を低下させると共に、鋼の強化に寄与するTiC等の微細な合金炭化物の形成量を減少させる。従って、Nの含有量は、0.007%以下とする。より望ましい上限は、0.004%以下である。下限は、特に限定しないが、通常、0.001%以上を含有する。 N combines with Ti to form TiN. If it exceeds 0.007%, the punching workability is lowered, and the amount of fine alloy carbides such as TiC that contribute to strengthening of steel is reduced. Therefore, the N content is 0.007% or less. A more desirable upper limit is 0.004% or less. Although a minimum is not specifically limited, Usually, 0.001% or more is contained.
 本発明において、Nbは添加されない。Nbは、仕上げ圧延中のγの再結晶の抑制元素として知られるが、本発明における他元素の含有範囲内でNbを含有すると、鋼板の結晶粒の扁平化が進む。更に、粒界上に析出する合金炭化物のサイズと量を増大させる。このため、打ち抜き破断面の脆性破面率を顕著に増大させる。従って、Nbを含有しないことが望ましいが、不可避不純物として含有しうる0.003%を上限とする。    In the present invention, Nb is not added. Nb is known as an element that suppresses recrystallization of γ during finish rolling, but when Nb is contained within the content range of other elements in the present invention, the crystal grains of the steel sheet are flattened. Furthermore, the size and amount of alloy carbides precipitated on the grain boundaries are increased. For this reason, the brittle fracture surface ratio of the punched fracture surface is remarkably increased. Therefore, it is desirable not to contain Nb, but the upper limit is 0.003% which can be contained as an inevitable impurity. *
 Mn/Ti比は、本発明において重要な成分パラメーターである。本発明では、後述するように、打ち抜き破断面の脆性破面率を小さくするために、フェライト粒界に存在するTiCを20nm未満に調整する。通常、フェライトが変態する際に、TiCが析出し始めるため、高温でフェライト変態が生じると、粗大なTiCが析出することになる。このため、TiCの成長を抑制して、フェライト粒界に存在するTiCの粒径を20nm未満とするためには、粒成長を抑制するためになるべく低い温度にて、フェライト粒界へのTiCの析出を促す必要がある。 The Mn / Ti ratio is an important component parameter in the present invention. In the present invention, as will be described later, in order to reduce the brittle fracture surface ratio of the punched fracture surface, TiC existing at the ferrite grain boundary is adjusted to be less than 20 nm. Usually, when ferrite is transformed, TiC starts to precipitate, so when ferrite transformation occurs at a high temperature, coarse TiC is precipitated. For this reason, in order to suppress the growth of TiC so that the grain size of TiC existing at the ferrite grain boundary is less than 20 nm, the TiC to the ferrite grain boundary is suppressed at a temperature as low as possible to suppress the grain growth. It is necessary to promote precipitation.
 Mn含有量が高くなると、フェライト変態温度が低下する。そのために、フェライト粒界に析出するTiCの粒径を小さくすることができる。したがって、フェライト変態を抑制するようにMn含有量を高くする必要がある。さらに、強度を確保しつつTiCの生成を抑制するために、Tiの濃度を調整する必要がある。したがって、Mn/Ti比には、下限値を設定する必要がある。
 Mn/Ti比が15未満であると、熱延後の冷却時において、高温でフェライトが形成し始めるため、フェライト形成と同時に析出するTiCが粗大となって粒界に形成する。このため、打ち抜き加工部の脆性破面率が増大して、打抜き部の疲労特性が低下する。従って、Mn/Ti比は、15以上とする。
 打ち抜き端面の脆性破面率を5%以下にするためには、Mn/Ti比は15以上が好ましい。更に、打ち抜き端面の脆性破面率を3%以下にするためには、Mn/Ti比は18以上が、より好ましい条件である。
As the Mn content increases, the ferrite transformation temperature decreases. Therefore, the particle size of TiC precipitated at the ferrite grain boundary can be reduced. Therefore, it is necessary to increase the Mn content so as to suppress the ferrite transformation. Furthermore, in order to suppress the production | generation of TiC, ensuring intensity | strength, it is necessary to adjust the density | concentration of Ti. Therefore, it is necessary to set a lower limit for the Mn / Ti ratio.
If the Mn / Ti ratio is less than 15, ferrite starts to form at a high temperature during cooling after hot rolling, so that TiC that precipitates simultaneously with ferrite formation becomes coarse and forms at grain boundaries. For this reason, the brittle fracture surface ratio of the punched portion increases, and the fatigue characteristics of the punched portion decrease. Therefore, the Mn / Ti ratio is 15 or more.
In order to make the brittle fracture surface ratio of the punched end face 5% or less, the Mn / Ti ratio is preferably 15 or more. Furthermore, in order to make the brittle fracture surface ratio of the punched end face 3% or less, the Mn / Ti ratio is more preferably 18 or more.
 更に、選択成分として、B、Zr、V、Cr、Cu、Ni、Mo、W、Ca、Mg、La、Ceの1種又は2種以上を必要に応じて含有させても良い。 Furthermore, as a selective component, one or more of B, Zr, V, Cr, Cu, Ni, Mo, W, Ca, Mg, La, and Ce may be included as necessary.
 Bは、γ→α変態を抑制し、金属組織を調整するために用いることができる。0.0003%未満では、その効果が十分に得られない場合がある。また0.005%を超えると、加工性が劣化する。従って、Bの含有量は、0.0003~0.005%とする。  B can be used to suppress the γ → α transformation and adjust the metal structure. If it is less than 0.0003%, the effect may not be sufficiently obtained. Moreover, when it exceeds 0.005%, workability will deteriorate. Therefore, the B content is set to 0.0003 to 0.005%. *
 Zr、Vは、Tiと共に合金炭化物を形成するため、鋼板の強度調整に用いることができる。一方または双方の合計量が0.002%未満では、その効果が十分に得られない場合がある。また、0.08%を超えると、打ち抜き部の疲労特性が低下する。従って、Zr、Vの一方の含有量または双方の合計量は、0.002~0.08%とし、その量は、好ましくは0.03%以下である。 Zr and V can form alloy carbide together with Ti and can be used for adjusting the strength of the steel sheet. If the total amount of one or both is less than 0.002%, the effect may not be sufficiently obtained. On the other hand, if it exceeds 0.08%, the fatigue characteristics of the punched portion will deteriorate. Therefore, the content of one of Zr and V or the total amount of both is set to 0.002 to 0.08%, and the amount is preferably 0.03% or less.
 Cr、Cu、Ni、Mo、Wは、鋼板の強度調整に有用な固溶強化元素であり、Cr、Cu、Ni、Mo、Wの1種または2種以上を合計で0.02%以上含有させることができる。一方、含有量が合計で2.0%を超えると、表面品位が低下し、疲労特性が低下する場合があるので、これを上限とする。  Cr, Cu, Ni, Mo, and W are solid solution strengthening elements useful for adjusting the strength of the steel sheet, and contain 0.02% or more in total of one or more of Cr, Cu, Ni, Mo, and W. Can be made. On the other hand, if the content exceeds 2.0% in total, the surface quality is lowered and the fatigue characteristics may be lowered. *
 Ca、Mg、La、Ceは、介在物の形態及び分布の制御に有用な元素であり、これら元素のうち、1種又は2種以上を合計で0.0003%以上含有させることができる。一方、Ca、Mg、La及びCeの1種又は2種以上の合計が0.01%を超えると、表面品質が低下することがあるため、上限を0.01%以下とすることが好ましい。  Ca, Mg, La, and Ce are elements useful for controlling the form and distribution of inclusions, and one or more of these elements can be contained in a total of 0.0003% or more. On the other hand, if the total of one or more of Ca, Mg, La, and Ce exceeds 0.01%, the surface quality may deteriorate, so the upper limit is preferably made 0.01% or less. *
 次に、本発明の熱延鋼板の金属組織について説明する。
 本発明の熱延鋼板は、フェライトを主相とし、残部は、パーライトとベイナイトのうちいずれか一方又は両方からなる。
 本発明において、鋼板の金属組織の観察は、JIS G 0551に準拠して、光学顕微鏡によって行えば良い。圧延方向の結晶粒の伸長程度が、打ち抜き部の凹凸の発生挙動と相関があるので、組織観察用の試料は、圧延方向に平行な板厚断面(L断面という)を観察面として採取する。観察面は、研磨の後、ナイタール腐食液でエッチングすれば良い。
 フェライト、ベイナイト、及びパーライトの面積率は、光学顕微鏡によって撮影した組織写真を用いて、ポイントカウント法又は画像解析によって測定できる。
 また、フェライト粒径の測定も、JIS G 0551に準拠し、切断法、比較法によって行えば良く、光学顕微鏡によって撮影した組織写真を画像解析して求めることもできる。
Next, the metal structure of the hot rolled steel sheet according to the present invention will be described.
The hot-rolled steel sheet of the present invention has ferrite as a main phase, and the balance consists of either one or both of pearlite and bainite.
In the present invention, the observation of the metal structure of the steel sheet may be performed with an optical microscope in accordance with JIS G 0551. Since the degree of elongation of crystal grains in the rolling direction correlates with the occurrence of unevenness in the punched portion, a sample for observing the structure is taken with a plate thickness section (referred to as an L section) parallel to the rolling direction as the observation surface. The observation surface may be etched with a nital etchant after polishing.
The area ratio of ferrite, bainite, and pearlite can be measured by a point count method or image analysis using a structural photograph taken with an optical microscope.
Further, the ferrite particle size may be measured by a cutting method or a comparison method in accordance with JIS G 0551, and a structure photograph taken with an optical microscope can be obtained by image analysis.
 本発明において、フェライトとは、ポリゴナルフェライト(PF)及び擬ポリゴナルフェライト(Quasi-Polygonal Ferrite、以下αqとする)の混合組織である。ポリゴナルフェライトと擬ポリゴナルフェライトとの合計が30%未満であると、母材の疲労特性が低下する。従って、フェライトの体積率は、30%以上とする。このフェライトの体積率は、50%以上がより好ましい範囲である。上限は、特に限定しないが、実質的には98%以下である。 In the present invention, the ferrite is a mixed structure of polygonal ferrite (PF) and pseudo-polygonal ferrite (Quasi-Polygonal Ferrite, hereinafter referred to as αq). When the total of the polygonal ferrite and the pseudo-polygonal ferrite is less than 30%, the fatigue characteristics of the base material are deteriorated. Therefore, the volume ratio of ferrite is 30% or more. The volume ratio of this ferrite is more preferably 50% or more. The upper limit is not particularly limited, but is substantially 98% or less.
 擬ポリゴナルフェライトとは、ポリゴナルフェライト(PF)と同様にエッチングにより内部構造が現出しないが、形状がアシュキュラーでありポリゴナルフェライトとは明確に区別される。ここでは、対象とする結晶粒の周囲長さをlqとし、その円相当径をdqとすると、それらの比(lq/dq)がlq/dq≧3.5を満たす結晶粒が、擬ポリゴナルフェライトである。 The pseudo-polygonal ferrite does not show an internal structure by etching like the polygonal ferrite (PF), but the shape is ash and is clearly distinguished from the polygonal ferrite. Here, assuming that the perimeter of the target crystal grain is lq and the equivalent circle diameter is dq, the crystal grain whose ratio (lq / dq) satisfies lq / dq ≧ 3.5 is a pseudopolygonal. Ferrite.
 フェライト以外の組織は、パーライトとベイナイトのうち1種又は2種からなる。パーライトとベイナイトを比較すると、ベイナイトの方が、打ち抜き部の疲労特性が良好である。本発明の化学組成の成分範囲では、パーライトの体積分率は、好ましくは0~15%であり、この場合、より良好な打ち抜き部端面を得ることができる。 The structure other than ferrite consists of one or two of pearlite and bainite. When pearlite and bainite are compared, bainite has better fatigue characteristics at the punched portion. In the component range of the chemical composition of the present invention, the pearlite volume fraction is preferably 0 to 15%, and in this case, a better punched end face can be obtained.
 なお、本発明の熱延鋼板では、マルテンサイトと残留γは、特に含まないが、光学顕微鏡で観察できる下限として、それぞれ体積分率で2%まで含んでもよい。    In the hot-rolled steel sheet of the present invention, martensite and residual γ are not particularly included, but each may contain up to 2% in volume fraction as a lower limit that can be observed with an optical microscope. *
 結晶粒の相当楕円の平均アスペクト比は、打ち抜き端面の割れや凹凸の発生挙動と関連があり、その平均アスペクト比が5を超えると、割れが顕著になり、打ち抜き部を起点とした疲労亀裂が発生しやすくなる。従って、結晶粒の相当楕円の平均アスペクト比は、5以下とする。その平均アスペクト比は、好ましくは、3.5以下であり、これにより、より厳しい打ち抜き加工でも割れが発生しない。下限は特に限定しないが、円相当となる1が実質的な下限である。
 ここで、平均アスペクト比は、L断面を組織観察し、50個以上の結晶粒について、(楕円長軸長さ)/(楕円短軸長さ)を測定し、平均化した値である。なお、ここでの結晶粒とは、粒界傾角10°以上の大傾角粒界で囲まれた粒を指す。
The average aspect ratio of the equivalent ellipse of the crystal grains is related to the cracking and unevenness generation behavior of the punched end face. When the average aspect ratio exceeds 5, the crack becomes prominent and fatigue cracks starting from the punched part It tends to occur. Therefore, the average aspect ratio of the equivalent ellipse of crystal grains is set to 5 or less. The average aspect ratio is preferably 3.5 or less, so that cracking does not occur even in a more severe punching process. The lower limit is not particularly limited, but 1 corresponding to a circle is a substantial lower limit.
Here, the average aspect ratio is a value obtained by observing the structure of the L cross-section, measuring (ellipse major axis length) / (elliptical minor axis length), and averaging about 50 or more crystal grains. In addition, the crystal grain here refers to a grain surrounded by a large tilt grain boundary having a grain boundary tilt angle of 10 ° or more.
 打ち抜き破断面の破面形態は、打ち抜き破断面の凹凸や微小割れの発生挙動と相関し、打ち抜き部を有する部材の疲労特性に影響を及ぼす。破断面内の脆性破面率が20%以上であると、破面の凹凸が大きくなり、また微小な割れが発生する場合もある。これにより打ち抜き部の疲労亀裂の発生が促進されるので、その適正範囲を20%未満に制限する。破断面内の脆性破面率は、好ましくは10%以下である。
 なお、破断面内の脆性破面率は、板厚の10~15%のクリアランス条件で試料鋼板をシャーまたはポンチで打ち抜き、形成された破断面を観察して測定された値である。  
The fracture surface form of the punched fracture surface correlates with the unevenness of the punched fracture surface and the occurrence of microcracking, and affects the fatigue characteristics of the member having the punched portion. When the brittle fracture surface ratio in the fracture surface is 20% or more, irregularities on the fracture surface become large, and minute cracks may occur. This promotes the generation of fatigue cracks in the punched portion, so the appropriate range is limited to less than 20%. The brittle fracture surface ratio in the fracture surface is preferably 10% or less.
The brittle fracture surface ratio in the fracture surface is a value measured by punching a sample steel plate with a shear or a punch under a clearance condition of 10 to 15% of the plate thickness and observing the fracture surface formed.
 鋼板の集合組織は、打ち抜き部破断面の割れ発生や残留応力分布への影響を通じて、打ち抜き部の疲労特性に影響を及ぼす。板厚中心部における板面の{112}<110>方位および{332}<113>方位のX線ランダム強度比がそれぞれ5を超えると、打ち抜き部破断面の割れ発生が起こる場合がある。従って、上記方位のX線ランダム強度比を5以下とすることが好ましい。更に好ましくは4以下である。この場合、量産で使用される磨耗したパンチで打ち抜いても割れが発生しない。完全にランダムである1が実質的な下限である。 The texture of the steel sheet affects the fatigue characteristics of the punched part through the occurrence of cracks in the fractured surface of the punched part and the residual stress distribution. If the X-ray random intensity ratio of the {112} <110> orientation and {332} <113> orientation of the plate surface at the center portion of the plate thickness exceeds 5, respectively, cracking of the punched portion fracture surface may occur. Therefore, the X-ray random intensity ratio in the above orientation is preferably 5 or less. More preferably, it is 4 or less. In this case, cracks do not occur even when punched with a worn punch used in mass production. 1 which is completely random is a practical lower limit.
 粒界上に微細なTi系炭化物が存在し、かつ結晶粒が扁平であると、打ち抜き破断面の脆性破面率が増加し、疲労特性が悪化する。発明者らの観察によると、粒径20nm以上のTi系炭化物が、歪集中時にボイド発生を誘発しやすく、粒界破壊の原因となると考えられる。粒界面上において、20nm以上のTi系炭化物の平均分布密度が、粒界長さ1μmあたり10個を超えて存在すると、脆性破面率が増大し、部材の疲労特性の低下を招く。このため、その上限を10個/μmとする。6個/μm以下がより好ましい範囲である。下限については、脆性破面抑制の観点からは低ければ低いほど好ましい。ただし、0.1個/μm以下であれば、その効果は飽和し、脆性破面はほぼ発生しなくなる。
 なお、粒界面上の析出物分布測定は、L断面切断試料をSEMにより観察することにより行う。
If fine Ti-based carbides are present on the grain boundaries and the crystal grains are flat, the brittle fracture surface ratio of the punched fracture surface increases and the fatigue characteristics deteriorate. According to the observations by the inventors, it is considered that Ti-based carbides having a particle size of 20 nm or more tend to induce void generation at the time of strain concentration and cause grain boundary destruction. When the average distribution density of Ti carbides of 20 nm or more exists on the grain interface exceeding 10 per grain boundary length of 1 μm, the brittle fracture surface ratio increases and the fatigue characteristics of the member are lowered. For this reason, the upper limit is 10 / μm. 6 / μm or less is a more preferable range. About a minimum, it is so preferable that it is low from a viewpoint of brittle fracture surface suppression. However, if it is 0.1 piece / μm or less, the effect is saturated and a brittle fracture surface hardly occurs.
The precipitate distribution on the grain interface is measured by observing the L-section cut sample with an SEM.
 本発明の熱延鋼板の板厚が5mm未満であると、結晶粒の延伸化が若干進む傾向にあり、打ち抜き破断面の脆性破面率が増加する場合がある。一方、板厚が10mmを超えると、仕上げ圧延後から700℃以下までの冷却速度が小さくなり、打ち抜き破断面の脆性破面率が増加する場合がある。従って、熱延鋼板の板厚を5~10mmとすることが好ましい。 If the thickness of the hot-rolled steel sheet of the present invention is less than 5 mm, the elongation of crystal grains tends to be slightly advanced, and the brittle fracture surface ratio of the punched fracture surface may increase. On the other hand, if the plate thickness exceeds 10 mm, the cooling rate after finish rolling to 700 ° C. or less is decreased, and the brittle fracture surface ratio of the punched fracture surface may increase. Therefore, the thickness of the hot rolled steel sheet is preferably 5 to 10 mm.
 続いて、本発明に係わる熱延鋼板およびめっき鋼板の製造方法の限定理由について説明する。
 熱間圧延に先立って、鋼片を1100℃以上に加熱する必要がある。この温度が1100℃未満では、十分な強度を得ることが困難となる。これは、1100℃未満では、Ti系炭化物が十分に溶解せず、結果として析出物が粗大となるためであると考えられる。鋼片の加熱温度は、1140℃以上がより好ましい。1300℃超とすると、スケール/地鉄界面の凹凸が大きくなり、母材の疲労特性が低下するので、1300℃以下を上限とする。
Then, the reason for limitation of the manufacturing method of the hot rolled steel plate and plated steel plate concerning this invention is demonstrated.
Prior to hot rolling, the steel slab needs to be heated to 1100 ° C or higher. If this temperature is less than 1100 ° C., it is difficult to obtain sufficient strength. This is considered to be because when the temperature is lower than 1100 ° C., the Ti-based carbide is not sufficiently dissolved, and as a result, the precipitate becomes coarse. As for the heating temperature of a steel piece, 1140 degreeC or more is more preferable. If it exceeds 1300 ° C., the unevenness of the scale / base metal interface becomes large and the fatigue characteristics of the base material deteriorate, so the upper limit is 1300 ° C.
 前記加熱された鋼片を粗圧延して粗バーとする。この粗圧延は、1000℃以上で完了する必要がある。終了温度が1000℃未満では、仕上げ熱延後の結晶粒が扁平化して打ち抜き部破断面の割れが発生するためである。 粗 The heated steel slab is roughly rolled into a rough bar. This rough rolling needs to be completed at 1000 ° C. or higher. This is because if the finish temperature is less than 1000 ° C., the crystal grains after finish hot rolling are flattened and cracks in the punched portion fracture surface occur.
 次いで、粗バーを仕上げ圧延して圧延材とする。
 粗圧延後、仕上げ圧延完了までの間に加熱処理を施してもよい。これによって、板の幅方向や長手方向の温度が均一となり、製品のコイル内における材質ばらつきも小さくなる。加熱方法は、特に指定するものではない。炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。
 同様に、デスケーリングを行っても良い。これによって、表面粗さが小さくなり、疲労特性が向上する場合がある。デスケーリングの方法も特に指定しないが、高圧の水流によって行うのが最も一般的である。
Next, the rough bar is finish-rolled to obtain a rolled material.
You may heat-process after rough rolling until completion of finish rolling. As a result, the temperature in the width direction and the longitudinal direction of the plate becomes uniform, and the material variation in the coil of the product is also reduced. The heating method is not particularly specified. What is necessary is just to perform by methods, such as a furnace heating, induction heating, electrical heating, and high frequency heating.
Similarly, descaling may be performed. This may reduce the surface roughness and improve the fatigue characteristics. The descaling method is not particularly specified, but the most common method is a high-pressure water stream.
 粗圧延から仕上げ圧延までの時間は、圧延中のγ相の再結晶挙動を通じて、打ち抜き破断面の破面形態に影響を及ぼす。粗圧延終了から仕上げ圧延開始までの時間が45秒未満であると、打ち抜き端面の脆性破面率が大きくなる場合がある。このため、粗圧延終了から仕上げ圧延開始までの時間を45秒以上とすることが好ましく、これによりオーステナイトの再結晶がさらに促進され、結晶粒をより球状とすることができる。    The time from rough rolling to finish rolling affects the fracture surface morphology of the punched fracture surface through the recrystallization behavior of the γ phase during rolling. If the time from the end of rough rolling to the start of finish rolling is less than 45 seconds, the brittle fracture surface ratio of the punched end surface may increase. For this reason, it is preferable to set the time from the end of rough rolling to the start of finish rolling to 45 seconds or more, thereby further promoting recrystallization of austenite and making the crystal grains more spherical. *
 熱間仕上圧延において、最終3段の累積圧下率と最終圧延温度は、変態後の結晶粒の扁平化に影響を及ぼすため、本発明において重要な条件である。
 最終3段の累積圧下率が25%未満であると、γの再結晶が十分に進まず、変態後に扁平した結晶粒となる。このため、その範囲を25%以上に限定して、オーステナイトの再結晶を促進し、結晶粒が球状となるようにする。
 なお、最終3段の累積圧下率は、仕上げ圧延における圧延機の総数をNとすると、以下の式により算出される。
 100×[(圧延入り側から数えてN-3番目の圧延機での圧延後の出側板厚)-(圧延入り側から数えてN番目の圧延機での圧延後の出側板厚)]/(圧延入り側から数えてN-3番目の圧延機での圧延後の出側板厚)
In hot finish rolling, the final three-stage cumulative reduction ratio and final rolling temperature are important conditions in the present invention because they affect the flattening of crystal grains after transformation.
If the final three-stage cumulative rolling reduction is less than 25%, the recrystallization of γ does not proceed sufficiently, and the crystal grains become flat after transformation. For this reason, the range is limited to 25% or more to promote recrystallization of austenite so that the crystal grains become spherical.
The final three-stage cumulative reduction ratio is calculated by the following equation, where N is the total number of rolling mills in finish rolling.
100 × [(Outside plate thickness after rolling in the N-3th rolling mill counted from the rolling entry side) − (Outside plate thickness after rolling in the Nth rolling mill counted from the rolling entry side)] / (Outside plate thickness after rolling on the N-3rd rolling mill counted from the rolling entry side)
 最終圧延温度Tfは、打ち抜き端面の破面形態に影響を及ぼす結晶粒のアスペクト比と合金炭化物の分布状態に影響するため、Ti含有量(%Ti)に応じて変化させる。最終圧延温度が840+800×[%Ti]以下であると、打ち抜き端面の割れが発生する。従って、最終圧延温度Tfを以下の式(1)を満たすように設定する。
 Tf>840+800×[%Ti]    (1)
 最終圧延温度Tfのより好ましい範囲は、840+1000×[%Ti]以上であることが確認できた。上限については、特に限定しないが、高温になると熱延ロールが損耗しやすいので、通常1000℃以下で行う。  
The final rolling temperature Tf is changed according to the Ti content (% Ti) because it affects the aspect ratio of the crystal grains and the distribution state of the alloy carbide, which affect the fracture surface form of the punched end face. When the final rolling temperature is 840 + 800 × [% Ti] or less, the punched end face is cracked. Therefore, the final rolling temperature Tf is set so as to satisfy the following formula (1).
Tf> 840 + 800 × [% Ti] (1)
It was confirmed that the more preferable range of the final rolling temperature Tf is 840 + 1000 × [% Ti] or more. Although there is no particular limitation on the upper limit, the hot rolling roll is likely to be worn out at high temperatures, and is usually performed at 1000 ° C. or lower.
 最終圧延の直後に圧延材を空冷する。この空冷時間は、γの再結晶と関連して変態後の結晶粒の扁平化に影響を及ぼす。最終圧延の直後の空冷時間が1秒未満であると、打ち抜き端面の脆性破面率が大きくなる。従って、この空冷時間は、1秒以上とする。より好ましくは2秒以上である。空冷時間が5秒を超えると、粗大なTiCが析出して強度確保が困難になるとともに、打ち抜き端面の性状が劣化するので、これを上限とする。 圧 延 The rolled material is air-cooled immediately after the final rolling. This air cooling time affects the flattening of the crystal grains after transformation in connection with the recrystallization of γ. If the air cooling time immediately after the final rolling is less than 1 second, the brittle fracture surface ratio of the punched end face increases. Therefore, this air cooling time is 1 second or more. More preferably, it is 2 seconds or more. If the air cooling time exceeds 5 seconds, coarse TiC will precipitate and it will be difficult to ensure the strength, and the properties of the punched end face will deteriorate, so this is the upper limit.
 最終圧延の直後の空冷に引き続き、圧延材を冷却して熱延鋼板とする。この冷却は、打ち抜き端面の性状およびコイル長手方向の強度変動に影響する重要な工程である。700℃以下まで最低冷却速度8℃/s以上で冷却を行う。
 冷却の停止温度が700℃を超える場合、粒界上で合金炭化物が粗大に析出しやすくなり、打ち抜き端面の脆性破面率が大きくなる。一方、700℃までの最低冷却速度が8℃/s未満である場合も、粒界上で合金炭化物が粗大に析出しやすくなり、打ち抜き端面の割れを誘発しやすくするとともに、最終製品のコイル長手方向の強度変動が大きくなる。
 ここで、最低冷却速度8℃/s以上とは、空冷終了温度から700℃までの温度間の冷却速度が、8℃/sを常に下回らないことを意味する。このため、例えば、この温度区間内で空冷は行わないことを意味する。このように本発明では、従来のように水冷による冷却過程の途中で空冷は行わない。
 冷却停止温度は、680℃以下がより好ましく、また最低冷却速度は15℃/s以上がより好ましい。最低冷却速度の上限は特に定めないが、80℃/sを超えると、熱延コイル内で均一に冷却することが難しくなり、コイル内での強度変動が大きくなる。このため、80℃/s以下であることが好ましい。
Following the air cooling immediately after the final rolling, the rolled material is cooled to form a hot-rolled steel sheet. This cooling is an important process affecting the properties of the punched end face and the strength fluctuation in the coil longitudinal direction. Cooling to 700 ° C. or lower at a minimum cooling rate of 8 ° C./s or higher.
When the cooling stop temperature exceeds 700 ° C., alloy carbide tends to precipitate coarsely on the grain boundaries, and the brittle fracture surface ratio of the punched end face increases. On the other hand, even when the minimum cooling rate up to 700 ° C. is less than 8 ° C./s, alloy carbides are likely to be coarsely precipitated on the grain boundaries, and it is easy to induce cracking of the punched end face, and the coil length of the final product The intensity fluctuation in the direction becomes large.
Here, the minimum cooling rate of 8 ° C./s or more means that the cooling rate between the temperatures from the air cooling end temperature to 700 ° C. is not always lower than 8 ° C./s. For this reason, for example, it means that air cooling is not performed within this temperature section. Thus, in the present invention, air cooling is not performed in the middle of the cooling process by water cooling as in the prior art.
The cooling stop temperature is more preferably 680 ° C. or lower, and the minimum cooling rate is more preferably 15 ° C./s or higher. The upper limit of the minimum cooling rate is not particularly defined, but if it exceeds 80 ° C./s, it becomes difficult to cool uniformly in the hot-rolled coil, and the strength fluctuation in the coil becomes large. For this reason, it is preferable that it is 80 degrees C / s or less.
 次いで冷却された熱延鋼板を巻き取る。巻取り温度は、540~650℃とする。巻取り温度が540℃未満の場合、フェライト分率が低下し、母材の疲労特性が劣化する。また、650℃超の場合、TiCが粗大化し、また多量に析出する。これにより、引張強度590MPa以上の確保が難しくなると共に、打抜き部を起点とする疲労亀裂が発生しやすくなる。 Next, the cooled hot-rolled steel sheet is wound up. The winding temperature is 540 to 650 ° C. When the coiling temperature is less than 540 ° C., the ferrite fraction decreases and the fatigue characteristics of the base material deteriorate. Moreover, when it exceeds 650 degreeC, TiC coarsens and precipitates in large quantities. As a result, it becomes difficult to ensure a tensile strength of 590 MPa or more, and fatigue cracks starting from the punched portion are likely to occur.
 このようにして得られた熱延鋼板を再加熱(焼鈍)しても構わない。この場合、再加熱の温度がAc3温度を超えると、TiCが粒界に析出し、鋼板の引張強度と打ち抜き部の疲労強度が低下する。このため、再加熱温度の適正範囲をAc3温度以下に制限する。加熱方法は、特に指定するものではなく、炉加熱、誘導加熱、通電加熱、高周波加熱などの方法で行えばよい。
 加熱時間は、特に定めないが、550℃以上の加熱保持時間が30分を越える場合には、590MPa以上の引張強度を得るために、最高加熱温度を700℃以下とすることが望ましい。
 なお、再加熱(焼鈍)は、熱延鋼板を巻き取り後、温度が室温になる前に行ってもよい。
The hot-rolled steel sheet thus obtained may be reheated (annealed). In this case, when the reheating temperature exceeds the Ac3 temperature, TiC precipitates at the grain boundaries, and the tensile strength of the steel sheet and the fatigue strength of the punched portion are reduced. For this reason, the suitable range of reheating temperature is restrict | limited to Ac3 temperature or less. The heating method is not particularly specified, and may be performed by methods such as furnace heating, induction heating, current heating, and high frequency heating.
The heating time is not particularly defined, but when the heating and holding time of 550 ° C. or higher exceeds 30 minutes, the maximum heating temperature is desirably 700 ° C. or lower in order to obtain a tensile strength of 590 MPa or higher.
Note that the reheating (annealing) may be performed after the hot-rolled steel sheet is wound up and before the temperature reaches room temperature.
 スキンパス圧延あるいはレベラー圧延は、形状矯正や時効性、さらには疲労特性の改善に奏効するので、酸洗後、または酸洗前に行ってもよい。スキンパス圧延を行う場合には、圧下率の上限を3%とすることが望ましい。3%を超えると、鋼板の成形性が損なわれるからである。また、酸洗は目的に応じて行ってもよい。 Since skin pass rolling or leveler rolling is effective in improving shape correction, aging, and fatigue properties, it may be performed after pickling or before pickling. When performing skin pass rolling, it is desirable that the upper limit of the rolling reduction be 3%. This is because if it exceeds 3%, the formability of the steel sheet is impaired. Moreover, you may perform pickling according to the objective.
 次に、本発明の溶融亜鉛めっき鋼板およびその製造方法について説明する。
 本発明の溶融亜鉛めっき鋼板は、前述した本発明の熱延鋼板の表面にめっき層又は合金化めっき層が設けられた鋼板である。
 前述した方法によって得られた熱延鋼板を酸洗後、連続亜鉛めっき設備あるいは連続焼鈍亜鉛めっき設備を用いて、鋼板を加熱し、溶融めっきを施し、熱延鋼板の表面にめっき層を形成する。
 鋼板の加熱温度がAc3温度を超えると、鋼板の引張強度と疲労限が低下するので、加熱温度の適正範囲をAc3温度以下に制限する。加熱温度は、打抜部疲労特性の観点から、Ac3-30℃以下がより好ましい範囲である。
 さらに溶融めっきを施した後に、亜鉛めっき合金化処理を行い、合金化溶融亜鉛めっき層としてもよい。
Next, the hot dip galvanized steel sheet and the manufacturing method thereof according to the present invention will be described.
The hot dip galvanized steel sheet of the present invention is a steel sheet in which a plated layer or an alloyed plated layer is provided on the surface of the above-described hot rolled steel sheet of the present invention.
After pickling the hot-rolled steel sheet obtained by the above-described method, the steel sheet is heated using a continuous galvanizing facility or a continuous annealing galvanizing facility, hot-plated, and a plated layer is formed on the surface of the hot-rolled steel plate. .
When the heating temperature of the steel plate exceeds the Ac3 temperature, the tensile strength and fatigue limit of the steel plate are lowered, so the appropriate range of the heating temperature is limited to the Ac3 temperature or lower. The heating temperature is more preferably in the range of Ac3-30 ° C. or lower from the viewpoint of the fatigue characteristics of the punched part.
Further, after galvanizing, galvanizing alloying treatment may be performed to form an alloyed galvanized layer.
 なお、めっき種は亜鉛めっきに限定するものではなく、加熱温度の上限がAc3温度であれば、他のめっき種であっても構わない。
 また、酸洗後の熱延鋼板を加熱する工程を省略してもよい。
The plating type is not limited to galvanizing, and other plating types may be used as long as the upper limit of the heating temperature is Ac3 temperature.
Moreover, you may abbreviate | omit the process of heating the hot-rolled steel plate after pickling.
 また、本発明において熱間圧延に先行する製造方法は、特に限定するものではない。すなわち、高炉、転炉や電炉等による溶製に引き続き、各種の2次精練で目的の成分含有量になるように成分調整を行う。次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料には、スクラップを使用しても構わない。連続鋳造によって得たスラブの場合には、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。 In the present invention, the production method preceding hot rolling is not particularly limited. That is, following the smelting by a blast furnace, a converter, an electric furnace or the like, the components are adjusted so that the desired component content is obtained by various secondary scouring. Then, it may be cast by a method such as thin continuous slab casting in addition to normal continuous casting and casting by ingot method. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, it may be sent directly to a hot rolling mill as it is at a high temperature slab, or may be hot rolled after being cooled to room temperature and then reheated in a heating furnace.
 以下に、実施例により本発明をさらに説明する。
 表1に示す化学成分を有するA~Rの鋼を以下の方法により製造した。まず鋳造により鋼片を作製後、表2~4に示す条件で鋼片を再加熱、粗圧延して粗バーとした。次いで、粗バーを仕上げ圧延して5~10mmの板厚の圧延材にした後に冷却して熱延鋼板として巻き取った。
 なお、鋼F-1、G-2については、さらに熱延鋼板に対して再加熱する処理を行って製造した。
The following examples further illustrate the present invention.
A to R steels having the chemical components shown in Table 1 were produced by the following method. First, a steel slab was produced by casting, and then the steel slab was reheated and rough-rolled under the conditions shown in Tables 2 to 4 to form a rough bar. Next, the rough bar was finish-rolled to form a rolled material having a thickness of 5 to 10 mm, and then cooled and wound up as a hot-rolled steel plate.
Steels F-1 and G-2 were produced by further reheating the hot-rolled steel sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表中の化学組成についての表示は、質量%である。また、表1中、Ac3は、以下の式により算出された値である。
 Ac3=910-203√(%C)+45×%Si-30×%Mn-11×%Cr+700×%P+400×%Al+400×%Ti
 式中、%C,%Si,%Mn,%Cr,%P,%Al,及び%Tiは、それぞれC,Si,Mn,Cr,P,Al,及びTiの含有量を示す。   
The indication about the chemical composition in the table is mass%. In Table 1, Ac3 is a value calculated by the following equation.
Ac3 = 910−203√ (% C) + 45 ×% Si−30 ×% Mn−11 ×% Cr + 700 ×% P + 400 ×% Al + 400 ×% Ti
In the formula,% C,% Si,% Mn,% Cr,% P,% Al, and% Ti indicate the contents of C, Si, Mn, Cr, P, Al, and Ti, respectively.
 表中の鋼の化学組成は、その鋼No.のアルファベットが同じ表1の鋼No.の鋼の化学組成と対応している。
 表中の「SRT」は、スラブ加熱温度を示す。「RFT」は、粗圧延終了温度を示す。「t1」は、粗圧延終了から仕上げ圧延開始までの時間を示す。「Red3」は、仕上げ圧延での最終3段の累積圧下率を示す。「Tf」は、最終仕上げ圧延温度を示す。「t2」は、最終仕上げ圧延の直後の空冷時間を示す。「CRmin」は、空冷後からSCT間の最低冷却速度を示す。「SCT」は、水冷停止温度を示す。「CT」は、巻取温度を示す。
The chemical composition of the steel in the table is the steel no. Steel No. 1 in Table 1 with the same alphabet. It corresponds to the chemical composition of steel.
“SRT” in the table indicates the slab heating temperature. “RFT” indicates the rough rolling end temperature. “T1” indicates the time from the end of rough rolling to the start of finish rolling. “Red3” indicates the cumulative reduction ratio of the final three stages in finish rolling. “Tf” indicates the final finish rolling temperature. “T2” indicates an air cooling time immediately after the final finish rolling. “CRmin” indicates the minimum cooling rate between SCTs after air cooling. “SCT” indicates the water cooling stop temperature. “CT” indicates a winding temperature.
 鋼A-5、B-5、C-5、G-1、H-2、I-1、J-2、R-1は、溶融亜鉛めっき鋼板であり、さらに熱延鋼板を酸洗した後、連続焼鈍亜鉛めっきラインにて、表5に示す焼鈍温度で焼鈍し、次いで亜鉛めっきを行って製造した。
 なお、亜鉛めっき浸漬温度を450℃とし、まためっき合金化温度を500℃として行った。
Steels A-5, B-5, C-5, G-1, H-2, I-1, J-2, and R-1 are hot dip galvanized steel sheets, and after pickling hot rolled steel sheets In the continuous annealing galvanization line, it annealed at the annealing temperature shown in Table 5, and then performed galvanization and manufactured.
The galvanizing immersion temperature was 450 ° C. and the plating alloying temperature was 500 ° C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 まず、作製した鋼板の金属組織、集合組織、及び粒界の観察を行った。
 鋼板の金属組織の観察は、前述したように、JIS G 0551に準拠して、光学顕微鏡によって行った。また、各組織の面積率は、前述したように、組織写真を用いて、ポイントカウント法又は画像解析によって測定した。
 結晶粒の平均アスペクト比は、前述したように、L断面を組織観察し、50個以上の結晶粒について、(楕円長軸長さ)/(楕円短軸長さ)を測定し、平均化して求めた。
 また、粒界上に存在するTi系炭化物の個数計測はSEM観察により行った。
 以上の測定結果を表6~8に示す。なお、表中の「Ngb」は、粒界面上における粒径20nm以上のTi系炭化物の分布密度を示す。 
First, the metal structure, texture, and grain boundary of the produced steel plate were observed.
The observation of the metal structure of the steel sheet was performed with an optical microscope in accordance with JIS G 0551 as described above. In addition, as described above, the area ratio of each tissue was measured by a point count method or image analysis using a tissue photograph.
As described above, the average aspect ratio of the crystal grains is obtained by observing the structure of the L cross-section, measuring (ellipse major axis length) / (elliptical minor axis length) and averaging for 50 or more crystal grains. Asked.
The number of Ti-based carbides existing on the grain boundaries was measured by SEM observation.
The above measurement results are shown in Tables 6-8. Note that “Ngb” in the table indicates the distribution density of Ti-based carbides having a particle size of 20 nm or more on the grain interface.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、鋼板の強度特性、脆性破面率、疲労特性、及び塗装耐食性を評価した。
 鋼板の強度特性は、以下の方法により評価した。まず供試材をJIS Z 2201記載の5号試験片に加工した。そして、この5号試験片に対してJIS Z 2241記載の方法に従って引張試験を行い、引張最高強度(TS)、降伏強度(YS)、及び伸び(EI)を求めた。
 鋼板の疲労特性は、JIS Z2275に従い、応力比=-1の条件下で平面曲げ疲労試験を行い、疲労限(σwp)により評価した。
 打ち抜き部の疲労特性は、以下の方法により評価した。板厚の20%のクリアランスで鋼板の中央部にφ10の打ち抜き穴を開けて2号疲労試験片を作製した。そして、この2号疲労試験片を前記の方法で試験し、その疲労限(σwpp)により評価した。なお、打ち抜きは500回以上使用して先端角部が磨耗しているパンチを用いた。このように、クリアランスが厳しく、かつパンチが磨耗している厳しい条件で打ち抜き穴を開けて、打ち抜き部の疲労特性を評価した。
 なお、疲労試験に先立ち、打ち抜き破断面の顕微鏡観察を行い、破断面内の脆性破面率を評価した。ここで、ディンプル状の延性破面以外の破面は、すべて脆性破面として評価した。
 黒皮熱延鋼板およびめっき鋼板の塗装耐食性は、化成処理と電着塗装を行った試料表面にカット疵を付与し、240hrのSST(塩水噴霧)試験を行い、剥離幅が3mm以下のものを良(Good)とし、3mm超のものを不良(Bad)と評価した。
 以上の測定結果を表9~11に示す。なお、前記したように表中の「σwp」は、原板の曲げ疲労限を示し、「σwpp」は、打ち抜き穴材の曲げ疲労限を示す。   
Next, the strength characteristics, brittle fracture surface ratio, fatigue characteristics, and paint corrosion resistance of the steel sheets were evaluated.
The strength characteristics of the steel sheet were evaluated by the following method. First, the specimen was processed into a No. 5 test piece described in JIS Z 2201. And the tensile test was done with respect to this No. 5 test piece according to the method of JISZ2241, and the maximum tensile strength (TS), yield strength (YS), and elongation (EI) were calculated | required.
The fatigue properties of the steel sheet were evaluated according to the fatigue limit (σwp) by conducting a plane bending fatigue test in accordance with JIS Z2275 under the condition of stress ratio = −1.
The fatigue characteristics of the punched portion were evaluated by the following method. A No. 2 fatigue test piece was prepared by punching a φ10 punched hole in the center of the steel plate with a clearance of 20% of the plate thickness. And this No. 2 fatigue test piece was tested by the said method, and it evaluated by the fatigue limit ((sigma) wpp). The punching was used 500 times or more, and a punch with a worn end corner was used. In this way, punching holes were formed under severe conditions where the clearance was severe and the punch was worn, and the fatigue characteristics of the punched portion were evaluated.
Prior to the fatigue test, the punched fracture surface was observed with a microscope to evaluate the brittle fracture surface ratio in the fracture surface. Here, all the fracture surfaces other than the dimple-like ductile fracture surface were evaluated as brittle fracture surfaces.
The coating corrosion resistance of black-skinned hot-rolled steel sheets and plated steel sheets is determined by applying a cut wrinkle to the sample surface that has been subjected to chemical conversion treatment and electrodeposition coating, performing a 240 hr SST (salt spray) test, and having a peel width of 3 mm or less. Good (Good) was evaluated and those exceeding 3 mm were evaluated as bad (Bad).
The above measurement results are shown in Tables 9-11. As described above, “σwp” in the table indicates the bending fatigue limit of the original plate, and “σwpp” indicates the bending fatigue limit of the punched hole material.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 鋼A-2~4、鋼B-3~4、鋼C-2~4、鋼D-2、鋼E-2、鋼H-2、鋼K-2、鋼L-2は、仕上げ圧延の条件および仕上げ圧延後の冷却条件が適正範囲外であるために、打ち抜き端面に脆性破面が発生した例である。
 鋼A-6は、仕上げ圧延後の空冷時間が適正範囲外であるために、引張強度が590MPa未満であり、また打ち抜き端面の脆性破面率が高かった例である。
 鋼B-4、鋼C-4は、熱延鋼板の巻き取り温度が範囲外のために、引張強度が590MPa未満であり、かつ打ち抜き破面に脆性破面が発生した例である。
 鋼I-2は、巻き取り温度が低いため、引張強度が590MPaに満たない例である。
 鋼B-2、鋼K-2は、粗圧延終了温度が範囲外のために、打ち抜き破面に脆性破面が発生した例である。
 鋼F-2は、スラブ加熱温度が範囲外のために、打ち抜き破面に脆性破面が発生した例である。
 鋼G-2は、後熱処理(焼鈍)の温度がAc3温度よりも高く、打ち抜き破面に脆性破面が発生した例である。
 鋼N~Sは、Ti、Nb量あるいはMn/Ti比が適正範囲外のために、打ち抜き破面に脆性破面が発生した例である。
Steel A-2 to 4, Steel B-3 to 4, Steel C-2 to 4, Steel D-2, Steel E-2, Steel H-2, Steel K-2, Steel L-2 This is an example in which a brittle fracture surface is generated on the punched end face because the conditions and the cooling condition after finish rolling are outside the proper range.
Steel A-6 is an example in which the air-cooling time after finish rolling is outside the proper range, so that the tensile strength is less than 590 MPa and the brittle fracture surface ratio of the punched end face is high.
Steel B-4 and Steel C-4 are examples in which the coiling temperature of the hot-rolled steel sheet is out of the range, the tensile strength is less than 590 MPa, and a brittle fracture surface is generated on the punched fracture surface.
Steel I-2 is an example in which the tensile strength is less than 590 MPa because the winding temperature is low.
Steel B-2 and Steel K-2 are examples in which a brittle fracture surface was generated on the punched fracture surface because the rough rolling end temperature was out of the range.
Steel F-2 is an example in which a brittle fracture surface was generated on the punched fracture surface because the slab heating temperature was outside the range.
Steel G-2 is an example in which the post-heat treatment (annealing) temperature is higher than the Ac3 temperature, and a brittle fracture surface is generated on the punch fracture surface.
Steels N to S are examples in which a brittle fracture surface is generated on the punched fracture surface because the amount of Ti, Nb, or Mn / Ti ratio is outside the proper range.
 鋼L-1は、本発明例ではあるが、Al含有量が0.3%であり、Ngbが8個/μmであった。これに対して、他の本発明例は、Al含有量が0.1%以下であり、Ngbが0.7~5個/μmであった。このようにAl含有量は、好ましくは0.1%以下である。これによりγ→α変態に伴って形成されるTiC等の合金炭化物のサイズの増加が抑制され、フェライト粒界面上における粒径が20nm以上のTi系炭化物の平均分布密度(Ngb)を低く抑えることができる。 Steel L-1 was an example of the present invention, but had an Al content of 0.3% and Ngb of 8 pieces / μm. On the other hand, in other examples of the present invention, the Al content was 0.1% or less and the Ngb was 0.7 to 5 / μm. Thus, the Al content is preferably 0.1% or less. This suppresses the increase in the size of alloy carbides such as TiC formed with the γ → α transformation, and keeps the average distribution density (Ngb) of Ti-based carbides having a particle size of 20 nm or more on the ferrite grain interface low. Can do.
 本発明の熱延鋼板は、母材および打ち抜き加工部の疲労特性に優れる。また、本発明の熱延鋼板の製造方法は、熱延後の冷却の途中において、空冷保持を設ける必要が無く、高い生産性で本発明の熱延鋼板を製造できる。このため、本発明は、特に自動車やトラックの足回り部材やフレーム部材などのように、打抜き部における良好な疲労特性が要求される部材やその製造工程に好適に適用できる。 The hot-rolled steel sheet of the present invention is excellent in fatigue characteristics of the base material and the punched portion. Moreover, the manufacturing method of the hot-rolled steel sheet of the present invention does not require air cooling during the cooling after hot rolling, and can manufacture the hot-rolled steel sheet of the present invention with high productivity. For this reason, the present invention can be suitably applied to a member that requires good fatigue characteristics in a punched portion, such as an undercarriage member or a frame member of an automobile or a truck, and a manufacturing process thereof.

Claims (13)

  1.  質量%で、
     C:0.025~0.15%、
     Si:0.01~1.0%以下、
     Mn:1.0~2.5%、
     P:0.02%以下、
     S:0.005%以下、
     Al:0.5%以下、
     Ti:0.04~0.10%、
     及びN:0.007%以下を含有し、
     残部がFeおよび不可避的不純物からなる成分組成を有し、
     Mn/Ti比:15以上であり、
     Nbが添加されておらず、
     フェライトの体積率が30%以上で、残部がパーライトとベイナイトのうち1種又は2種からなり、
     結晶粒の相当楕円の平均アスペクト比が5以下であり、
     フェライト粒界面上における粒径が20nm以上のTi系炭化物の平均分布密度が10個/μm以下であり、
     打ち抜き破断面の脆性破面率が20%未満であり、
     最大引張強度が590MPa以上であることを特徴とする打抜き加工性と疲労特性に優れた熱延鋼板。
    % By mass
    C: 0.025 to 0.15%,
    Si: 0.01 to 1.0% or less,
    Mn: 1.0 to 2.5%
    P: 0.02% or less,
    S: 0.005% or less,
    Al: 0.5% or less,
    Ti: 0.04 to 0.10%,
    And N: 0.007% or less,
    The balance has a component composition consisting of Fe and inevitable impurities,
    Mn / Ti ratio: 15 or more,
    Nb is not added,
    The volume fraction of ferrite is 30% or more, and the balance consists of one or two of pearlite and bainite,
    The average aspect ratio of the equivalent ellipse of the crystal grains is 5 or less,
    The average distribution density of Ti-based carbide having a particle size of 20 nm or more on the ferrite grain interface is 10 pieces / μm or less,
    The brittle fracture surface ratio of the punched fracture surface is less than 20%,
    A hot-rolled steel sheet excellent in punching workability and fatigue characteristics, characterized by having a maximum tensile strength of 590 MPa or more.
  2.  板厚が5~10mmであることを特徴とする請求項1に記載の打抜き加工性と疲労特性に優れた熱延鋼板。 The hot-rolled steel sheet having excellent punching workability and fatigue properties according to claim 1, wherein the plate thickness is 5 to 10 mm.
  3.  さらにBを0.0003~0.005質量%含有することを特徴とする請求項1に記載の打抜き加工性と疲労特性に優れた熱延鋼板。 The hot-rolled steel sheet having excellent punching workability and fatigue properties according to claim 1, further comprising B in an amount of 0.0003 to 0.005 mass%.
  4.  さらにZr、Vの一方または双方を合計で0.002~0.08質量%含有することを特徴とする請求項1に記載の打抜き加工性と疲労特性に優れた熱延鋼板。 The hot rolled steel sheet having excellent punchability and fatigue properties according to claim 1, further comprising one or both of Zr and V in a total amount of 0.002 to 0.08 mass%.
  5.  さらにCr、Cu、Ni、Mo、Wから選択される1種又は2種以上を合計で0.02~2.0質量%含有することを特徴とする請求項1に記載の打抜き加工性と疲労特性に優れた熱延鋼板。 The punching workability and fatigue according to claim 1, further comprising 0.02 to 2.0 mass% in total of one or more selected from Cr, Cu, Ni, Mo and W Hot-rolled steel sheet with excellent characteristics.
  6.  さらにCa、Mg、La、Ceから選択される1種又は2種以上を合計で0.0003~0.01質量%含有することを特徴とする請求項1に記載の打抜き加工性と疲労特性に優れた熱延鋼板。 The punching workability and fatigue characteristics according to claim 1, further comprising 0.0003 to 0.01 mass% in total of one or more selected from Ca, Mg, La, and Ce. Excellent hot-rolled steel sheet.
  7.  請求項1に記載の熱延鋼板と、前記熱延鋼板の表面に設けられためっき層又は合金化めっき層とを有することを特徴とする打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板。 A hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, comprising the hot-rolled steel sheet according to claim 1 and a plating layer or an alloyed plating layer provided on the surface of the hot-rolled steel sheet.
  8.  請求項1に記載の成分組成からなる鋼片を、1100~1300℃に加熱後、1000℃以上の温度で終了する条件で粗圧延して粗バーとする工程と、
     最終3段の圧延の累積圧下率が25%以上であり、最終圧延温度Tfが式(1)を満たす条件で前記粗バーを仕上げ圧延して圧延材とする工程と、
     前記仕上げ圧延の終了後に前記圧延材に対して1~5秒の空冷を行い、引き続き、最低冷却速度8℃/s以上で700℃以下まで冷却して熱延鋼板とする工程と、
     540~650℃の範囲内で前記熱延鋼板を巻き取る工程を有することを特徴とする打抜き加工性と疲労特性に優れた熱延鋼板の製造方法。
     Tf>840+800×[%Ti]    (1)
    A step of heating the steel slab comprising the component composition according to claim 1 to 1100 to 1300 ° C. and then roughly rolling the steel slab at a temperature of 1000 ° C. or higher to form a rough bar;
    A step in which the rolling reduction of the final three-stage rolling is 25% or more, and the final rolling temperature Tf finish-rolls the rough bar under a condition satisfying the formula (1) to form a rolled material;
    A step of air-cooling the rolled material for 1 to 5 seconds after completion of the finish rolling, and subsequently cooling to a temperature of 700 ° C. or less at a minimum cooling rate of 8 ° C./s to obtain a hot-rolled steel sheet;
    A method for producing a hot-rolled steel sheet excellent in punching workability and fatigue characteristics, comprising a step of winding the hot-rolled steel sheet within a range of 540 to 650 ° C.
    Tf> 840 + 800 × [% Ti] (1)
  9.  前記粗圧延終了から前記仕上げ圧延開始までの時間が45秒以上であることを特徴とする請求項8に記載の打抜き加工性と疲労特性に優れた熱延鋼板の製造方法。 The method from the end of the rough rolling to the start of the finish rolling is 45 seconds or more, and the method for producing a hot-rolled steel sheet excellent in punching workability and fatigue characteristics according to claim 8.
  10.  前記仕上げ圧延後に、前記圧延材又は前記熱延鋼板に対してAc3温度以下で焼鈍を行う工程を更に有することを特徴とする請求項8に記載の打抜き加工性と疲労特性に優れた熱延鋼板の製造方法。 The hot-rolled steel sheet having excellent punching workability and fatigue characteristics according to claim 8, further comprising a step of annealing the rolled material or the hot-rolled steel sheet at an Ac3 temperature or lower after the finish rolling. Manufacturing method.
  11.  請求項8に記載の熱延鋼板の製造方法により、熱延鋼板を製造する工程と、
     前記熱延鋼板を酸洗する工程と、
     次いで亜鉛めっき浴中に浸漬させて上記鋼板表面を亜鉛めっきする工程を有することを特徴とする打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板の製造方法。
    A process for producing a hot-rolled steel sheet by the method for producing a hot-rolled steel sheet according to claim 8;
    Pickling the hot-rolled steel sheet; and
    Then, the manufacturing method of the hot dip galvanized steel plate excellent in the punching workability and fatigue characteristics which has the process of immersing in a galvanizing bath and galvanizing the said steel plate surface.
  12.  請求項8に記載の熱延鋼板の製造方法により、熱延鋼板を製造する工程と、
     前記熱延鋼板を酸洗の後、Ac3温度以下で加熱する工程と、
     次いで亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきする工程を有することを特徴とする打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板の製造方法。
    A process for producing a hot-rolled steel sheet by the method for producing a hot-rolled steel sheet according to claim 8;
    Heating the hot-rolled steel sheet at an Ac3 temperature or lower after pickling;
    Next, a method for producing a hot dip galvanized steel sheet excellent in punching workability and fatigue characteristics, comprising a step of galvanizing the steel sheet surface by dipping in a galvanizing bath.
  13.  前記溶融亜鉛めっき鋼板に対して亜鉛めっき合金化処理を行う工程をさらに有することを特徴とする請求項11又は12に記載の打抜き加工性と疲労特性に優れた溶融亜鉛めっき鋼板の製造方法。
     
    The method for producing a hot-dip galvanized steel sheet having excellent punchability and fatigue characteristics according to claim 11 or 12, further comprising a step of subjecting the hot-dip galvanized steel sheet to a galvanizing alloying process.
PCT/JP2009/005029 2009-05-11 2009-09-30 Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same WO2010131303A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980157539.5A CN102333899B (en) 2009-05-11 2009-09-30 Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing same
BRPI0924410A BRPI0924410B1 (en) 2009-05-11 2009-09-30 hot rolled steel sheet having excellent drilling work capacity and fatigue properties, hot dip galvanized steel sheet, and production methods thereof
JP2011513132A JP4917186B2 (en) 2009-05-11 2009-09-30 Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009114633 2009-05-11
JP2009-114633 2009-05-11

Publications (1)

Publication Number Publication Date
WO2010131303A1 true WO2010131303A1 (en) 2010-11-18

Family

ID=43084699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005029 WO2010131303A1 (en) 2009-05-11 2009-09-30 Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing the same

Country Status (4)

Country Link
JP (1) JP4917186B2 (en)
CN (1) CN102333899B (en)
BR (1) BRPI0924410B1 (en)
WO (1) WO2010131303A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069252A1 (en) * 2011-11-08 2013-05-16 Jfeスチール株式会社 High-tensile-strength hot-rolled steel sheet and method for producing same
WO2013105555A1 (en) * 2012-01-13 2013-07-18 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method for same
WO2013150669A1 (en) * 2012-04-06 2013-10-10 新日鐵住金株式会社 Galvannealed hot-rolled steel sheet and method for manufacturing same
CN103842539A (en) * 2011-09-29 2014-06-04 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same
CN103842538A (en) * 2011-09-29 2014-06-04 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same
CN104060169A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled steel sheet and production method thereof
JP2015081366A (en) * 2013-10-22 2015-04-27 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface hardness after carburization heat treatment
WO2016194273A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
JP2017101299A (en) * 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
WO2017110030A1 (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 High strength hot dip hot-rolled steel sheet and manufacturing method therefor
WO2017154727A1 (en) * 2016-03-11 2017-09-14 Jfeスチール株式会社 High-strength thin steel sheet and method for manufacturing same
WO2018026014A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
WO2018163871A1 (en) * 2017-03-10 2018-09-13 Jfeスチール株式会社 High-strength hot-rolled plated steel sheet
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2019535895A (en) * 2016-10-24 2019-12-12 ポスコPosco Ultra-high-strength steel sheet excellent in hole expansibility and yield ratio and manufacturing method thereof
EP3553196A4 (en) * 2017-02-06 2019-12-25 JFE Steel Corporation Molten zinc plating steel sheet and production method therefor
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406561B1 (en) * 2012-12-20 2014-06-27 주식회사 포스코 High strength hot rolled steel sheet having excellent impact toughness and method for manufacturing the same
JP6177551B2 (en) * 2013-03-15 2017-08-09 株式会社神戸製鋼所 Hot-rolled steel sheet with excellent drawability and surface hardness after processing
WO2015129199A1 (en) 2014-02-27 2015-09-03 Jfeスチール株式会社 High-strength hot-rolled steel sheet and manufacturing method therefor
CN104060167A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled steel sheet and production method thereof
KR101672102B1 (en) * 2014-12-22 2016-11-02 주식회사 포스코 Hot rolled steel sheet for hot galvanized iron having high surface quality and high strength, and method for producing the same
CN107406931B (en) * 2015-03-27 2019-04-05 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
CN105525199A (en) * 2016-01-20 2016-04-27 广西丛欣实业有限公司 Zinc-plated iron alloy
CN108165881A (en) * 2018-01-08 2018-06-15 哈尔滨工程大学 A kind of 800MPa grades of more characteristic hot rolled steel plates and preparation method thereof
JP6569745B2 (en) 2018-01-29 2019-09-04 Jfeスチール株式会社 Hot rolled steel sheet for coiled tubing and method for producing the same
JP7153469B2 (en) * 2018-05-29 2022-10-14 株式会社Uacj Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same
CN110669914B (en) * 2019-09-30 2021-07-06 鞍钢股份有限公司 High-strength steel for automobile axle housing for cold stamping and production method thereof
CN111334720B (en) * 2020-03-30 2022-03-25 邯郸钢铁集团有限责任公司 High Al wear-resistant steel strip with good cold formability and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931593A (en) * 1995-07-19 1997-02-04 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in fine blankability and its production
JP2000045041A (en) * 1998-07-28 2000-02-15 Nippon Steel Corp High strength steel plate excellent in blankability, and its production
JP2007270331A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2009235440A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3967868B2 (en) * 2000-05-25 2007-08-29 新日本製鐵株式会社 High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP4180909B2 (en) * 2002-12-26 2008-11-12 新日本製鐵株式会社 High-strength hot-rolled steel sheet excellent in hole expansibility, ductility and chemical conversion treatment, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931593A (en) * 1995-07-19 1997-02-04 Kawasaki Steel Corp High tensile strength hot rolled steel plate excellent in fine blankability and its production
JP2000045041A (en) * 1998-07-28 2000-02-15 Nippon Steel Corp High strength steel plate excellent in blankability, and its production
JP2007270331A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP2009235440A (en) * 2008-03-26 2009-10-15 Jfe Steel Corp High-yield ratio and high-strength cold rolled steel sheet

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103842539A (en) * 2011-09-29 2014-06-04 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same
US9574254B2 (en) 2011-09-29 2017-02-21 Jfe Steel Corporation Hot-rolled steel sheet and method for producing same
US9057123B2 (en) 2011-09-29 2015-06-16 Jfe Steel Corporation Hot-rolled steel sheet and method for producing same
CN103842538A (en) * 2011-09-29 2014-06-04 杰富意钢铁株式会社 Hot-rolled steel sheet and method for producing same
CN103930582B (en) * 2011-11-08 2016-03-02 杰富意钢铁株式会社 High tensile hot-rolled steel sheet and manufacture method thereof
CN103930582A (en) * 2011-11-08 2014-07-16 杰富意钢铁株式会社 High-tensile-strength hot-rolled steel sheet and method for producing same
TWI486458B (en) * 2011-11-08 2015-06-01 Jfe Steel Corp High strength hot-rolled steel sheet and method for manufacturing the same
WO2013069252A1 (en) * 2011-11-08 2013-05-16 Jfeスチール株式会社 High-tensile-strength hot-rolled steel sheet and method for producing same
JP2013100574A (en) * 2011-11-08 2013-05-23 Jfe Steel Corp High-tensile-strength hot-rolled steel sheet superior in material uniformity and method for producing the same
KR101618489B1 (en) 2012-01-13 2016-05-04 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and manufacturing method for same
US10106873B2 (en) 2012-01-13 2018-10-23 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method for same
JP5532186B2 (en) * 2012-01-13 2014-06-25 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method thereof
WO2013105555A1 (en) * 2012-01-13 2013-07-18 新日鐵住金株式会社 Hot-rolled steel sheet and manufacturing method for same
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
CN104364408A (en) * 2012-04-06 2015-02-18 新日铁住金株式会社 Galvannealed hot-rolled steel sheet and method for manufacturing same
US10351942B2 (en) 2012-04-06 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvannealed hot-rolled steel sheet and process for producing same
JP5339005B1 (en) * 2012-04-06 2013-11-13 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
WO2013150669A1 (en) * 2012-04-06 2013-10-10 新日鐵住金株式会社 Galvannealed hot-rolled steel sheet and method for manufacturing same
JP2015081366A (en) * 2013-10-22 2015-04-27 株式会社神戸製鋼所 Hot rolled steel sheet excellent in cold workability and surface hardness after carburization heat treatment
WO2015060223A1 (en) * 2013-10-22 2015-04-30 株式会社神戸製鋼所 Hot-rolled steel sheet having excellent surface hardness after carburizing heat treatment and excellent cold workability
CN104060169A (en) * 2014-06-18 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Hot-rolled steel sheet and production method thereof
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
WO2016194273A1 (en) * 2015-05-29 2016-12-08 Jfeスチール株式会社 Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
KR102044086B1 (en) 2015-05-29 2019-11-12 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and method for manufacturing hot-rolled steel sheet
JP6066023B1 (en) * 2015-05-29 2017-01-25 Jfeスチール株式会社 Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
KR20170139149A (en) * 2015-05-29 2017-12-18 제이에프이 스틸 가부시키가이샤 Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet
JP2017101299A (en) * 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
CN108474092A (en) * 2015-12-25 2018-08-31 杰富意钢铁株式会社 High intensity melts plating hot rolled steel plate and its manufacturing method
WO2017110030A1 (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 High strength hot dip hot-rolled steel sheet and manufacturing method therefor
JP2017115212A (en) * 2015-12-25 2017-06-29 Jfeスチール株式会社 High strength hot-dipped hot-rolled steel sheet excellent in surface appearance and plating adhesion, and method for manufacturing the same
US11066721B2 (en) 2015-12-25 2021-07-20 Jfe Steel Corporation High-strength hot-dip coated hot-rolled steel sheet and method for manufacturing the same
WO2017154727A1 (en) * 2016-03-11 2017-09-14 Jfeスチール株式会社 High-strength thin steel sheet and method for manufacturing same
JPWO2017154727A1 (en) * 2016-03-11 2018-03-15 Jfeスチール株式会社 High strength thin steel sheet and method for producing the same
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
WO2018026014A1 (en) * 2016-08-05 2018-02-08 新日鐵住金株式会社 Steel sheet and plated steel sheet
JP6358407B2 (en) * 2016-08-05 2018-07-18 新日鐵住金株式会社 Steel plate and plated steel plate
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11453922B2 (en) 2016-10-24 2022-09-27 Posco Ultra-high-strength steel sheet having excellent hole expandability and yield ratio, and method of manufacturing the same
JP2019535895A (en) * 2016-10-24 2019-12-12 ポスコPosco Ultra-high-strength steel sheet excellent in hole expansibility and yield ratio and manufacturing method thereof
US11208712B2 (en) 2017-02-06 2021-12-28 Jfe Steel Corporation Galvanized steel sheet and method for manufacturing the same
EP3553196A4 (en) * 2017-02-06 2019-12-25 JFE Steel Corporation Molten zinc plating steel sheet and production method therefor
JPWO2018163871A1 (en) * 2017-03-10 2019-03-14 Jfeスチール株式会社 High strength hot rolled galvanized steel sheet
US11117348B2 (en) 2017-03-10 2021-09-14 Jfe Steel Corporation High-strength hot-rolled coated steel sheet
WO2018163871A1 (en) * 2017-03-10 2018-09-13 Jfeスチール株式会社 High-strength hot-rolled plated steel sheet

Also Published As

Publication number Publication date
CN102333899B (en) 2014-03-05
CN102333899A (en) 2012-01-25
BRPI0924410B1 (en) 2018-07-17
JP4917186B2 (en) 2012-04-18
JPWO2010131303A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4917186B2 (en) Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
JP6443592B1 (en) High strength steel sheet
JP6729835B1 (en) High-strength steel sheet and method for manufacturing the same
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2018151331A1 (en) High strength steel plate
JP6179584B2 (en) High strength steel plate with excellent bendability and method for producing the same
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP6950835B2 (en) Manufacturing method of high-strength member, high-strength member and steel plate for high-strength member
JPWO2010137317A1 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
KR20120023129A (en) High-strength steel sheet and manufacturing method therefor
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
WO2016092733A1 (en) High-strength cold-rolled steel sheet and method for producing same
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP6795122B1 (en) High-strength galvanized steel sheet and its manufacturing method
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP6443555B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2020090302A1 (en) High-strength member, method for manufacturing high-strength member, and method for manufacturing steel sheet for high-strength member
JP2019504203A (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in ductility, hole workability, and surface treatment characteristics, and methods for producing them
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP7028379B1 (en) Steel sheets, members and their manufacturing methods
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
WO2013084477A1 (en) High-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
JP2023550881A (en) Galvanized steel sheet for hot forming with excellent hydrogen embrittlement resistance, hot forming parts, and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157539.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844578

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513132

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 5373/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844578

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924410

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924410

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110826