JPH0555571B2 - - Google Patents

Info

Publication number
JPH0555571B2
JPH0555571B2 JP61004691A JP469186A JPH0555571B2 JP H0555571 B2 JPH0555571 B2 JP H0555571B2 JP 61004691 A JP61004691 A JP 61004691A JP 469186 A JP469186 A JP 469186A JP H0555571 B2 JPH0555571 B2 JP H0555571B2
Authority
JP
Japan
Prior art keywords
temperature
austenite
less
ferrite
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61004691A
Other languages
Japanese (ja)
Other versions
JPS62164828A (en
Inventor
Ichiro Tsukatani
Masaaki Katsumata
Tadashi Kamei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP469186A priority Critical patent/JPS62164828A/en
Publication of JPS62164828A publication Critical patent/JPS62164828A/en
Publication of JPH0555571B2 publication Critical patent/JPH0555571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高延性高強度複合組織鋼板の製造法に
係り、特に引張強さが80Kgf/mm2以上の高強度を
有し、しかも極めて優れた延性と点溶接性を有す
る複合組織鋼板の製造法に関する。 (従来の技術及び解決しようとする問題点) 自動車等の構造材として用いられる薄鋼板は加
工性、溶接性その他多様な特性を必要とするもの
であるが、近年、燃費や安全性のために鋼板の高
強度化が強く要求されている。すなわち、この強
度化は引張強さTSが60〜70Kgf/mm2までを主体
とするものであるが、更に、TS≧80Kgf/mm2
ような高強度の鋼板が要求されることも多い。 ところで、このようにTS=80〜140Kgf/mm2
グレードで加工性の高い高強度鋼板としては、こ
れまでにフエライトとマルテンサイトの2相、或
いはベーナイトとマルテンサイトの2相から成る
複合組織鋼板が開発されている。しかしながら、
近年における社会的ニーズはその多様性が益々増
大しつつあり、該複合組織鋼板も加工性などにお
いて必ずしも満足し得るものでない。特に、自動
車用鋼板のように多量生産品の素材としては、安
価であることが必須条件であり、加えて強度−延
性バランスのみならず、溶接性等その他の諸性質
問の釣合いも十分考慮されねばならない。 このような観点から、近年、フエライト+残留
オーステナイト+マルテンサイト(一部ベーナイ
トを含む)から成る高加工性の高強度複合組織鋼
板が開示されているが (特開昭60−43430号)、強度−延性バランス向
上のため必須なオーステナイトの安定化のために
Cが多量に含有している。このため、特に自動車
用鋼板として必要な特性である点溶接性が良くな
いという問題点がある。 本発明は、上記従来技術の有する問題点を解決
するためになされたものであつて、引張強さが80
Kgf/mm2以上の高強度を有し、しかも、極めて優
れた延性及び点溶接性を有する複合組織鋼板を経
済的に、かつ、適確に製造することができる方法
を提供することを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者等は、従来
法による高C含有の複合組織鋼板の製造法につい
て鋼組成、熱延条件、焼鈍条件等々の再検討並び
に考察を試みた。 高強度でしかも従来法による以上の高延性を有
する複合組織鋼板を得ようとすると、従来、たか
だか数%した含有しなかつた残留オーステナイト
体積率を適正にコントロールする必要がある。こ
れはオーステナイトの加工誘起変態に伴う高n値
化によるもので、期待する高延性を得るためには
10%以上含有させる必要がある。 一方、オーステナイト安定化元素として、C、
Mn、Niなどが一般に良く知られており、その効
果がもつとも大きいのはCである。C量の増加に
つれてオーステナイトが安定化し、特に恒温変態
を行つた時にオーステナイトが残留する。このよ
うに、高C鋼を用い、オーステナイト域、若しく
はフエライト+マルテンサイトの2相域に再加熱
後、適正な熱履歴を付与することにより、極めて
高延性の高強度鋼板が得られる。 しかしながら、前述の如く高C化は自動車用鋼
板として必須な特性である点溶接性を悪化させ
る。そこで、本発明者等は、成分組成面での規制
によつて高C鋼板の点溶接性を改善し得る方策に
ついて実験研究を重ねた結果、Si及びMnの同時
規制により可能であることが判明した。すなわ
ち、 1.5%を超えるSiを含有させると共にSi+Mnを
2.8〜4.0%の範囲内に規制するならば、点溶接
後、溶融部及び熱影響部において冷却時にフエラ
イトを優先的に生成し、またオーステナイトが残
留し易くマルテンサイト変態が抑制されるため、
点溶接性が改善されるものと考えられる。 次に、熱延条件及び焼鈍条件についても実験研
究を重ねた結果、上記の如く高C化でSi及びMn
を同時規制した該複合組織薄鋼板においては、残
留オーステナイト体積率が同一であつても加工変
形に対する安定度によつて延性に差を生じると考
えられるが、 (a) 熱延に際して、650℃以上で巻取る。 (b) 連続焼鈍に際して、ソーキング後の冷却条件
を適切にコントロールする、すなわち、まず30
℃/sec以下の冷却速度(C1)で600℃〜Ar1
態点(Tq)まで徐冷し、次いで30℃/sec以上
の冷却速度(C2)で350〜450℃の温度まで急
冷する。 ことにより、適当な安定度を持つた残留オーステ
ナイトが多量に得られる。すなわち、本発明等
は、延性に対して都合の良い残留オーステナイト
の量と安定度が組織中にベーナイトを15%以上含
有させることにより達成されることを明らかに
し、更に、上記の2条件が350〜450℃×1〜
5min保持時、ベーナイトを15%以上生成するの
に必須であることを見い出した。これらの理由は
必ずしも明確ではないが、 (a) 熱延鋼板中の炭化物が球状化されるため、フ
エライト+オーステナイトの2相域に再加熱さ
れた時、これを核にオーステナイト化し、その
相中のC、Mn等の濃化程度が高いため、 (b) 冷却中のフエライト変態、ベーナイト変態が
適正にコントロールされるため、 と考えられる。 以上の諸知見に基づき、更に強度−延性バラン
ス等の面をも加味し、詳細に規制すべき条件(成
分、熱延条件、焼鈍条件)を検討の末、本発明を
なしたものである。 すなわち、本発明に係る点溶接性に優れた高延
性高強度複合組織鋼板の製造法は、重量割合で、
C:0.15〜0.45%、Si:1.5%を超え2.0%以下及び
Mn≧1.1%で、かつ、Si+Mn:2.8〜4.0%であ
り、更に必要に応じてP:0.02〜0.20%、V:
0.05〜0.40%及びB:0.0005〜0.01%のうちの1
種又は2種以上を含み、また更にS≦0.005%、
solAl:0.01〜0.06%を含有し、残部が鉄及び不可
避的不純物からなる鋼スラブにつき、Ar3変態温
度以上で熱間圧延を終了し、650℃以上の温度で
巻取り、次いで、その後の連続焼鈍において、オ
ーステナイト+フエライトの2相域に4分間以下
加熱保持した後、350〜450℃の温度範囲に1〜5
分間保持するために急冷するに際して、まず、30
℃/sec以下の冷却速度で上記保持温度から600℃
〜Ar1変態点まで徐冷し、次いで、30℃/sec以
上の冷却速度で350〜450℃の温度まで急冷するこ
とにより、体積率でベーナイトが15%以上で残部
がフエライト、残留オーステナイト及びマルテン
サイトからなる複合組織を得ることを特徴とする
ものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 まず、本発明法の対象とする鋼の成分並びにそ
の範囲の限定理由を示す。 C:Cは鋼の強化には不可欠な元素であり、ま
た後述の如く熱延条件及び焼鈍条件を適正にコン
トロールするに際し、オーステナイトを安定化さ
せて、熱処理後、オーステナイトを体積率で10%
以上残留させるためには最低0.15%は必要であ
る。 一方、0.45%を超えると、残留オーステナイト
体積率が増大して強度−延性バランスを向上させ
るが、本発明の主たる狙いである点溶接性が、
Si、Mn量を適正に規制しても劣化するので、上
限として0.45%を設定した。 Si:Siはフエライト・フオーマー元素であるた
め、それ自体にはオーステナイトを安定化する働
きはない。しかし、オーステナイト+フエライト
の2相域保持中若しくはオーステナイト域やオー
ステナイト+フエライトの2相域からの冷却中に
生成するフエライトを純化するため、必然的に、
未変態オーステナイトへのCの濃縮を促進する効
果を通じてオーステナイトの安定化に寄与する。
また、本発明では、Siは更に重要な観点から規制
するものである。すなわち、Si量が少ない場合に
は点溶接性を満足するC量の上限は0.2%である
が、Siを1.5%を超えて含有せしめると、Cの上
限を0.45%まで上昇せしめられ、延いては強度−
延性バランスが良好となる。このような観点か
ら、Si量は1.5%を超える量とし、一方、2.0%を
超えるとこれらの効果が飽和し、また、スケール
性状が劣化するので、2.0%を上限とする。 Mn:Mnはオーステナイト生成元素として重
要であり、良好な強度−延性バランスを得る観点
から、10%以上の残留オーステナイト体積率を保
有せしめるためには最低1.1%以上が必要である。 また、MnはSiによる点溶接性改善の観点から
規制するものである。本発明が対象とするような
比較的C量の多い高C−Si鋼ではオーステナイト
が安定化しているため、点溶接後の冷却過程でマ
ルテンサイト変態が生じにくくなり、一定量のSi
とMnを含有するとき、却つて点溶接性が良好と
なる。そのような観点からSi+Mnを2.8%以上、
4.0%以下とする。なお、Mn量の上限はその必然
から規制される。また、上記Si及びMnの規制範
囲を図示すれば第1図のとうりである。 S:Sは加工性を劣化させるので、可及的に少
ない方が望ましい。特に本発明の対象とする鋼で
は凝固時のSの分配係数が小さいので、硫化物系
介在物量が通常鋼より多くなる。このため、Sは
更に低レベルに規制する必要があり、0.005%以
下とする。 solAl:solAlは鋼の脱酸剤として有効なもので
あるが、その含有量が0.01未満では脱酸の効果が
期待できなくなる。他方、0.06%を超えて含有さ
せても脱酸の効果が飽和して、それ以上の効果が
期待できなるなることから、0.01〜0.06%と限定
した。 なお、以上の各成分は本発明が対象とする鋼の
規制すべき必須成分であるが、以下に示すP、B
及びVは強度−延性バランスを更に向上させるた
めに、必要に応じて1種又は2種以上を含有せし
めることができる。 P:PはSiと同様、フエライト・フオーマー元
素であり、未変態オーステナイトへのCの濃縮を
促進する効果を通じてオーステナイトを更に安定
化する。従つて、Pは通常レベルであつても強度
−延性バランス等の特性上何等問題ないが、必要
に応じて0.02%以上Pを含有せしめると、更に良
好な強度−延性バランスが得られる。一方、0.2
%を超えると、その効果が飽和するばかりか、粒
界偏析によつて却つて鋼を脆化させるので、0.2
%を上限とする。 B:Bは焼入性を向上させる元素で、Crなど
の高価な元素を添加せずに所望の組織を得るうえ
で有利である。すなわち、Bを0.0005%以上含有
させると、生成するマルテンサイトの硬度を高
め、少ないマルテンサイト体積率で必要な強度が
得られるため、延性を高めるフエライト及びオー
ステナイト体積率を増加せしめることが可能であ
る。その下限はその効果を発揮させ得る量から、
また上限はその効果が飽和に達し、経済的でなく
なる量から、0.0005〜0.01%と限定した。 V:Vは元来、析出強化元素であり、点溶接時
の熱影響部の硬度低下を防止して点溶接性を改善
する。また、Vを0.05%以上添加すると、オース
テナイトを安定化して強度−延性バランスを改善
する。このような観点からその量が規制され、
0.05〜0.4%とする。 以上に示した化学成分を有する鋼は、造魂又は
連鋳後、Ar3変態点以上の温度で熱間圧延を終了
し、650℃以上、好ましくは650〜700℃で巻取る。
特に巻取温度を650℃以上とすることが熱延鋼板
中の炭化物を球状化し、以降の連続焼鈍時に多量
の残留オーステナイトを安定して得るうえで必要
である。 次いで実施する連続焼鈍においては、まず、オ
ーステナイト+フエライトの2相域(T1)に4
分間以下保持するが、これにより球状化された炭
化物を核にオーステナイト化し、オーステナイト
相中のC、Mn等の濃化程度が高められる。その
後の冷却態様としては、上記保持温度から30℃/
sec以下の冷却速度(C1)で600℃〜Ar1変態点
(Tq)まで徐冷し、次いで30℃/sec以上の冷却
速度(C2)で350〜450℃の温度(T2)まで急冷
して1〜5分間保持する。この焼鈍条件は、前述
の熱延条件と相俟つて、フエライト変態、ベーナ
イト変態を適正にコントロールし、組織中に15%
以上のベーナイトが含有し、延性に好都合な残留
オーステナイトの量及び安定度が確保されるのを
保証するものである。 (実施例) 第1表に示すような化学成分を有する13種の供
試鋼を溶製した。供試鋼B、E、F、G、K、L
及びMは本発明の範囲を満たすものであり、他は
比較鋼である。 各鋼は熱延巻取温度650〜700℃で熱間圧延し、
更に、冷間圧延により板厚1.0mmの供試材とした。
次いで、第2票のF2の条件(本発明範囲)で連
続焼鈍した後にゲージ長さ50mmのJIS5号引張試験
片を準備いて引張試験を行つた。また、組織の適
否を判定するため組織観察並びにベーナイト及び
オーステナイトの体積分率を測定した。結果は第
1表のとうりである。 第1表から明らかなように、供試鋼B、E、
F、G、K、L及びMの本発明対象鋼はTSが80
Kgf/mm2以上と高強度であると共に、TS×Elも
2300以上と優れたTS−Elバランスを有している
ばかりでなく、点溶接の十字引張強度が比較鋼に
比べて格段に優れている。これに対して、比較鋼
は、TS−Elバランスが特に劣悪という訳ではな
いが(供試鋼Cは良好)、本発明で意図する点溶
接性が良くない。 また、上記の供試鋼Fを用い、第2表に示すよ
うな条件のもとで熱間圧延及び連続焼鈍を行つ
た。 供試鋼F2、F3、F6及びF7が本発明の範囲内の
条件であり、他は範囲外である。結果は第2表の
とうりである。なお、同表中のT1、C1、Tq、
C2、T2は各々第2図に示す連続焼鈍サイクルの
条件を示している。 第2表より明らかなように、本発明例の供試鋼
F2、F3、F6及びF7はいずれも複合組織に体積率
で15%以上のベーナイト(と同じく10%以上のオ
ーステナイト)を含み、TS×Elで2300以上と優
れたTS−Elバランスを有している。これに対し
て、比較例の供試鋼は中間温度保持中にベーナイ
ト変態が進行せず、残部オーステナイトへのCの
移行が十分に行われず、最終オーステナイト量も
少ない。このため、所望の性質が得られない。 なお、上記実施例では熱間圧延の後に冷間圧延
を行つた場合について示したが、冷間圧延を行わ
なくても同様の効果が得られる。
(Field of Industrial Application) The present invention relates to a method for producing a highly ductile, high-strength, composite-structured steel sheet, which has particularly high tensile strength of 80 Kgf/mm 2 or more, as well as extremely excellent ductility and spot weldability. The present invention relates to a method for manufacturing a composite steel sheet having a composite structure. (Conventional technology and problems to be solved) Thin steel sheets used as structural materials for automobiles, etc. require various properties such as workability and weldability. There is a strong demand for higher strength steel plates. That is, this strengthening is mainly aimed at increasing the tensile strength TS to 60 to 70 Kgf/mm 2 , but a steel plate with high strength such as TS≧80 Kgf/mm 2 is often required. By the way, as high-strength steel sheets with a grade of TS = 80 to 140 Kgf/ mm2 and high workability, so far, there are composite steel sheets consisting of two phases of ferrite and martensite, or two phases of bainite and martensite. is being developed. however,
In recent years, the diversity of social needs has been increasing, and the composite structure steel sheet does not necessarily satisfy the needs in terms of workability and the like. In particular, as a material for mass-produced products such as automobile steel sheets, low cost is an essential condition, and in addition, not only the strength-ductility balance but also the balance of other properties such as weldability must be sufficiently considered. Must be. From this point of view, in recent years, a highly workable, high-strength composite steel sheet consisting of ferrite, retained austenite, and martensite (including some bainite) has been disclosed (Japanese Patent Application Laid-Open No. 60-43430), but the strength - Contains a large amount of C to stabilize austenite, which is essential for improving ductility balance. For this reason, there is a problem in that spot weldability, which is a necessary property particularly for automobile steel sheets, is poor. The present invention was made to solve the problems of the above-mentioned prior art, and has a tensile strength of 80
The purpose of the present invention is to provide a method that can economically and accurately produce a composite structure steel plate having a high strength of Kgf/mm 2 or more, as well as extremely excellent ductility and spot weldability. It is something to do. (Means for Solving the Problems) In order to achieve the above object, the present inventors reexamined the steel composition, hot rolling conditions, annealing conditions, etc. of the conventional manufacturing method of high C content composite structure steel sheet. I also tried to consider this. In order to obtain a composite structure steel sheet with high strength and higher ductility than that obtained by conventional methods, it is necessary to appropriately control the volume fraction of retained austenite, which has conventionally been a few percent at most. This is due to the high n-value associated with the deformation-induced transformation of austenite, and in order to obtain the expected high ductility,
It is necessary to contain 10% or more. On the other hand, as austenite stabilizing elements, C,
Mn, Ni, etc. are generally well known, and C has the greatest effect. As the amount of C increases, austenite becomes more stable, and austenite remains especially when constant temperature transformation is performed. In this way, by using high C steel and imparting an appropriate thermal history to the austenite region or the two-phase region of ferrite and martensite after reheating, a high-strength steel plate with extremely high ductility can be obtained. However, as mentioned above, the increase in C deteriorates the spot weldability, which is an essential characteristic for steel sheets for automobiles. Therefore, the present inventors have repeatedly conducted experimental research on ways to improve the spot weldability of high C steel sheets by regulating the composition, and have found that it is possible to improve the spot weldability of high C steel sheets by regulating the Si and Mn simultaneously. did. In other words, it contains more than 1.5% Si and Si + Mn.
If it is regulated within the range of 2.8 to 4.0%, ferrite will preferentially be generated during cooling in the fusion zone and heat affected zone after spot welding, and austenite will tend to remain and martensitic transformation will be suppressed.
It is thought that spot weldability is improved. Next, as a result of repeated experimental research on hot rolling conditions and annealing conditions, we found that Si and Mn
It is thought that the ductility of the thin steel sheet with a composite structure, which is simultaneously regulated, differs in ductility depending on the stability against working deformation even if the retained austenite volume fraction is the same. Wind it up. (b) Appropriately control the cooling conditions after soaking during continuous annealing.
Slowly cool from 600℃ to Ar 1 transformation point (Tq) at a cooling rate (C 1 ) of ℃/sec or less, then rapidly cool to a temperature of 350 to 450℃ at a cooling rate (C 2 ) of 30℃/sec or higher. . As a result, a large amount of retained austenite with appropriate stability can be obtained. That is, the present invention has clarified that the amount and stability of retained austenite that are favorable for ductility can be achieved by containing 15% or more of bainite in the structure, and furthermore, the above two conditions are 〜450℃×1〜
It was found that it is essential to generate 15% or more of bainite when held for 5 minutes. The reasons for these are not necessarily clear, but (a) The carbides in the hot-rolled steel sheet become spheroidized, so when reheated to a two-phase region of ferrite + austenite, this becomes the nucleus and becomes austenite, and in that phase This is thought to be because (b) ferrite transformation and bainite transformation during cooling are appropriately controlled because of the high degree of concentration of C, Mn, etc. in (b). Based on the above-mentioned findings, the present invention was developed after further consideration of conditions to be regulated (components, hot rolling conditions, annealing conditions) in detail, taking into account aspects such as strength-ductility balance. That is, the method for producing a high ductility high strength composite structure steel sheet with excellent spot weldability according to the present invention has a weight ratio of:
C: 0.15-0.45%, Si: more than 1.5% and less than 2.0% and
Mn≧1.1%, and Si+Mn: 2.8 to 4.0%, P: 0.02 to 0.20%, V:
0.05-0.40% and B: 1 of 0.0005-0.01%
species or two or more species, and further S≦0.005%,
For steel slabs containing solAl: 0.01~0.06%, with the remainder consisting of iron and unavoidable impurities, hot rolling is completed above the Ar3 transformation temperature, coiled at a temperature of 650°C or above, and then continued. In annealing, after heating and holding for 4 minutes or less in the two-phase region of austenite + ferrite, it is heated to a temperature range of 350 to 450℃ for 1 to 5 minutes.
First, when quenching to hold for 30 minutes,
600℃ from the above holding temperature at a cooling rate of ℃/sec or less
By slowly cooling to the ~Ar 1 transformation point and then rapidly cooling to a temperature of 350 to 450°C at a cooling rate of 30°C/sec or more, the volume fraction is 15% or more of bainite and the remainder is ferrite, residual austenite, and marten. This method is characterized by obtaining a composite tissue consisting of sites. The present invention will be explained in detail below based on examples. First, the components of steel targeted by the method of the present invention and the reason for limiting the range thereof will be shown. C: C is an essential element for strengthening steel, and as described below, when properly controlling hot rolling conditions and annealing conditions, it stabilizes austenite and increases the volume percentage of austenite to 10% after heat treatment.
A minimum of 0.15% is required to maintain this level. On the other hand, if it exceeds 0.45%, the retained austenite volume fraction increases and the strength-ductility balance improves, but the spot weldability, which is the main aim of the present invention,
Even if the amounts of Si and Mn are properly regulated, they will still deteriorate, so 0.45% was set as the upper limit. Si: Since Si is a ferrite former element, it does not have the function of stabilizing austenite by itself. However, in order to purify the ferrite that is generated during the maintenance of the two-phase region of austenite + ferrite or during cooling from the austenite region or the two-phase region of austenite + ferrite, it is necessary to
It contributes to the stabilization of austenite through the effect of promoting the concentration of C in untransformed austenite.
Furthermore, in the present invention, Si is regulated from a more important viewpoint. In other words, when the amount of Si is small, the upper limit of the amount of C that satisfies spot weldability is 0.2%, but if Si is contained in excess of 1.5%, the upper limit of C increases to 0.45%, and is the strength −
Good ductility balance. From this point of view, the amount of Si is set to exceed 1.5%, and on the other hand, if it exceeds 2.0%, these effects are saturated and the scale properties deteriorate, so the upper limit is set to 2.0%. Mn: Mn is important as an austenite forming element, and from the viewpoint of obtaining a good strength-ductility balance, a minimum content of 1.1% or more is required in order to have a retained austenite volume fraction of 10% or more. Furthermore, Mn is regulated from the viewpoint of improving spot welding properties due to Si. In high C-Si steel with a relatively large amount of C, which is the target of the present invention, austenite is stabilized, so martensitic transformation is less likely to occur during the cooling process after spot welding, and a certain amount of Si
When containing Mn and Mn, on the contrary, the spot weldability becomes better. From this point of view, Si + Mn should be 2.8% or more,
4.0% or less. Note that the upper limit of the amount of Mn is regulated due to necessity. Furthermore, the regulation ranges for Si and Mn are illustrated in FIG. 1. S: Since S deteriorates workability, it is desirable to have as little S as possible. In particular, since the steel targeted by the present invention has a small distribution coefficient of S during solidification, the amount of sulfide inclusions is greater than that of ordinary steel. Therefore, it is necessary to regulate S to an even lower level, which is 0.005% or less. solAl: solAl is effective as a deoxidizing agent for steel, but if its content is less than 0.01, no deoxidizing effect can be expected. On the other hand, if the content exceeds 0.06%, the deoxidizing effect will be saturated and no further effect can be expected, so it was limited to 0.01 to 0.06%. In addition, each of the above components is an essential component that should be regulated in the steel targeted by the present invention, but the following P and B
In order to further improve the strength-ductility balance, one type or two or more types of V and V can be contained as necessary. P: Like Si, P is a ferrite former element and further stabilizes austenite through its effect of promoting the concentration of C in untransformed austenite. Therefore, even if the P content is at a normal level, there is no problem in terms of properties such as strength-ductility balance, but if P is contained in an amount of 0.02% or more as required, an even better strength-ductility balance can be obtained. On the other hand, 0.2
If it exceeds 0.2%, the effect not only becomes saturated, but also causes the steel to become brittle due to grain boundary segregation.
The upper limit is %. B: B is an element that improves hardenability and is advantageous in obtaining a desired structure without adding expensive elements such as Cr. In other words, when B is contained in an amount of 0.0005% or more, the hardness of the martensite produced is increased, and the necessary strength can be obtained with a small martensite volume fraction, so it is possible to increase the ferrite and austenite volume fraction that improves ductility. . The lower limit is based on the amount that can produce the effect,
In addition, the upper limit was limited to 0.0005 to 0.01% because the effect reaches saturation and becomes uneconomical. V: V is originally a precipitation-strengthening element and prevents a decrease in hardness of the heat-affected zone during spot welding, thereby improving spot weldability. Further, when 0.05% or more of V is added, austenite is stabilized and the strength-ductility balance is improved. From this perspective, the amount is regulated,
Set at 0.05-0.4%. After soul forming or continuous casting, the steel having the chemical composition shown above is hot rolled at a temperature higher than the Ar 3 transformation point, and coiled at 650°C or higher, preferably 650 to 700°C.
In particular, it is necessary to set the coiling temperature to 650°C or higher in order to spheroidize the carbides in the hot rolled steel sheet and to stably obtain a large amount of retained austenite during subsequent continuous annealing. In the subsequent continuous annealing, first, 4
This is held for a minute or less, but as a result, the spheroidized carbide becomes austenite as a nucleus, and the degree of concentration of C, Mn, etc. in the austenite phase is increased. The subsequent cooling mode is 30℃/30℃ from the above holding temperature.
Slow cooling from 600℃ to Ar 1 transformation point (Tq) at a cooling rate (C 1 ) of sec or less, then to a temperature of 350 to 450℃ ( T 2 ) at a cooling rate (C 2 ) of 30℃/sec or more. Cool quickly and hold for 1-5 minutes. These annealing conditions, in combination with the hot rolling conditions described above, appropriately control ferrite transformation and bainite transformation, resulting in a 15%
The above bainite content ensures that the amount and stability of retained austenite favorable for ductility is ensured. (Example) Thirteen kinds of test steels having chemical components as shown in Table 1 were melted. Test steel B, E, F, G, K, L
and M satisfy the scope of the present invention, and the others are comparative steels. Each steel is hot-rolled at a hot-rolling temperature of 650-700℃,
Furthermore, a test material with a thickness of 1.0 mm was obtained by cold rolling.
Next, after continuous annealing under the conditions of F2 in Section 2 (range of the present invention), a JIS No. 5 tensile test piece with a gauge length of 50 mm was prepared and a tensile test was conducted. In addition, in order to determine the suitability of the structure, the structure was observed and the volume fractions of bainite and austenite were measured. The results are shown in Table 1. As is clear from Table 1, sample steels B, E,
F, G, K, L and M steels subject to the present invention have a TS of 80.
In addition to having high strength of Kgf/mm 2 or more, TS×El is also high.
Not only does it have an excellent TS-El balance of over 2300, but its cross tensile strength during spot welding is significantly superior to comparative steels. On the other hand, although the comparative steels do not have a particularly poor TS-El balance (sample steel C is good), they do not have good spot weldability as intended by the present invention. Further, using the above-mentioned test steel F, hot rolling and continuous annealing were performed under the conditions shown in Table 2. Test steels F2, F3, F6, and F7 have conditions within the scope of the present invention, and the others are outside the scope. The results are shown in Table 2. In addition, T 1 , C 1 , Tq, in the same table
C 2 and T 2 respectively indicate the conditions of the continuous annealing cycle shown in FIG. As is clear from Table 2, the test steel of the invention example
F2, F3, F6, and F7 all contain 15% or more of bainite (and 10% or more of austenite) in their composite structures, and have an excellent TS-El balance of 2300 or more in TS×El. There is. On the other hand, in the sample steel of the comparative example, the bainite transformation does not proceed while the intermediate temperature is maintained, C does not sufficiently transfer to the remaining austenite, and the final austenite amount is small. For this reason, desired properties cannot be obtained. In addition, although the above-mentioned example showed the case where cold rolling was performed after hot rolling, the same effect can be obtained even if cold rolling is not performed.

【表】【table】

【表】 *** 第2図参照
(発明の効果) 以上詳述したように、従来の高延性高強度複合
組織鋼板が高C化で点溶接性を悪化させるのに対
し、本発明によれば、特に1.5%を超えるSiでSi
+Mnを2.8〜4.0%の範囲に規制した特定組成の
鋼とし、これに対して熱延及び連続焼鈍を特定条
件下で実施してベーナイトが15%以上含む複合組
織を得るものであるから、高延性とバランスよく
80Kgf/mm2以上の高強度を有し、しかも点溶接性
も優れた複合組織鋼板を適確、かつ、安価に製造
することが可能となり、特に自動車用鋼板の製造
に好適である。
[Table] *** See Figure 2 (Effects of the Invention) As detailed above, while the conventional high ductility high strength composite structure steel sheet deteriorates spot weldability due to high carbon content, the present invention For example, Si
The steel has a specific composition with +Mn regulated in the range of 2.8 to 4.0%, and is hot-rolled and continuously annealed under specific conditions to obtain a composite structure containing 15% or more of bainite. Well balanced with ductility
It becomes possible to accurately and inexpensively produce a composite structure steel plate having a high strength of 80 Kgf/mm 2 or more and excellent spot weldability, and is particularly suitable for producing steel plates for automobiles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を適用する鋼におけるSi量と
Mn量の関係を示す図、第2図は本発明の一実施
例における連続焼鈍のヒートサイクルの条件を示
す図である。
Figure 1 shows the amount of Si in steel to which the method of the present invention is applied.
FIG. 2 is a diagram showing the relationship between the Mn content and the heat cycle conditions for continuous annealing in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 重量割合で、C:0.15〜0.45%、Si:1.5%を
超え2.0%以下及びMn≧1.1%で、かつ、Si+
Mn:2.8〜4.0%であり、更にS≦0.005%、
solAl:0.01〜0.06%を含有し、残部が鉄及び不可
避的不純物からなる鋼スラブにつき、Ar3変態温
度以上で熱間圧延を終了し、650℃以上の温度で
巻取り、次いで、その後の連続焼鈍において、オ
ーステナイト+フエライトの2相域に4分間以下
加熱保持した後、350〜450℃の温度範囲に1〜5
分間保持するために急冷するに際して、まず、30
℃/sec以下の冷却速度で上記保持温度から600℃
〜Ar1変態点まで徐冷し、次いで、30℃/sec以
上の冷却速度で350〜450℃の温度まで急冷するこ
とにより、体積率でベーナイトが15%以上で残部
がフエライト、残留オーステナイト及びマルテン
サイトからなる複合組織を得ることを特徴とする
点溶接性の優れた高延性高強度複合組織鋼板の製
造法。 2 重量割合で、C:0.15〜0.45%、Si:1.5%を
超え2.0%以下及びMn≧1.1%で、かつ、Si+
Mn:2.8〜4.0%であり、更にP:0.02〜0.20%、
V:0.05〜0.40%及びB:0.0005〜0.01%のうち
の1種又は2種以上を含み、また更にS≦0.005
%、solAl:0.01〜0.06%を含有し、残部が鉄及び
不可避的不純物からなる鋼スラブにつき、Ar3
態温度以上で熱間圧延を終了し、650℃以上の温
度で巻取り、次いで、その後の連続焼鈍におい
て、オーステナイト+フエライトの2相域に4分
間以下加熱保持した後、350〜450℃の温度範囲に
1〜5分間保持するために急冷するに際して、ま
ず、30℃/sec以下の冷却速度で上記保持温度か
ら600℃〜Ar1変態点まで徐冷し、次いで、30
℃/sec以上の冷却速度で350〜450℃の温度まで
急冷することにより、体積率でベーナイトが15%
以上で残部がフエライト、残留オーステナイト及
びマルテンサイトからなる複合組織を得ることを
特徴とする点溶接性の優れた高延性高強度複合組
織鋼板の製造法。
[Claims] 1. C: 0.15 to 0.45%, Si: more than 1.5% and 2.0% or less, and Mn≧1.1%, and Si+
Mn: 2.8 to 4.0%, and S≦0.005%,
For steel slabs containing solAl: 0.01~0.06%, with the remainder consisting of iron and unavoidable impurities, hot rolling is completed above the Ar3 transformation temperature, coiled at a temperature of 650°C or above, and then continued. In annealing, after heating and holding for 4 minutes or less in the two-phase region of austenite + ferrite, it is heated to a temperature range of 350 to 450℃ for 1 to 5 minutes.
First, when quenching to hold for 30 minutes,
600℃ from the above holding temperature at a cooling rate of ℃/sec or less
By slowly cooling to the ~Ar 1 transformation point and then rapidly cooling to a temperature of 350 to 450°C at a cooling rate of 30°C/sec or more, the volume fraction is 15% or more of bainite and the remainder is ferrite, residual austenite, and marten. A method for producing a highly ductile, high-strength composite structure steel sheet with excellent spot weldability, which is characterized by obtaining a composite structure consisting of sites. 2 In terms of weight percentage, C: 0.15 to 0.45%, Si: more than 1.5% and 2.0% or less, and Mn≧1.1%, and Si+
Mn: 2.8-4.0%, further P: 0.02-0.20%,
Contains one or more of V: 0.05 to 0.40% and B: 0.0005 to 0.01%, and further S≦0.005
%, solAl: 0.01 to 0.06%, and the balance consists of iron and unavoidable impurities, hot rolling is completed at a temperature of Ar3 transformation temperature or higher, coiling is performed at a temperature of 650°C or higher, and then In continuous annealing, after heating and holding in the two-phase region of austenite + ferrite for 4 minutes or less, when rapidly cooling to hold in the temperature range of 350 to 450 °C for 1 to 5 minutes, first, cooling at 30 °C / sec or less Slowly cool from the above holding temperature to 600℃ ~ Ar 1 transformation point at a speed of 30℃.
By rapidly cooling to a temperature of 350 to 450℃ at a cooling rate of ℃/sec or more, bainite becomes 15% by volume.
A method for producing a high-ductility, high-strength composite-structure steel sheet with excellent spot weldability, characterized in that the remainder is a composite structure consisting of ferrite, retained austenite, and martensite.
JP469186A 1986-01-13 1986-01-13 Production of high ductility high strength composite structure steel plate having excellent spot weldability Granted JPS62164828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP469186A JPS62164828A (en) 1986-01-13 1986-01-13 Production of high ductility high strength composite structure steel plate having excellent spot weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP469186A JPS62164828A (en) 1986-01-13 1986-01-13 Production of high ductility high strength composite structure steel plate having excellent spot weldability

Publications (2)

Publication Number Publication Date
JPS62164828A JPS62164828A (en) 1987-07-21
JPH0555571B2 true JPH0555571B2 (en) 1993-08-17

Family

ID=11590912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP469186A Granted JPS62164828A (en) 1986-01-13 1986-01-13 Production of high ductility high strength composite structure steel plate having excellent spot weldability

Country Status (1)

Country Link
JP (1) JPS62164828A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168819A (en) * 1987-12-25 1989-07-04 Nisshin Steel Co Ltd Manufacture of steel plate with composite structure having high ductility and high strength
JP2805112B2 (en) * 1991-05-17 1998-09-30 株式会社神戸製鋼所 Method for manufacturing high-strength hot-rolled steel sheet with excellent ductility and workability
JP2952624B2 (en) * 1991-05-30 1999-09-27 新日本製鐵株式会社 High yield ratio type hot rolled high strength steel sheet excellent in formability and spot weldability and its manufacturing method and high yield ratio type hot rolled high strength steel sheet excellent in formability and its manufacturing method
JP5347416B2 (en) * 2008-10-08 2013-11-20 Jfeスチール株式会社 High-strength steel with excellent one-side spot weldability and one-side spot welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of high-strength steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157625A (en) * 1984-12-29 1986-07-17 Nippon Steel Corp Manufacture of high-strength steel sheet

Also Published As

Publication number Publication date
JPS62164828A (en) 1987-07-21

Similar Documents

Publication Publication Date Title
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR102196079B1 (en) Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
WO2019092481A1 (en) Cold rolled steel sheet and a method of manufacturing thereof
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JP4772496B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
JPH06128688A (en) Hot rolled steel plate excellent in fatigue characteristic and it production
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPS6235461B2 (en)
JPH03215623A (en) Production of tough high strength steel
JPH01272720A (en) Production of high ductility and high strength steel sheet with composite structure
JPH01184226A (en) Production of steel sheet having high-ductility high-strength multiple structure
JPH0555571B2 (en)
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JP2563021B2 (en) Method for producing high-strength hot-rolled hot-dip galvannealed steel sheet with excellent stretch flangeability
JP2860438B2 (en) Manufacturing method of high-strength thin steel sheet with extremely excellent workability
KR100435481B1 (en) Method for manufacturing high carbon wire rod containing high silicon to reduce decarburization depth of its surface
KR950008691B1 (en) Making method of wear resistant steel plate
JPH0555570B2 (en)
JP2004107714A (en) High toughness and high yield point steel with excellent weldability and its producing method
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS63312917A (en) Production of high-strength steel plate having excellent spring property and ductility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees