JP2002105594A - High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method - Google Patents

High burring property hot rolled steel sheet having excellent low cycle fatigue strength and its production method

Info

Publication number
JP2002105594A
JP2002105594A JP2000305623A JP2000305623A JP2002105594A JP 2002105594 A JP2002105594 A JP 2002105594A JP 2000305623 A JP2000305623 A JP 2000305623A JP 2000305623 A JP2000305623 A JP 2000305623A JP 2002105594 A JP2002105594 A JP 2002105594A
Authority
JP
Japan
Prior art keywords
steel sheet
low cycle
cycle fatigue
hot
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000305623A
Other languages
Japanese (ja)
Other versions
JP3887161B2 (en
Inventor
Tatsuo Yokoi
龍雄 横井
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000305623A priority Critical patent/JP3887161B2/en
Publication of JP2002105594A publication Critical patent/JP2002105594A/en
Application granted granted Critical
Publication of JP3887161B2 publication Critical patent/JP3887161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high burring property hot rolled steel sheet having excellent low cycle fatigue strength and to provide a production method by which the steel sheet can inexpensively and stably be produced. SOLUTION: This high burring property hot rolled steel sheet having excellent low cycle fatigue strength is composed of steel having a composition containing 0.01 to 0.2% C, 0.01 to 2% Si, 0.05 to 3% Mn, <=0.1% P and <=0.01% S, containing Al and N by <=0.2% Al and 0.001 to 0.1% N also so as to satisfy 0.52Al/N<=10, further containing one or more kinds selected from Cr, Mo and V by <=2.5% Cr, <=1% Mo and <=0.1% V also so as to satisfy (Cr+3.5Mo+39V)>=0.1, and the balance Fe with inevitable impurities, whose microstructure with the maximum volume ratio is composed of bainite or of the composite one of ferrite and bainite, and the area ratio of a cell structure in the dislocated structure observed after a fatigue test is <=50%. In the method for producing the above steel sheet, the steel having the above components is subjected to hot finish rolling so as to be finished at the Ar3 transformation point or higher, is thereafter cooled at a cooling rate of >=20 deg.C/s and is coiled at a coiling temperature in the temperature range of 450 to 650 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低サイクル疲労強
度に優れる高バーリング性熱延鋼板およびその製造方法
に関するものであり、特に、ロードホイールをはじめと
する自動車足廻り部品等の耐久性とバーリング加工性の
両立が求められる部材の素材として好適な低サイクル疲
労強度に優れる高バーリング性熱延鋼板およびその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled hot-rolled steel sheet having excellent low-cycle fatigue strength and a method for producing the same. More particularly, it relates to durability and burring of automobile undercarriage parts such as road wheels. The present invention relates to a high burring hot-rolled steel sheet excellent in low cycle fatigue strength, which is suitable as a material of a member requiring both workability and a method for producing the same.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上などのために軽
量化を目的として、Al合金等の軽金属や高強度鋼板の
自動車部材への適用が進められている。ただし、Al合
金等の軽金属は比強度が高いという利点があるものの鋼
に比較して著しく高価であるためその適用は特殊な用途
に限られている。従ってより広い範囲で自動車の軽量化
を推進するためには安価な高強度鋼板の適用が強く求め
られている。
2. Description of the Related Art In recent years, the application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of weight reduction in order to improve fuel efficiency of automobiles. However, although light metals such as Al alloys have the advantage of high specific strength, their application is limited to special applications because they are significantly more expensive than steel. Therefore, in order to promote the weight reduction of automobiles in a wider range, it is strongly required to use inexpensive high-strength steel sheets.

【0003】このような高強度化の要求に対してこれま
では車体重量の1/4程度を占めるホワイトボティーや
パネル類に使用される冷延鋼板の分野において強度と深
絞り性を兼ね備えた鋼板や焼付け硬化性のある鋼板等の
開発が進められ、車体の軽量化に寄与してきた。ところ
が現在、軽量化の対象は車体重量の約20%を占める構
造部材や足廻り部材にシフトしてきており、これらの部
材に用いる高強度熱延鋼板の開発が急務となっている。
[0003] In response to such demands for high strength, steel sheets having both strength and deep drawability in the field of cold-rolled steel sheets used for white bodies and panels that occupy about 1/4 of the body weight. And bake-hardening steel plates have been developed, which has contributed to weight reduction of vehicle bodies. However, at present, the object of weight reduction is shifting to structural members and undercarriage members occupying about 20% of the vehicle body weight, and there is an urgent need to develop high-strength hot-rolled steel sheets used for these members.

【0004】ただし、高強度化は一般的に成形性(加工
性)等の材料特性を劣化させるため、材料特性を劣化さ
せずに如何に高強度化を図るかが高強度鋼板開発のカギ
になる。特に構造部材や足廻り部材用鋼板に求められる
特性としてはバーリング加工性、疲労耐久性および耐食
性等が重要であり高強度とこれら特性を如何に高次元で
バランスさせるかが重要である。例えば、ロードホイー
ルディスク用鋼板に求められる特性としては特に疲労耐
久性が重要視されている。これは、ホイールの部材特性
で最も厳しい基準で管理されているのが疲労耐久性であ
るためである。
However, since high strength generally deteriorates material properties such as formability (workability), how to achieve high strength without deteriorating material properties is the key to the development of high strength steel sheets. Become. In particular, burring workability, fatigue durability, corrosion resistance, and the like are important as characteristics required for a steel sheet for structural members and suspension members, and it is important how to balance these characteristics with high strength and high dimensions. For example, fatigue durability is particularly important as a characteristic required for a steel plate for a road wheel disc. This is because the fatigue durability is controlled by the strictest standards in the member properties of the wheel.

【0005】現在、これらロードホイールディスク用熱
延鋼板として440〜590MPa級の鋼板が用いられ
ているが、これら部材用鋼板に要求される強度レベルは
590MPa級から780MPa級へとさらなる高強度
化へ向かいつつある。一方、高強度化の目的である薄肉
化はホイールに負荷されるひずみレベルの増大をもたら
し、部位によっては降伏点を超えるひずみレベルでの振
幅にさらされる状況が現出されてきている。
At present, steel sheets of 440 to 590 MPa class are used as the hot-rolled steel sheets for road wheel discs, but the required strength level of these steel sheets for members is from 590 MPa class to 780 MPa class, and further higher strength is required. It is heading. On the other hand, thinning, which is the purpose of strengthening, causes an increase in the strain level applied to the wheel, and some parts have been exposed to an amplitude at a strain level exceeding the yield point.

【0006】これまでロードホイール等足廻り部品への
高強度鋼板の適用にあたって疲労耐久性を向上させるた
めには降伏点以下での繰返し荷重下での疲労限を重要視
してきた。しかし、上述したように最近は降伏点を超え
るひずみレベルでの低サイクル疲労特性(105回程度
までの疲労特性)の向上が望まれるようになってきてい
る。ところが、低サイクル疲労特性を向上させるための
技術については、ほとんど見受けられないのが現状であ
る。
Hitherto, in applying a high-strength steel plate to a part around a foot such as a road wheel, in order to improve the fatigue durability, the fatigue limit under a repeated load below the yield point has been regarded as important. However, as described above, recently, improvement in low cycle fatigue characteristics (fatigue characteristics up to about 105 times) at a strain level exceeding the yield point has been desired. However, at present, almost no technology for improving low cycle fatigue characteristics is found.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、低
サイクル疲労強度に優れる高バーリング性熱延鋼板およ
びその鋼板を安価に安定して製造できる製造方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a high burring hot-rolled steel sheet having excellent low cycle fatigue strength and a method of manufacturing the steel sheet stably at low cost. is there.

【0008】[0008]

【課題を解決するための手段】本発明者らは、現在通常
に採用されている連続熱間圧延設備により工業的規模で
生産されている熱延鋼板の製造プロセスを念頭におい
て、熱延鋼板の低サイクル疲労強度の向上を達成すべく
鋭意研究を重ねた。その結果、体積分率最大のミクロ組
織が、ベイナイト,またはフェライトおよびベイナイト
の複合組織からなり、疲労試験後に観察される転位構造
のうちセル構造の面積率が50%以下であることが低サ
イクル疲労強度向上に非常に有効であることを新たに見
出し、本発明をなしたものである。
Means for Solving the Problems The present inventors considered the production process of a hot-rolled steel sheet produced on an industrial scale by a continuous hot-rolling equipment which is currently usually used, and considered the production process of the hot-rolled steel sheet. Intensive research was conducted to achieve an improvement in low cycle fatigue strength. As a result, the microstructure having the largest volume fraction was composed of bainite or a composite structure of ferrite and bainite, and the area ratio of the cell structure among the dislocation structures observed after the fatigue test was 50% or less. The present inventors have newly found that they are very effective in improving the strength, and have made the present invention.

【0009】即ち、本発明の要旨は、以下の通りであ
る。 (1)質量%にて、C:0.01〜0.2%、Si:
0.01〜2%、Mn:0.05〜3%、P≦0.1
%、S≦0.01%、を含み、Al≦0.2%、N:
0.001〜0.1%、0.52Al/N≦10を満た
すようにAlとNを含有し、かつCr、Mo、Vのうち
一種または二種以上をCr≦2.5%、Mo≦1%、V
≦0.1%、かつ(Cr+3.5Mo+39V)≧0.
1を満たすように含有し、残部がFe及び不可避的不純
物からなる鋼であって、その体積分率最大のミクロ組織
が、ベイナイト,またはフェライトおよびベイナイトの
複合組織からなり、疲労試験後に観察される転位構造の
うちセル構造の面積率が50%以下であることを特徴と
する、低サイクル疲労強度に優れる高バーリング性熱延
鋼板。
That is, the gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.2%, Si:
0.01-2%, Mn: 0.05-3%, P ≦ 0.1
%, S ≦ 0.01%, Al ≦ 0.2%, N:
0.001 to 0.1%, 0.52 Al / N is contained so as to satisfy Al / N ≦ 10, and one or two or more of Cr, Mo, and V are Cr ≦ 2.5%, Mo ≦ 1%, V
≦ 0.1% and (Cr + 3.5Mo + 39V) ≧ 0.
1 and the balance consisting of Fe and unavoidable impurities, and the microstructure having the largest volume fraction consists of bainite or a composite structure of ferrite and bainite, which is observed after a fatigue test. A high burring hot-rolled steel sheet having excellent low cycle fatigue strength, wherein the area ratio of the cell structure in the dislocation structure is 50% or less.

【0010】(2)前記鋼が、さらに、質量%にて、C
u:0.2〜1.2%を含有することを特徴とする、前
記(1)に記載の低サイクル疲労強度に優れる高バーリ
ング性熱延鋼板。 (3)前記鋼が、さらに、質量%にて、B:0.000
2〜0.002%を含有することを特徴とする、前記
(1)または(2)に記載の低サイクル疲労強度に優れ
る高バーリング性熱延鋼板。
(2) The steel further comprises, by mass%, C
u: The high burring hot-rolled steel sheet having excellent low cycle fatigue strength according to the above (1), characterized by containing 0.2 to 1.2%. (3) The steel further contains B: 0.000% by mass.
High-burring hot-rolled steel sheet having excellent low cycle fatigue strength according to the above (1) or (2), characterized by containing 2 to 0.002%.

【0011】(4)前記鋼が、さらに、質量%にて、N
i:0.1〜0.6%を含有することを特徴とする、前
記(1)ないし(3)のいずれか1項に記載の低サイク
ル疲労強度に優れる高バーリング性熱延鋼板。 (5)前記鋼が、さらに、質量%にて、Ca:0.00
05〜0.002%、REM:0.0005〜0.02
%の一種または二種を含有することを特徴とする、前記
(1)ないし(4)のいずれか1項に記載の低サイクル
疲労強度に優れる高バーリング性熱延鋼板。
(4) The steel further comprises N
i: The high-burring hot-rolled steel sheet having excellent low cycle fatigue strength according to any one of the above (1) to (3), characterized by containing 0.1 to 0.6%. (5) The steel further contains Ca: 0.00% by mass.
05-0.002%, REM: 0.0005-0.02
%, Characterized in that the hot-rolled steel sheet has excellent low cycle fatigue strength according to any one of the above (1) to (4).

【0012】(6)前記鋼が、さらに、質量%にて、N
b:0.001〜0.1%かつN−0.15Nb≧0.
0005%、Ti:0.001〜0.1%かつN−0.
29Ti≧0.0005%、Zr:0.001〜0.2
%の一種または二種以上を含有することを特徴とする、
(1)ないし(5)のいずれか1項に記載の低サイクル
疲労強度に優れる高バーリング性熱延鋼板。
(6) The steel further comprises N
b: 0.001 to 0.1% and N-0.15Nb ≧ 0.
0005%, Ti: 0.001-0.1% and N-0.
29Ti ≧ 0.0005%, Zr: 0.001 to 0.2
% Or more than one type,
The high burring hot-rolled steel sheet having excellent low cycle fatigue strength according to any one of (1) to (5).

【0013】(7)前記(1)ないし(6)のいずれか
1項に記載の成分を有する鋼片の熱間圧延に際し、Ar
3 変態点温度以上で熱間仕上圧延を終了した後、20℃
/s以上の冷却速度で冷却して、450℃以上650℃
以下の温度範囲の巻取温度で巻き取り、その体積率最大
のミクロ組織が、ベイナイト,またはフェライトおよび
ベイナイトの複合組織からなり、疲労試験後に観察され
る転位構造のうちセル構造の面積率が50%以下である
鋼板を得ることを特徴とする、低サイクル疲労強度に優
れる高バーリング性熱延鋼板の製造方法。 (8)前記熱間圧延に際し、粗圧延終了後、高圧デスケ
ーリングを行い、Ar3変態点温度以上で熱間仕上圧延
を終了することを特徴とする前記(7)記載の低サイク
ル疲労強度に優れる高バーリング性熱延鋼板の製造方法
にある。
(7) In the hot rolling of the steel slab having the component described in any one of the above (1) to (6), Ar
After finishing hot finish rolling at 3 transformation point temperature or more, 20 ℃
/ S at a cooling rate of 450 ° C or more and 650 ° C or more.
The microstructure having the largest volume fraction is composed of bainite or a composite structure of ferrite and bainite. The area ratio of the cell structure among the dislocation structures observed after the fatigue test is 50%. %. A method for producing a high burring hot-rolled steel sheet having excellent low cycle fatigue strength, characterized by obtaining a steel sheet of not more than 0.1%. (8) In the hot rolling, after rough rolling is completed, high-pressure descaling is performed, and hot finish rolling is completed at an Ar 3 transformation point temperature or higher. An excellent method for producing a hot rolled steel sheet having high burring properties.

【0014】[0014]

【発明の実施の形態】以下に、本発明に至った基礎研究
結果について説明する。まず、疲労試験後の転位構造に
及ぼすAl、N、Cr、Mo、Vの添加量の影響を調査
した。そのための供試材は、次のようにして準備した。
すなわち、0.06%C−0.9%Si−1.2%Mn
−0.01%P−0.001%Sを基本成分にAl、
N、Cr、Mo、Vの添加量を変化させて成分調整し溶
製した鋳片をAr3 変態点温度以上のいずれかの温度で
板厚が3.5mmになるように熱間仕上圧延を終了して
後、20℃/s以上の冷却速度で冷却して、650℃〜
常温の温度範囲で巻き取った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The results of basic research that led to the present invention will be described below. First, the effect of the addition amount of Al, N, Cr, Mo, and V on the dislocation structure after the fatigue test was investigated. The test material for that was prepared as follows.
That is, 0.06% C-0.9% Si-1.2% Mn
-0.01% P-0.001% S as a basic component of Al,
Hot finish rolling was performed on the ingot by adjusting the composition by changing the amounts of N, Cr, Mo, and V so that the plate thickness became 3.5 mm at any temperature equal to or higher than the Ar 3 transformation point temperature. After finishing, cooling at a cooling rate of 20 ° C./s or more
It was wound up in a normal temperature range.

【0015】このようにして得られた鋼板から図1に示
す形状の疲労試験片を鋼板板幅の1/4Wもしくは3/
4W位置より圧延方向が長辺になるように採取し疲労試
験に供した。ただし、疲労試験片の表面は三山仕上の研
削表面とした。疲労試験は電気油圧サーボ型疲労試験機
を用い、試験方法はASTM E606−92に準じ
た。なお、試験条件は図2に示すように軸方向に三角波
にて完全両振り引張圧縮負荷で、全ひずみ振幅を0.2
〜0.6%、ひずみ速度を4.0×10-3/secとし
た。試験はひずみ応答および応力応答の変化を記録しな
がら行った。疲労試験終了後、全ひずみ振幅の条件が2
≦2100×εa/YP≦4の範囲で試験を行った試験
片について図3に示すように破断部近傍1/4厚の部位
から透過型電子顕微鏡試料(薄膜)を加工ひずみが導入
されないように採取し、透過型電子顕微鏡にて転位構造
の観察を行った。ただし、透過型電子顕微鏡による観察
は2000〜10000倍の倍率にて結晶粒を変えて1
0視野以上観察した。ここでYP:降伏応力または0.
2%耐力(MPa)、εa:全ひずみ振幅(%)であ
る。
From the steel sheet thus obtained, a fatigue test piece having the shape shown in FIG.
Samples were taken from the 4W position so that the rolling direction was on the long side, and subjected to a fatigue test. However, the surface of the fatigue test piece was a ground surface with a three-sided finish. The fatigue test was performed using an electrohydraulic servo-type fatigue tester, and the test method was in accordance with ASTM E606-92. As shown in FIG. 2, the test conditions were as follows: a complete swing-pull compression load with a triangular wave in the axial direction, and a total strain amplitude of 0.2
0.6% and a strain rate of 4.0 × 10 −3 / sec. The test was performed while recording changes in strain response and stress response. After the fatigue test, the condition of total strain amplitude is 2
As shown in FIG. 3, with respect to a test piece which was tested in the range of ≦ 2100 × ε a / YP ≦ 4, a processing strain was not introduced into a transmission electron microscope sample (thin film) from a portion having a thickness of 1/4 near the fractured portion. And the dislocation structure was observed with a transmission electron microscope. However, observation with a transmission electron microscope was performed by changing the crystal grains at a magnification of 2000 to 10000 times.
Observation was made for zero or more visual fields. Where YP: yield stress or 0.
2% yield strength (MPa), ε a : total strain amplitude (%).

【0016】図4および図5に観察例を示す。いずれも
全ひずみ振幅εa=0.3%の条件である。図4は本発
明範囲外、図5は本発明範囲の例である。本発明範囲外
の図4が典型的なセル構造を示すのに対して、本発明範
囲の図5はセル構造を示さない。ここでセル構造とは疲
労現象特有な転位密度が高いセル壁(wall、vei
n、debris)に囲まれたセルが集まった構造であ
る。また、セルとはセル壁に四方を囲まれ完全に閉じた
構造のものと定義する。
FIGS. 4 and 5 show examples of observation. In each case, the total strain amplitude ε a = 0.3%. FIG. 4 shows an example of the scope of the present invention, and FIG. 5 shows an example of the scope of the present invention. 4 outside the scope of the invention shows a typical cell structure, whereas FIG. 5 outside the scope of the invention does not show a cell structure. Here, the cell structure means a cell wall (wall, vei) having a high dislocation density specific to the fatigue phenomenon.
n, debris). In addition, a cell is defined as having a completely closed structure surrounded by cell walls on all sides.

【0017】一方、セル構造の面積率とは1試料で観察
された各視野において目視または画像処理によって得ら
れた面積率の値を観察視野毎に足し合わせ、それを観察
視野数で割ったいわゆる平均値とする。さらに、本発明
において転位構造を観察する箇所としては光学顕微鏡の
500倍程度で観察できる分解能においてフェライト粒
を含むミクロ組織の鋼ではフェライト粒とし、ベイナイ
ト単相組織のようにフェライト粒を含まないミクロ組織
の鋼ではベイナイト組織中のセメンタイト相以外の相で
あるフェライト相とする。
On the other hand, the area ratio of the cell structure is a so-called value obtained by adding the value of the area ratio obtained by visual observation or image processing in each field observed in one sample for each observation field, and dividing the result by the number of observation fields. Average value. Further, in the present invention, the dislocation structure is observed at a resolution of about 500 times that of an optical microscope at a resolution of about 500 times that of a microstructured steel containing ferrite grains. In the structure steel, the ferrite phase is a phase other than the cementite phase in the bainite structure.

【0018】本発明者らは、これらの実験結果を詳細に
検討した結果、疲労試験後に観察される転位構造と低サ
イクル疲労強度には図6に示すように非常に強い相関が
あり、転位構造のうちセル構造の面積率が50%以下で
あると低サイクル疲労強度が向上することを新たに知見
した。また、転位構造と0.52Al/Nの値およびC
r+3.5Mo+39Vの値との関係においても図7に
示すように強い相関関係が認められ、0.52Al/N
≦10かつ(Cr+3.5Mo+39V)≧0.1の領
域においてセル構造の面積率が50%以下になることを
新たに知見した。このメカニズムは必ずしも明らかでは
ないが以下のように推測される。通常、軟質相であるフ
ェライト相に繰返しひずみが集中して繰返し軟化が起こ
り低サイクル疲労強度が低下する。従って低サイクル疲
労強度を向上させるためには軟質相であるフェライト相
において繰返し軟化を抑制しなければならない。
The present inventors have examined these experimental results in detail, and as a result, as shown in FIG. 6, there is a very strong correlation between the dislocation structure observed after the fatigue test and the low cycle fatigue strength. It was newly found that when the area ratio of the cell structure was 50% or less, the low cycle fatigue strength was improved. Further, the dislocation structure, the value of 0.52 Al / N and C
As shown in FIG. 7, a strong correlation was also observed in the relationship with the value of r + 3.5Mo + 39V, and 0.52 Al / N
It was newly found that the area ratio of the cell structure was 50% or less in a region of ≦ 10 and (Cr + 3.5Mo + 39V) ≧ 0.1. Although this mechanism is not always clear, it is presumed as follows. Usually, repeated strain concentrates on the ferrite phase, which is a soft phase, so that softening occurs repeatedly and low cycle fatigue strength is reduced. Therefore, in order to improve low cycle fatigue strength, it is necessary to suppress repetitive softening in the ferrite phase which is a soft phase.

【0019】本発明のごとく固溶状態のN、CおよびC
r,Mo,Vを特定範囲で含有すると、進入型固溶元素
であるNやCとCr,Mo,Vとがフェライト相におい
てペアやクラスターを形成し、繰返し荷重下での転位の
交差すべりを抑制することで転位の再配列(セル構造の
形成)による繰返し軟化を抑制する。さらに繰返し荷重
の負荷により生成する原子空孔の作用により進入型固溶
元素であるNやCがCr,Mo,Vのペアやクラスター
から脱出し、転位を固着するため繰返し硬化が起こるこ
とで低サイクル疲労強度が向上する。また、熱間圧延条
件等を制限することによって、フェライト相において進
入型固溶元素であるNやCの存在状態を制御し低サイク
ル疲労強度に優れる鋼板を製造できることも新たに知見
した。
N, C and C in a solid solution state as in the present invention
When r, Mo, and V are contained in a specific range, N and C, which are intrusion-type solid solution elements, and Cr, Mo, and V form pairs and clusters in the ferrite phase, and the cross-slip of dislocations under repeated load is prevented. This suppresses repeated softening due to rearrangement of dislocations (formation of a cell structure). Further, N and C, which are intrusion-type solid solution elements, escape from pairs or clusters of Cr, Mo, and V due to the action of atomic vacancies generated by the application of the cyclic load, and fix dislocations to cause repeated hardening. Cycle fatigue strength is improved. It has also been newly found that by restricting the hot rolling conditions and the like, it is possible to control the state of N and C, which are intrusion-type solid solution elements in the ferrite phase, to produce a steel sheet having excellent low cycle fatigue strength.

【0020】本発明において低サイクル疲労強度とは繰
返し降伏応力を引張強度で除した値と定義する。ここで
繰返し降伏応力は以下のように求めることができる。全
ひずみ振幅一定での疲労試験中のひずみ応答および応力
応答の変化は図8に示すようなヒステリシスループとし
て模式的に表される。材料は繰返しひずみにより軟化も
しくは硬化しこの変化がΔσの変化として得られる。材
料のΔσの値は破断寿命(Nf)の1/2の繰返し数で
ほとんど飽和し安定する。従って、この繰返し数でのΔ
σ/2をそのひずみ振幅における応力振幅σa と定義す
る。このσa を各ひずみ振幅について模式的に図示した
ものが図9である。ここでこれらのσaをひずみに対し
て直線近似した直線を応力‐ひずみ曲線に外挿した交点
を繰返し降伏点とする。また、この交点は材料を直線弾
性体(Hooke‘s body)と仮定したときに得
られる弾性直線との交点でも差し支えない。
In the present invention, the low cycle fatigue strength is defined as a value obtained by dividing a cyclic yield stress by a tensile strength. Here, the repeated yield stress can be obtained as follows. Changes in strain response and stress response during the fatigue test at a constant total strain amplitude are schematically represented as a hysteresis loop as shown in FIG. The material softens or hardens due to repeated strain, and this change is obtained as a change in Δσ. The value of Δσ of the material is almost saturated and stable at a repetition number of の of the fracture life (Nf). Therefore, Δ at this repetition rate
σ / 2 is defined as the stress amplitude σ a at that strain amplitude. FIG. 9 schematically shows σ a for each strain amplitude. Here, an intersection obtained by extrapolating a straight line obtained by linearly approximating these σ a to the strain to the stress-strain curve is defined as a yield point repeatedly. In addition, this intersection may be an intersection with an elastic straight line obtained when the material is assumed to be a linear elastic body (Hooke's body).

【0021】次に本発明における鋼板のミクロ組織につ
いて詳細に説明する。鋼板のミクロ組織は、疲労特性と
バーリング加工性を両立させるために体積分率最大のミ
クロ組織をフェライト、又はフェライト及びベイナイト
の複合組織とした。ただし、不可避的なパーライト、残
留オーステナイト、マルテンサイトを含むことを許容す
るものである。ここで以下ベイナイトとは、ベイニティ
ックフェライトおよびアシュキュラーフェライト組織も
含む。なお、良好な疲労特性を確保するためには、パー
ライトの体積分率は5%以下が望ましい。また、良好な
バーリング加工性を得るためにはベイナイトの体積分率
は30%以上が望ましく、マルテンサイトの体積分率は
5%未満が望ましい。さらに、良好な延性を得るために
はベイナイトの体積分率は70%以下が望ましい。ここ
で、フェライト、ベイナイト、残留オーステナイト、パ
ーライト、マルテンサイトの体積分率とは鋼板板幅の1
/4Wもしくは3/4W位置より切出した試料を圧延方
向断面に研磨、エッチングし、光学顕微鏡を用い200
〜500倍の倍率で観察された板厚の1/4tにおける
ミクロ組織の面積分率で定義される。
Next, the microstructure of the steel sheet according to the present invention will be described in detail. The microstructure of the steel sheet was ferrite, or a composite structure of ferrite and bainite, with the maximum volume fraction in order to achieve both fatigue characteristics and burring workability. However, the inclusion of unavoidable pearlite, retained austenite, and martensite is permitted. Here, hereinafter, bainite includes bainitic ferrite and ashular ferrite structures. In order to secure good fatigue characteristics, the volume fraction of pearlite is desirably 5% or less. In order to obtain good burring workability, the volume fraction of bainite is desirably 30% or more, and the volume fraction of martensite is desirably less than 5%. Further, in order to obtain good ductility, the volume fraction of bainite is desirably 70% or less. Here, the volume fraction of ferrite, bainite, retained austenite, pearlite, and martensite is 1% of the steel sheet width.
A sample cut from the / 4W or 3 / 4W position is polished and etched into a cross section in the rolling direction, and is polished and etched using an optical microscope.
It is defined as the area fraction of the microstructure at 1 / 4t of the plate thickness observed at a magnification of ~ 500 times.

【0022】続いて、本発明の化学成分の限定理由につ
いて説明する。Cは、所望のミクロ組織を得るのに必要
な元素である。ただし、0.2%超含有していると加工
性及び溶接性が劣化するので、0.2%以下とする。一
方、0.01%未満であると強度が低下するので0.0
1%以上とする。さらに、固溶状態で存在するCはNと
同様にCr、Mo、Vとペアやクラスターを形成するの
で低サイクル疲労強度向上に有効である。本発明におい
ては、Nが十分に添加されており固溶C量については特
に範囲を定めない。ただし、上述の全C含有量下限値以
上の範囲において効果を得るために十分な固溶C量が確
保されており、その範囲は0.0005%以上、0.0
04%以下であることが望ましい。
Next, the reasons for limiting the chemical components of the present invention will be described. C is an element necessary for obtaining a desired microstructure. However, if the content exceeds 0.2%, workability and weldability deteriorate, so the content is set to 0.2% or less. On the other hand, if it is less than 0.01%, the strength is reduced.
1% or more. Further, C existing in a solid solution state forms pairs or clusters with Cr, Mo, and V, like N, and is thus effective in improving low cycle fatigue strength. In the present invention, N is sufficiently added and the range of the solute C amount is not particularly limited. However, a sufficient amount of solid solution C for obtaining the effect is secured in the above range of the total C content lower limit or more, and the range is 0.0005% or more and 0.00.0% or more.
Desirably, it is at most 04%.

【0023】Siは、所望のミクロ組織を得るのに必要
であるとともに固溶強化元素として強度上昇に有効であ
る。所望の強度を得るためには、0.01%以上含有す
る必要がある。しかし、2%超含有すると加工性が劣化
する。そこで、Siの含有量は0.01%以上、2%以
下とする。Mnは、固溶強化元素として強度上昇に有効
である。所望の強度を得るためには、0.05%以上必
要である。一方、3%超添加するとスラブ割れを生ずる
ため、3%以下とする。
Si is necessary for obtaining a desired microstructure and is effective for increasing the strength as a solid solution strengthening element. In order to obtain a desired strength, the content needs to be 0.01% or more. However, if the content exceeds 2%, the workability deteriorates. Therefore, the content of Si is set to 0.01% or more and 2% or less. Mn is effective for increasing strength as a solid solution strengthening element. To obtain the desired strength, 0.05% or more is required. On the other hand, if added over 3%, slab cracks occur, so the content is set to 3% or less.

【0024】Pは、不純物であり低いほど好ましく、
0.1%超含有すると加工性や溶接性に悪影響を及ぼす
とともに疲労特性も低下させるので、0.1%以下とす
る。Sは、不純物であり低いほど好ましく、多すぎると
局部延性やバーリング加工性を劣化させるA系介在物を
生成するので極力低減させるべきであるが、0.01%
以下ならば許容できる範囲である。
P is an impurity and is preferably as low as possible.
If the content exceeds 0.1%, the workability and the weldability are adversely affected and the fatigue characteristics are also reduced. S is an impurity and is preferably as low as possible. If it is too high, A-based inclusions that deteriorate local ductility and burring workability are generated. Therefore, S should be reduced as much as possible.
Below is an acceptable range.

【0025】Alは脱酸調製剤として使用しても良い。
ただし、AlはNと結合しAlNを形成するため、C
r、Mo、Vとペアやクラスターを形成する有効なN量
が減少するので、その添加は製造技術上無理のない範囲
で必要最小限にとどめることが望ましい。すなわち、A
lの添加量が0.2%超ではCr、Mo、Vとペアやク
ラスターを形成する有効なN量を確保するためにNを多
量に添加せねばならず、製造コストやAlNの析出によ
る加工性劣化の点で不利である。従ってAlの添加量の
上限は0.2%以下とする。また、AlはAl2 3
の非金属介在物を生成し疵や局部延性の低下を招く恐れ
があるのでその添加量は0.05%以下が望ましい。さ
らに、製造コストや操業効率を悪化させない範囲で鋼中
にNを容易に含有させるためにはさらには0.02%以
下が望ましい。なお、Alの下限は特に定めないが、
0.001%未満では製造コストや操業効率を悪化させ
るため、0.001%以上とすることが望ましい。
Al may be used as a deoxidizing agent.
However, since Al combines with N to form AlN, C
Since the effective amount of N that forms a pair or a cluster with r, Mo, and V is reduced, it is desirable that the addition thereof be kept to a minimum necessary within a range that is reasonable in production technology. That is, A
If the amount of l exceeds 0.2%, a large amount of N must be added in order to secure an effective amount of N for forming pairs and clusters with Cr, Mo, and V, and the production cost and processing by precipitation of AlN are required. It is disadvantageous in terms of property deterioration. Therefore, the upper limit of the addition amount of Al is set to 0.2% or less. Further, Al may form non-metallic inclusions such as Al 2 O 3 and may cause flaws and decrease in local ductility. Therefore, the amount of Al added is preferably 0.05% or less. Further, in order to easily contain N in steel within a range that does not deteriorate the production cost and the operation efficiency, the content is further desirably 0.02% or less. Although the lower limit of Al is not particularly defined,
If the content is less than 0.001%, the production cost and the operation efficiency are deteriorated. Therefore, the content is desirably 0.001% or more.

【0026】Nは本発明において重要な元素の一つであ
る。本発明においては、固溶状態の進入型固溶元素であ
るNやCとCr,Mo,Vとがフェライト相においてペ
アやクラスターを形成し、繰返し荷重下での転位の交差
すべりを抑制することで転位の再配列(セル構造の形
成)による繰返し軟化を抑制し、さらに繰返し荷重の負
荷により生成する原子空孔の作用により進入型固溶元素
であるNやCがCr,Mo,Vのペアやクラスターから
脱出し転位を固着するため繰返し硬化が起こることで低
サイクル疲労強度が向上する。従って、0.001%以
上の添加が必須である。一方、溶鋼中にNを多量に添加
するためには加圧等の特別な設備および操業を必要とす
るのでその上限は0.1%である。また、Nは多すぎる
と降伏点伸びが発生し、加工性が劣化するのでより好ま
しくは、0.01%以下である。
N is one of the important elements in the present invention. In the present invention, N and C, which are intrusion type solid solution elements in a solid solution state, form pairs or clusters in the ferrite phase with Cr, Mo, and V, and suppress cross slip of dislocations under repeated loading. Suppresses repetitive softening due to rearrangement of dislocations (formation of a cell structure), and furthermore, N and C, which are intrusion-type solid solution elements, are formed of Cr, Mo, and V by the action of atomic vacancies generated by the repetitive load. The low cycle fatigue strength is improved due to repeated hardening due to escape from the metal and clusters to fix dislocations. Therefore, addition of 0.001% or more is essential. On the other hand, in order to add a large amount of N to molten steel, special equipment and operation such as pressurization are required, so the upper limit is 0.1%. On the other hand, if N is too large, yield point elongation occurs and workability deteriorates, so that the N content is more preferably 0.01% or less.

【0027】さらに、NはAlと結合してAlNを形成
し易い元素であるので、低サイクル疲労強度の向上に寄
与する固溶Nを確保するために0.52Al/N≦10
と限定する。0.52Al/Nの値が10超となると、
熱間圧延後の冷却過程や巻取中、容易にAlNが析出す
るためこれを上限とする。この値が10以下であれば熱
延後の冷却速度や巻取温度を本発明の範囲で行うことに
よってAlNの過度の析出を避けることができる。ま
た、0.52Al/Nの値が5以下では微細なAlNの
析出による加工性の劣化が改善されるので、より望まし
くは、0.52Al/N≦5である。
Further, since N is an element which easily forms AlN by combining with Al, 0.52 Al / N ≦ 10 in order to secure solid solution N which contributes to improvement of low cycle fatigue strength.
Limited. When the value of 0.52 Al / N exceeds 10,
Since AlN is easily precipitated during the cooling process after hot rolling or during winding, this is set as the upper limit. If this value is 10 or less, excessive precipitation of AlN can be avoided by controlling the cooling rate after hot rolling and the winding temperature within the range of the present invention. Further, when the value of 0.52 Al / N is 5 or less, deterioration of workability due to precipitation of fine AlN is improved, so that 0.52 Al / N ≦ 5 is more preferable.

【0028】一方、固溶N量は上述の全N含有量範囲で
調整しても良いが、固溶N量としては0.0005〜
0.004%が望ましい。固溶Nが0.0005%未満
では優れた低サイクル疲労強度を得ることができず、
0.004%超では降伏点伸びが発生し加工性が劣化す
る。さらに、腰折れ疵発生抑制の観点から固溶N量は、
0.0012〜0.003%が望ましい。
On the other hand, the amount of solute N may be adjusted within the above-mentioned total N content range.
0.004% is desirable. If the solute N is less than 0.0005%, excellent low cycle fatigue strength cannot be obtained,
If it exceeds 0.004%, yield point elongation occurs and workability deteriorates. Further, from the viewpoint of suppressing generation of waist break flaw, the amount of solute N is
0.0012 to 0.003% is desirable.

【0029】ここで固溶NとはFe中に単独で存在する
Nだけでなく、Cr,Mo、V、Mn、Si,Pなどの
置換型固溶元素とペアやクラスターを形成するNも含
む。固溶N量は、水素気流中加熱抽出法によって求め
る。この方法は試料を200〜500℃程度の温度域に
加熱し、固溶Nと水素とを反応させてアンモニアとし、
これを質量分析し、その分析値を換算して固溶N量を求
めるものである。また、固溶N量は、全N量からAl
N、NbN、VN、TiN、BNなどの化合物として存
在するN量(抽出残査の化学分析から定量)を差し引い
た値から求めることもできる。さらには、内部摩擦法や
FIM(Field Ion Microscopy)
によって求めても良い。
Here, the solute N includes not only N present alone in Fe, but also N forming a pair or a cluster with substitutional solute elements such as Cr, Mo, V, Mn, Si and P. . The amount of solute N is determined by a heating extraction method in a hydrogen stream. In this method, the sample is heated to a temperature range of about 200 to 500 ° C., and the dissolved N and hydrogen are reacted to form ammonia,
This is subjected to mass spectrometry, and the analysis value is converted to obtain the amount of solute N. The amount of solid solution N is calculated from the total amount of N to Al.
It can also be determined from a value obtained by subtracting the amount of N present as a compound such as N, NbN, VN, TiN, or BN (quantified from the chemical analysis of the extraction residue). Furthermore, the internal friction method and FIM (Field Ion Microscopy)
May be determined by:

【0030】Cr,Mo,Vは、本発明において重要な
元素である。Cr,Mo,Vの添加量の上限は、加工性
の確保とコストの点から決定され、それぞれ2.5、
1、0.1%である。特にVは添加量が多すぎると熱間
圧延条件によっては窒化物を形成し、低サイクル疲労強
度の向上に効果のある固溶Nの確保が困難となる可能性
があるので0.04%以下とするのが望ましい。一方、
優れた低サイクル疲労強度を得るためには(Cr+3.
5Mo+39V)≧0.1を満たす必要がある。さら
に、降伏点伸びの発生による加工性の劣化を回避するた
めには(Cr+3.5Mo+39V)≧0.4がより望
ましい範囲である。また、降伏点伸びの発生による加工
性の劣化を回避するためには、Cr,Mo,Vを単独で
添加するよりも2種類以上を組み合わせて添加すること
がより一層効果的である。
Cr, Mo, and V are important elements in the present invention. The upper limits of the added amounts of Cr, Mo, and V are determined from the viewpoint of securing workability and cost, and are 2.5 and 2.5, respectively.
1, 0.1%. Particularly, if V is added in an excessive amount, nitrides are formed depending on hot rolling conditions, and it may be difficult to secure solid solution N effective for improving low cycle fatigue strength. It is desirable that on the other hand,
In order to obtain excellent low cycle fatigue strength, (Cr + 3.
5Mo + 39V) ≧ 0.1. Further, in order to avoid deterioration of workability due to the occurrence of elongation at the yield point, (Cr + 3.5Mo + 39V) ≧ 0.4 is a more desirable range. In order to avoid deterioration in workability due to the occurrence of yield point elongation, it is more effective to add two or more types of Cr, Mo, and V in combination than to add Cr, Mo, and V alone.

【0031】Cuは、固溶状態で疲労特性を改善する効
果があるので必要に応じ添加する。ただし、0.2%未
満では、その効果は少なく、1.2%を超えて含有する
と巻取り中に析出して加工性を著しく劣化させる恐れが
ある。そこで、Cuの含有量は0.2〜1.2%の範囲
とする。Bは、Cuと複合添加されることによって疲労
限を上昇させる効果があるので必要に応じ添加する。た
だし、0.0002%未満ではその効果を得るために不
十分であり、0.002%超添加するとスラブ割れが起
こる。よって、Bの添加は、0.0002%以上、0.
002%以下とする。また、Bを0.0004%超添加
するとBNが形成されるためCr、Mo、Vとペアやク
ラスターを形成する有効な固溶N量が減少する可能性が
ある。従ってBの添加は、0.0002%以上0.00
04%以下がより望ましい範囲である。
Since Cu has an effect of improving fatigue characteristics in a solid solution state, Cu is added as necessary. However, if the content is less than 0.2%, the effect is small, and if the content exceeds 1.2%, it may precipitate during winding and significantly deteriorate workability. Therefore, the content of Cu is set in the range of 0.2 to 1.2%. B is added as necessary since it is effective to increase the fatigue limit by being combined with Cu. However, if it is less than 0.0002%, it is insufficient to obtain the effect, and if it exceeds 0.002%, slab cracking occurs. Therefore, the addition of B is 0.0002% or more and 0.1% or more.
002% or less. Further, when B is added in excess of 0.0004%, BN is formed, and there is a possibility that the effective amount of solute N that forms pairs or clusters with Cr, Mo, and V may be reduced. Therefore, the addition of B is 0.0002% or more and 0.002% or more.
04% or less is a more desirable range.

【0032】Niは、Cu含有による熱間脆性防止のた
めに必要に応じ添加する。ただし、0.1%未満ではそ
の効果が少なく、0.6%を超えて添加してもその効果
が飽和するので、0.1〜0.6%とする。Caおよび
REMは、破壊の起点となったり、加工性を劣化させる
非金属介在物の形態を変化させて無害化する元素であ
る。ただし、0.0005%未満添加してもその効果が
なく、Caならば0.002%超、REMならば0.0
2%超添加してもその効果が飽和するのでCa:0.0
005〜0.002%、REM:0.0005〜0.0
2%添加することが望ましい。
Ni is added as necessary to prevent hot brittleness due to the inclusion of Cu. However, if the content is less than 0.1%, the effect is small, and if the content exceeds 0.6%, the effect is saturated. Therefore, the content is set to 0.1 to 0.6%. Ca and REM are elements that become the starting point of destruction or change the form of nonmetallic inclusions that degrade workability and render them harmless. However, even if it is added less than 0.0005%, there is no effect, Ca exceeds 0.002%, and REM 0.0%.
Even if more than 2% is added, the effect is saturated.
005-0.002%, REM: 0.0005-0.0
It is desirable to add 2%.

【0033】Nbは組織の微細化と均一化による加工性
の向上や高強度化に有効であるので必要に応じて添加す
る。しかし、その添加量が0.001%未満では効果を
発現せず、0.1%超添加しても効果が飽和する。ま
た、N−0.15Nbの値が0.0005%超であると
低サイクル疲労強度向上に有効な固溶Nの確保が困難と
なる。従って、Nbの添加量は0.001〜0.1%か
つN−0.15Nb≧0.0005%とする。一方、N
bを0.012%超添加するとNbNを形成し易くな
り、低サイクル疲労強度向上に有効な固溶Nの確保が困
難となる恐れがあるので、0.001〜0.012%が
より望ましい。
Nb is added as necessary because it is effective for improving workability and increasing strength by making the structure finer and more uniform. However, if the amount of addition is less than 0.001%, no effect is exhibited, and even if added over 0.1%, the effect is saturated. Further, when the value of N-0.15Nb is more than 0.0005%, it becomes difficult to secure solid solution N effective for improving low cycle fatigue strength. Therefore, the added amount of Nb is set to 0.001 to 0.1% and N-0.15Nb ≧ 0.0005%. On the other hand, N
If b is added in excess of 0.012%, NbN is likely to be formed, and it may be difficult to secure solid solution N effective for improving low cycle fatigue strength. Therefore, 0.001 to 0.012% is more desirable.

【0034】TiもNbと同様の効果を有するので必要
に応じて添加する。しかしその添加量が0.001%未
満では効果を発現せず、0.1%超添加してもその効果
は飽和する。また、N−0.29Tiの値が0.000
5%超である低サイクル疲労強度向上に有効な固溶Nの
確保が困難となる。従って、Tiの添加量は0.001
%〜0.1%かつN−0.29Ti≧0.0005%と
する。一方、Tiを0.012%超添加するとTiNと
して析出または晶出する可能性があり、低サイクル疲労
強度向上に有効な固溶Nの確保が困難となる恐れがある
ので、0.001〜0.012%がより望ましい。
Since Ti has the same effect as Nb, it is added as necessary. However, if the amount of addition is less than 0.001%, no effect is exhibited, and even if added over 0.1%, the effect is saturated. The value of N-0.29Ti is 0.000
It becomes difficult to secure the solute N effective for improving the low cycle fatigue strength of more than 5%. Therefore, the addition amount of Ti is 0.001.
% To 0.1% and N−0.29Ti ≧ 0.0005%. On the other hand, if more than 0.012% of Ti is added, it may precipitate or crystallize as TiN, and it may be difficult to secure solid solution N effective for improving low cycle fatigue strength. .012% is more desirable.

【0035】さらに、強度を付与するために、析出強化
もしくは固溶強化元素としてZrを添加しても良い。た
だし、0.001%未満ではその効果を得ることができ
ない。また、0.2%を超え添加してもその効果は飽和
する。従って、Zrは0.001%〜0.2%の範囲で
添加する。ただし、ZrはZrNを形成し低サイクル疲
労強度向上に有効な固溶N量を減少させる可能性がある
ため、0.01%以下とすることが望ましい。これらを
主成分とする鋼にSn、Co、Zn、W、Mgを合計で
1%以下含有しても構わない。しかしながらSnは熱間
圧延時に疵が発生する恐れがあるので0.05%以下が
望ましい。
Further, in order to impart strength, Zr may be added as a precipitation strengthening or solid solution strengthening element. However, if it is less than 0.001%, the effect cannot be obtained. The effect is saturated even if it is added in excess of 0.2%. Therefore, Zr is added in the range of 0.001% to 0.2%. However, since Zr forms ZrN and may reduce the amount of solute N effective for improving the low cycle fatigue strength, it is preferably set to 0.01% or less. Steel containing these as main components may contain Sn, Co, Zn, W, and Mg in a total amount of 1% or less. However, since Sn may cause flaws during hot rolling, 0.05% or less is desirable.

【0036】次に、本発明の製造方法の限定理由につい
て、以下に詳細に述べる。本発明では、目的の成分含有
量になるように成分調整した溶鋼を鋳込むことによって
得たスラブを、高温鋳片のまま熱間圧延機に直送しても
よいし、室温まで冷却後に加熱炉にて再加熱した後に熱
間圧延してもよい。再加熱温度については特に制限はな
いが、1400℃以上であると、スケールオフ量が多量
になり歩留まりが低下するので、再加熱温度は1400
℃未満が望ましい。また、1000℃未満の加熱はスケ
ジュール上操業効率を著しく損なうため、再加熱温度は
1000℃以上が望ましい。さらに、固溶Nを確保する
ためにAlNを溶解させる必要のある場合には、115
0℃以上とすることが望ましい。
Next, the reasons for limiting the production method of the present invention will be described in detail below. In the present invention, a slab obtained by casting molten steel whose components have been adjusted so as to have a target component content may be directly sent to a hot rolling mill as a high-temperature slab, or a heating furnace after cooling to room temperature. And then hot-rolled. The reheating temperature is not particularly limited. However, if the temperature is 1400 ° C. or more, the scale-off amount becomes large and the yield decreases.
Desirably less than ° C. Further, since the heating at a temperature lower than 1000 ° C. significantly impairs the operation efficiency on a schedule, the reheating temperature is desirably 1000 ° C. or higher. Further, when it is necessary to dissolve AlN to secure solid solution N, 115
It is desirable that the temperature be 0 ° C. or higher.

【0037】熱間圧延工程は、粗圧延を終了後、仕上げ
圧延を行うが、最終パス温度(FT)がAr3 変態点温
度以上の温度域で終了する必要がある。これは、熱間圧
延中に圧延温度がAr3 変態点温度を切るとひずみが残
留して延性が低下してしまい加工性が劣化するためであ
る。一方、仕上げ温度の上限については特に上限を設け
ないがAr3 変態点温度+200℃超では仕上げ圧延前
の温度確保が事実上不可能であるので仕上げ温度の上限
はAr3 変態点温度+200℃以下が望ましい。ここ
で、粗圧延終了後に高圧デスケーリングを行う場合は、
鋼板表面での高圧水の衝突圧P(MPa)×流量L(リ
ットル/cm2 )≧0.0025の条件を満たすことが
望ましい。
In the hot rolling step, finish rolling is performed after rough rolling is completed, but it is necessary to finish the final pass temperature (FT) in a temperature range not lower than the Ar 3 transformation point temperature. This is because if the rolling temperature falls below the Ar 3 transformation point during hot rolling, strain remains and ductility is reduced, thereby deteriorating workability. On the other hand, the upper limit of the finishing temperature is not particularly limited, but if the temperature exceeds the Ar 3 transformation point + 200 ° C., it is practically impossible to secure the temperature before finish rolling, so the upper limit of the finishing temperature is the Ar 3 transformation point temperature + 200 ° C. or less. Is desirable. Here, when performing high-pressure descaling after rough rolling,
It is desirable that the condition of collision pressure P (MPa) of high-pressure water on the steel sheet surface × flow rate L (liter / cm 2 ) ≧ 0.0025 is satisfied.

【0038】鋼板表面での高圧水の衝突圧Pは以下のよ
うに記述される。(「鉄と鋼」1991 vol.77
No.9 p1450参照) P(MPa)=5.64×P0 ×V/H2 ただし、 P0 (MPa):液圧力 V(リットル/min):ノズル流液量 H(cm):鋼板表面とノズル間の距離
The collision pressure P of the high-pressure water on the steel plate surface is described as follows. ("Iron and Steel" 1991 vol. 77
No. 9 P1450) P (MPa) = 5.64 × P 0 × V / H 2 where P 0 (MPa): liquid pressure V (liter / min): nozzle flow H (cm): steel sheet surface and nozzle Distance between

【0039】流量Lは以下のように記述される。 L(リットル/cm2 )=V/(W×v) ただし、 V(リットル/min):ノズル流液量 W(cm):ノズル当たり噴射液が鋼板表面に当たって
いる幅 v(cm/min):通板速度 衝突圧P×流量Lの上限は本発明の効果を得るためには
特に定める必要はないが、ノズル流液量を増加させると
ノズルの摩耗が激しくなる等の不都合が生じるため、
0.02以下とすることが望ましい。
The flow rate L is described as follows. L (liter / cm 2 ) = V / (W × v), where V (liter / min): Nozzle flow amount W (cm): Width of jet liquid per nozzle hitting steel sheet surface v (cm / min): Passing speed The upper limit of the collision pressure P × the flow rate L does not need to be particularly determined in order to obtain the effect of the present invention. However, increasing the flow rate of the nozzle causes inconvenience such as intensified wear of the nozzle.
It is desirable to set it to 0.02 or less.

【0040】さらに、仕上げ圧延後の鋼板の最大高さR
yが15μm(15μmRy,l2.5mm,ln1
2.5mm)以下であることが望ましい。これは、例え
ば金属材料疲労設計便覧、日本材料学会編、84ページ
に記載されている通り熱延または酸洗ままの鋼板の疲労
強度は鋼板表面の最大高さRyと相関があることから明
らかである。また、その後の仕上げ圧延はデスケーリン
グ後に再びスケールが生成してしまうのを防ぐために5
秒以内に行うのが望ましい。
Further, the maximum height R of the steel sheet after the finish rolling is performed.
y is 15 μm (15 μm Ry, 12.5 mm, ln1
2.5 mm) or less. This is apparent from the fact that the fatigue strength of a hot-rolled or pickled steel sheet is correlated with the maximum height Ry of the steel sheet surface, as described in, for example, Handbook of Fatigue Design for Metallic Materials, edited by The Society of Materials Science, Japan, page 84. is there. Further, the subsequent finish rolling is performed in order to prevent scale from being formed again after descaling.
It is desirable to do this within seconds.

【0041】本発明において仕上圧延を終了した後、所
定の巻取温度にて巻取るまでの工程については、その間
の冷却速度以外は特に定めないが、バーリング加工性を
それほど劣化させずに延性との両立を目指す場合は、A
3 変態点からAr1 変態点までの温度域(フェライト
とオーステナイトの二相域)で1〜20秒間滞留させて
もよい。ここでの滞留は、二相域でフェライト変態を促
進させるために行うが、1秒未満では、二相域における
フェライト変態が不十分なため、十分な延性が得られ
ず、20秒超では、パーライトが生成し、目的とする体
積率最大のミクロ組織として、ベイナイト,またはフェ
ライトおよびベイナイトの複合組織が得られない。ま
た、1〜20秒間の滞留をさせる温度域はフェライト変
態を容易に促進させるためにはAr1 変態点以上800
℃以下が望ましい。さらにAlNの析出を抑制するとい
う観点からは700℃以下がより望ましい。さらに、1
〜20秒間の滞留時間は生産性を極端に低下させないた
めには1〜10秒間とすることが望ましい。
In the present invention, the process up to winding at a predetermined winding temperature after finishing rolling is not particularly limited except for the cooling rate during the process, but the ductility and the burring workability are not significantly deteriorated. If you aim to balance
It may be retained for 1 to 20 seconds in a temperature range from the r 3 transformation point to the Ar 1 transformation point (two-phase region of ferrite and austenite). The retention here is performed in order to promote ferrite transformation in the two-phase region, but if less than 1 second, the ferrite transformation in the two-phase region is insufficient, so that sufficient ductility cannot be obtained. Pearlite is generated, and bainite or a composite structure of ferrite and bainite cannot be obtained as a target microstructure having the maximum volume fraction. In order to facilitate the ferrite transformation, the temperature range in which the stagnation is maintained for 1 to 20 seconds is at least the Ar 1 transformation point.
C or lower is desirable. Further, from the viewpoint of suppressing the precipitation of AlN, 700 ° C. or lower is more preferable. In addition, 1
The residence time for up to 20 seconds is desirably 1 to 10 seconds in order not to significantly reduce the productivity.

【0042】また、これらの条件を満たすためには、仕
上げ圧延終了後20℃/s以上の冷却速度で当該温度域
に迅速に到達させることが必要である。冷却速度の上限
は特に定めないが、冷却設備の能力上300℃/s以下
が妥当な冷却速度である。さらに、あまりにもこの冷却
速度が早いと冷却終了温度を制御できずオーバーシュー
トしてAr1 変態点以下まで過冷却されてしまう可能性
があり、延性改善の効果が失われるので、ここでの冷却
速度は150℃/s以下が望ましい。
In order to satisfy these conditions, it is necessary to quickly reach the temperature range at a cooling rate of 20 ° C./s or more after finish rolling. The upper limit of the cooling rate is not particularly defined, but 300 ° C./s or less is a reasonable cooling rate in view of the capacity of the cooling equipment. Further, if the cooling rate is too high, the cooling end temperature cannot be controlled, and there is a possibility of overshoot and overcooling to the Ar 1 transformation point or less, and the effect of improving ductility is lost. The speed is desirably 150 ° C./s or less.

【0043】仕上圧延を終了した後、所定の巻取温度
(CT)にて巻取るまでの冷却速度は20℃/s以上と
する。20℃/s未満の冷却速度では、パーライトが生
成する恐れがあり、目的とする体積率最大のミクロ組織
であるベイナイト、またはフェライトおよびベイナイト
の複合組織が得られない。一方、巻取温度までの冷却速
度の上限は特に定めることなく本発明の効果を得ること
ができるが、熱ひずみによる板そりが懸念されることか
ら、300℃/s以下とすることが望ましい。
After finishing rolling, the cooling rate until winding at a predetermined winding temperature (CT) is 20 ° C./s or more. If the cooling rate is less than 20 ° C./s, pearlite may be generated, and bainite or a composite structure of ferrite and bainite, which is a microstructure having the maximum desired volume fraction, cannot be obtained. On the other hand, the effect of the present invention can be obtained without particularly setting the upper limit of the cooling rate to the winding temperature.

【0044】巻取温度が650℃超では、パーライトが
生成して目的とする体積率最大のミクロ組織であるベイ
ナイト,またはフェライトおよびベイナイトからなるミ
クロ組織が得られないため、巻取温度は、650℃以下
と限定する。一方、巻取温度が450℃未満では、バー
リング加工性に有害な残留オーステナイトまたはマルテ
ンサイトが多量に生成する恐れがあり目的とする体積率
最大のミクロ組織であるベイナイト,またはフェライト
およびベイナイトからなるミクロ組織が得られないた
め、巻取温度は、450℃以上と限定する。熱間圧延工
程終了後は必要に応じて酸洗し、その後インラインまた
はオフラインで圧下率10%以下のスキンパスまたは圧
下率40%程度までの冷間圧延を施しても構わない。
If the winding temperature is higher than 650 ° C., pearlite is formed, and the desired microstructure of bainite or ferrite and bainite having the maximum volume fraction cannot be obtained. Limit to below ° C. On the other hand, when the winding temperature is lower than 450 ° C., a large amount of retained austenite or martensite harmful to burring workability may be generated, and bainite, which is the microstructure having the maximum volume fraction, or microstructure comprising ferrite and bainite Since a texture cannot be obtained, the winding temperature is limited to 450 ° C. or higher. After the completion of the hot rolling step, pickling may be performed as necessary, and then a skin pass with a rolling reduction of 10% or less or cold rolling to a rolling reduction of about 40% may be performed in-line or off-line.

【0045】[0045]

【実施例】以下に、実施例により本発明をさらに説明す
る。表1に示す化学成分を有するA〜Nの鋼は、転炉に
て溶製して、連続鋳造後、表2に示す加熱温度(SR
T)で再加熱し、粗圧延後に同じく表2に示す仕上げ圧
延温度(FT)で1.2〜5.4mmの板厚に圧延した
後、表2に示す巻取温度(CT)でそれぞれ巻き取っ
た。なお一部については粗圧延後に衝突圧2.7MP
a、流量0.001リットル/cm2 の条件で高圧デス
ケーリングを行った。ただし、表中の化学組成について
の表示は質量%である。
The present invention will be further described below with reference to examples. The steels A to N having the chemical components shown in Table 1 were melted in a converter and continuously cast, and then heated at a temperature shown in Table 2 (SR
T), and after rough rolling, after rolling at a finish rolling temperature (FT) shown in Table 2 to a sheet thickness of 1.2 to 5.4 mm, winding at a winding temperature (CT) shown in Table 2 respectively. I took it. For some parts, after rough rolling, the collision pressure was 2.7MP.
a, High-pressure descaling was performed under the conditions of a flow rate of 0.001 liter / cm 2 . However, the indication of the chemical composition in the table is% by mass.

【0046】[0046]

【表1】 [Table 1]

【0047】このようにして得られた熱延板の引張試験
は、供試材を、まず、JIS Z2201記載の5号試
験片に加工し、JIS Z 2241記載の試験方法に
従って行った。さらに、バーリング加工性(穴拡げ性)
については日本鉄鋼連盟規格JFS T 1001−1
996記載の穴拡げ試験方法に従って評価した。表2に
その試験結果を示す。ここで、残留オーステナイト,フ
ェライト、ベイナイト、パーライト及びマルテンサイト
の体積分率とは鋼板板幅の1/4Wもしくは3/4W位
置より切出した試料を圧延方向断面に研磨、エッチング
し、光学顕微鏡を用い200〜500倍の倍率で観察さ
れた板厚の1/4tにおけるミクロ組織の面積分率で定
義される。
In the tensile test of the hot-rolled sheet obtained in this manner, the test material was first processed into a No. 5 test piece described in JIS Z2201, and was subjected to a test method described in JIS Z2241. Furthermore, burring workability (hole expanding property)
About Japan Iron and Steel Federation Standard JFS T 1001-1
The evaluation was performed according to the hole expansion test method described in 996. Table 2 shows the test results. Here, the volume fraction of retained austenite, ferrite, bainite, pearlite and martensite refers to a sample cut out from a 1 / 4W or 3 / 4W position of a steel sheet width, polished and etched into a cross section in the rolling direction, and using an optical microscope. It is defined as the area fraction of the microstructure at 1 / 4t of the plate thickness observed at a magnification of 200 to 500 times.

【0048】[0048]

【表2】 [Table 2]

【0049】次に、図1に示す形状の疲労試験片を鋼板
板幅の1/4Wもしくは3/4W位置より圧延方向が長
辺になるように採取し低サイクル疲労試験に供した。た
だし、疲労試験片の表面は三山仕上の研削表面とした。
疲労試験は電気油圧サーボ型疲労試験機を用い、試験方
法はASTM E606−92に準じた。なお、試験条
件は図2に示すように軸方向に三角波にて完全両振り引
張圧縮負荷で、全ひずみ振幅を0.3〜0.6%、ひず
み速度を4.0×10-3/secとした。試験はひずみ
応答および応力応答の変化を記録しながら行った。疲労
試験終了後、全ひずみ振幅の条件が2≦2100×εa
/YP≦4の範囲で試験を行った試験片について図3に
示すように破断部近傍1/4厚の部位から透過型電子顕
微鏡試料(薄膜)を加工ひずみが導入されないように採
取し、透過型電子顕微鏡にて転位構造の観察を行った。
表2中に、Scellとしてセル構造の面積率を示す。ただ
し、透過型電子顕微鏡による観察は2000〜1000
0倍の倍率にて結晶粒を変えて10視野以上観察した。
ここでYP:降伏応力または0.2%耐力(MPa)、
εa:全ひずみ振幅(%)である。
Next, a fatigue test piece having the shape shown in FIG. 1 was sampled from the 1/4 W or 3/4 W position of the steel sheet width so that the rolling direction became the longer side, and subjected to a low cycle fatigue test. However, the surface of the fatigue test piece was a ground surface with a three-sided finish.
The fatigue test was performed using an electrohydraulic servo-type fatigue tester, and the test method was in accordance with ASTM E606-92. As shown in FIG. 2, the test conditions were as follows: a complete triangular wave in the axial direction, a complete swinging tensile compression load, a total strain amplitude of 0.3 to 0.6% and a strain rate of 4.0 × 10 −3 / sec. And The test was performed while recording changes in strain response and stress response. After the fatigue test, the condition of the total strain amplitude is 2 ≦ 2100 × ε a
As shown in FIG. 3, a transmission electron microscope sample (thin film) was sampled from a portion having a thickness of 1/4 near the fractured portion so that no processing strain was introduced, and the transmission was performed on the test piece which was tested in the range of / YP ≦ 4. The dislocation structure was observed with a scanning electron microscope.
Table 2 shows the area ratio of the cell structure as S cell . However, observation with a transmission electron microscope is 2000 to 1000
The crystal grains were changed at a magnification of 0, and observation was made for 10 visual fields or more.
Where YP: yield stress or 0.2% proof stress (MPa),
ε a : total strain amplitude (%).

【0050】鋼板の低サイクル疲労強度は、繰返し降伏
応力を引張強度で除した値で評価した。ここで、繰返し
降伏応力とは、破断寿命(Nf)の1/2の繰返し数で
の応力振幅σa をひずみに対して直線近似した直線を応
力‐ひずみ曲線または弾性直線に外挿した交点とした。
本発明に沿うものは、鋼A、B、D、E、G、H、J−
1、J−6、N、Oの10鋼であり、所定の量の鋼成分
を含有し、その体積率最大のミクロ組織が、ベイナイ
ト,またはフェライトおよびベイナイトの複合組織から
なり、疲労試験後に観察される転位構造のうちセル構造
の面積率が50%以下であることを特徴とする、低サイ
クル疲労強度に優れる高バーリング性熱延鋼板が得られ
ている。
The low cycle fatigue strength of the steel sheet was evaluated by dividing the yield stress by the tensile strength. Here, the cyclic yield stress is defined as the intersection of a stress-strain curve or an elastic straight line extrapolating a straight line obtained by linearly approximating the stress amplitude σ a at a repetition number of 1 / of the fracture life (Nf) to the strain. did.
According to the present invention, steel A, B, D, E, G, H, J-
1, J-6, N, O, 10 steels, containing a predetermined amount of steel components, the microstructure of the largest volume fraction consisting of bainite or a composite structure of ferrite and bainite, observed after a fatigue test A high burring hot-rolled steel sheet excellent in low cycle fatigue strength, characterized in that the area ratio of the cell structure among the dislocation structures to be formed is 50% or less.

【0051】上記以外の鋼は、以下の理由によって本発
明の範囲外である。すなわち、鋼Cは、Cの含有量が本
発明の範囲外であるので目的とするミクロ組織が得られ
ず十分な疲労強度(TS)が得られていない。鋼Fは、
Sの含有量が本発明の範囲外であるので十分な穴拡げ値
(λ)が得られていない。鋼Iは、Pの含有量が本発明
の範囲外であるので十分な低サイクル疲労強度(CYS
/TS)が得られていない。鋼J−2は、仕上圧延終了
温度(FT)が本発明の範囲より低く、ひずみが残留し
て延性(El)が低い。鋼J−3は、巻取温度(CT)
が本発明の範囲より高く、目的とするミクロ組織が得ら
れず十分な穴拡げ値(λ)が得られていない。
Other steels are outside the scope of the present invention for the following reasons. That is, since the steel C has a C content outside the range of the present invention, a desired microstructure cannot be obtained and a sufficient fatigue strength (TS) cannot be obtained. Steel F is
Since the S content is out of the range of the present invention, a sufficient hole expansion value (λ) is not obtained. Steel I has a sufficient low cycle fatigue strength (CYS) because the content of P is out of the range of the present invention.
/ TS) is not obtained. Steel J-2 has a finish rolling end temperature (FT) lower than the range of the present invention, a strain remaining, and a low ductility (El). Steel J-3 has a winding temperature (CT)
However, the target microstructure was not obtained and a sufficient hole expansion value (λ) was not obtained.

【0052】鋼J−4は、巻取温度(CT)が本発明の
範囲より低く、目的とするミクロ組織が得られず十分な
穴拡げ値(λ)が得られていない。鋼J−5は、仕上圧
延後の冷却速度(CR)が本発明の範囲より遅く、目的
とするミクロ組織が得られず十分な穴拡げ値(λ)が得
られていない。鋼Kは、0.52Al/Nの値が本発明
の範囲外であるので十分な低サイクル疲労強度(CYS
/TS)が得られていない。鋼Lは、Cr+3.5Mo
+39Vの値が本発明の範囲外であるので十分な低サイ
クル疲労強度(CYS/TS)が得られていない。鋼M
は、Cの含有量が本発明の範囲外であるので目的とする
ミクロ組織が得られず十分な穴拡げ値(λ)が得られて
いない。
The steel J-4 has a winding temperature (CT) lower than the range of the present invention, so that a desired microstructure cannot be obtained and a sufficient hole expansion value (λ) cannot be obtained. In steel J-5, the cooling rate (CR) after finish rolling was lower than the range of the present invention, and the desired microstructure was not obtained and a sufficient hole expansion value (λ) was not obtained. Steel K has a sufficiently low cycle fatigue strength (CYS) because the value of 0.52 Al / N is out of the range of the present invention.
/ TS) is not obtained. Steel L is Cr + 3.5Mo
Since the value of +39 V is out of the range of the present invention, sufficient low cycle fatigue strength (CYS / TS) has not been obtained. Steel M
However, since the content of C is out of the range of the present invention, a desired microstructure cannot be obtained and a sufficient hole expansion value (λ) cannot be obtained.

【0053】[0053]

【発明の効果】以上詳述したように、本発明は、低サイ
クル疲労強度に優れる高バーリング性熱延鋼板およびそ
の製造方法に関するものであり、これらの熱延鋼板を用
いることにより、自動車足廻り部品等の耐久性とバーリ
ング加工性の両立が求められる部材においての重要な特
性の一つである低サイクル疲労特性の大幅な改善が期待
できるため、本発明は、工業的価値が高い発明であると
言える。
As described above in detail, the present invention relates to a high burring hot-rolled steel sheet having excellent low cycle fatigue strength and a method for producing the hot-rolled hot-rolled steel sheet. Since the present invention can be expected to significantly improve low cycle fatigue characteristics, which is one of the important characteristics in a member that requires both durability and burring workability of parts and the like, the present invention is an invention having high industrial value. It can be said.

【図面の簡単な説明】[Brief description of the drawings]

【図1】疲労試験片の形状を説明する図である。FIG. 1 is a diagram illustrating the shape of a fatigue test piece.

【図2】疲労試験荷重負荷方法を説明する図である。FIG. 2 is a diagram illustrating a method of loading a fatigue test.

【図3】透過型電子顕微鏡試料採取位置を説明する図で
ある。
FIG. 3 is a diagram illustrating a transmission electron microscope sample collection position.

【図4】疲労試験後に観察される転位構造のうちセル構
造の例を示す電子顕微鏡写真である。
FIG. 4 is an electron micrograph showing an example of a cell structure among dislocation structures observed after a fatigue test.

【図5】疲労試験後に観察される転位構造のうちセル構
造以外の例を示す電子顕微鏡写真である。
FIG. 5 is an electron micrograph showing an example of a dislocation structure observed after a fatigue test, other than a cell structure.

【図6】本発明に至る予備実験の結果を、疲労試験後の
セル構造面積率と低サイクル疲労強度(繰返し降伏応力
を引張強度で除した値)の関係で示す図である。
FIG. 6 is a diagram showing the results of a preliminary experiment leading to the present invention in a relationship between the cell structure area ratio after a fatigue test and low cycle fatigue strength (a value obtained by dividing a cyclic yield stress by a tensile strength).

【図7】本発明に至る予備実験の結果を、0.52Al
/Nの値の範囲、Cr+3.5Mo+39Vの値の範囲
と疲労試験後のセル構造面積率の関係で示す図である。
FIG. 7 shows the results of preliminary experiments leading to the present invention,
It is a figure which shows in the relationship of the range of the value of / N, the range of the value of Cr + 3.5Mo + 39V, and the cell structure area ratio after a fatigue test.

【図8】疲労試験において1/2Nfでの応力振幅σa
を説明する図である。
FIG. 8 shows a stress amplitude σ a at 1 / 2Nf in a fatigue test.
FIG.

【図9】疲労試験において繰返し降伏応力CYSを説明
する図である。
FIG. 9 is a diagram illustrating a repeated yield stress CYS in a fatigue test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB03 EB06 EB07 EB08 EB09 EB11 FB10 FC07 FD03 FE01 FE02 JA06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/58 C22C 38/58 (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation F-term (Reference) 4K037 EA01 EA02 EA05 EA06 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA28 EA31 EA32 EA35 EA36 EB03 EB06 EB07 EB08 EB09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%にて、 C :0.01〜0.2%、 Si:0.01〜2%、 Mn:0.05〜3%、 P ≦0.1%、 S ≦0.01%を含み、 Al≦0.2%、 N :0.001〜0.1%、 0.52Al/N≦10を満たすようにAlとNを含有
し、かつCr、Mo、Vのうち一種または二種以上を Cr≦2.5%、 Mo≦1%、 V ≦0.1%、 かつ(Cr+3.5Mo+39V)≧0.1を満たすよ
うに含有し、残部がFe及び不可避的不純物からなる鋼
であって、その体積分率最大のミクロ組織が、ベイナイ
ト,またはフェライトおよびベイナイトの複合組織から
なり、疲労試験後に観察される転位構造のうちセル構造
の面積率が50%以下であることを特徴とする、低サイ
クル疲労強度に優れる高バーリング性熱延鋼板。
C .: 0.01 to 0.2%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P ≦ 0.1%, S ≦ 0. Al ≦ N%, N: 0.001 to 0.1%, 0.52 Al / N is contained so as to satisfy Al / N ≦ 10, and one of Cr, Mo, and V Or, two or more kinds are contained so as to satisfy Cr ≦ 2.5%, Mo ≦ 1%, V ≦ 0.1%, and (Cr + 3.5Mo + 39V) ≧ 0.1, and the balance consists of Fe and inevitable impurities. In steel, the microstructure having the largest volume fraction is bainite or a composite structure of ferrite and bainite, and the area ratio of the cell structure among the dislocation structures observed after the fatigue test is 50% or less. High burring hot rolled steel sheet with excellent low cycle fatigue strength.
【請求項2】 前記鋼が、さらに、質量%にて、Cu:
0.2〜1.2%を含有することを特徴とする、請求項
1に記載の低サイクル疲労強度に優れる高バーリング性
熱延鋼板。
2. The steel according to claim 1, further comprising:
The high burring hot-rolled steel sheet having excellent low cycle fatigue strength according to claim 1, characterized by containing 0.2 to 1.2%.
【請求項3】 前記鋼が、さらに、質量%にて、B:
0.0002〜0.002%を含有することを特徴とす
る、請求項1または請求項2に記載の低サイクル疲労強
度に優れる高バーリング性熱延鋼板。
3. The steel according to claim 1, further comprising:
The high burring hot-rolled steel sheet having excellent low cycle fatigue strength according to claim 1 or 2, characterized by containing 0.0002 to 0.002%.
【請求項4】 前記鋼が、さらに、質量%にて、Ni:
0.1〜0.6%を含有することを特徴とする、請求項
1ないし請求項3のいずれか1項に記載の低サイクル疲
労強度に優れる高バーリング性熱延鋼板。
4. The steel according to claim 1, further comprising:
The high burring hot-rolled steel sheet having excellent low cycle fatigue strength according to any one of claims 1 to 3, characterized by containing 0.1 to 0.6%.
【請求項5】 前記鋼が、さらに、質量%にて、 Ca:0.0005〜0.002%、 REM:0.0005〜0.02% の一種または二種を含有することを特徴とする、請求項
1ないし請求項4のいずれか1項に記載の低サイクル疲
労強度に優れる高バーリング性熱延鋼板。
5. The steel further comprises, in mass%, one or two of Ca: 0.0005 to 0.002% and REM: 0.0005 to 0.02%. The high burring hot-rolled steel sheet according to any one of claims 1 to 4, which is excellent in low cycle fatigue strength.
【請求項6】 前記鋼が、さらに、質量%にて、Nb:
0.001〜0.1%かつN−0.15Nb≧0.00
05%、Ti:0.001〜0.1%かつN−0.29
Ti≧0.0005%、Zr:0.001〜0.2%の
一種または二種以上を含有することを特徴とする、請求
項1ないし請求項5のいずれか1項に記載の低サイクル
疲労強度に優れる高バーリング性熱延鋼板。
6. The steel according to claim 1, wherein the steel further comprises Nb:
0.001-0.1% and N-0.15Nb ≧ 0.00
05%, Ti: 0.001-0.1% and N-0.29
The low cycle fatigue according to any one of claims 1 to 5, wherein one or more of Ti ≧ 0.0005% and Zr: 0.001 to 0.2% is contained. High burring hot rolled steel sheet with excellent strength.
【請求項7】 請求項1ないし請求項6のいずれか1項
に記載の成分を有する鋼片の熱間圧延に際し、Ar3
態点温度以上で熱間仕上圧延を終了した後、20℃/s
以上の冷却速度で冷却して、450℃以上650℃以下
の温度範囲の巻取温度で巻き取り、その体積分率最大の
ミクロ組織が、ベイナイト,またはフェライトおよびベ
イナイトの複合組織からなり、疲労試験後に観察される
転位構造のうちセル構造の面積率が50%以下である鋼
板を得ることを特徴とする、低サイクル疲労強度に優れ
る高バーリング性熱延鋼板の製造方法。
7. The hot rolling of a slab having the composition described in any one of claims 1 to 6, after finishing the hot finish rolling at a temperature not lower than the Ar 3 transformation point, at 20 ° C. / s
Cooling at the above cooling rate, winding at a winding temperature in the temperature range of 450 ° C. or more and 650 ° C. or less, the microstructure having the largest volume fraction is composed of bainite or a composite structure of ferrite and bainite, and is subjected to a fatigue test. A method for producing a high burring hot-rolled steel sheet having excellent low cycle fatigue strength, comprising obtaining a steel sheet having an area ratio of a cell structure of 50% or less among dislocation structures observed later.
【請求項8】 前記熱間圧延に際し、粗圧延終了後、高
圧デスケーリングを行ない、Ar3 変態点温度以上で熱
間仕上圧延を終了することを特徴とする請求項7記載の
低サイクル疲労強度に優れる高バーリング性熱延鋼板の
製造方法。
8. The low cycle fatigue strength according to claim 7, wherein, during the hot rolling, after the rough rolling is completed, high-pressure descaling is performed, and the hot finish rolling is completed at the Ar 3 transformation point temperature or higher. For producing high burring hot rolled steel sheet with excellent heat resistance.
JP2000305623A 2000-10-05 2000-10-05 High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same Expired - Fee Related JP3887161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305623A JP3887161B2 (en) 2000-10-05 2000-10-05 High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305623A JP3887161B2 (en) 2000-10-05 2000-10-05 High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002105594A true JP2002105594A (en) 2002-04-10
JP3887161B2 JP3887161B2 (en) 2007-02-28

Family

ID=18786448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305623A Expired - Fee Related JP3887161B2 (en) 2000-10-05 2000-10-05 High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP3887161B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156681A (en) * 2006-12-21 2008-07-10 Kobe Steel Ltd Hot rolled steel sheet excellent in stretch flange-formability and surface property, and its production method
WO2009145563A2 (en) * 2008-05-29 2009-12-03 주식회사 포스코 Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
CN113528956A (en) * 2021-06-30 2021-10-22 武汉钢铁有限公司 High-strength weathering steel with excellent fatigue performance and corrosion resistance and production method thereof
EP3290200B1 (en) 2006-10-30 2021-12-01 ArcelorMittal Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product
CN115747666A (en) * 2023-01-10 2023-03-07 山西建龙实业有限公司 Low-carbon hot-rolled pickled steel and control method for transverse crease mark defects of steel strip of low-carbon hot-rolled pickled steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3290200B1 (en) 2006-10-30 2021-12-01 ArcelorMittal Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product
EP3587104B1 (en) 2006-10-30 2022-03-30 ArcelorMittal Coated steel strips
EP3587105B1 (en) 2006-10-30 2022-09-21 ArcelorMittal Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product
US11939643B2 (en) 2006-10-30 2024-03-26 Arcelormittal Coated steel strips, coated stamped products and methods
JP2008156681A (en) * 2006-12-21 2008-07-10 Kobe Steel Ltd Hot rolled steel sheet excellent in stretch flange-formability and surface property, and its production method
WO2009145563A2 (en) * 2008-05-29 2009-12-03 주식회사 포스코 Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
WO2009145563A3 (en) * 2008-05-29 2010-03-04 주식회사 포스코 Ultra high strength steel sheet with an excellent heat treatment property for hot press forming, quenched member, and manufacturing method for same
CN113528956A (en) * 2021-06-30 2021-10-22 武汉钢铁有限公司 High-strength weathering steel with excellent fatigue performance and corrosion resistance and production method thereof
CN115747666A (en) * 2023-01-10 2023-03-07 山西建龙实业有限公司 Low-carbon hot-rolled pickled steel and control method for transverse crease mark defects of steel strip of low-carbon hot-rolled pickled steel

Also Published As

Publication number Publication date
JP3887161B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US10077486B2 (en) High-strength cold-rolled steel sheet and method of manufacturing the same
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
US9028626B2 (en) Method for manufacturing high strength galvanized steel sheet with excellent formability
JP5233142B2 (en) High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP5157215B2 (en) High rigidity and high strength steel plate with excellent workability
KR101424859B1 (en) High-strength steel sheet and manufacturing method therefor
KR101569977B1 (en) High-strength cold-rolled steel sheet with high yield ratio having excellent formability and method for producing the same
KR20200124293A (en) High-strength cold rolled steel sheet and its manufacturing method
WO2018033960A1 (en) Hot press-formed member
JP4161935B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP4167587B2 (en) High-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
US20140044988A1 (en) High-strength steel sheet excellent in workability and manufacturing method thereof
US20220333221A1 (en) Cold-rolled steel sheet and method for producing same
JP2001303186A (en) Dual-phase steel sheet excellent in burring property, and its manufacturing method
KR102635009B1 (en) High-strength hot rolled steel sheet and manufacturing method thereof
JP4205853B2 (en) Hot-rolled steel sheet with excellent burring workability and fatigue characteristics and method for producing the same
JP7276366B2 (en) High-strength steel plate and its manufacturing method
JP2011080106A (en) High strength cold-rolled steel sheet excellent in balance of extension and formability for extending flange
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JP3924108B2 (en) Manufacturing method of high strength steel sheet with excellent hydroformability after pre-processing
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP3887161B2 (en) High burring hot rolled steel sheet with excellent low cycle fatigue strength and method for producing the same
JP2001011565A (en) High strength steel sheet excellent in impact energy absorbability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R151 Written notification of patent or utility model registration

Ref document number: 3887161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees