JP3579307B2 - 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging - Google Patents

60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging Download PDF

Info

Publication number
JP3579307B2
JP3579307B2 JP23265999A JP23265999A JP3579307B2 JP 3579307 B2 JP3579307 B2 JP 3579307B2 JP 23265999 A JP23265999 A JP 23265999A JP 23265999 A JP23265999 A JP 23265999A JP 3579307 B2 JP3579307 B2 JP 3579307B2
Authority
JP
Japan
Prior art keywords
toughness
aging
less
strain
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23265999A
Other languages
Japanese (ja)
Other versions
JP2001059132A (en
Inventor
典己 和田
孝之 小林
章嘉 辻
一夫 小俣
稔 諏訪
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23265999A priority Critical patent/JP3579307B2/en
Publication of JP2001059132A publication Critical patent/JP2001059132A/en
Application granted granted Critical
Publication of JP3579307B2 publication Critical patent/JP3579307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水圧鉄管、圧力容器、ラインパイプ及び海洋構造物等に用いられる60キロ級構造用鋼で、特に曲げなどの冷間加工後においても優れた低温靭性を有する歪時効後の靭性に優れた鋼に関するものである。
【0002】
【従来の技術】
鋼を冷間で塑性変形すると歪時効脆化と呼ばれる靭性が劣化する現象が生ずる。歪時効脆化に間しては主に自動車ボデイ用の薄鋼板を対象に研究が行なわれてきたが、近年、構造物の信頼性に対する要求が高まり、厚鋼板においても素材段階のみならず加工や不慮の事故などにより塑性変形を受けた後の靭性が問題視されるようになってきた。
【0003】
歪時効脆化を評価する試験として5%の引張り予歪を付与し、250℃で1時間の時効処理後シャルピー試験を行なう歪時効シャルピー試験が知られ、近年、材料評価試験の一つとして要求される事例が増えている。
【0004】
厚鋼板を対象とする歪時効脆化抑制の技術として、特開平5−320820号、特開昭59−182915号及び特開昭56−127760号等があるが、いずれも一般的な600MPa級厚肉鋼板を対象とした技術ではない。
【0005】
特開平5−320820号には引張り強度 400MPa級の球状船首用低降伏点焼入れ鋼が開示されている。鋼材組織を整粒化し、歪時効後の靭性劣化を防止するものであるが、C量が0.002〜0.03%、他の強化元素も殆ど含有されていない成分組成が対象であり、60キロ級鋼に適用することは出来ない。
【0006】
特開昭59−182915号はTMCP型500MPa級鋼での歪時効脆化を抑制する製造方法を開示している。TMCP50キロ鋼を冷間加工した場合、冷間加工後の脆化がフェライト・ベイナイト組織のフェライト相に歪が集中することにより生じることに着目し、フェライト中の固溶N,固溶Cを冷却停止温度の制御により低減させ、フェライト相の脆化を抑制する技術である。このため、室温付近まで冷却され、焼入れ組織となる60キロ級鋼には適用できない。
【0007】
特開昭56−127750号には600MPa級鋼の歪時効脆化抑制技術が記載されているが、本技術はVN析出型の鋼において、0.01%以上のN含有により生ずる歪時効脆化をCaまたはMgの添加により抑制できることを示している。しかし、本技術は、as rollあるいはノルマで製造するVN鋼に限ってその効果を発揮するもので、実施例の鋼もC量が0.12%以上と高く、Pcmも0.25%以上と溶接施工性に劣る鋼が記載され、現在の一般的な需要家の要望に応えるものではない。
【0008】
【発明が解決しようとする課題】
以上、述べたように、溶接施工性に優れた600MPa級厚肉鋼材で塑性変形させた後の脆化を抑制する技術は未だ完成されていない。本発明は、溶接性に優れ、かつ歪時効後にも優れた靭性を有する60キロ級焼入れ焼戻し鋼を提供するものであり、具体的には再加熱処理材と比較して組織が粗く、靭性に劣り、特に塑性変形を受けると著しく靭性が劣化する直接焼入れ焼戻し鋼で、歪時効シャルピー試験の破面遷移温度vTs(aged)がー40℃以下となる60キロ級直接焼入れ焼戻し鋼を提供する。
【0009】
【課題を解決するための手段】
本発明者等は、直接焼入れ焼戻し鋼について塑性変形をうけた後の靭性劣化の原因、及びその防止技術について鋭意検討を行ない、靭性劣化が以下の図1〜3に示す機構によりもたらされるものであり、その防止には粒界面積の増大が有効なことを見出した。
【0010】
図1は焼入れままのミクロ組織を模式的に示すもので、ミクロ組織は低成分設計:低Pcm,低CeqW(Ceqwesの略)の60キロ級直接焼入れ焼戻し鋼の場合、オーステナイトの細粒化が困難なため再加熱焼入れ焼戻し材のミクロ組織と比較すると粗いベイナイト組織となる。
【0011】
図2は焼入れ後、焼戻した場合のミクロ組織を示すもので、セメンタイトが粒界に析出する。セメンタイトは焼戻し温度が同じ場合、再加熱材と比較して粒界面積の小さい直接焼入れ材で粗大化する。
【0012】
図3は焼入れ焼戻し鋼に歪を付加した場合の状況を示すもので、セメンタイト周辺に歪が集中するようになる。歪集中は析出したセメンタイトが粗いほど大きくなるため、直接焼入れ焼戻し鋼の歪脆化は再加熱焼入れ焼戻し鋼より大きくなり,その防止にはセメンタイトを微細化させる粒界面積の増大が有効である。以上の知見を基に、本発明者らは粒界面積を増大させる方法について検討を行い、図4に示すように直接焼入れ時、旧オーステナイト粒界に、数μm以下の膜状のフェライトを生成させた場合、実質的に粒界面積が増大し、セメンタイトが微細化すること(図5)及びそのような組織は圧延時のオーステナイトの再結晶を抑制し、変態時にオーステナイト粒界を活性化させるNbの添加,及びフェライト生成元素であるSI,Crの適量添加により得られることを把握し、本発明を完成させたものである。
【0013】
すなわち、本発明は、1.質量%で、C:0.04〜0.09%、Si:0.1〜0.5%、Mn:1.2〜1.8%、Cr:0.1〜0.5%、Nb:0.01〜0.05%、sol.Al:0.002〜0.07%、N:0.001〜0.004%を含み、B≦0.0002%で、残部が実質的にFeからなり、且つPcm≦0.20%、Ceq(WES)≦0.42%、0.50%≦Si+3Cr≦1.25%を満足する溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
但し、Pcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14とする。
【0014】
但し、Pcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,
Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14とする。
【0015】
2.鋼組成として、更に質量%でMo:0.02〜0.3%、Cu:0.1〜0.6%の一種または二種を含有する1記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破面遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
【0016】
3.鋼組成として、更に質量%でNi:0.1〜0.5%を含有する1又は2記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破面遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
【0017】
4.鋼組成として、更に質量%でV:0.01〜0.08%を含有する1乃至3のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破面遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
【0018】
5.鋼組成として、更に質量%でTi:0.005〜0.02%、Ca:0.001〜0.004%の一種または二種を含有する1乃至4のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破面遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
【0020】
質量%で、P≦0.010%、S≦0.002%としたことを特徴とする1乃至のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
【0021】
【発明の実施の形態】
以下に本発明における成分組成について説明する。
【0022】
C:0.04%以上0.09%以下
Cは所定の強度を確保するため添加する。0.04%未満では厚肉材の場合60キロ級の引張り強度をを確保することが困難で、0.09%を超えると,歪時効後の靭性が劣化するため、0.04%以上0.09%以下添加する。
【0023】
Si:0.1%以上0.5%以下
Siは強力なフェライト生成元素であり、直接焼入れ時、旧オーステナイト粒界に膜状のフェライトを生成させるため添加する。0.1%未満ではその効果が十分でなく、0.5%を超えると効果が飽和し、溶接熱影響部の靭性が著しく劣化するため、0.1%以上0.5%以下添加する。
【0024】
Mn:1.2%以上1.8%以下
Mnは所定の強度を確保するために添加する。1.2%未満では厚肉材の場合60キロ級の引張り強度を確保することが困難で、1.8%を超えると、溶接熱影響部の靭性が著しく劣化するため1.2%以上1.8%以下添加する。
【0025】
Cr:0.1%以上0.5%以下
Crは、強力なフェライト生成元素で直接焼入れにより、旧オーステナイト粒界に膜状のフェライトを生成させるため添加する。0.1%未満では、その効果が不十分で、0.5%を超えると焼入れ性が著しく高まり、膜状フェライトの生成が困難になるため0.1%以上0.5%以下添加する。
【0026】
Nb:0.01%以上0.05%以下
Nbは、圧延時のオーステナイトの再結晶を抑制し、直接焼入れ時のオーステナイト粒界を活性化させ、膜状フェライトの生成を容易とする。また、焼戻し時にNb炭化物として析出し、強度上昇に有効なため添加する。0.01%未満ではそれらの効果が不十分で、0.05%超えでは著しいNb炭化物の析出強化により靭性が劣化するため0.01%以上0.05%以下添加する。
【0027】
sol.Al:0.002%以上0.07%以下
Alは脱酸のため添加する。sol.Al量で0.002%未満の場合、その効果が十分でなく、0.07%を超えて添加すると鋼材の表面疵が発生しやすくなるため、0.002%以上0.07%以下添加する。
【0028】
N:0.001%以上0.004%以下
Nは、圧延加熱時AlあるいはTiと結びつきAlN,TiNを生成し、オーステナイトを微細化させる。0.001%未満ではその効果が十分でなく、0.004%を超えて含有すると焼入れ焼戻し後も固溶Nにより著しい歪時効脆化を生じるため、0.001%以上0.004%以下とする。
【0029】
Pcm≦0.20%、Ceq(WES)≦0.42%
Pcm,Ceq(WES)は、溶接低温割れ性、溶接熱影響部の靭性の指標で、Pcmが0.20%を超えた場合、予熱無しの溶接では低温割れが生じる可能性があり、Ceq(WES)が0.42%を超えた場合、大入熱溶接の熱影響部靭性が著しく劣化するためPcm≦0.20%、CeqWES≦0.42%とする。ここでPcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,CeqWES=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14とする。
【0030】
本発明では更に以下のパラメータを満足するように成分範囲を規定する。
【0031】
Si+3Cr:0.50%以上1.25%以下
本パラメータは上記成分範囲にある鋼の旧オーステナイト粒界に、膜状のフェライトを生成させうるもので、Si+3Crが0.50%未満の場合、その効果が十分でなく、1.25%を超えると過度の焼入れ性により膜状のフェライトの生成が抑制されるため、0.50%以上1.25%以下とする。図6はその効果を示すもので、本規定により膜状のフェライトの生成が認められる。
【0032】
以上が本発明鋼における基本的な成分組成及びパラメータであるが、所望する特性を向上させるため、Mo,Cu、Ni,V,Ti,Caを単独または複合添加し、更に不可避不純物であるB,P,Sを規制することが可能である。
【0033】
Mo:0.02%以上0.3%以下、Cu:0.1%以上0.6%以下の一種または二種
Moは強度を向上させ、特に厚肉材で有効なため添加する。0.02%未満ではその効果が十分でなく、0.3%を超えると溶接性及び溶接熱影響部の靭性が著しく劣化するため0.02%以上0.3%以下とする。Cuは強度を向上させるため添加する。
【0034】
0.1%未満ではその効果が十分でなく、0.6%を超えて添加するとCu割れの懸念が高まるため0.1%以上0.6%以下とする。
【0035】
Ni:0.1%以上0.5%以下
Niは靭性を向上させるため添加する。0.1%未満ではその効果が十分でなく、0.5%を超えると鋼材コストの上昇が著しいので0.5%以下とする。
【0036】
V:0.01%以上0.08%以下
Vは焼戻し時、炭化物として析出し、強度を向上させるため添加する。0.01%未満ではその効果が十分でなく、0.08%超えでは著しいV炭化物の析出強化により靭性が劣化するため0.01%以上0.08%以下とする。
【0037】
Ti:0.005%以上0.02%以下、Ca:0.001%以上0.004%以下の一種又は二種
Ti、Caは母材靭性並びに溶接熱影響部の靭性を向上させるため添加する。Tiは圧延加熱時あるいは溶接時、TiNを生成しオーステナイト粒径を微細化する。
【0038】
0.005%未満ではその効果が十分でなく、0.02%を超えて添加すると圧延時にTiNbの複合炭化物が析出し、焼戻し時のNb炭化物の析出量が不足するようになり強度低下が生じるため、0.005%以上0.02%以下とする。
【0039】
CaはCa硫化物として鋼中に存在し、圧延加熱時あるいは溶接時、オーステナイト粒径を微細化する。0.001%未満ではその効果が十分でなく、0.004%を超えて添加すると多量のCa硫酸化物により清浄度を著しく劣化させるため、0.001%以上0.004%以下とする。
【0040】
B:0.0002%以下
Bは本発明では不純物元素として扱う。直接焼入れ時、固溶Bとして存在すると旧オーステナイト粒界における膜状フェライトの生成が抑制されるため溶解原料の選別などにより0.0002%以下に規制する。
【0041】
P≦0.010%、S≦0.002%
P,Sは不純物元素で、P≦0.010%、S≦0.002%とした場合、中央偏析が軽減され、板厚中央の靭性及び溶接性を向上させるため規制する。
【0042】
本発明鋼はその製造方法を直接焼入れ焼戻しに限定する。再加熱焼入れ焼戻し処理により、Pcm≦0.20%、CeqWES≦0.42%を満足する組成の板厚30mm以上の厚肉鋼材で60キロ級の引張り強度を得る事は困難であり、直接焼入れ焼戻しにより製造する。
【0043】
【実施例】
表1に実施例に用いた供試鋼の化学成分を示す。(表示しない残部は実質的にFeよりなる。)これらの化学成分を有する250mm厚の鋳片を980〜1100℃に加熱後、28〜80mmに圧延した。圧延後、直ちに、Ar3点以上の温度から直接焼入れし、その後、400〜630℃の範囲で焼戻しを実施した。
【0044】
熱処理後のミクロ組織を、SEMにより250〜600倍で観察し、粒界の膜状フェライトの有無を調べた。機械的特性として強度、靭性および歪時効後の靭性を求めた。引張り試験は1/4tより、採取したJISG14A号(14φ)試験片を用いた試験とした。
【0045】
衝撃試験は1/4tより採取した2mmVノッチシャルピー衝撃試験片を用い試験温度をー100〜0℃とする試験とした。歪時効後の靭性は板状の試験片に、5%引張り予歪を付与し、250℃で1時間の時効処理後、引張方向に2mmVノッチシャルピー衝撃試験片を採取し、−100〜20℃で試験を行った。
【0046】
溶接性試験は、JISZ3101に準拠する手溶接熱影響部の最高硬さ試験とした。また、溶接熱影響部の靭性を、レ開先継手(溶接条件:入熱30kJ/cmのCO2溶接)より採取した2mmVノッチシャルピー衝撃試験片(ノッチ位置:HAZ1mm、図7に試験片採取要領を示す)で求めた。 表2に各試験結果を示す。溶接熱影響部のシャルピー衝撃試験結果は3本の試験片による結果の最小値を示す。以下、本発明の実施例について詳細に説明する。
【0047】
鋼1〜13のうち、鋼4,7,9,10は請求項1乃至6のそれぞれに記載の発明の何れかを満足する成分組成の実施例鋼、鋼1〜3,6,11は、Bが0.0002%を越えることを除いて、本発明を満足する成分組成の参考鋼で、鋼14〜21はSi+3Crが0.50未満又は1.25超えで請求項1乃至のそれぞれに記載の発明の何れに対しも、発明の範囲外の成分組成となっている。
【0048】
表2に示すように、鋼1〜13を直接焼入れ焼戻し(DQT)した場合、旧オーステナイト粒界に膜状のフェライトが観察される。これらの鋼材の歪時効後のシャルピー衝撃試験結果は何れも破面遷移温度(vTs)がー40℃以下と良好で、歪時効前のシャルピー衝撃試験結果(表中、通常vTsと記載)と比較してその劣化(表中、劣化度と記載)は0〜15℃と小さい。
【0049】
更にB≦0.0002%とした鋼4,5,7,8,9,10,12,13は劣化が10℃以下と小さく、Bを規制した場合、歪時効による靭性劣化の防止は更に優れたものとなる。一方、鋼14〜21では旧オーステナイト粒界に膜状のフェライトは観察されず、歪時効後のシャルピー衝撃試験結果は何れも破面遷移温度(vTs)がー35℃以上と劣り、劣化度も20〜35℃と大きくなっている。
【0050】
鋼1〜13はPcm≦0.19、CeqW≦0.42と低成分系のため、溶接熱影響部最高硬さはHv300以下、HAZ1mmの溶接熱影響部の靭性が試験温度―40℃で50J以上と優れた耐低温割れ性と溶接部靭性が得られている。又、低成分系にも拘わらず、直接焼入れ焼戻しにより製造されるため、60キロ級の強度が得られている。
【0051】
【表1】

Figure 0003579307
【0052】
【表2】
Figure 0003579307
【0053】
【発明の効果】
本発明によれば、直接焼入れ時に、旧オーステナイト粒界に膜状のフェライトが生成され、実質的な粒界面積が増大されるため、焼戻しにおいて析出するセメンタイトに集中する歪が小さく、歪時効後の靭性に優れると共に、溶接性に優れる60キロ級直接焼入れ焼戻し鋼の提供が可能で、産業上その効果は極めて大きい。
【図面の簡単な説明】
【図1】焼入れ後のミクロ組織を模式的に示す図
【図2】焼入れ焼戻し後のミクロ組織を模式的に示す図
【図3】焼入れ焼戻し後、歪を付加した場合のミクロ組織を模式的に示す図
【図4】旧オーステナイト粒界に、膜状のフェライトが析出している状態を模式的に示した図
【図5】旧オーステナイト粒界に膜状のフェライトが析出した組織の焼戻し後の状態を模式的に示す図
【図6】膜状フェライトの生成に及ぼすSiとCrの影響を示す図
【図7】溶接熱影響部シャルピー衝撃試験の試験片採取位置を示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a 60-kg class structural steel used for penstocks, pressure vessels, line pipes, marine structures, and the like. In particular, the steel has excellent low-temperature toughness even after cold working such as bending. It is about excellent steel.
[0002]
[Prior art]
When steel is plastically deformed in the cold, a phenomenon called strain aging embrittlement, which deteriorates toughness, occurs. Research on strain aging embrittlement has been conducted mainly on thin steel sheets for automobile bodies. However, in recent years, the demand for structural reliability has increased, and thick steel sheets are not only processed at the material stage but also processed. The toughness after plastic deformation due to accidents and accidents has come to be regarded as a problem.
[0003]
As a test for evaluating strain aging embrittlement, a strain aging Charpy test in which a 5% tensile pre-strain is applied and a Charpy test is performed after aging treatment at 250 ° C. for 1 hour is known. Cases are increasing.
[0004]
Techniques for suppressing strain aging embrittlement of thick steel sheets include JP-A-5-320820, JP-A-59-182915, and JP-A-56-127760, all of which have a general thickness of 600 MPa class. It is not a technology for thin steel plates.
[0005]
JP-A-5-320820 discloses a low yield point hardened steel for a spherical bow having a tensile strength of 400 MPa. The steel composition is sized to prevent the deterioration of toughness after strain aging, but the content of C is 0.002 to 0.03%, and the composition of the component hardly contains other strengthening elements. It cannot be applied to 60 kg steel.
[0006]
JP-A-59-182915 discloses a manufacturing method for suppressing strain aging embrittlement in TMCP type 500 MPa class steel. Focusing on the fact that embrittlement after cold working is caused by concentration of strain in the ferrite phase of ferrite bainite structure when cold working of 50 kg of TMCP steel, the solid solution N and solid solution C in ferrite are cooled. This is a technique for reducing the stop temperature by controlling the stop temperature and suppressing the embrittlement of the ferrite phase. For this reason, it cannot be applied to a 60-kilometer steel that is cooled to around room temperature and becomes a quenched structure.
[0007]
Japanese Patent Application Laid-Open No. 56-127750 discloses a technique for suppressing strain aging embrittlement of 600 MPa class steel. However, this technique applies to strain-age embrittlement caused by containing 0.01% or more of N in VN precipitation type steel. Can be suppressed by adding Ca or Mg. However, the present technology exerts its effect only on VN steel manufactured by as roll or quota, and the steel of Example also has a high C content of 0.12% or more and a Pcm of 0.25% or more. It describes steel with poor weldability and does not meet the demands of current general consumers.
[0008]
[Problems to be solved by the invention]
As described above, a technique for suppressing embrittlement after plastically deforming a 600 MPa class thick steel material excellent in welding workability has not yet been completed. The present invention is to provide a 60 kg class quenched and tempered steel having excellent weldability and excellent toughness even after strain aging. Specifically, the structure is coarser than that of a reheat treated material, and the toughness is improved. Provided is a direct quenched and tempered steel, which is inferior, and particularly deteriorates in toughness when subjected to plastic deformation, and has a fracture surface transition temperature vTs (aged) of −40 ° C. or lower in a strain-aged Charpy test, and is a 60 kg class direct quenched and tempered steel.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the cause of toughness degradation after undergoing plastic deformation of direct quenched and tempered steel, and techniques for preventing the toughness, and the toughness degradation is brought about by the mechanism shown in FIGS. It has been found that an increase in the grain boundary area is effective in preventing such a problem.
[0010]
FIG. 1 schematically shows the as-quenched microstructure. In the case of a direct hardened and tempered steel of 60 kg class having a low component design: low Pcm and low CeqW (abbreviation of Ceqwes), the microstructure of austenite is reduced. Due to the difficulty, the bainite structure becomes coarser than the microstructure of the reheat-quenched and tempered material.
[0011]
FIG. 2 shows the microstructure in the case of tempering after quenching, in which cementite precipitates at the grain boundaries. When the tempering temperature is the same, cementite is coarsened by a direct quenched material having a smaller grain boundary area than a reheated material.
[0012]
FIG. 3 shows a situation where strain is applied to the quenched and tempered steel, and the strain is concentrated around the cementite. Since the strain concentration increases as the precipitated cementite becomes coarser, the strain embrittlement of the direct quenched and tempered steel becomes larger than that of the reheated and quenched and tempered steel. To prevent this, it is effective to increase the grain boundary area to refine the cementite. Based on the above findings, the present inventors studied a method for increasing the grain boundary area, and as shown in FIG. 4, produced a film-shaped ferrite of several μm or less at the former austenite grain boundary during direct quenching. In this case, the grain boundary area is substantially increased, the cementite is refined (FIG. 5), and such a structure suppresses austenite recrystallization during rolling and activates austenite grain boundaries during transformation. The inventors have found that the present invention can be obtained by adding Nb and adding an appropriate amount of SI and Cr, which are ferrite-forming elements, and have completed the present invention.
[0013]
That is, the present invention provides: In mass%, C: 0.04 to 0.09%, Si: 0.1 to 0.5%, Mn: 1.2 to 1.8%, Cr: 0.1 to 0.5%, Nb: 0.01-0.05%, sol. Al: 0.002 to 0.07%, N: 0.001 to 0.004%, B ≦ 0.0002% , balance substantially consisting of Fe, Pcm ≦ 0.20%, Ceq (WES) Weldability satisfying ≦ 0.42%, 0.50% ≦ Si + 3Cr ≦ 1.25% and fracture transition by strain aging Charpy test after aging treatment at 250 ° C. for 1 hour after 5% tensile prestrain 60 kg class direct quenched and tempered steel with excellent toughness after strain aging at a temperature of -40 ° C or less.
Here, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, and Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
[0014]
However, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B,
Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
[0015]
2. After the weldability and 5% tensile pre-strain according to 1, further containing one or two types of steel compositions, Mo: 0.02 to 0.3% and Cu: 0.1 to 0.6% by mass% . 60 kg class direct quenched and tempered steel with excellent toughness after strain aging , having a fracture surface transition temperature of −40 ° C. or less in a strain aging Charpy test after aging treatment at 250 ° C. for 1 hour .
[0016]
3. Strain-aging Charpy test after 1 hour of aging treatment at 250 ° C. after 1% weldability and 5% tensile pre-strain according to 1 or 2, further containing Ni: 0.1-0.5% by mass as steel composition A 60-kg class direct quenched and tempered steel with excellent toughness after strain aging in which the fracture surface transition temperature due to aging is -40 ° C or less .
[0017]
4. The steel composition further contains V: 0.01 to 0.08% by mass%, after 1% weldability and 5% tensile prestrain, and after aging treatment at 250 ° C. for 1 hour. 60 kg class direct quenched and tempered steel excellent in toughness after strain aging with a fracture surface transition temperature of −40 ° C. or less according to strain aging Charpy test .
[0018]
5. 5. The weldability according to any one of 1 to 4, which further contains one or two of steel composition: Ti: 0.005 to 0.02% and Ca: 0.001 to 0.004% by mass%. % 60% -class direct quenched and tempered steel with excellent fracture toughness after strain aging , having a fracture surface transition temperature of −40 ° C. or less by strain Charging test after aging treatment at 250 ° C. for 1 hour after% tensile prestrain .
[0020]
6. The weldability according to any one of 1 to 5 , wherein P ≦ 0.010% and S ≦ 0.002% in mass%, and aging at 250 ° C. for 1 hour after 5% tensile prestrain. A 60-kg class direct quenched and tempered steel having excellent toughness after strain aging, having a rupture transition temperature of −40 ° C. or less in a strain-aged Charpy test after treatment.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the component composition in the present invention will be described.
[0022]
C: 0.04% or more and 0.09% or less C is added to secure a predetermined strength. If it is less than 0.04%, it is difficult to secure a tensile strength of 60 kg class in the case of a thick material, and if it exceeds 0.09%, the toughness after strain aging deteriorates. 0.09% or less.
[0023]
Si: 0.1% or more and 0.5% or less Si is a strong ferrite-forming element, and is added to form a film-like ferrite at a prior austenite grain boundary during direct quenching. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 0.5%, the effect is saturated and the toughness of the heat affected zone is significantly deteriorated.
[0024]
Mn: 1.2% or more and 1.8% or less Mn is added to secure a predetermined strength. If it is less than 1.2%, it is difficult to secure a tensile strength of 60 kg class in the case of a thick material, and if it exceeds 1.8%, the toughness of the heat affected zone is significantly deteriorated, so that it is not less than 1.2%. 0.8% or less.
[0025]
Cr: 0.1% or more and 0.5% or less Cr is a strong ferrite-forming element, and is added because direct quenching forms a film-like ferrite at a prior austenite grain boundary. If it is less than 0.1%, its effect is insufficient, and if it exceeds 0.5%, the hardenability is remarkably increased, and it becomes difficult to form a film-like ferrite.
[0026]
Nb: 0.01% or more and 0.05% or less Nb suppresses austenite recrystallization during rolling, activates austenite grain boundaries during direct quenching, and facilitates formation of film ferrite. It is added as Nb carbide during tempering and is effective in increasing the strength. If it is less than 0.01%, these effects are insufficient, and if it exceeds 0.05%, the toughness deteriorates due to remarkable precipitation strengthening of Nb carbide, so that 0.01% or more and 0.05% or less are added.
[0027]
sol. Al: 0.002% or more and 0.07% or less Al is added for deoxidation. sol. If the Al content is less than 0.002%, the effect is not sufficient, and if added in excess of 0.07%, the surface flaws of the steel material are likely to occur. .
[0028]
N: 0.001% or more and 0.004% or less N is combined with Al or Ti at the time of rolling and heating to form AlN and TiN, and to refine austenite. If the content is less than 0.001%, the effect is not sufficient, and if the content exceeds 0.004%, remarkable strain aging embrittlement due to solid solution N occurs even after quenching and tempering, so that the content is 0.001% or more and 0.004% or less. I do.
[0029]
Pcm ≦ 0.20%, Ceq (WES) ≦ 0.42%
Pcm, Ceq (WES) is an index of the low-temperature cracking property of the weld and the toughness of the weld heat-affected zone. When Pcm exceeds 0.20%, low-temperature cracking may occur in welding without preheating, and Ceq ( If (WES) exceeds 0.42%, the heat-affected zone toughness of large heat input welding is significantly deteriorated, so that Pcm ≦ 0.20% and CeqWES ≦ 0.42%. Here, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, CeqWES = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
[0030]
In the present invention, the component range is further defined so as to satisfy the following parameters.
[0031]
Si + 3Cr: 0.50% or more and 1.25% or less This parameter is capable of forming a film-like ferrite at the former austenite grain boundary of steel in the above component range, and when Si + 3Cr is less than 0.50%, If the effect is not sufficient, and if it exceeds 1.25%, the formation of film-like ferrite is suppressed due to excessive hardenability, so the content is made 0.50% or more and 1.25% or less. FIG. 6 shows the effect, and formation of a film-like ferrite is recognized according to this rule.
[0032]
The above are the basic composition and parameters of the steel of the present invention. In order to improve desired properties, Mo, Cu, Ni, V, Ti, and Ca are added alone or in combination, and B, which are inevitable impurities, are added. It is possible to regulate P and S.
[0033]
One or two types of Mo having a Mo content of 0.02% or more and 0.3% or less and a Cu content of 0.1% or more and 0.6% or less improve the strength and are particularly effective for thick-walled materials. If it is less than 0.02%, the effect is not sufficient, and if it exceeds 0.3%, the weldability and the toughness of the heat affected zone are significantly deteriorated, so that the content is made 0.02% or more and 0.3% or less. Cu is added to improve the strength.
[0034]
If the content is less than 0.1%, the effect is not sufficient. If the content exceeds 0.6%, the possibility of Cu cracking increases, so the content is made 0.1% or more and 0.6% or less.
[0035]
Ni: 0.1% or more and 0.5% or less Ni is added to improve toughness. If it is less than 0.1%, the effect is not sufficient, and if it exceeds 0.5%, the cost of the steel material rises remarkably.
[0036]
V: 0.01% or more and 0.08% or less V is precipitated as carbide at the time of tempering and is added to improve the strength. If it is less than 0.01%, the effect is not sufficient, and if it exceeds 0.08%, the toughness deteriorates due to remarkable precipitation strengthening of V carbide, so the content is made 0.01% or more and 0.08% or less.
[0037]
One or two types of Ti, Ca of 0.005% or more and 0.02% or less and Ca: 0.001% or more and 0.004% or less are added to improve the base metal toughness and the toughness of the weld heat affected zone. . Ti forms TiN at the time of rolling heating or welding, and refines the austenite grain size.
[0038]
If the content is less than 0.005%, the effect is not sufficient. If the content exceeds 0.02%, a composite carbide of TiNb precipitates during rolling, and the amount of precipitation of Nb carbide during tempering becomes insufficient, resulting in a decrease in strength. Therefore, the content is made 0.005% or more and 0.02% or less.
[0039]
Ca is present in the steel as Ca sulfide and reduces the austenite grain size during rolling heating or welding. If the content is less than 0.001%, the effect is not sufficient, and if the content exceeds 0.004%, the cleanliness is significantly deteriorated by a large amount of Ca sulfate, so the content is made 0.001% or more and 0.004% or less.
[0040]
B: 0.0002% or less B is treated as an impurity element in the present invention. At the time of direct quenching, if it is present as solid solution B, the formation of film ferrite at the prior austenite grain boundaries is suppressed.
[0041]
P ≦ 0.010%, S ≦ 0.002%
P and S are impurity elements. When P ≦ 0.010% and S ≦ 0.002%, the segregation at the center is reduced, and the regulation is performed to improve the toughness and weldability at the center of the plate thickness.
[0042]
The steel of the present invention limits its production method to direct quenching and tempering. It is difficult to obtain a 60 kg class tensile strength with a steel plate having a thickness of 30 mm or more having a composition satisfying Pcm ≦ 0.20% and CeqWES ≦ 0.42% by reheating, quenching and tempering. Manufactured by tempering.
[0043]
【Example】
Table 1 shows the chemical components of the test steels used in the examples. (The remainder not shown is substantially composed of Fe.) A 250 mm thick slab having these chemical components was heated to 980 to 1100 ° C and then rolled to 28 to 80 mm. Immediately after the rolling, the steel was directly quenched from a temperature of Ar 3 or more, and then tempered in the range of 400 to 630 ° C.
[0044]
The microstructure after the heat treatment was observed at a magnification of 250 to 600 times by SEM, and the presence or absence of film-like ferrite at the grain boundaries was examined. As mechanical properties, strength, toughness and toughness after strain aging were determined. The tensile test was a test using a JIS G14A (14φ) test piece taken from 1/4 t.
[0045]
The impact test was carried out using a 2 mm V notch Charpy impact test specimen sampled from 1/4 t at a test temperature of -100 to 0 ° C. The toughness after strain aging was determined by applying a 5% tensile prestrain to a plate-like specimen, aging at 250 ° C. for 1 hour, and collecting a 2 mm V notch Charpy impact specimen in the tensile direction at −100 to 20 ° C. Was tested.
[0046]
The weldability test was a maximum hardness test of the heat-welded heat-affected zone in accordance with JISZ3101. In addition, the toughness of the heat affected zone was measured using a 2 mm V notch Charpy impact test specimen (notch position: HAZ 1 mm, taken from a groove joint (welding condition: CO2 welding with a heat input of 30 kJ / cm). (Shown). Table 2 shows the test results. The results of the Charpy impact test of the heat affected zone show the minimum value of the results of three test pieces. Hereinafter, embodiments of the present invention will be described in detail.
[0047]
Among the steels 1 to 13, steels 4, 7, 9, and 10 are example steels having a component composition satisfying any of the inventions according to claims 1 to 6, and steels 1 to 3, 6, 11, and 11 are: B with the exception that exceed 0.0002% in reference steel component composition satisfying the present invention, the steel 14-21 each of claims 1 to 6 in more than Si + 3Cr is less than 0.50 or 1.25 Any of the described inventions have component compositions outside the scope of the invention.
[0048]
As shown in Table 2, when steels 1 to 13 are directly quenched and tempered (DQT), film-like ferrite is observed at the prior austenite grain boundary. The Charpy impact test results of these steels after strain aging are all good, with a fracture surface transition temperature (vTs) of -40 ° C or less, and are compared with the Charpy impact test results before strain aging (normally described as vTs in the table). The deterioration (degradation degree in the table) is as small as 0 to 15 ° C.
[0049]
Furthermore, steels 4, 5, 7, 8, 9, 10, 12, and 13 in which B ≦ 0.0002% have a small deterioration of 10 ° C. or less, and when B is regulated, prevention of toughness deterioration due to strain aging is even better. It will be. On the other hand, in steels 14 to 21, no film-like ferrite was observed at the prior austenite grain boundaries, and the Charpy impact test results after strain aging showed that the fracture surface transition temperature (vTs) was inferior to −35 ° C. or higher and the degree of deterioration was low. It is as large as 20 to 35 ° C.
[0050]
Since steels 1 to 13 are low-component systems with Pcm ≦ 0.19 and CeqW ≦ 0.42, the maximum hardness of the weld heat-affected zone is Hv300 or less, and the toughness of the weld heat-affected zone of HAZ 1 mm is 50 J at a test temperature of −40 ° C. As described above, excellent low-temperature cracking resistance and weld toughness are obtained. In addition, despite being a low-component system, it is manufactured by direct quenching and tempering, so that a strength of 60 kg class is obtained.
[0051]
[Table 1]
Figure 0003579307
[0052]
[Table 2]
Figure 0003579307
[0053]
【The invention's effect】
According to the present invention, at the time of direct quenching, film-like ferrite is generated at the prior austenite grain boundaries, and the substantial grain boundary area is increased, so that the strain concentrated on the cementite precipitated during tempering is small, and after strain aging. It is possible to provide a 60-kg class direct quenched and tempered steel having excellent toughness and excellent weldability, and its effect is extremely large in industry.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a microstructure after quenching. FIG. 2 is a diagram schematically showing a microstructure after quenching and tempering. FIG. 3 is a diagram schematically showing a microstructure when strain is added after quenching and tempering. FIG. 4 is a diagram schematically showing a state in which a film-like ferrite is precipitated at a prior austenite grain boundary. FIG. 5 is a diagram after tempering of a structure in which a film-like ferrite is precipitated at a prior austenite grain boundary. FIG. 6 is a diagram schematically showing the effect of Si and Cr on the formation of film ferrite. FIG. 7 is a diagram showing a test piece sampling position in a Charpy impact test of a heat affected zone of a weld.

Claims (6)

質量%で、C:0.04〜0.09%、Si:0.1〜0.5%、Mn:1.2〜1.8%、Cr:0.1〜0.5%、Nb:0.01〜0.05%、sol.Al:0.002〜0.07%、N:0.001〜0.004%を含み、B≦0.0002%で、残部が実質的にFeからなり、且つPcm≦0.20%、Ceq(WES)≦0.42%、0.50%≦Si+3Cr≦1.25%を満足する溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。
但し、Pcm=C+Mn/20+Si/30+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B,Ceq(WES)=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14とする。
In mass%, C: 0.04 to 0.09%, Si: 0.1 to 0.5%, Mn: 1.2 to 1.8%, Cr: 0.1 to 0.5%, Nb: 0.01-0.05%, sol. Al: 0.002 to 0.07%, N: 0.001 to 0.004%, B ≦ 0.0002% , balance substantially consisting of Fe, Pcm ≦ 0.20%, Ceq (WES) ≤0.42%, 0.50% ≤Si + 3Cr≤1.25% Weldability and tensile transition after 5% pre-strain, aging treatment at 250 ° C for 1 hour, strain transition by fracture aging Charpy test 60 kg class direct quenched and tempered steel with excellent toughness after strain aging at a temperature of -40 ° C or less.
Here, Pcm = C + Mn / 20 + Si / 30 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B, and Ceq (WES) = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14.
鋼組成として、更に質量%でMo:0.02〜0.3%、Cu:0.1〜0.6%の一種または二種を含有する請求項1記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。The weldability and 5% tensile prestrain according to claim 1, wherein the steel composition further contains one or two of Mo: 0.02 to 0.3% and Cu: 0.1 to 0.6% by mass%. Thereafter, a 60 kg class direct quenched and tempered steel excellent in toughness after strain aging, in which a fracture transition temperature in a strain aging Charpy test after aging treatment at 250 ° C. for 1 hour is -40 ° C. or less. 鋼組成として、更に質量%でNi:0.1〜0.5%を含有する請求項1又は2記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。3. The strain aging according to claim 1 or 2, wherein the steel composition further contains Ni: 0.1 to 0.5% by mass% after the aging treatment at 250 ° C. for 1 hour after 5% tensile prestrain. A 60-kg class direct quenched and tempered steel excellent in toughness after strain aging, having a rupture transition temperature of −40 ° C. or lower in a Charpy test. 鋼組成として、更に質量%でV:0.01〜0.08%を含有する請求項1乃至3のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。4. The aging treatment at 250 [deg.] C. for 1 hour after the weldability and 5% tensile prestrain according to claim 1, further containing V: 0.01 to 0.08% by mass% as a steel composition. 60 kg class direct quenched and tempered steel excellent in toughness after strain aging, having a rupture transition temperature of −40 ° C. or less in the subsequent strain aging Charpy test. 鋼組成として、更に質量%でTi:0.005〜0.02%、Ca:0.001〜0.004%の一種または二種を含有する請求項1乃至4のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。The weldability according to any one of claims 1 to 4, wherein the steel composition further contains one or two of Ti: 0.005 to 0.02% and Ca: 0.001 to 0.004% by mass%. And 60 kg class direct quenched and tempered steel excellent in toughness after strain aging, having a transition transition temperature of −40 ° C. or less according to a strain aging Charpy test after aging treatment at 250 ° C. for 1 hour after 5% tensile prestrain. 質量%で、P≦0.010%、S≦0.002%としたことを特徴とする請求項1乃至6のいずれかに記載の溶接性及び5%引張予歪後、250℃で1時間の時効処理後の歪時効シャルピー試験による破断遷移温度が−40℃以下である歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼。The weldability and 5% tensile prestrain according to any one of claims 1 to 6, wherein P ≦ 0.010% and S ≦ 0.002% in mass%, 1 hour at 250 ° C. A 60 kg class direct quenched and tempered steel excellent in toughness after strain aging, having a rupture transition temperature of −40 ° C. or less in a strain aging Charpy test after aging treatment.
JP23265999A 1999-08-19 1999-08-19 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging Expired - Fee Related JP3579307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23265999A JP3579307B2 (en) 1999-08-19 1999-08-19 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23265999A JP3579307B2 (en) 1999-08-19 1999-08-19 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging

Publications (2)

Publication Number Publication Date
JP2001059132A JP2001059132A (en) 2001-03-06
JP3579307B2 true JP3579307B2 (en) 2004-10-20

Family

ID=16942786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23265999A Expired - Fee Related JP3579307B2 (en) 1999-08-19 1999-08-19 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging

Country Status (1)

Country Link
JP (1) JP3579307B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792778B2 (en) * 2005-03-29 2011-10-12 住友金属工業株式会社 Manufacturing method of thick-walled seamless steel pipe for line pipe
JP4252974B2 (en) * 2005-05-25 2009-04-08 株式会社日本製鋼所 Clad steel base material and method for producing clad steel using the clad steel base material
JP5849609B2 (en) * 2010-10-28 2016-01-27 Jfeスチール株式会社 Steel for high-pressure hydrogen storage
CN107099745B (en) * 2017-04-01 2019-12-27 江阴兴澄特种钢铁有限公司 High-carbon-equivalent low-temperature high-toughness pipeline steel plate for X80 elbow and manufacturing method thereof
CN112080684B (en) * 2020-07-17 2021-11-19 南京钢铁股份有限公司 High-strength container thick plate with excellent core toughness and manufacturing method thereof
CN115652201B (en) * 2022-10-18 2023-10-31 山东钢铁集团日照有限公司 Lightweight design high-strength high-toughness 07MnMoVR steel plate and preparation method thereof
CN116987954B (en) * 2023-08-09 2024-02-06 常熟市龙腾特种钢有限公司 High-strength and high-toughness flat-bulb steel and preparation method thereof

Also Published As

Publication number Publication date
JP2001059132A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
CA2280923C (en) High-tensile-strength steel and method of manufacturing the same
EP1559797B1 (en) Method for manufacturing a high strength steel sheet
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
CN113166897A (en) Ultra-high strength steel having excellent cold workability and SSC resistance and method for manufacturing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP2008095152A (en) HIGH TENSILE STRENGTH STEEL SHEET FOR LARGE HEAT INPUT WELDING HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN >=570 MPa CLASS, AND ITS PRODUCTION METHOD
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP3579307B2 (en) 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JP3823626B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JP3823627B2 (en) Method for producing 60 kg grade non-tempered high strength steel excellent in weldability and toughness after strain aging
JP3879639B2 (en) High toughness and high yield point steel with excellent weldability and method for producing the same
JP3166765B2 (en) 60kg-class direct quenched and tempered steel with excellent weldability and toughness after strain aging
JP3823628B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JP3846119B2 (en) Method for producing high-strength steel of 60 kg with excellent weldability and toughness after strain aging
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPH05331591A (en) Hot rolled steel plate having low yield ratio and high strength and production thereof
JP2001115232A (en) 60 kilo class directly quenched and tempered steel excellent in weldability and toughness after strain aging
JP3864880B2 (en) Manufacturing method of high toughness and high yield point steel with excellent weldability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees