JP3823627B2 - Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging - Google Patents

Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging Download PDF

Info

Publication number
JP3823627B2
JP3823627B2 JP23992099A JP23992099A JP3823627B2 JP 3823627 B2 JP3823627 B2 JP 3823627B2 JP 23992099 A JP23992099 A JP 23992099A JP 23992099 A JP23992099 A JP 23992099A JP 3823627 B2 JP3823627 B2 JP 3823627B2
Authority
JP
Japan
Prior art keywords
steel
toughness
strain aging
weldability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23992099A
Other languages
Japanese (ja)
Other versions
JP2001064723A (en
Inventor
稔 諏訪
伸一 鈴木
典己 和田
孝之 小林
章嘉 辻
一夫 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23992099A priority Critical patent/JP3823627B2/en
Publication of JP2001064723A publication Critical patent/JP2001064723A/en
Application granted granted Critical
Publication of JP3823627B2 publication Critical patent/JP3823627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水圧鉄管、圧力容器、ラインパイプ及び海洋構造物等に用いられる60キロ級構造用鋼で、特に曲げなどの冷間加工後においても優れた低温靭性を有する歪時効後の靭性に優れた非調質高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】
鋼を冷間で塑性変形すると歪時効脆化と呼ばれる靭性が劣化する現象が生ずる。歪時効脆化に間しては主に自動車ボデイ用の薄鋼板を対象に研究が行なわれてきたが、近年、構造物の信頼性に対する要求が高まり、厚鋼板においても素材段階のみならず加工や不慮の事故などにより塑性変形を受けた後の靭性が問題視されるようになってきた。
【0003】
歪時効脆化を評価する試験として5%の引張り予歪を付与し、250℃で1時間の時効処理後シャルピー試験を行なう歪時効シャルピー試験が知られ、近年、材料評価試験の一つとして要求される事例が増えている。
【0004】
厚鋼板を対象とする歪時効脆化抑制の技術として、特開平5−320820号、特開昭59−182915号及び特開昭56−127750号等があるが、いずれも一般的な600MPa級厚肉鋼板を対象とした技術ではない。
【0005】
特開平5−320820号には引張り強度 400MPa級の球状船首用低降伏点焼入れ鋼が開示されている。鋼材組織を整粒化し、歪時効後の靭性劣化を防止するものであるが、C量が0.002〜0.03%、他の強化元素も殆ど含有されていない成分組成が対象であり、60キロ級鋼に適用することは出来ない。
【0006】
特開昭59−182915号はTMCP型500MPa級鋼での歪時効脆化を抑制する製造方法を開示している。TMCP50キロ鋼を冷間加工した場合、冷間加工後の脆化がフェライト・ベイナイト組織のフェライト相に歪が集中することにより生じることに着目し、フェライト中の固溶N,固溶Cを冷却停止温度の制御により低減させ、フェライト相の脆化を抑制する技術である。このため、室温付近まで冷却され、焼入れ組織となる60キロ級鋼には適用できない。
【0007】
特開昭56−127750号には600MPa級鋼の歪時効脆化抑制技術が記載されているが、本技術はVN析出型の鋼において、0.01%以上のN含有により生ずる歪時効脆化をCaまたはMgの添加により抑制できることを示している。しかし、本技術は、as rollあるいはノルマで製造するVN鋼に限ってその効果を発揮するもので、実施例の鋼もC量が0.12%以上と高く、Pcmも0.25%以上と溶接施工性に劣る鋼が記載され、現在の一般的な需要家の要望に応えるものではない。
【0008】
【発明が解決しようとする課題】
以上、述べたように、溶接施工性に優れた60キロ級厚肉鋼材で塑性変形させた後の脆化を抑制する技術は未だ完成されていない。本発明は、溶接性に優れ、かつ歪時効後にも優れた靭性を有する60キロ級非調質高張力鋼の製造方法を提供するものであり、具体的には歪時効シャルピー試験の破面遷移温度vTs(aged)がー40℃以下となる60キロ級非調質高張力鋼の製造方法を提供する。
【0009】
【課題を解決するための手段】
従来、歪時効後の靭性劣化機構については、薄鋼板の場合、鋼中に固溶しているCやNと歪付与による転位との相互作用により、転位の動きが妨げられ、降伏点が上昇し、脆化することが知られている。しかし、本発明者等が厚肉鋼を対象に、歪時効後の靭性劣化度の異なる鋼の固溶CとNを内部摩擦測定法によりスネークピーク測定を行った結果、いずれの鋼においても固溶CとN量は3ppm未満であり、厚肉鋼の歪時効後の靭性劣化に固溶CとN量の積極的影響は認められず、その原因として薄鋼板のフェライト主体に対し、厚肉鋼がベイナイト主体組織であることより、組織的相違によるものと推察された。
【0010】
そこで、本発明者等は、鋼材の成分組成と熱処理条件を種々変化させ、歪時効特性に及ぼす組織の影響について,詳細に検討し、以下に述べるNb含有厚肉鋼に特有の歪時効特性を把握した。
【0011】
1.C含有量の減少は歪時効後の靭性劣化を軽減する。
【0012】
2.歪時効後の靭性は製造プロセスの影響を受け、焼入れ焼戻し鋼は焼戻し温度が高いほど歪時効後の靭性が劣化し、焼戻し熱処理省略型の冷却途中停止プロセスによる鋼では冷却停止温度によらず歪時効後の靭性劣化度は小さい。
【0013】
3.焼戻しにより、組織は変化し、焼戻し温度が低いほどセメンタイトが比較的微細に析出する。その析出サイトは旧オーステナイト結晶粒界、ベイナイトのパケット境界および旧オーステナイト結晶粒内に分散しているのが観察された。焼戻し温度が高くなると、セメンタイトが凝集粗大化し、析出サイトも殆どが旧オーステナイト結晶粒界、ベイナイトのパケット境界となった。一方、冷却途中停止材では冷却停止温度によらず、セメンタイトが比較的微細に析出し、その析出サイトは旧オーステナイト結晶粒界、ベイナイトのパケット境界及び旧オーステナイト結晶粒内に分散しているのが観察された。
【0014】
4.焼入れ時のオーステナイト結晶粒径が細かいほど、またベイナイトのパケットサイズが小さいほど歪時効後の靭性劣化は軽減される。
【0015】
5.旧オーステナイト粒界に数μm以下の膜状のフェライトが生成している場合は実質的な粒界面積の増大となり、セメンタイトが微細化する。
【0016】
6.歪時効後のシャルピー衝撃試験における脆性破面の破壊単位はベイナイトのパケットサイズに対応する。
【0017】
これらの結果はNb含有厚肉鋼の歪時効後の靭性が、旧オーステナイト結晶粒界とベイナイトのパケット境界に析出するセメンタイトのサイズ、析出量により支配されること、及び歪時効後の靭性を改善するためには析出するセメンタイトのサイズを小さくし、その量を少なくする、焼戻し省略型の冷却途中停止プロセスの優れていることを示すものである。そして、セメンタイトのサイズ、析出量に影響を与える因子として、直接的にはC量と焼戻し温度、間接的には一定のセメンタイト量に対し析出サイトを増加させ、析出サイズを小さくする効果を有する旧オーステナイト結晶粒、ベイナイトのパケットサイズ、旧オーステナイト粒界上に析出する膜状のフェライトが認められた。
【0018】
すなわち、歪時効後の靭性に影響を与える主な製造条件はC量、旧オーステナイト結晶粒径とベイナイトのパケットサイズに影響を与えるスラブ加熱温度並びに再結晶域での圧延方法、及びフェライト析出量に影響を及ぼす未再結晶温度域での累積圧下率となる。
【0019】
本発明は以上の知見を基に更に検討を加えてなされたものである。
【0020】
1. 質量%で、C:0.04〜0.09%、Si:0.1〜0.5%、Mn:1.2〜1.8%と、Nb:0.01〜0.05%、sol.Al:0.002〜0.07%、N:0.001〜0.004%を含み、且つPcm≦0.20%、Ceq(WES)≦0.42%、を満たし、残部Feおよび不可避的不純物からなる鋼を、1150℃以下に加熱して加熱後900〜1000℃の温度域で1d/hm≧1.0の圧延を1パス以上行い、引き続きAr3以上900℃未満の温度域で累積圧下率10〜60%の圧延後、Ar3以上より冷却速度2℃/秒以上で、300〜600℃の温度域まで冷却することを特徴とする溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0021】
但し、Pcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,
Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14。
【0022】
Id:投影接触弧長 Id=(R・(hi−ho))1/2
hm:平均板厚 hm=(hi+2ho)/3
R:ロール半径、hi:圧延前の板厚、ho:圧延後の板厚
2. 鋼組成として、更に質量%でCr:0.1〜0.5%を含有する1記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0023】
3. 鋼組成として、更に質量%でMo:0.02〜0.3%、Cu:0.1〜0.6%の一種または二種を含有する1又は2記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0024】
4. 鋼組成として、更に質量%でNi:0.1〜0.5%を含有する請求項1乃至3の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0025】
5. 鋼組成として、更に質量%でV:0.01〜0.08%を含有する1乃至4の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0026】
6. 鋼組成として、更に質量%でTi:0.005〜0.02%、Ca:0.001〜0.004%の一種または二種を含有する1乃至5の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
【0028】
【発明の実施の形態】
以下に本発明における成分組成、製造条件について説明する。
【0029】
1.製造条件
C:0.04%以上0.09%以下
Cは所定の強度を確保するため添加する。0.04%未満では厚肉材の場合60キロ級の引張り強度を確保することが困難で、0.09%を超えると,歪時効後の靭性が劣化するため、0.04%以上0.09%以下添加する。
【0030】
Si:0.1%以上0.5%以下
Siは所定の強度、靭性を確保するために添加する。0.1%未満ではその効果が十分でなく、0.5%を超えると効果が飽和し、溶接熱影響部の靭性が著しく劣化するため、0.1%以上0.5%以下添加する。
【0031】
Mn:1.2%以上1.8%以下
Mnは所定の強度を確保するために添加する。1.2%未満では厚肉材の場合60キロ級の引張り強度を確保することが困難で、1.8%を超えると、溶接熱影響部の靭性が著しく劣化するため1.2%以上1.8%以下添加する。
【0032】
Nb:0.01%以上0.05%以下
Nbは、圧延時のオーステナイトの再結晶を抑制し、直接焼入れ時のオーステナイト粒界を活性化させ、膜状フェライトの生成を容易とする。また、焼戻し時にNb炭化物として析出し、強度上昇に有効なため添加する。0.01%未満ではそれらの効果が不十分で、0.05%超えでは著しいNb炭化物の析出強化により靭性が劣化するため0.01%以上0.05%以下添加する。
【0033】
sol.Al:0.002%以上0.07%以下
Alは脱酸のため添加する。sol.Al量で0.002%未満の場合、その効果が十分でなく、0.07%を超えて添加すると鋼材の表面疵が発生しやすくなるため、0.002%以上0.07%以下添加する。
【0034】
N:0.001%以上0.004%以下
Nは、圧延加熱時AlあるいはTiと結びつきAlN,TiNを生成し、オーステナイトを微細化させる。0.001%未満ではその効果が十分でなく、0.004%を超えて含有すると焼入れ焼戻し後も固溶Nにより著しい歪時効脆化を生じるため、0.001%以上0.004%以下とする。
【0035】
Pcm≦0.20、Ceq(WES)≦0.42
Pcm,Ceq(WES)は、溶接低温割れ性、溶接熱影響部の靭性の指標で、Pcmが0.20%を超えた場合、予熱無しの溶接では低温割れが生じる可能性があり、Ceq(WES)が0.42を超えた場合、大入熱溶接の熱影響部靭性が著しく劣化するためPcm≦0.20、CeqWES≦0.42とする。ここでPcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14とする。
【0036】
以上が本発明鋼における基本的な成分組成であるが、所望する特性を向上させるため、Cr,Mo,Cu、Ni,V,Ti,Caを単独または複合添加することが可能である。
【0037】
Cr:0.1%以上0.5%以下
Crは、強度、靭性を確保するために添加する。0.1%未満では、その効果が不十分で、0.5%を超えると溶接性ならびに溶接熱影響部の靭性が著しく劣化するため、0.1%以上0.5%以下添加する。
【0038】
Mo:0.02%以上0.3%以下、Cu:0.1%以上0.6%以下の一種または二種
Moは強度を向上させ、特に厚肉材で有効なため添加する。0.02%未満ではその効果が十分でなく、0.3%を超えると溶接性及び溶接熱影響部の靭性が著しく劣化するため0.02%以上0.3%以下とする。Cuは強度を向上させるため添加する。
【0039】
0.1%未満ではその効果が十分でなく、0.6%を超えて添加するとCu割れの懸念が高まるため0.1%以上0.6%以下とする。
【0040】
Ni:0.1%以上0.5%以下
Niは靭性を向上させるため添加する。0.1%未満ではその効果が十分でなく、0.5%を超えると鋼材コストの上昇が著しいので0.5%以下とする。
【0041】
V:0.01%以上0.08%以下
Vは焼戻し時、炭化物として析出し、強度を向上させるため添加する。0.01%未満ではその効果が十分でなく、0.08%超えでは著しいV炭化物の析出強化により靭性が劣化するため0.01%以上0.08%以下とする。
【0042】
Ti:0.005%以上0.02%以下、Ca:0.001%以上0.004%以下の一種又は二種
Ti、Caは母材靭性並びに溶接熱影響部の靭性を向上させるため添加する。Tiは圧延加熱時あるいは溶接時、TiNを生成しオーステナイト粒径を微細化する。
【0043】
0.005%未満ではその効果が十分でなく、0.02%を超えて添加すると圧延時にTiNbの複合炭化物が析出し、焼戻し時のNb炭化物の析出量が不足するようになり強度低下が生じるため、0.005%以上0.02%以下とする。
【0044】
CaはCa硫化物として鋼中に存在し、圧延加熱時あるいは溶接時、オーステナイト粒径を微細化する。0.001%未満ではその効果が十分でなく、0.004%を超えて添加すると多量のCa硫酸化物により清浄度を著しく劣化させるため、0.001%以上0.004%以下とする。
【0045】
更に本発明ではB,O、P,Sを以下の範囲に規制することが望ましい。
【0046】
B:0.0002%以下、O:0.001%以上0.004%以下
Bは本発明では不純物元素として扱う。直接焼入れ時、固溶Bとして存在すると旧オーステナイト粒界における膜状フェライトの生成が抑制されるため溶解原料の選別などにより0.0002%以下に規制する。Oは不可避不純物であるが、0.001%未満とすることは製造コストが高価となり、0.004%を超えると多量のCa硫酸化物が集合し、清浄度を劣化させるため、0.001%以上0.004%以下とする。
【0047】
P≦0.010%、S≦0.002%
P,Sは不純物元素で、P≦0.010%、S≦0.002%とした場合、中央偏析が軽減され、板厚中央の靭性及び溶接性を向上させる。
【0048】
2.圧延条件
900〜1000℃での圧延:ld/hm≧1.0を満たす圧延を1パス以上歪時効後の靭性劣化を抑制するため、Nb含有鋼の再結晶温度の低温域である900〜1000℃において、ld/hm≧1.0を満たす圧延を1パス以上行い、回復の早い温度域で板厚中央部まで有効に加工歪を導入する。
【0049】
圧延温度が900℃未満では再結晶が十分でなく、1000℃を超えると再結晶粒径が大きくなるため、900〜1000℃とする。ld/hmは1.0未満では板厚中央部まで再結晶を励起する十分な加工歪が加わらないため1.0以上とする。
【0050】
Ar3以上900℃未満の温度域での圧延:累積圧下率10〜60%の圧延
歪時効後の靭性劣化を抑制するため、Nb含有鋼の未再結晶温度域において累積圧下による加工歪の蓄積を行い、フェライト変態を促進する。
【0051】
圧延温度はAr3未満では直接焼入れ開始時にフェライト変態の進行により焼入れ性が低下し、所定の強度が得られず、900℃以上では再結晶により、加工歪が蓄積されずフェライト変態が不十分となるため、Ar3以上900℃未満とする。累積圧下率は10%未満ではフェライト変態が促進されず、60%を超えるとその効果が飽和し、鋼材の異方性が急激に増大するため、累積圧下率10〜60%とする。尚、Ar3は例えばAr3=910−310C−80Mn−20Cu−15Cr−55Ni−80Moとして求められる。
【0052】
3.熱処理条件
冷却開始温度:Ar3以上
冷却開始温度はAr3未満の場合、加速冷却により、ベイナイト相に変態するオーステナイト相の分率が低下し所定の強度が得られなくなるため、Ar3以上とする。
【0053】
冷却速度:2℃/秒以上
冷却速度は速いほど強度上昇に効果があり、所定の強度をえるため、2℃/秒以上とする。
【0054】
冷却停止温度:300〜600℃
冷却停止温度は強度―靭性バランスに影響を与え、300℃未満では靭性が回復せず、600℃を超えると冷却効果が不十分となり所定の強度が得られないため、300〜600℃とする。
【0055】
尚、スラブ加熱温度は1150℃を超えると、オーステナイト結晶粒が急激に粗大化し、その後の圧延による細粒化が困難となり歪時効後の靭性が劣化する場合があるため、1150℃以下とすることが好ましい。
【0056】
【実施例】
表1に実施例に用いた供試鋼の化学成分を示す(表示しない残部は実質的にFe及び不可避不純物よりなる)。これらの化学成分を有する鋳片を加熱後、25〜75mmに圧延した。圧延後、冷却開始温度、冷却速度及び冷却停止温度を種々変化させ、特性を調査した。表2に製造条件、表3に鋼板の特性を示す。
【0057】
機械的特性として強度、靭性および歪時効後の靭性を求めた。引張り試験は1/4tより、採取したJIS14A号(14φ)試験片を用いた試験とした。
【0058】
衝撃試験は、1/4tより長手方向が圧延方向と直角になるように採取した2mmVノッチシャルピー衝撃試験片(JIS4号標準試験片)を用いた試験とした。歪時効後の靭性は板状の試験片に、5%引張り予歪を付与し、250℃で1時間の時効処理後、引張方向に2mmVノッチシャルピー衝撃試験片を採取し、試験を行った。
【0059】
以下、実施例及び参考例について詳述する。
表1における鋼種A,B,C,D,Fは請求項1乃至6何れかに記載の発明を満足する成分組成の鋼で、鋼種GはC量、Pcmが発明の範囲外となっている。また、表1の鋼種Eは、参考例に対応する成分組成の鋼を示す。表2、3における鋼番1〜5及び7は夫々鋼種A,B,C,D,Fを用いた製造例で請求項1乃至6の何れかに記載の発明の実施例となっている。また、表2,3における鋼番6は鋼種Eを用いた製造例を示す。
【0060】
歪時効後のvTsはー40℃以下、歪時効の前後でのvTsの変化は小さく、良好な耐歪時効脆化性が得られている。鋼番8,9は、鋼種A,Bによる製造例であるが、冷却条件が本発明の範囲外となっている。鋼番8は冷却開始温度が低く、鋼番9は冷却停止温度が高く強度が低い。鋼番10はスラブ加熱温度が1150℃を超えて高く、耐歪時効脆化性に若干劣っている。鋼番11は再結晶温度域でld/hmが1.0以上の圧延を行わなかったため、歪時効によるvTsの劣化度が大きい。鋼番12は累積圧下率が低く、歪時効によるvTsの劣化度が大きい。鋼番13は冷却停止温度が低すぎ、歪時効後の靭性に劣っている。鋼番14は冷却速度が遅く、強度低下を生じている。鋼種Fによる製造例であるが鋼番15は鋼種Gによる製造例で、成分組成が本発明の範囲外であり、耐歪時効脆化性に劣っている。
【0061】
【表1】

Figure 0003823627
【0062】
【表2】
Figure 0003823627
【0063】
【表3】
Figure 0003823627
【0064】
【発明の効果】
本発明によれば、歪時効後の靭性に優れると共に、溶接性に優れる60キロ級非調質鋼の製造方法の提供が可能で、産業上その効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
This invention is a 60 kg class structural steel used for hydraulic iron pipes, pressure vessels, line pipes, marine structures, etc., and has excellent low temperature toughness even after cold working such as bending. The present invention relates to a method for producing excellent non-tempered high-tensile steel.
[0002]
[Prior art]
When steel is plastically deformed cold, a phenomenon called strain aging embrittlement occurs that deteriorates toughness. Research on strain aging embrittlement has been carried out mainly on thin steel sheets for automobile bodies, but in recent years, the demand for structural reliability has increased, and even thick steel sheets are processed not only at the material stage. The toughness after plastic deformation due to accidents or accidents has become a problem.
[0003]
As a test for evaluating strain aging embrittlement, a strain aging Charpy test in which 5% tensile pre-strain is applied and a Charpy test after aging treatment at 250 ° C. for 1 hour is known. Recently, it has been requested as one of material evaluation tests. Increasing cases are being conducted.
[0004]
As a technique for suppressing strain aging embrittlement for thick steel plates, there are JP-A-5-320820, JP-A-59-182915, JP-A-56-127750, and the like. It is not a technology for meat steel plates.
[0005]
Japanese Patent Laid-Open No. 5-320820 discloses a low yield point quenched steel for a spherical bow having a tensile strength of 400 MPa. The grain size of the steel material structure is adjusted to prevent toughness deterioration after strain aging, but the amount of C is 0.002 to 0.03%, and the component composition containing almost no other reinforcing elements is the target. It cannot be applied to 60kg class steel.
[0006]
Japanese Unexamined Patent Publication No. 59-182915 discloses a production method for suppressing strain aging embrittlement in TMCP type 500 MPa class steel. Paying attention to the fact that embrittlement after cold working occurs when TMCP 50 kg steel is cold worked, strain is concentrated in the ferrite phase of ferrite and bainite structure, cooling solid solution N and solid solution C in ferrite It is a technology that reduces the ferrite phase by embrittlement by controlling the stop temperature. For this reason, it cannot be applied to 60 kg grade steel which is cooled to near room temperature and becomes a quenched structure.
[0007]
Japanese Patent Application Laid-Open No. 56-127750 describes a technology for suppressing strain aging embrittlement of 600 MPa class steel. This technology is applied to strain aging embrittlement caused by VN precipitation type steel containing 0.01% or more of N. It can be suppressed by adding Ca or Mg. However, this technology is effective only for VN steel manufactured by as roll or normal, and the steel of the examples also has a high C content of 0.12% or more and Pcm of 0.25% or more. Steels that are inferior in weldability are described and do not meet the demands of current general customers.
[0008]
[Problems to be solved by the invention]
As described above, a technique for suppressing embrittlement after plastic deformation with a 60 kg thick steel material excellent in welding workability has not yet been completed. The present invention provides a method for producing a 60 kg grade non-tempered high strength steel having excellent weldability and excellent toughness even after strain aging. Specifically, the fracture surface transition of a strain aging Charpy test is provided. A method for producing a 60 kg grade non-tempered high strength steel having a temperature vTs (aged) of −40 ° C. or lower is provided.
[0009]
[Means for Solving the Problems]
Conventionally, regarding the toughness degradation mechanism after strain aging, in the case of thin steel sheets, the movement of dislocations is hindered by the interaction between C and N dissolved in the steel and the dislocations due to strain application, and the yield point increases. And it is known to become brittle. However, as a result of the snake peak measurement by the internal friction measurement method for the solid solutions C and N of steels having different toughness deterioration after strain aging, the inventors of the present invention have found that solid steel is not solid. The amount of dissolved C and N is less than 3 ppm, and the positive influence of the amount of dissolved C and N on the toughness deterioration after strain aging of thick steel is not recognized. Since steel is a bainite-based structure, it was assumed that it was due to structural differences.
[0010]
Therefore, the present inventors varied the composition of the steel material and the heat treatment conditions in various ways, examined in detail the influence of the structure on the strain aging characteristics, and described the strain aging characteristics peculiar to the Nb-containing thick steel described below. I figured it out.
[0011]
1. Decreasing the C content reduces toughness deterioration after strain aging.
[0012]
2. The toughness after strain aging is affected by the manufacturing process, and the quenching and tempering steel deteriorates as the tempering temperature increases, and the toughness after strain aging deteriorates. The degree of toughness deterioration after aging is small.
[0013]
3. The structure changes by tempering, and cementite precipitates relatively finely as the tempering temperature is lowered. The precipitation sites were observed to be dispersed within the prior austenite grain boundaries, the bainite packet boundaries, and the prior austenite grains. As the tempering temperature was increased, cementite was agglomerated and coarsened, and most of the precipitation sites became the former austenite grain boundaries and bainite packet boundaries. On the other hand, in the cooling stop material, cementite precipitates relatively finely regardless of the cooling stop temperature, and the precipitation sites are dispersed in the prior austenite grain boundaries, bainite packet boundaries, and the prior austenite crystal grains. Observed.
[0014]
4). The finer the austenite crystal grain size during quenching and the smaller the bainite packet size, the less the toughness deterioration after strain aging.
[0015]
5). When film-like ferrite having a thickness of several μm or less is formed at the prior austenite grain boundaries, the grain boundary area is substantially increased, and cementite is refined.
[0016]
6). The fracture unit of the brittle fracture surface in the Charpy impact test after strain aging corresponds to the bainite packet size.
[0017]
These results show that the toughness after strain aging of Nb-containing thick-walled steel is governed by the size and amount of cementite precipitated at the boundary between the prior austenite grain boundaries and the bainite packet, and the toughness after strain aging is improved. In order to achieve this, the size of the precipitated cementite is reduced and the amount thereof is reduced, which shows that the tempering omission type cooling stop process is excellent. And as a factor that affects the size and precipitation amount of cementite, the former has the effect of directly increasing the precipitation site with respect to the C amount and tempering temperature, indirectly with respect to a certain amount of cementite, and reducing the precipitation size. Austenite grains, bainite packet size, and film-like ferrite precipitated on the prior austenite grain boundaries were observed.
[0018]
That is, the main production conditions affecting the toughness after strain aging are the amount of C, the slab heating temperature that affects the prior austenite grain size and the bainite packet size, the rolling method in the recrystallization region, and the ferrite precipitation amount. It becomes the cumulative rolling reduction in the non-recrystallization temperature range that affects.
[0019]
The present invention has been made based on the above findings and further studies.
[0020]
1. In mass% , C: 0.04 to 0.09%, Si: 0.1 to 0.5%, Mn: 1.2 to 1.8%, Nb: 0.01 to 0.05%, sol . Al: 0.002 to 0.07%, N: 0.001 to 0.004%, and satisfy Pcm ≦ 0.20%, Ceq (WES) ≦ 0.42% , remaining Fe and inevitable The steel made of impurities is heated to 1150 ° C. or lower, heated and then rolled at 1 d / hm ≧ 1.0 in the temperature range of 900 to 1000 ° C. for one or more passes, and then cumulatively reduced in the temperature range of Ar 3 to less than 900 ° C. 60kg class excellent in weldability and toughness after strain aging, characterized by cooling to a temperature range of 300-600 ° C at a cooling rate of 2 ° C / second or higher than Ar3 after rolling at a rate of 10-60% Production method of non-tempered high-tensile steel.
[0021]
However, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B,
Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
[0022]
Id: Projected contact arc length Id = (R · (hi−ho)) 1/2
hm: Average plate thickness hm = (hi + 2ho) / 3
R: roll radius, hi: plate thickness before rolling, ho: plate thickness after rolling The method for producing a 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging according to 1, further comprising Cr: 0.1 to 0.5% by mass as a steel composition.
[0023]
3. The weldability and toughness after strain aging according to 1 or 2, wherein the steel composition further contains one or two of Mo: 0.02-0.3% and Cu: 0.1-0.6% in mass% . Of excellent 60kg grade non-tempered high strength steel.
[0024]
4). The steel composition further contains Ni: 0.1 to 0.5% by mass% . 60 kg class non-heat treated high excellent in weldability and toughness after strain aging according to any one of claims 1 to 3. Tensile steel manufacturing method.
[0025]
5). 60 kg class non-tempered high-tensile steel excellent in weldability and toughness after strain aging according to any one of 1 to 4, further comprising, as a steel composition, V: 0.01 to 0.08% by mass% Manufacturing method.
[0026]
6). As a steel composition, weldability and strain according to any one of 1 to 5 further containing one or two of Ti: 0.005 to 0.02% and Ca: 0.001 to 0.004% by mass%. A method for producing 60 kg grade non-tempered high strength steel with excellent toughness after aging.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
The component composition and production conditions in the present invention will be described below.
[0029]
1. Production condition C: 0.04% or more and 0.09% or less C is added to ensure a predetermined strength. If it is less than 0.04%, it is difficult to secure a tensile strength of 60 kg in the case of a thick material. If it exceeds 0.09%, the toughness after strain aging deteriorates, so 0.04% or more and 0.0. Add 09% or less.
[0030]
Si: 0.1% or more and 0.5% or less Si is added to ensure predetermined strength and toughness. If the content is less than 0.1%, the effect is not sufficient. If the content exceeds 0.5%, the effect is saturated and the toughness of the weld heat affected zone is remarkably deteriorated. Therefore, 0.1% to 0.5% is added.
[0031]
Mn: 1.2% or more and 1.8% or less Mn is added to ensure a predetermined strength. If it is less than 1.2%, it is difficult to secure a tensile strength of 60 kg in the case of a thick material, and if it exceeds 1.8%, the toughness of the weld heat-affected zone is significantly deteriorated, so 1.2% or more 1 Add 8% or less.
[0032]
Nb: 0.01% or more and 0.05% or less Nb suppresses recrystallization of austenite during rolling, activates austenite grain boundaries during direct quenching, and facilitates the formation of film ferrite. Moreover, it precipitates as Nb carbide at the time of tempering and is added because it is effective for increasing the strength. If it is less than 0.01%, these effects are insufficient, and if it exceeds 0.05%, the toughness deteriorates due to significant precipitation strengthening of Nb carbide, so 0.01% or more and 0.05% or less are added.
[0033]
sol. Al: 0.002% or more and 0.07% or less Al is added for deoxidation. sol. If the amount of Al is less than 0.002%, the effect is not sufficient, and if added over 0.07%, surface flaws of the steel material are likely to occur, so 0.002% or more and 0.07% or less are added. .
[0034]
N: 0.001% or more and 0.004% or less N is combined with Al or Ti at the time of rolling and heating to produce AlN and TiN, thereby refining austenite. If the content is less than 0.001%, the effect is not sufficient. If the content exceeds 0.004%, significant strain aging embrittlement occurs due to solute N even after quenching and tempering, so 0.001% or more and 0.004% or less. To do.
[0035]
Pcm ≦ 0.20, Ceq (WES) ≦ 0.42
Pcm, Ceq (WES) is an index of weld cold cracking property and toughness of the heat affected zone. If Pcm exceeds 0.20%, cold cracking may occur in welding without preheating. When WES) exceeds 0.42, the heat-affected zone toughness of high heat input welding is remarkably deteriorated, so Pcm ≦ 0.20 and CeqWES ≦ 0.42. Here, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
[0036]
The above is the basic component composition of the steel of the present invention, but Cr, Mo, Cu, Ni, V, Ti, and Ca can be added alone or in combination in order to improve desired characteristics.
[0037]
Cr: 0.1% to 0.5% Cr is added to ensure strength and toughness. If it is less than 0.1%, the effect is insufficient. If it exceeds 0.5%, the weldability and the toughness of the weld heat affected zone are remarkably deteriorated, so 0.1% or more and 0.5% or less are added.
[0038]
Mo: 0.02% or more and 0.3% or less, Cu: 0.1% or more and 0.6% or less of one or two kinds of Mo improve strength, and are added because they are particularly effective for thick materials. If it is less than 0.02%, the effect is not sufficient, and if it exceeds 0.3%, the weldability and the toughness of the heat affected zone are significantly deteriorated, so 0.02% or more and 0.3% or less. Cu is added to improve the strength.
[0039]
If it is less than 0.1%, the effect is not sufficient, and if it exceeds 0.6%, there is a concern about Cu cracking, so 0.1% or more and 0.6% or less.
[0040]
Ni: 0.1% or more and 0.5% or less Ni is added to improve toughness. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 0.5%, the steel material cost is remarkably increased.
[0041]
V: 0.01% or more and 0.08% or less V is added to precipitate as carbide during tempering and to improve strength. If it is less than 0.01%, the effect is not sufficient, and if it exceeds 0.08%, the toughness deteriorates due to significant precipitation strengthening of V carbide, so the content is made 0.01% or more and 0.08% or less.
[0042]
Ti: 0.005% or more and 0.02% or less, Ca: 0.001% or more and 0.004% or less of one or two types of Ti and Ca are added to improve the base material toughness and the toughness of the heat affected zone. . Ti produces TiN at the time of rolling and heating or welding to refine the austenite grain size.
[0043]
If less than 0.005%, the effect is not sufficient, and if added over 0.02%, TiNb composite carbide precipitates during rolling, and the precipitation amount of Nb carbide during tempering becomes insufficient, resulting in a decrease in strength. Therefore, the content is made 0.005% or more and 0.02% or less.
[0044]
Ca is present in the steel as Ca sulfide and refines the austenite grain size at the time of rolling heating or welding. If it is less than 0.001%, the effect is not sufficient, and if added over 0.004%, the cleanness is remarkably deteriorated by a large amount of Ca-sulfuric acid, so 0.001% or more and 0.004% or less.
[0045]
Furthermore, in the present invention, it is desirable to regulate B, O, P, and S within the following ranges.
[0046]
B: 0.0002% or less, O: 0.001% or more and 0.004% or less B is treated as an impurity element in the present invention. If it is present as solute B during direct quenching, the formation of film-like ferrite at the prior austenite grain boundaries is suppressed, so the content is restricted to 0.0002% or less by selecting the melting raw material. O is an unavoidable impurity, but if it is less than 0.001%, the production cost becomes expensive, and if it exceeds 0.004%, a large amount of Ca sulfate is collected and the cleanliness deteriorates, so 0.001% Above 0.004%.
[0047]
P ≦ 0.010%, S ≦ 0.002%
P and S are impurity elements. When P ≦ 0.010% and S ≦ 0.002%, central segregation is reduced, and the toughness and weldability at the center of the plate thickness are improved.
[0048]
2. Rolling under rolling conditions of 900 to 1000 ° C .: 900 to 1000 which is a low temperature range of the recrystallization temperature of Nb-containing steel in order to suppress toughness deterioration after strain aging of one or more passes for rolling satisfying ld / hm ≧ 1.0. Rolling that satisfies ld / hm ≧ 1.0 at 1 ° C. is performed at 1 ° C. for at least one pass, and processing strain is effectively introduced to the center of the plate thickness in a temperature range where recovery is fast.
[0049]
When the rolling temperature is less than 900 ° C., recrystallization is not sufficient, and when it exceeds 1000 ° C., the recrystallized grain size becomes large, so the temperature is set to 900 to 1000 ° C. If ld / hm is less than 1.0, sufficient processing strain to excite recrystallization up to the center of the plate thickness is not added, so 1.0 or more.
[0050]
Rolling in a temperature range of Ar 3 or more and less than 900 ° C .: In order to suppress toughness deterioration after rolling strain aging with a cumulative reduction rate of 10 to 60%, accumulation of work strain due to cumulative reduction in the non-recrystallization temperature range of Nb-containing steel To promote ferrite transformation.
[0051]
If the rolling temperature is less than Ar3, the hardenability deteriorates due to the progress of ferrite transformation at the start of direct quenching, the predetermined strength cannot be obtained, and if it is 900 ° C. or higher, processing strain does not accumulate and ferrite transformation becomes insufficient due to recrystallization. Therefore, Ar3 is set to be lower than 900 ° C. If the cumulative rolling reduction is less than 10%, the ferrite transformation is not promoted. If the cumulative rolling reduction exceeds 60%, the effect is saturated and the anisotropy of the steel material increases rapidly, so the cumulative rolling reduction is set to 10 to 60%. Ar3 is obtained, for example, as Ar3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo.
[0052]
3. Heat treatment condition Cooling start temperature: Ar3 or higher When the cooling start temperature is lower than Ar3, the fraction of the austenite phase that transforms into a bainite phase decreases due to accelerated cooling, and a predetermined strength cannot be obtained.
[0053]
Cooling rate: 2 ° C./second or more The higher the cooling rate, the more effective the strength rises.
[0054]
Cooling stop temperature: 300-600 ° C
The cooling stop temperature affects the strength-toughness balance, and if it is less than 300 ° C., the toughness is not recovered, and if it exceeds 600 ° C., the cooling effect becomes insufficient and a predetermined strength cannot be obtained.
[0055]
If the slab heating temperature exceeds 1150 ° C., the austenite crystal grains become coarser, which makes it difficult to refine by subsequent rolling and may deteriorate the toughness after strain aging. Is preferred.
[0056]
【Example】
Table 1 shows the chemical components of the test steel used in the examples (the remainder not shown is substantially composed of Fe and inevitable impurities). The slab having these chemical components was heated and then rolled to 25 to 75 mm. After rolling, the cooling start temperature, the cooling rate and the cooling stop temperature were variously changed, and the characteristics were investigated. Table 2 shows the manufacturing conditions, and Table 3 shows the characteristics of the steel sheet.
[0057]
As mechanical properties, strength, toughness, and toughness after strain aging were determined. The tensile test was a test using a collected JIS14A (14φ) test piece from 1/4 t.
[0058]
The impact test was a test using a 2 mm V notch Charpy impact test piece (JIS No. 4 standard test piece) taken so that the longitudinal direction was perpendicular to the rolling direction from 1/4 t. The toughness after strain aging was tested by giving a 5% tensile pre-strain to a plate-shaped test piece, and after aging treatment at 250 ° C. for 1 hour, a 2 mm V notch Charpy impact test piece was taken in the tensile direction.
[0059]
Hereinafter, an Example and a reference example are explained in full detail.
Steel types A, B, C, D, and F in Table 1 are steels having a composition that satisfies the invention according to any one of claims 1 to 6, and steel type G has a C content and Pcm is outside the scope of the invention. . Moreover, the steel type E of Table 1 shows the steel of the component composition corresponding to a reference example. Steel numbers 1 to 5 and 7 in Tables 2 and 3 are production examples using steel types A, B, C, D and F , respectively, and are examples of the invention according to any one of claims 1 to 6 . Moreover, steel number 6 in Tables 2 and 3 shows a production example using steel type E.
[0060]
The vTs after strain aging is −40 ° C. or less, the change in vTs before and after strain aging is small, and good strain aging embrittlement resistance is obtained. Steel numbers 8 and 9 are production examples using steel types A and B, but the cooling conditions are outside the scope of the present invention. Steel No. 8 has a low cooling start temperature, and Steel No. 9 has a high cooling stop temperature and a low strength. Steel No. 10 has a slab heating temperature higher than 1150 ° C. and slightly inferior in strain aging embrittlement resistance. Steel No. 11 did not undergo rolling with an ld / hm of 1.0 or more in the recrystallization temperature range, so the degree of degradation of vTs due to strain aging is large. Steel No. 12 has a low cumulative rolling reduction and a large degree of degradation of vTs due to strain aging. Steel No. 13 has a too low cooling stop temperature and is inferior in toughness after strain aging. Steel No. 14 has a slow cooling rate and a decrease in strength. Although it is a manufacture example by the steel type F, the steel number 15 is a manufacture example by the steel type G, and a component composition is outside the range of this invention, and it is inferior to the strain aging embrittlement resistance.
[0061]
[Table 1]
Figure 0003823627
[0062]
[Table 2]
Figure 0003823627
[0063]
[Table 3]
Figure 0003823627
[0064]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while providing the toughness after strain aging, it is possible to provide the manufacturing method of 60 kg grade non-heat-treated steel which is excellent in weldability, and the effect is very large industrially.

Claims (6)

質量%で、C:0.04〜0.09%、Si:0.1〜0.5%、Mn:1.2〜1.8%と、Nb:0.01〜0.05%、sol.Al:0.002〜0.07%、N:0.001〜0.004%を含み、且つPcm≦0.20%、Ceq(WES)≦0.42%、を満たし、残部Feおよび不可避的不純物からなる鋼を、1150℃以下に加熱して加熱後900〜1000℃の温度域で1d/hm≧1.0の圧延を1パス以上行い、引き続きAr3以上900℃未満の温度域で累積圧下率10〜60%の圧延後、Ar3以上より冷却速度2℃/秒以上で、300〜600℃の温度域まで冷却することを特徴とする溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。
但し、Pcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20
+Mo/15+V/10+5B,
Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4
+V/14。
Id:投影接触弧長 Id=(R・(hi−ho))1/2
hm:平均板厚 hm=(hi+2ho)/3
R:ロール半径、hi:圧延前の板厚、ho:圧延後の板厚
In mass% , C: 0.04 to 0.09%, Si: 0.1 to 0.5%, Mn: 1.2 to 1.8%, Nb: 0.01 to 0.05%, sol . Al: 0.002 to 0.07%, N: 0.001 to 0.004%, and satisfy Pcm ≦ 0.20%, Ceq (WES) ≦ 0.42% , remaining Fe and inevitable The steel made of impurities is heated to 1150 ° C. or lower, heated and then rolled at 1 d / hm ≧ 1.0 in the temperature range of 900 to 1000 ° C. for one or more passes, and then cumulatively reduced in the temperature range of Ar 3 to less than 900 ° C. 60kg class excellent in weldability and toughness after strain aging, characterized by cooling to a temperature range of 300-600 ° C at a cooling rate of 2 ° C / second or higher than Ar3 after rolling at a rate of 10-60% Production method of non-tempered high-tensile steel.
However, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20
+ Mo / 15 + V / 10 + 5B,
Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4
+ V / 14.
Id: Projected contact arc length Id = (R · (hi−ho)) 1/2
hm: Average plate thickness hm = (hi + 2ho) / 3
R: roll radius, hi: plate thickness before rolling, ho: plate thickness after rolling
鋼組成として、更に質量%でCr:0.1〜0.5%を含有する請求項1記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。The method for producing a 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging according to claim 1, further comprising Cr: 0.1 to 0.5% by mass as a steel composition. 鋼組成として、更に質量%でMo:0.02〜0.3%、Cu:0.1〜0.6%の一種または二種を含有する請求項1又は2記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。The weldability and strain aging according to claim 1 or 2, further comprising, as a steel composition, one or two of Mo: 0.02-0.3% and Cu: 0.1-0.6% in mass%. Of 60kg grade non-tempered high strength steel with excellent toughness. 鋼組成として、更に質量%でNi:0.1〜0.5%を含有する請求項1乃至3の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。The steel composition further contains Ni: 0.1 to 0.5% by mass% . 60 kg class non-heat treated high excellent in weldability and toughness after strain aging according to any one of claims 1 to 3. Tensile steel manufacturing method. 鋼組成として、更に質量%でV:0.01〜0.08%を含有する請求項1乃至4の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。The steel composition further contains V: 0.01 to 0.08% by mass% , 60 kg class non-refined high excellent in weldability and toughness after strain aging according to any one of claims 1 to 4. Tensile steel manufacturing method. 鋼組成として、更に質量%でTi:0.005〜0.02%、Ca:0.001〜0.004%の一種または二種を含有する請求項1乃至5の何れかに記載の溶接性及び歪時効後の靭性に優れた60キロ級非調質高張力鋼の製造方法。The weldability according to any one of claims 1 to 5, wherein the steel composition further contains one or two of Ti: 0.005 to 0.02% and Ca: 0.001 to 0.004% in terms of mass% . And the manufacturing method of 60 kg class non-tempered high-tensile steel excellent in toughness after strain aging.
JP23992099A 1999-08-26 1999-08-26 Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging Expired - Fee Related JP3823627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23992099A JP3823627B2 (en) 1999-08-26 1999-08-26 Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23992099A JP3823627B2 (en) 1999-08-26 1999-08-26 Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging

Publications (2)

Publication Number Publication Date
JP2001064723A JP2001064723A (en) 2001-03-13
JP3823627B2 true JP3823627B2 (en) 2006-09-20

Family

ID=17051824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23992099A Expired - Fee Related JP3823627B2 (en) 1999-08-26 1999-08-26 Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging

Country Status (1)

Country Link
JP (1) JP3823627B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226626B2 (en) 2005-11-09 2009-02-18 新日本製鐵株式会社 High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same
JP5833964B2 (en) * 2012-03-29 2015-12-16 株式会社神戸製鋼所 Steel sheet excellent in bending workability, impact property and tensile property, and method for producing the same
US10041159B2 (en) 2013-02-28 2018-08-07 Jfe Steel Corporation Thick steel plate and production method for thick steel plate
CN110306111A (en) * 2019-07-17 2019-10-08 张家港宏昌钢板有限公司 A kind of thick steel plates and its manufacturing method
CN114480969B (en) * 2022-01-24 2023-04-18 南阳汉冶特钢有限公司 Production method of high-toughness high-Z-direction-performance super-thick steel Q460GJ with compression ratio not greater than 4

Also Published As

Publication number Publication date
JP2001064723A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5418251B2 (en) Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
US11591667B2 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP2783809B2 (en) High tensile hot-rolled steel strip with excellent cold workability and weldability and a tensile strength of 55 kg / f / mm 2 or more
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3823626B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging
JP2008189973A (en) Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP3823627B2 (en) Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP4900260B2 (en) Method for producing hot-rolled steel sheet having excellent ductile crack propagation characteristics and sour resistance
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JP3290595B2 (en) Method for manufacturing high-tensile steel plate with excellent toughness and weldability
JP3579307B2 (en) 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP2001064728A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP2019081929A (en) Nickel-containing steel plate and method for manufacturing the same
JPH1161328A (en) High manganese ingot, its continuous casting and manufacture of high tensile steel
JP2001064725A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP5082500B2 (en) Manufacturing method of high toughness and high strength steel sheet with excellent strength-elongation balance
JP2004124114A (en) Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor
JP3823628B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

R150 Certificate of patent or registration of utility model

Ref document number: 3823627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees