JP2783809B2 - High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more - Google Patents

High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more

Info

Publication number
JP2783809B2
JP2783809B2 JP63157914A JP15791488A JP2783809B2 JP 2783809 B2 JP2783809 B2 JP 2783809B2 JP 63157914 A JP63157914 A JP 63157914A JP 15791488 A JP15791488 A JP 15791488A JP 2783809 B2 JP2783809 B2 JP 2783809B2
Authority
JP
Japan
Prior art keywords
strength
weldability
hot
tensile strength
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63157914A
Other languages
Japanese (ja)
Other versions
JPH028349A (en
Inventor
正彦 森田
耕一 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63157914A priority Critical patent/JP2783809B2/en
Publication of JPH028349A publication Critical patent/JPH028349A/en
Application granted granted Critical
Publication of JP2783809B2 publication Critical patent/JP2783809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は直流バット溶接時の溶接性に優れ、しかも
つば張り出し(バーリング)加工等の冷間加工性が良好
であって、特に自動車のホイール用に好適な引張り強さ
が55kgf/mm2以上の熱延高張力鋼帯に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is excellent in weldability in direct current butt welding and has good cold workability such as brim overhanging (burring) processing, and is particularly suitable for automobile wheels. It relates to a hot-rolled high-tensile steel strip having a tensile strength of 55 kgf / mm 2 or more suitable for use.

例えば自動車の燃費改善対策の一つとして車体の軽量
化を図ることが有効であり、使用鋼板の薄肉化と安全性
の面から構造部材に高張力熱延鋼板を使用する比率が益
々増大する傾向にある。
For example, it is effective to reduce the body weight as one of the measures to improve the fuel efficiency of automobiles, and the ratio of using high-strength hot-rolled steel sheets for structural members tends to increase more and more from the viewpoint of thinning steel sheets and safety. It is in.

ところで、自動車用構造部材としての高張力熱延鋼板
に要求される特性としては、引張り強さが55kgf/mm2
以上の高強度であってしかも加工性に優れることの他
に、これら構造部材の組立てが直流バット溶接、フラッ
シュバット溶接あるいは点溶接等によって行われるため
その溶接性に優れていることが基本的に重要である。自
動車部品の中で特に高張力鋼化志向の強いホイールリム
に適用する高能率製造ラインでの溶接法は従来のフラッ
シャバット溶接に比較して、生産性および作業環境の観
点でより優れる直流バット溶接へと移向している。この
直流バット溶接法における溶接部での熱履歴は、従来の
溶接法に比べてより過酷な条件すなわち急熱、急冷の熱
サイクルとなるので、溶接部硬さが高くなり易く、高張
力熱延鋼板が備えている範囲の溶接性では溶接部の耐疲
労破壊等に対する十分な信頼性を確保することが困難で
ある。一般に高強度のもの程C当量は高くなるから、溶
接性改善に関する要求は使用材料が高強度化する程切実
な問題となってくる。また、ホイールリムに限らず、点
溶接を施すホイールディスクにおいても事情は同じであ
る。
By the way, the properties required for high-strength hot-rolled steel sheets as structural members for automobiles include not only high tensile strength of 55 kgf / mm class 2 or higher and excellent workability, but also these structural members. Since the assembling is performed by direct current butt welding, flash butt welding, spot welding or the like, it is basically important that the weldability is excellent. DC butt welding, which is superior to conventional flasher butt welding in terms of productivity and working environment, is more efficient than conventional flasher butt welding in the high-efficiency production line applied to wheel rims, which are particularly oriented to high-tensile steel among automotive parts. Has been transferred to. The heat history at the welded part in this DC butt welding method is more severe than the conventional welding method, that is, a heat cycle of rapid heating and quenching. With the weldability in the range provided by the steel sheet, it is difficult to ensure sufficient reliability against fatigue fracture or the like of the welded portion. In general, the higher the strength, the higher the C equivalent, so the demand for improvement in weldability becomes a more serious problem as the material used increases in strength. The situation is the same not only in the wheel rim but also in the wheel disc on which spot welding is performed.

一般に鋼材の溶接性を示す指標として、例えばC+Mn
/6+Si/24+Cr/5+Mo/6+V/8+Ni/12で計算されるC当
量が用いられており、実際にもこのC当量の低い鋼材を
用いれば溶接部での硬化が抑制され割れ感受性、疲労特
性が向上することが知られている。したがって、ホイー
ルリムのように特に溶接性が重要な特性となるような用
途に使用される自動車用高張力熱延鋼帯の場合は、C当
量を徹底して低減することが肝要である。
Generally, as an index indicating the weldability of steel material, for example, C + Mn
/ 6 + Si / 24 + Cr / 5 + Mo / 6 + V / 8 + Ni / 12 C equivalent is used. Actually, if a steel material with a low C equivalent is used, hardening at the weld is suppressed and crack susceptibility and fatigue characteristics are reduced. It is known to improve. Therefore, in the case of a high-strength hot-rolled steel strip for automobiles used for applications in which weldability is particularly important, such as wheel rims, it is important to thoroughly reduce the C equivalent.

(従来の技術) 従来このような用途の高張力鋼板のC量の範囲は溶接
性を考慮して通常0.05〜0.15wt%(以下単に%と示す)
が選択されているが、このようなC量の範囲で引張り強
さが55kgf/mm2以上の高強度を得るために一般にはMn量
を1.3%以上とするか、Mn量の少ない場合ならばSiを1.0
%以上は鋼成分として含ませるか、もしくはMn量および
Si量を0.80〜1.3%の範囲に下げておいて、巻取りをた
とえば500℃未満となるような低温度領域で行って、ミ
クロ組織中にベイナイト相やマルテンサイト相を多量に
含む組織とすることによって高強度化を図る手段などが
採用されている。
(Prior art) Conventionally, the range of the C content of a high-strength steel sheet for such an application is usually 0.05 to 0.15 wt% in consideration of weldability (hereinafter simply referred to as%).
However, in order to obtain high strength with a tensile strength of 55 kgf / mm 2 or more in such a range of the C content, the Mn content is generally set to 1.3% or more, or if the Mn content is small, Si 1.0
% Or more is included as a steel component, or the amount of Mn and
The amount of Si is reduced to the range of 0.80 to 1.3%, and the winding is performed in a low temperature region of, for example, less than 500 ° C., so that the microstructure includes a bainite phase or a martensite phase in a large amount. Thus, means for increasing the strength are adopted.

しかしながら、Mn量やSi量を高めた場合、いずれにし
てもC当量の上昇は避けられず、得られる溶接性の水準
には限界があること、また低温変態相による強化を利用
する場合は、まず製造に際して低温領域まで過冷却され
ることにより鋼板製造時に形状が悪化し、材質の不均質
性が増大するといった製造上での不具合の他に、C当量
が0.20%に満たないような成分を選択した場合には溶接
時の熱影響により強化の母体である低温変態相が焼戻さ
れて逆に軟化し、溶接部において必要な高強度を維持出
来ないといった使用上の不具合いを生ずることになる。
ちなみに、上記した溶接部での軟化による問題を回避し
ようとすれば、従来の製造方法のC当量の下限はほぼ0.
20%であって、したがってC当量の低減には自ずから限
界が生じるのである。
However, when the amount of Mn or the amount of Si is increased, an increase in the C equivalent is unavoidable in any case, and there is a limit to the level of weldability that can be obtained. First, the supercooling down to the low temperature range during production deteriorates the shape at the time of steel plate production and increases the inhomogeneity of the material. If this is selected, the low-temperature transformation phase, which is the parent material of the reinforcement, will be tempered due to the heat effect at the time of welding and will be softened conversely, resulting in inconvenience in use such as not being able to maintain the required high strength at the welded part. Become.
By the way, in order to avoid the above-mentioned problem caused by the softening at the welded portion, the lower limit of the C equivalent of the conventional manufacturing method is almost 0.
This is 20%, so that the reduction of the C equivalent is naturally limited.

すなわちたとえば、特開昭61−264159号公報には直流
バット溶接用に適した引張り強さが55kgf/mm2級のホイ
ールリム用高張力鋼板に関し、直流バット溶接性を考慮
してC当量を従来の高張力鋼板よりも低減せしめた成分
範囲とすることについて開示されているが、達成できる
C当量の低下はまだ不十分でまた引張り強さが55kgf/mm
2級においてようやく達成できる程度であって、これ以
上の高強度の材料を対象とする場合には当然ながらこの
C当量の範囲での製造は困難となる。
Thus, for example, it relates to high-tensile steel sheet for suitable tensile strength of 55 kgf / mm 2 grade wheel rim for DC butt welding in JP 61-264159, the C eq in consideration of the DC butt weldability conventional Although it is disclosed that the range of components is lower than that of the high-tensile steel sheet, the achievable decrease in C equivalent is still insufficient, and the tensile strength is 55 kgf / mm.
In the case of a material having a higher strength, which is attainable only in the second class, and higher than that, it is naturally difficult to manufacture in the range of this C equivalent.

一方、特公昭62−35453号公報はMn量を0.40〜0.70%
と低くし、0.05〜0.90%のSiと0.0005〜0.006%のBを
含むC当量が0.19〜0.28%の範囲の鋼を用いて、450℃
以下の低温巻取りによるミクロ組織を複合組織とする、
引張り強さが50〜60kgf/mm2級の低C当量の高張力鋼板
の製造方法に関する開示があるが、引張り強さが55kgf/
mm2級以上の強度を得るにはC当量が低い。
On the other hand, Japanese Patent Publication No. 62-35453 discloses that the Mn content is 0.40 to 0.70%.
Using a steel having a C equivalent in the range of 0.19 to 0.28%, containing 0.05 to 0.90% Si and 0.0005 to 0.006% B,
The microstructure by the following low-temperature winding is a composite structure,
Although there is a disclosure regarding a method for producing a high-strength steel sheet having a tensile strength of 50 to 60 kgf / mm 2 and a low C equivalent, the tensile strength is 55 kgf / mm2.
To obtain a strength of mm 2 class or higher, the C equivalent is low.

一方、ホイールディスクに適用する高張力鋼板にはバ
ーリング加工のような厳しい冷間加工に耐える材料であ
ることが要求されるが、このバーリング加工性を左右す
る材料での因子はMnSのようなA系非金属介在物の存在
および繊維状組織のようなミクロ組織の異方性であっ
て、これらの影響は圧延方向と直角な方向における延性
の劣化となって現れる。このうちMnSはS量の低減によ
り改善を図ることが比較的容易であるが、高強度鋼にお
けるミクロ組織の異方性の改善は極めて困難である。な
ぜなら従来の引張り強さが55kgf/mm2級以上の高張力鋼
の場合、一般に1.0%以上のMn量を含む上に、Nb、Bお
よびTiといった強化元素を用いるため、これらの元素に
よって熱間圧延過程でのγ粒の再結晶が抑制されて熱間
圧延終了時点でのγ粒が圧延方向に展伸した未再結晶状
態のままγ→α変態を起し、得られる最終のミクロ組織
もこの展伸したγ粒に依存した異方性を有する組織を呈
するからである。また、異方性以外の冷間加工性を左右
する組織上の因子にはパーライト、ベイナイトおよびマ
ルテンサイト等の第2相とフェライト相との比率があ
り、通常の場合フェライト相の比率が多い程加工性は良
好で、第2相の比率が増大すると加工性は悪化する。し
かるに従来の高張力鋼のようにMn量が高くかつNb、Bを
含有する場合にはAr3点が下がり、ミクロ組織中のフェ
ライト分率が低下して第2相の比率が増大するので、加
工性に対しては不利である。この傾向は高強度化のため
にMn量を増大するほど顕著となる。
On the other hand, high-strength steel sheets applied to wheel discs are required to be materials that can withstand severe cold working such as burring, and the factors affecting the burring workability are factors such as MnS. The presence of non-metallic inclusions and anisotropy of microstructure such as fibrous structure, these effects appear as deterioration of ductility in the direction perpendicular to the rolling direction. Of these, MnS is relatively easy to improve by reducing the amount of S, but it is extremely difficult to improve the microstructure anisotropy in high-strength steel. This is because when the conventional tensile strength of 55 kgf / mm 2 or higher grade high tensile steel, generally above containing Mn content of 1.0% or more, since the use of reinforcing elements Nb, such as B and Ti, hot by these elements Recrystallization of γ grains in the rolling process is suppressed, and γ grains at the end of hot rolling undergo γ → α transformation in an unrecrystallized state expanded in the rolling direction, and the final microstructure obtained is also obtained. This is because a structure having anisotropy depending on the expanded γ grains is exhibited. In addition, factors on the structure that affect the cold workability other than the anisotropy include the ratio between the second phase such as pearlite, bainite, and martensite and the ferrite phase. The workability is good, and the workability deteriorates as the ratio of the second phase increases. However, when the Mn content is high and Nb and B are contained as in the conventional high-tensile steel, the Ar3 point decreases, the ferrite fraction in the microstructure decreases, and the ratio of the second phase increases. It is disadvantageous for gender. This tendency becomes more remarkable as the Mn content is increased for higher strength.

しかしながら上記した問題点に対する有効な改善手段
は提案されていない。
However, no effective remedy for the above problem has been proposed.

(発明が解決しようとする課題) この発明は、自動車ホイールリム用材として要求され
る溶接性およびホイールディスク用材として要求される
バーリング加工性に優れた、引張り強さが55kgf/mm2
上の高張力熱延鋼帯を提供することが目的である。
(Problems to be Solved by the Invention) The present invention provides a high tensile strength of 55 kgf / mm 2 or more, which has excellent weldability required for a material for an automobile wheel rim and excellent burring workability required for a material for a wheel disc. The purpose is to provide a hot rolled steel strip.

(課題を解決するための手段) 発明者らは、 ホイールリム用材として必要な溶接性を確保するため
には、C当量を低下することが有利で、その手段として
はC量を強化に必要な最低限の範囲とした上でMn量を極
力低減し、このMnの低減によって生じる強度低下を他の
C当量を上昇させない強化成分、すなわち固溶硬化能お
よび析出硬化能をそなえるTiにて補うこと、 またホイールディスク用材として必要なバーリング加
工性を改善するには、バーリング加工性が圧延方向と直
角方向の材料延性に支配されることから、ミクロ組織を
微細なポリゴナルフェライトを主体とするものとし、か
つそのミクロ組織を均一化して異方性をなくすこと、 を見出し、この発明を完成させた。
(Means for Solving the Problems) In order to secure the weldability necessary for a material for a wheel rim, it is advantageous to reduce the C equivalent, and as a means for strengthening the C amount, After reducing the Mn amount as much as possible to the minimum range, the strength reduction caused by the reduction of Mn should be supplemented with other strengthening components that do not increase the C equivalent, that is, Ti having solid solution hardening ability and precipitation hardening ability. However, in order to improve the burring workability required for wheel disc materials, since the burring workability is governed by the material ductility in the direction perpendicular to the rolling direction, the microstructure should be mainly made of fine polygonal ferrite. And to eliminate the anisotropy by making the microstructure uniform, and completed the present invention.

すなわち、この発明は、 C:0.04〜0.18wt%、Si:0.05〜1.00wt%、Mn:0.10〜0.
47wt%、Ti:0.05〜0.30wt%、Al:0.001〜0.100wt%、N:
0.0100wt%以下、P:0.030wt%以下およびS:0.015wt%以
下を含み、残部が不可避的不純物およびFeからなり、か
つTi,C,N,S,Mn,Siおよび不可避的不純物中のCrの含有量
が、0.3≦Ti/(C+S+N)<5およびC+Mn/6+Si/2
4+Cr/5≦0.20wt%を満たし、最終ミクロ組織のポリゴ
ナルフェライト分率が70%以上であることを特徴とする
冷間加工性および溶接性に優れた引張り強さが55kgf/mm
2以上の高張力熱延鋼帯および さらにCr:0.10〜0.50wt%をMn+Cr≦0.50wt%にて含
有した冷間加工性および溶接性に優れた引張り強さが55
kgf/mm2以上の高張力熱延鋼帯である。
That is, in the present invention, C: 0.04 to 0.18 wt%, Si: 0.05 to 1.00 wt%, Mn: 0.10 to 0.1.
47wt%, Ti: 0.05 ~ 0.30wt%, Al: 0.001 ~ 0.100wt%, N:
0.0100 wt% or less, P: 0.030 wt% or less and S: 0.015 wt% or less, the balance being unavoidable impurities and Fe, and Cr in Ti, C, N, S, Mn, Si and unavoidable impurities Of 0.3 ≦ Ti / (C + S + N) <5 and C + Mn / 6 + Si / 2
55kgf / mm with excellent cold workability and weldability characterized by satisfying 4 + Cr / 5 ≦ 0.20wt% and having a polygonal ferrite fraction of 70% or more in the final microstructure.
Two or more high-strength hot-rolled steel strips and, furthermore, Cr: 0.10 to 0.50 wt% containing Mn + Cr ≤ 0.50 wt%, with excellent tensile strength of 55 and excellent in cold workability and weldability
It is a high-strength hot-rolled steel strip of kgf / mm 2 or more.

従来たとえばNb,Ti,VおよびBといった強化成分の利
用によってC当量を低減する同様の試みはなされてはい
るものの、この発明のような大幅なMn量の低減を達成す
るまでには至らず、この発明においてMn量の大幅な低減
を可能としたのはTiの固溶硬化能ならびに析出硬化能を
最大限に引き出す手法を見出せたことによる。なおMnを
低減し、強化成分をTiとしたこの発明による鋼帯は、鋳
片での中心偏析が従来鋼に比べて少ない。即ち、従来は
55kgf/mm2以上の引張り強さを得るために、Mn量を少な
くとも1.0%以上含有させるのが通常であり、このよう
な高Mnの成分組成とした場合、鋳片の中心偏析が大きく
なり、この影響はバーリング加工の際この中心偏析層で
ハブ割れを起し易くなるという弱点となって現れるが、
この発明では低Mnの成分組成となるので従来鋼よりも中
心偏析の度合いは著しく軽減され、中心偏析によるバー
リング加工性の劣化をまねくことがない。
Conventionally, although similar attempts have been made to reduce the C equivalent by using reinforcing components such as Nb, Ti, V and B, a significant reduction in the amount of Mn as in the present invention has not been achieved, The reason why the amount of Mn can be significantly reduced in the present invention is that a method for maximizing the solid solution hardening ability and precipitation hardening ability of Ti has been found. In the steel strip according to the present invention in which Mn is reduced and the reinforcing component is Ti, the center segregation in the slab is smaller than that of the conventional steel. That is, conventionally
To obtain a 55 kgf / mm 2 or more tensile strength, it usually has to be contained at least 1.0% or more Mn amount, when the composition of such a high Mn, the greater the center segregation of the slab, This effect appears as a weak point that the center segregation layer tends to cause hub cracking during burring,
In the present invention, since the composition of the composition is low Mn, the degree of center segregation is remarkably reduced as compared with the conventional steel, and the burring workability does not deteriorate due to the center segregation.

また微細均一なポリゴナルフェライトを主体とする組
織を得るには、 (1) γ→α変態が容易に進行すること、つまりAr3
変態点が高いこと (2) γ→α変態が均一におこること、換言すれば変
態前のγ粒が微細な整粒であることが必要であり、この
ためにはさらにはγ粒の圧延再結晶微細化が容易である
こと といった治金的手法の適用が必要である。Tiを強化成分
の主体とし、Mn量を極力低減した成分系とする手段が極
めて有効に作用すること、すなわち、TiはAr3点に大き
な影響を与えないので、Mnの大幅な低減によってAr3点
を上昇させることができる。また、Tiは従来鋼において
多用されているNbと異なり、γ粒の圧延再結晶を抑制す
る効果が少なく、しかもTiNが再結晶γ粒の成長抑制作
用として働くので微細整粒のγ粒が得られるのである。
また、Mn量の低減もγ粒の再結晶促進に寄与する。
Further, to obtain a structure mainly composed of fine and polygonal ferrite, (1) the γ → α transformation proceeds easily, that is, Ar3
High transformation point (2) It is necessary that γ → α transformation occurs uniformly, in other words, γ grains before transformation must be finely sized. It is necessary to apply metallurgical methods such as easy crystal refinement. Means of using Ti as the main component of the strengthening component and using a component system in which the amount of Mn is reduced as much as possible works extremely effectively.That is, Ti does not greatly affect the Ar3 point, so the Ar3 point is reduced by a significant reduction of Mn. Can be raised. Also, unlike Nb, which has been widely used in conventional steels, Ti has a small effect of suppressing the recrystallization of γ grains, and TiN acts as an inhibitory action on the growth of recrystallized γ grains. It is done.
Further, the reduction of the amount of Mn also contributes to the promotion of recrystallization of γ grains.

以上の如く成分の作用を最適化することにより、直流
バット溶接性とバーリング加工性を兼ね備えたホイール
用高張力鋼帯が得られるのである。
By optimizing the action of the components as described above, a high-strength steel strip for wheels having both direct current butt weldability and burring workability can be obtained.

(作 用) 次に各成分組成範囲の限定理由を説明する。(Operation) Next, the reasons for limiting the component composition ranges will be described.

C:0.04〜0.18% Cは鋼の強度を確保する上で不可欠の元素であり、引
張り強さが55kgf/mm2以上の高強度を達成するためには
0.04%以上は必要で、一方0.18%を超えて含有させた場
合、C当量が増大し溶接性が著しく悪化すること、およ
びポリゴナルフェライト量が減少しパーライトやンベイ
ナイトのような第2相の比率が増大し、バーリング加工
等の冷間成形性が悪化することから、その含有量を0.04
〜0.18%の範囲とした。
C: 0.04 to 0.18% C is an indispensable element for securing the strength of steel, and in order to achieve high strength with a tensile strength of 55 kgf / mm 2 or more
0.04% or more is necessary, while if it exceeds 0.18%, the C equivalent increases and the weldability deteriorates remarkably, and the amount of polygonal ferrite decreases and the ratio of the second phase such as pearlite and nbainite Increases, and the cold formability such as burring deteriorates.
The range was about 0.18%.

Si:0.05〜1.00% Siは固溶硬化作用と脱酸作用を有する有用な元素で、
脱酸作用を利用するためには0.05%以上のSiをAlと共に
含有させることにより安定した脱酸効果が期待でき鋼の
清浄性を高め得る。また0.30%以上含有させると固溶効
果による強度増加を期待できるが、1.0%を超えて含有
させると溶接性が悪化するとともに、熱間圧延時の脱ス
ケール性が悪化し製品にスケール疵が残るようになるの
で、その含有量を0.05〜1.0%とした。
Si: 0.05-1.00% Si is a useful element that has a solid solution hardening action and a deoxidizing action.
In order to utilize the deoxidizing action, by including 0.05% or more of Si together with Al, a stable deoxidizing effect can be expected and the cleanliness of the steel can be enhanced. When the content is 0.30% or more, an increase in strength due to the solid solution effect can be expected. However, when the content exceeds 1.0%, weldability deteriorates, and descalability during hot rolling deteriorates, and scale defects remain in the product. Therefore, the content was set to 0.05 to 1.0%.

Mn:0.10〜0.47% Mnは鋼の強度上昇およびMnSとして熱間脆性を起す有
害なSを固定する作用を有し、熱間脆性防止のためには
0.10%以上含有させることが好ましいけれども、0.47%
を超えて含有させた場合以下に述べる利用でこの発明の
目的を達成できないので、その含有量を0.10〜0.47%と
した。
Mn: 0.10 to 0.47% Mn has the effect of increasing the strength of steel and fixing harmful S that causes hot embrittlement as MnS.
Although it is preferable to contain 0.10% or more, 0.47%
When the content exceeds 0.1%, the object of the present invention cannot be achieved by the use described below, so the content is set to 0.10 to 0.47%.

すなわちMn含有量が増加すると、C当量も増大しホイ
ールリム成形時の直流バット溶接性が劣化すること、熱
間圧延時のAr3点が低下するのでγ→α変態が抑制さ
れ、ポリゴナルフェライトを主体とするミクロ組織が得
難くなることおよび熱間圧延時のγ粒の圧延再結晶が抑
制されるので、変態前のγ粒が展伸した状態のままγ→
α変態を起こし変態後のミクロ組織の異方性が増してミ
クロ組織の悪化を惹起し、バーリング加工性を劣化する
こと、の不利をまねく。
In other words, when the Mn content increases, the C equivalent also increases and the DC butt weldability during wheel rim forming deteriorates, and the Ar3 point during hot rolling decreases, so that the γ → α transformation is suppressed and polygonal ferrite is reduced. Since it is difficult to obtain the main microstructure and the rolling recrystallization of γ grains during hot rolling is suppressed, γ grains in the expanded state of γ grains before transformation are
The α transformation is caused, and the anisotropy of the microstructure after the transformation is increased to cause deterioration of the microstructure, thereby deteriorating the burring processability.

また溶接性、バーリング加工性の関連からは低Mn化が
有利であるが、一方においてMn含有量の低減は強度低下
をもたらす。この発明においては強度低下を補うために
強化元素としてTiを使用するのであるが、これはTiの強
化機能は従来鋼のような1.0%以上の高Mn含有量領域よ
りも0.47%以下の低Mn含有量領域とすることにより増大
し、したがって低Mn化による強度低下をTiによって十分
に補い得ることの新たな知見に由来するものである。
Further, from the viewpoint of weldability and burring workability, it is advantageous to reduce Mn, but on the other hand, a decrease in the Mn content results in a decrease in strength. In the present invention, Ti is used as a strengthening element to compensate for the decrease in strength. This is because Ti has a strengthening function of 0.47% or less of the high Mn content region of 1.0% or more as compared with the conventional steel. This is derived from the new finding that the content is increased by setting the content range, and thus the strength reduction due to the reduction of Mn can be sufficiently compensated for by Ti.

なお、上記のような低Mn含有量領域におけるTiの強化
機能の増大(ここで言う強化機能の増大とはTi添加量当
りの強度上昇量)は、(1)ミクロ組織中のポリゴナル
フェライトが70%以上の場合、(2)熱間圧延前の鋼片
の再加熱温度が下記式のTiCの溶解度積によって示され
る条件によりTi含有量のすべてをオーステナイト相に溶
解し得る温度条件となっている場合、もしくは鋳造後の
鋼片の温度が1000℃未満の温度領域まで冷却されていな
い状態から再加熱を経ずに直接熱間圧延した場合、
(3)熱間圧延後の巻取り温度が500℃以上の温度条件
である場合、等の条件を満たす時に顕著となる。
In addition, the increase of the strengthening function of Ti in the low Mn content region as described above (the increase of the strengthening function as referred to herein is the amount of increase in strength per Ti addition amount) is due to (1) polygonal ferrite in the microstructure. In the case of 70% or more, (2) the reheating temperature of the slab before hot rolling is a temperature condition under which all of the Ti content can be dissolved in the austenite phase under the condition indicated by the solubility product of TiC of the following formula. If hot rolling directly without reheating from a state where the temperature of the billet after casting is not cooled to a temperature range of less than 1000 ° C,
(3) In the case where the winding temperature after hot rolling is a temperature condition of 500 ° C. or higher, it becomes remarkable when conditions such as are satisfied.

記 log(%Ti)(%C)=−10475/T+5.33 ここでTは再加熱温度(K) これらの機構の詳細は必ずしも明確ではないが、上記
の(1)の現象はTiCの析出がフェライト相において強
化に有効な微細な析出物として析出するのに対し、パー
ライトやベントナイトのような第2相では転位密度が高
いために強化機構の小さい比較的粗大な析出形態をとる
ためであり、上記(2)はいうまでもなく初期状態にお
いてTiを十分に溶解せしめるために必要な条件と関連す
るものであり、上記(3)は巻取り温度が低い領域では
TiCの析出が起らないので析出効果が現出しないことと
対応する。
Log (% Ti) (% C) =-10475 / T + 5.33 where T is the reheating temperature (K) Although the details of these mechanisms are not always clear, the above phenomenon (1) is based on the precipitation of TiC. Is precipitated in the ferrite phase as fine precipitates effective for strengthening, whereas in the second phase such as pearlite and bentonite, the dislocation density is high, so that a relatively coarse precipitate form with a small strengthening mechanism is taken. Needless to say, the above (2) relates to conditions necessary for sufficiently dissolving Ti in the initial state, and the above (3) relates to a region where the winding temperature is low.
This corresponds to the fact that the precipitation effect does not appear because the precipitation of TiC does not occur.

いずれにしてもベースの成分を低Mn系とした場合、高
Mn系の場合よりもTiの強化能が著しく高くなり、これら
はTiCの析出挙動を通じた析出硬化機構の変化に関連す
る現象であることを示すもので、この知見を骨子として
この発明を完成したわけである。
In any case, if the base component is low Mn,
The strengthening ability of Ti became remarkably higher than that of Mn system, indicating that these are phenomena related to the change of precipitation hardening mechanism through the precipitation behavior of TiC, and completed this invention based on this finding That is.

Cr:0.10〜0.50%、Mn+Cr0.50% CrはMnと同様の作用を有するが、MnよりもAr3変態の
抑制硬化が小さいこと、γ粒の再結晶抑制効果が小さい
こと、等の点でMnよりも有利に働くので、0.1%以上のC
rをMn+Cr0.50%の条件を満たす範囲でMnと代替して
使用すればミクロ組織を得易くなる。しかしCr量もしく
は、Mn+Crが0.50%をこえると、直流バット溶接性が悪
化するので、Crの上限およびMn+Crの上限を0.50%とし
た。
Cr: 0.10 to 0.50%, Mn + Cr0.50% Cr has the same effect as Mn, but has a smaller effect of inhibiting hardening of Ar3 transformation than Mn, and a smaller effect of suppressing the recrystallization of γ grains. More than 0.1% C
If r is used in place of Mn as long as r satisfies the condition of Mn + Cr 0.50%, a microstructure can be easily obtained. However, if the Cr content or Mn + Cr exceeds 0.50%, the direct current butt weldability deteriorates. Therefore, the upper limit of Cr and the upper limit of Mn + Cr are set to 0.50%.

Ti:0.05〜0.30% Tiはこの発明における強化の主体となる元素で、この
ために0.05%以上必要であるが、0.30%を超えて添加し
た場合、溶接部にペネトレーターが発生し易くなるので
その範囲を0.05〜0.30%とした。また、TiはMnよりもS
との親和力が強く、TiSとして有害なSを固定するので
バーリング加工性および疲労特性の改善効果をもつ。
Ti: 0.05 to 0.30% Ti is the main element of strengthening in the present invention. For this reason, 0.05% or more is necessary. However, if added in excess of 0.30%, a penetrator is likely to be generated in the welded portion, so that The range was 0.05-0.30%. Ti is more S than Mn.
It has a strong affinity with Ti and fixes harmful S as TiS, and thus has an effect of improving burring workability and fatigue characteristics.

Al:0.001〜0.100% Alは鋼の溶接時の脱酸剤として添加され、少なくとも
0.001%は必要で、一方0.100%をこえて使用してもその
効果は飽和する。
Al: 0.001 ~ 0.100% Al is added as a deoxidizer at the time of welding steel, at least
0.001% is required, while using more than 0.100% saturates the effect.

N:0.0100%以下 NはTiNとしてTiと結合し、強化に有効なTi量を減ず
る作用ならびにTiNとして鋼の清浄性を悪化させるの
で、0.0100%以下に抑制した。
N: 0.0100% or less N combines with Ti as TiN to reduce the amount of Ti effective for strengthening and to deteriorate the cleanliness of steel as TiN.

P:0.030%以下 Pは0.030%を超えると耐2次加工脆性を劣化し易く
なるので、その範囲を0.030%以下とした。
P: 0.030% or less If P exceeds 0.030%, the secondary working brittleness resistance is likely to deteriorate, so the range is set to 0.030% or less.

S:0.015%以下 Sは0.015%を超えるとA系の非金属介在物が多くな
り、バーリング加工性が悪化すること、およびTiと結合
して強化に有効なTi量を減ずるので0.015%以下の範囲
とした。
S: 0.015% or less When S exceeds 0.015%, the amount of non-metallic inclusions in the A system increases, and the burring processability deteriorates. Range.

またC当量(C+Mn/6+Si/24+Cr/5)の上限を0.20
%とする理由は、とくに直流バット溶接時の溶接性改善
のためにはC当量を0.20%以下の範囲とすることが極め
て効果的であるからである。
The upper limit of C equivalent (C + Mn / 6 + Si / 24 + Cr / 5) is 0.20.
The reason for setting the C% is that it is extremely effective to set the C equivalent to 0.20% or less, particularly for improving the weldability during DC butt welding.

Ti/(C+N+S)の範囲を0.3〜5の範囲に定める理
由は、この比が0.3未満の場合この発明に必要な引張り
強さ55kgf/mm2以上の強度が得られず、一方この比が5
を超えると強化に有効なTi量が過剰となるのでコイル巻
取り後の自己焼鈍効果を受けた時にTiCの析出挙動がコ
イル長手方向で大きく変動し易くなるため、材料内での
機械的性質のばらつきが増大するので好ましくないため
である。
The reason for setting the range of Ti / (C + N + S) to the range of 0.3 to 5 is that if the ratio is less than 0.3, the tensile strength required for the present invention of 55 kgf / mm 2 or more cannot be obtained, while the ratio is 5%.
If it exceeds the limit, the amount of Ti effective for strengthening becomes excessive, so that when subjected to the self-annealing effect after coil winding, the precipitation behavior of TiC tends to fluctuate greatly in the longitudinal direction of the coil, so the mechanical properties in the material This is because the variation increases, which is not preferable.

この発明においては以上に規定した成分範囲の他にCa
等の硫化物の形態制御効果合を有する元素の添加を妨げ
るものでなく、50ppm未満のCaの添加によって特にバー
リング加工性の改善効果が得られる。
In the present invention, in addition to the component ranges specified above, Ca
It does not prevent the addition of an element having the effect of controlling the sulfide form, such as sulfide, and the addition of less than 50 ppm of Ca can particularly improve the burring workability.

この発明においてミクロ組織中のポリゴナルフェライ
ト分率を70%以上とする理由について第1図に示すとこ
ろに従って説明する。同図は60〜65kgf/mm2の引張り強
さの範囲の各種の製造条件で製造した高張力熱延鋼板に
ついて、ミクロ組織中のポリゴナルフェライト分率と、
圧延方向と直角方向(以下C方向と示す)の伸びと圧延
方向に平行な方向(以下L方向と示す)の伸びの比の関
係をプロットしたものである。これにより、ポリゴナル
フェライト分率が70%未満の領域ではこの比が小さくな
っており、L方向とC方向での材質の異方性が大きくな
っていることがわかる。バーリング加工時のハブ割れは
加工性の劣るC方向の特性に左右されるので、ハブ割れ
防止には異方性を解消しC方向の伸び特性を向上するこ
とが必要である。ポリゴナルフェライト分率が70%未満
の領域で異方性が悪化するのはミクロ組織中の第2相が
異方性を持ち易いためであり、ポリゴナルフェライト分
率を70%以上とすることによってこの弊害を回避するこ
とができる。
The reason why the fraction of polygonal ferrite in the microstructure is set to 70% or more in the present invention will be described with reference to FIG. The figure for high-tensile hot-rolled steel sheet produced by various production conditions strength ranging tensile 60~65kgf / mm 2, and the polygonal ferrite fraction in the microstructure,
It is a plot of the relationship between the elongation in the direction perpendicular to the rolling direction (hereinafter referred to as C direction) and the elongation in the direction parallel to the rolling direction (hereinafter referred to as L direction). This indicates that this ratio is small in the region where the polygonal ferrite fraction is less than 70%, and the material anisotropy in the L direction and the C direction is large. Hub cracking during burring is affected by characteristics in the C direction, which is inferior in workability. Therefore, to prevent hub cracking, it is necessary to eliminate anisotropy and improve elongation characteristics in the C direction. The reason that the anisotropy deteriorates in the region where the polygonal ferrite fraction is less than 70% is that the second phase in the microstructure tends to have anisotropy, and the polygonal ferrite fraction should be 70% or more. This adverse effect can be avoided.

ところで、この発明は上記した成分上の要件を満たし
た上で以下の範囲の熱延条件を採択することが、目的と
するミクロ組織ならびに機械的性質を得るのに有利であ
る。
By the way, in the present invention, it is advantageous to adopt the following range of hot rolling conditions after satisfying the above requirements on the components in order to obtain the desired microstructure and mechanical properties.

加熱温度としては1100℃〜1450℃の範囲が望ましい。
この理由は1100℃未満ではTiCの溶解が不十分であるの
で、Tiの析出硬化能が十分に発揮されずに所望の強度が
得られなくなるためであり、一方、加熱温度が上昇する
に従ってTiCの溶解が進み、添加量当りのTiによる強度
上昇量が増大するが、1450℃をこえると加熱中および圧
延時の酸化量が大きくなり、経済的不利益を招く。
The heating temperature is preferably in the range of 1100 ° C to 1450 ° C.
The reason for this is that TiC is insufficiently dissolved at a temperature lower than 1100 ° C., so that the precipitation hardening ability of Ti is not sufficiently exhibited and a desired strength cannot be obtained.On the other hand, as the heating temperature increases, TiC becomes Dissolution proceeds, and the amount of strength increase due to Ti per added amount increases. However, if it exceeds 1450 ° C., the amount of oxidation during heating and during rolling increases, resulting in economic disadvantage.

また、この発明においては鋳片に鋳込んだ後再加熱工
程を経ずに直ちに熱間圧延を開始する工程、即ち直接圧
延法を採用すれば、Tiの強化機能が最大限に発揮される
のでより好都合となる。この場合、鋳込み後の鋳片の温
度が1000℃未満となると、熱間圧延前にTiCの析出が起
こり、Tiの析出硬化能が減じるので、熱間圧延開始温度
は1000℃以上とすることが望ましい。
In addition, in the present invention, if a step of immediately starting hot rolling without casting and then a reheating step after casting into a slab, that is, a direct rolling method, the strengthening function of Ti is exhibited to the maximum. It will be more convenient. In this case, when the temperature of the cast slab after casting is less than 1000 ° C, precipitation of TiC occurs before hot rolling, and the precipitation hardening ability of Ti decreases, so the hot rolling start temperature may be 1000 ° C or more. desirable.

熱間圧延の仕上げ温度は800〜950℃の範囲が望まし
い。この理由は800℃未満では繊維状ミクロ組織を呈し
易く、機械的性質の異方性が増大するためであり、一方
950℃を越えるとγ粒が粗大化してγ→α変態が遅滞す
るのでポリゴナルフェライト分率70%以上のミクロ組織
が得難くなる。
The finishing temperature of hot rolling is preferably in the range of 800 to 950 ° C. The reason for this is that if the temperature is lower than 800 ° C., a fibrous microstructure is easily formed, and the anisotropy of mechanical properties increases.
If the temperature exceeds 950 ° C., the γ grains become coarse and the γ → α transformation is delayed, so that it is difficult to obtain a microstructure having a polygonal ferrite fraction of 70% or more.

熱間圧延後の冷却速度は5〜100℃/sの範囲が望まし
い。なぜなら冷却速度が100℃/sを超えた場合、冷却過
程でのγ→α変態が抑制されるのでポリゴナルフェライ
ト分率70%のミクロ組織が得難くなり、一方、5℃/s未
満とした場合にはポリゴナルフェライト粒径が粗大化す
るのでバーリング加工性に悪影響が出る。
The cooling rate after hot rolling is preferably in the range of 5 to 100 ° C / s. Because, when the cooling rate exceeds 100 ° C / s, the γ → α transformation in the cooling process is suppressed, so that it becomes difficult to obtain a microstructure with a polygonal ferrite fraction of 70%. In such a case, the grain size of the polygonal ferrite becomes coarse, which adversely affects the burring workability.

巻取り温度は500〜700℃の範囲が望ましい。この理由
は500℃未満とするとTiCの析出硬化が生じなくなるの
で、所望の強度が得られず、さらに鋼板形状も悪化し、
一方、700℃を超えると、析出するTiCが粗大化して析出
硬化が減退するので強度が得難くなる。
The winding temperature is desirably in the range of 500 to 700 ° C. The reason for this is that if the temperature is lower than 500 ° C., the precipitation hardening of TiC does not occur, so that the desired strength cannot be obtained, and the steel sheet shape also deteriorates.
On the other hand, when the temperature exceeds 700 ° C., the deposited TiC becomes coarse and precipitation hardening is reduced, so that it is difficult to obtain strength.

(実施例) 第1表に示す化学成分の鋼をそれぞれ第2表に示す製
造工程によって3.0mm厚まで熱間圧延し熱延鋼帯とし
た。これらの鋼帯のミクロ組織、機械的性質および直流
バット溶接性について調べた結果を第1表に示す。
(Examples) Steels having the chemical components shown in Table 1 were hot-rolled to a thickness of 3.0 mm by the production steps shown in Table 2 to obtain hot-rolled steel strips. Table 1 shows the results of examining the microstructure, mechanical properties, and direct current butt weldability of these steel strips.

なお第1表について、 ミクロ組織は熱延鋼板の圧延方向と平行な断面より採
取した光学顕微鏡サンプルについて腐食液で組織を現出
させた後、400倍の倍率で10視野写真撮影し、組織中に
占めるポリゴナルフェライト相、アシキュラーフェライ
ト相、パーライト相およびベイナイト相の比率を測定
し、それぞれの相比率の平均値を求め、 穴拡げ率は第2図に示す形状、寸法の工具を用い、ブ
ランクは直径D0=70mm、穴径D1=12mmのものを用いて深
絞りを行い、穴の周辺に割れが入った瞬間にとめて、そ
のときの穴径d1を測定し、式 にて求め、 溶接部硬さは溶接部硬さはDCバット溶接機において溶
接電流密度〔150A/mm2〕、溶接時間50〔cycle〕、加圧
力10kg/mm2の条件で供試片を突合わせ溶接した後、供試
片の溶接部と母材部を含む断面においてビッカース硬度
計により硬度分布を測定し、溶接部での最高硬さ(Hv m
ax)および最高硬さと母材部との硬度差(ΔHv)を求め
た。
In Table 1, the microstructure of the optical microscopy sample taken from the cross section parallel to the rolling direction of the hot-rolled steel sheet was exposed with a corrosive liquid, and then a 10-field photograph was taken at 400 times magnification. The ratio of polygonal ferrite phase, acicular ferrite phase, pearlite phase, and bainite phase in the total was measured, and the average value of each phase ratio was determined.The hole expansion rate was determined using a tool with the shape and dimensions shown in Fig. 2. Using a blank with a diameter D 0 = 70 mm and a hole diameter D 1 = 12 mm, perform deep drawing and stop it at the moment when a crack is formed around the hole, measure the hole diameter d 1 at that time, and calculate the formula Collision determined, weld hardness welding current density at the weld hardness DC welding machine [150A / mm 2], welding time 50 [cycle], the test piece in the conditions of pressure 10 kg / mm 2 at After butt welding, measure the hardness distribution with a Vickers hardness tester on the cross section of the test piece including the welded part and the base material, and determine the maximum hardness (Hv m
ax) and the hardness difference (ΔHv) between the maximum hardness and the base metal part.

第1表から明らかなように、この発明に従う成分とミ
クロ組織を有する鋼帯は優れた直流バット溶接性と引張
り強さ55kgf/mm2以上の強度と良好な伸びフランジ特性
を有することがわかる。
As is apparent from Table 1, the steel strip having the components and microstructure according to the present invention has excellent direct current butt weldability, a tensile strength of 55 kgf / mm 2 or more, and good stretch flange properties.

また第3図に、C当量と引張り強さとの関係につい
て、第1表に示した鋼帯と前述の特開昭61−264159号お
よび特公昭62−35453号各公報に記載の鋼板とを比較し
て示す。同図から、この発明に従う鋼帯は従来の鋼板に
比較して、同一引張り強さを得るために必要なC当量が
著しく低いことがわかる。
FIG. 3 shows a comparison between the steel strip shown in Table 1 and the steel plates described in the above-mentioned JP-A-61-264159 and JP-B-62-35453 for the relationship between the C equivalent and the tensile strength. Shown. From the figure, it can be seen that the steel strip according to the present invention has a significantly lower C equivalent required to obtain the same tensile strength as compared with the conventional steel sheet.

(発明の効果) この発明によれば、直流バット溶接性およびバーリン
グ加工性に優れた引張り強さが55kgf/mm2以上の高長力
熱延鋼帯、すなわちとくに自動車用ホイールとして最適
な材料を提供し得る。
(Effects of the Invention) According to the present invention, a high-long-strength hot-rolled steel strip excellent in direct current butt weldability and burring workability and having a tensile strength of 55 kgf / mm 2 or more, that is, an optimum material is particularly provided as an automobile wheel. obtain.

また成分コストが安価であること、中心偏析が少ない
こと、近年省エネルギー化を追求するための製造プロセ
スとして実施されている直接圧延法に適していることな
どの多くの利点も有する。
It also has many advantages such as low component cost, low center segregation, and suitability for the direct rolling method, which has recently been implemented as a manufacturing process for pursuing energy saving.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、ミクロ組織中のポリゴナルフェライト分率と
C方向伸び/L方向伸びの比の関係を示すグラフ、 第2図は穴拡げ試験用工具の説明図、 第3図はこの発明に従う鋼帯および従来の鋼板は炭素当
量と引張り強さとの関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the polygonal ferrite fraction in the microstructure and the ratio of elongation in the C direction / elongation in the C direction. FIG. 2 is an explanatory view of a tool for a hole expansion test. FIG. 3 is in accordance with the present invention. 4 is a graph showing the relationship between carbon equivalent and tensile strength of a steel strip and a conventional steel sheet.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−42725(JP,A) 特開 昭61−264160(JP,A) 特開 昭57−155348(JP,A) 特開 昭52−17319(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 301──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-58-42725 (JP, A) JP-A-61-264160 (JP, A) JP-A-57-155348 (JP, A) JP-A 52- 17319 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 301

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.04〜0.18wt%、Si:0.05〜1.00wt%、M
n:0.10〜0.47wt%、Ti:0.05〜0.30wt%、Al:0.001〜0.1
00wt%、N:0.0100wt%以下、P:0.030wt%以下およびS:
0.015wt%以下を含み、残部が不可避的不純物およびFe
からなり、かつTi,C,N,S,Mn,Siおよび不可避的不純物中
のCrの含有量が、0.3≦Ti/(C+S+N)<5およびC
+Mn/6+Si/24+Cr/5≦0.20wt%を満たし、最終ミクロ
組織のポリゴナルフェライト分率が70%以上であること
を特徴とする冷間加工性および溶接性に優れた引張り強
さが55kgf/mm2以上の高張力熱延鋼帯。
1. C: 0.04 to 0.18 wt%, Si: 0.05 to 1.00 wt%, M
n: 0.10 ~ 0.47wt%, Ti: 0.05 ~ 0.30wt%, Al: 0.001 ~ 0.1
00wt%, N: 0.0100wt% or less, P: 0.030wt% or less and S:
0.015wt% or less, the balance being unavoidable impurities and Fe
And the content of Cr in Ti, C, N, S, Mn, Si and inevitable impurities is 0.3 ≦ Ti / (C + S + N) <5 and C
+ Mn / 6 + Si / 24 + Cr / 5 ≦ 0.20wt%, and the final microstructure has a polygonal ferrite fraction of 70% or more. High tension hot rolled steel strip of mm 2 or more.
【請求項2】C:0.04〜0.18wt%、Si:0.05〜1.00wt%、M
n:0.10〜0.47wt%、Cr:0.10〜0.50wt%、Ti:0.05〜0.30
wt%、Al:0.001〜0.100wt%、N:0.0100wt%以下、P:0.0
30wt%以下およびS:0.015wt%以下を含み、残部が不可
避的不純物およびFeからなり、かつTi,C,N,S,Mn,Siおよ
びCrの含有量が、0.3≦Ti/(C+S+N)<5、C+Mn
/6+Si/24+Cr/5≦0.20wt%およびMn+Cr≦0.50wt%を
満たし、最終ミクロ組織のポリゴナルフェライト分率が
70%以上であることを特徴とする冷間加工性および溶接
性に優れた引張り強さが55kgf/mm2以上の高張力熱延鋼
帯。
2. C: 0.04 to 0.18 wt%, Si: 0.05 to 1.00 wt%, M
n: 0.10 ~ 0.47wt%, Cr: 0.10 ~ 0.50wt%, Ti: 0.05 ~ 0.30
wt%, Al: 0.001 to 0.100 wt%, N: 0.0100 wt% or less, P: 0.0
30% by weight or less and S: 0.015% by weight or less, the balance being unavoidable impurities and Fe, and the content of Ti, C, N, S, Mn, Si and Cr is 0.3 ≦ Ti / (C + S + N) < 5, C + Mn
/6+Si/24+Cr/5≦0.20wt% and Mn + Cr ≦ 0.50wt%, polygonal ferrite fraction of final microstructure
A high-strength hot-rolled steel strip with a cold workability and weldability of 70% or more and a tensile strength of 55 kgf / mm 2 or more.
JP63157914A 1988-06-28 1988-06-28 High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more Expired - Fee Related JP2783809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157914A JP2783809B2 (en) 1988-06-28 1988-06-28 High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157914A JP2783809B2 (en) 1988-06-28 1988-06-28 High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more

Publications (2)

Publication Number Publication Date
JPH028349A JPH028349A (en) 1990-01-11
JP2783809B2 true JP2783809B2 (en) 1998-08-06

Family

ID=15660214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157914A Expired - Fee Related JP2783809B2 (en) 1988-06-28 1988-06-28 High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more

Country Status (1)

Country Link
JP (1) JP2783809B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770718B2 (en) * 1993-09-03 1998-07-02 住友金属工業株式会社 High strength hot rolled steel strip excellent in HIC resistance and method for producing the same
EP1176217B1 (en) * 2000-07-24 2011-12-21 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. High-strength hot-rolled steel sheet superior in strech flange formability and method for production thereof
ATE383452T1 (en) * 2001-10-04 2008-01-15 Nippon Steel Corp DRAWABLE HIGH STRENGTH THIN STEEL SHEET HAVING EXCELLENT FORM-FIXING PROPERTIES AND PRODUCTION PROCESS THEREOF
JP2006214702A (en) * 2005-02-07 2006-08-17 Denso Corp Heat exchanger, method of manufacturing heat exchanger, and plate-shaped fin for heat exchanger
JP4776456B2 (en) * 2006-07-03 2011-09-21 株式会社コーワ Rotating rotor, floor suction tool for vacuum cleaner, vacuum cleaner, and air conditioner.
JP4998755B2 (en) * 2009-05-12 2012-08-15 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
JP5861434B2 (en) * 2011-12-14 2016-02-16 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof
WO2013099206A1 (en) 2011-12-27 2013-07-04 Jfeスチール株式会社 Hot-rolled steel sheet and process for manufacturing same
KR101638715B1 (en) 2012-01-31 2016-07-11 제이에프이 스틸 가부시키가이샤 Hot-rolled steel for power generator rim and method for manufacturing same
PL2835440T3 (en) * 2012-04-06 2019-02-28 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvannealed hot-rolled steel sheet and process for producing same
JP6519011B2 (en) * 2015-05-11 2019-05-29 日本製鉄株式会社 Hot rolled steel sheet and method of manufacturing the same
CN105506451A (en) * 2015-12-10 2016-04-20 苏州爱盟机械有限公司 Composite automobile spare part

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012409B2 (en) * 1975-06-26 1985-04-01 新日本製鐵株式会社 Method for manufacturing hot-rolled steel for processing with excellent cold workability and age hardening properties after cold working
JPS5735663A (en) * 1980-08-11 1982-02-26 Kobe Steel Ltd Hot rolled steel plate for rim of wheel
JPS57155348A (en) * 1981-03-19 1982-09-25 Kawasaki Steel Corp High tension hot rolled steel sheet suitable for manufacture of wheel rim by flush butt welding
JPS5842725A (en) * 1981-09-04 1983-03-12 Kobe Steel Ltd Manufacture of high strength hot rolled steel plate with superior workability
JPS58199845A (en) * 1982-05-18 1983-11-21 Kawasaki Steel Corp High-tension hot-rolled steel plate suitable for use in manufacture of wheel rim

Also Published As

Publication number Publication date
JPH028349A (en) 1990-01-11

Similar Documents

Publication Publication Date Title
KR940007374B1 (en) Method of manufacturing austenite stainless steel
JP3219820B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
JP2783809B2 (en) High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
JP2012082523A (en) High-strength cold rolled steel plate with excellent baking hardenability, hot dipped steel plate, and method of manufacturing the cold rolled steel plate
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH06145894A (en) High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
CN111511949B (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP3823627B2 (en) Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2024500722A (en) Ultra-high strength cold-rolled steel sheet with excellent yield strength and bending properties and its manufacturing method
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
CN111511935B (en) Hot-rolled steel sheet having excellent durability and method for producing same
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP3296591B2 (en) Low yield ratio high strength hot rolled steel sheet and method for producing the same
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPH1030122A (en) Production of hot rolled steel strip with high strength and high toughness
KR102468035B1 (en) High strength steel sheet having excellent thermal stability and high yield ratio and method for manufacturing thereof
JPH04276024A (en) Manufacture of high strength hot rolled steel sheet excellent in stretch-flanging property

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees