JP4881773B2 - Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone - Google Patents

Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone Download PDF

Info

Publication number
JP4881773B2
JP4881773B2 JP2007077757A JP2007077757A JP4881773B2 JP 4881773 B2 JP4881773 B2 JP 4881773B2 JP 2007077757 A JP2007077757 A JP 2007077757A JP 2007077757 A JP2007077757 A JP 2007077757A JP 4881773 B2 JP4881773 B2 JP 4881773B2
Authority
JP
Japan
Prior art keywords
less
toughness
content
haz
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007077757A
Other languages
Japanese (ja)
Other versions
JP2008240004A (en
Inventor
祐二 ▲高▼橋
誠 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007077757A priority Critical patent/JP4881773B2/en
Priority to CN201010154697XA priority patent/CN101899615A/en
Priority to CN2008100815331A priority patent/CN101270442B/en
Priority to CN2010101547154A priority patent/CN101942602A/en
Priority to KR1020080026459A priority patent/KR100992254B1/en
Publication of JP2008240004A publication Critical patent/JP2008240004A/en
Application granted granted Critical
Publication of JP4881773B2 publication Critical patent/JP4881773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、溶接熱影響部の低温靭性に優れた低降伏比高張力鋼板に関するものであり、低温に曝される用途に使用される場合、例えば液化アンモニアと液化プロパンガスとを混載する多目的タンク用として適用できるような、溶接熱影響部の低温靭性および母材の靭性に優れている低降伏比高張力鋼板に関するものである。尚、本発明は、上記高張力鋼板の溶接方法まで限定するものではなく、サブマージアーク溶接、エレクトロガスアーク溶接等に適用できるが、以下では、溶接熱影響部の靭性確保が特に困難であるといわれている大入熱の片面サブマージアーク溶接を施す場合を例に説明する。   The present invention relates to a low-yield-ratio high-tensile steel sheet having excellent low-temperature toughness in the heat-affected zone of a weld. The present invention relates to a low-yield ratio high-tensile steel sheet that is excellent in low-temperature toughness of a weld heat-affected zone and toughness of a base material. The present invention is not limited to the above-described high-strength steel plate welding method, and can be applied to submerged arc welding, electrogas arc welding, etc., but in the following, it is said that securing the toughness of the weld heat affected zone is particularly difficult. The case where the single-sided submerged arc welding with large heat input is applied will be described as an example.

近年では、海洋構造物やLPG等の液化ガスを貯蔵する低温用タンク等を短期間で製造すべく、例えば入熱量が50〜200kJ/cmにも及ぶ大入熱の片面サブマージアーク溶接施工が広く採用されている。しかし、該溶接は、施工の高能率化を実現できる反面、溶接により形成される溶接熱影響部(以下、「HAZ」と示す)の靭性を安定して確保することが難しく、低入熱による多層溶接を適用して製造しなければならないことも多々ある。従って、上記低温用タンク等の製造に、高能率施工が可能な上記大入熱溶接法が採用され、かつ−60℃程度の低温であっても、HAZの靭性(低温靭性)に優れている鋼板が求められている。   In recent years, single-sided submerged arc welding with large heat input, for example, with a heat input of 50 to 200 kJ / cm, has been widely used to produce marine structures and low-temperature tanks for storing liquefied gas such as LPG in a short period of time. It has been adopted. However, while the welding can realize high efficiency of construction, it is difficult to stably secure the toughness of the weld heat affected zone (hereinafter referred to as “HAZ”) formed by welding, and it is due to low heat input. In many cases, it is necessary to apply multilayer welding. Therefore, the high heat input welding method capable of high-efficiency construction is adopted for the production of the low temperature tank and the like, and the HAZ toughness (low temperature toughness) is excellent even at a low temperature of about −60 ° C. There is a need for steel sheets.

一方、液化アンモニア用タンクに使用する鋼板には、応力腐食割れ(SCC)を防止するために440MPa以下の低い降伏強さYSと、鋼材総重量を低減するために530MPa以下の引張強度TSを具備していることが要求される。液化アンモニウムに液化プロパンガスを混載するタンクの場合、使用する鋼板の特性として低温靭性にも優れていることが要求される。液化アンモニアは、鋼材の応力腐食割れ(SCC)を引き起こすことが知られており、鋼板の特性として降伏強さYSを440MPa以下に抑えることが規定されている(非特許文献1)。   On the other hand, the steel sheet used for the liquefied ammonia tank has a low yield strength YS of 440 MPa or less to prevent stress corrosion cracking (SCC), and a tensile strength TS of 530 MPa or less to reduce the total weight of the steel material. It is required that In the case of a tank in which liquefied propane gas is mixed with liquefied ammonium, it is required that the low temperature toughness is excellent as a characteristic of the steel sheet used. It is known that liquefied ammonia causes stress corrosion cracking (SCC) of steel materials, and it is specified as a characteristic of a steel sheet that the yield strength YS is suppressed to 440 MPa or less (Non-Patent Document 1).

しかしながら、上記液化アンモニウムと液化プロパンガスを混載する多目的用では、当然のことながら両者に要求される特性を満足させる必要があり、また船舶等の海洋構造物の大型化に伴い、船舶に搭載されるタンクの大容量化も進み、それによる鋼板の高張力化も求められおり、降伏強さYSの上限規制に伴う低降伏比化(降伏比YR=YS/TS)の同時達成が大きな課題となっている。   However, in the multi-purpose use in which the above liquefied ammonium and liquefied propane gas are mixed, it is necessary to satisfy the characteristics required for both, and it is mounted on a ship as the marine structure such as a ship becomes larger. As the capacity of steel tanks increases, the steel plate is required to have higher tensile strength, and simultaneously achieving a lower yield ratio (yield ratio YR = YS / TS) associated with the upper limit of yield strength YS is a major issue. It has become.

これまでにも、上記HAZの低温靭性を改善すべく種々の方法が提案されている。例えば特許文献1、特許文献2には、TiN、Alオキサイド等のピン止め粒子によりオーステナイト粒の粗大化を抑制することで、HAZ靭性を改善する方法が提案されている。また、特許文献3、特許文献4には、オーステナイト粒内にフェライト変態核を多数存在させることにより結晶粒の微細化を図る技術が示されている。具体的には、TiN、MnS、BN、Tiオキサイド等をフェライト変態核として利用することにより結晶粒の微細化を達成し、HAZの低温靭性の改善を図っている。   Until now, various methods have been proposed to improve the low temperature toughness of the HAZ. For example, Patent Literature 1 and Patent Literature 2 propose a method for improving HAZ toughness by suppressing the austenite grain coarsening by pinning particles such as TiN and Al oxide. Patent Document 3 and Patent Document 4 disclose a technique for miniaturizing crystal grains by making many ferrite transformation nuclei exist in austenite grains. Specifically, the use of TiN, MnS, BN, Ti oxide or the like as ferrite transformation nuclei achieves refinement of crystal grains and improves the low temperature toughness of HAZ.

しかし上記いずれの方法においても、大入熱の片面サブマージアーク溶接を行った場合には、TiN等の析出物がかなり固溶し、その後の結晶粒粗大化等を抑制することが難しいことから、−60℃程度での低温で優れたHAZの靭性(以下、「HAZの低温靭性」、または単に「HAZ靭性」ということがある)を確保するには、更なる改善が必要である。   However, in any of the above methods, when performing single-sided submerged arc welding with high heat input, precipitates such as TiN are considerably dissolved, and it is difficult to suppress subsequent grain coarsening, Further improvement is required to ensure excellent HAZ toughness (hereinafter sometimes referred to as “HAZ toughness” or simply “HAZ toughness”) at a low temperature of about −60 ° C.

また、これまで提案されているHAZ靭性改善技術では、液化アンモニウムと液化プロパンガスを混載する多目的用タンクとして要求される低降伏比(例えば、75%以下)を具備することについては検討されていないのが実情である。
IGC CODE 17.13(International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk) 2002年版 特公昭55−026164号公報 特許第2950076号公報 特公平07−068577号公報 特公平05−017300号公報
In addition, the HAZ toughness improvement technologies proposed so far have not been considered to have a low yield ratio (for example, 75% or less) required as a multipurpose tank in which liquefied ammonium and liquefied propane gas are mixed. Is the actual situation.
IGC CODE 17.13 (International Code for the Construction and Equipment of Shipping Carrying Liquidated Gases in Bulk) 2002 Edition Japanese Patent Publication No. 55-026164 Japanese Patent No. 2950076 Japanese Patent Publication No. 07-068577 Japanese Patent Publication No. 05-017300

本発明はこの様な事情に鑑みてなされたものであって、その目的は、大入熱で溶接を行った場合にもHAZの低温靭性に優れると共に、母材(鋼板)の靭性にも優れた低降伏比高張力鋼板を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is excellent in low temperature toughness of HAZ and excellent in toughness of a base material (steel plate) even when welding is performed with high heat input. Another object of the present invention is to provide a high yield steel sheet having a low yield ratio.

上記目的を達成し得た本発明の高張力鋼板とは、C:0.03〜0.09%(「質量%」の意味、化学成分については以下同じ)、Si:0.01〜0.25%、Mn:1.20〜1.60%、P:0.010%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.02〜0.04%、Nb:0.005〜0.016%、B:0.0006〜0.0020%、N:0.0045〜0.0090%、Ti:0.008〜0.020%を夫々含有すると共に、下記式(1)を満たし、残部鉄および不可避不純物であり、且つ全組織に占めるフェライト分率が45〜85面積%であり、残部がベイナイト組織および/またはマルテンサイト組織からなり、前記フェライトの平均結晶粒径が19μm以下である点に要旨を有するものである。
−20≦(B−NT/1.3)≦10 …(1)
{式中、BはB含有量(質量ppm)を示す。
またNTは、
N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、
(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す}
The high-tensile steel sheet of the present invention that can achieve the above-mentioned object is C: 0.03 to 0.09% (meaning “mass%”, the same applies to chemical components), Si: 0.01 to 0.00. 25%, Mn: 1.20 to 1.60%, P: 0.010% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0.02 to 0.04%, Nb: 0.005 to 0.016%, B: 0.0006 to 0.0020%, N: 0.0045 to 0.0090%, Ti: 0.008 to 0.020%, respectively. And containing the following formula (1), the balance iron and inevitable impurities, and the ferrite fraction in the entire structure is 45 to 85 area%, the balance consists of a bainite structure and / or a martensite structure, The gist is that the average crystal grain size of the ferrite is 19 μm or less. It is intended to.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)
{In formula, B shows B content (mass ppm).
NT is
The relationship between N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) is
When (N-Ti / 3.4) ≧ 0, NT = (N-Ti / 3.4),
(N-Ti / 3.4) <0 indicates NT = 0}

本発明の高張力鋼板においては、必要によって、更に、Cu:0.5%以下(0%を含まない)、Ni:0.8%以下(0%を含まない)、およびV:0.05%以下(0%を含まない)よりなる群から選択される1種以上を、下記式(2)を満たすように含んでいてもよく、更にはCa:0.003%以下(0%を含まない)を含んでいてもよい。
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
In the high-tensile steel sheet of the present invention, if necessary, Cu: 0.5% or less (not including 0%), Ni: 0.8% or less (not including 0%), and V: 0.05 % Or less (not including 0%) may be included so as to satisfy the following formula (2), and further Ca: 0.003% or less (including 0%) Not included).
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}

本発明によれば、鋼板(母材)の降伏強さYSが440MPa以下で、引張強さTSが530MPa以上で、且つ鋼板の靭性にも優れ、更に鋼板に大入熱の溶接を施した場合でも、HAZは約−60℃で優れた靭性を示すことから、液化アンモニアと液化プロパンガスとを混載する多目的タンク等の溶接構造物の大型化に寄与すると共に、例えば大入熱の片面サブマージアーク溶接法を採用でき、上記溶接構造物をより短期間で製造することができる。   According to the present invention, when the yield strength YS of a steel plate (base material) is 440 MPa or less, the tensile strength TS is 530 MPa or more, the steel plate is excellent in toughness, and the steel plate is subjected to high heat input welding. However, since HAZ exhibits excellent toughness at about −60 ° C., it contributes to an increase in the size of a welded structure such as a multipurpose tank in which liquefied ammonia and liquefied propane gas are mixed. A welding method can be employed, and the welded structure can be manufactured in a shorter period of time.

本発明者は、大入熱の溶接を施した場合に、特にHAZの低温靭性に優れる高張力鋼板を得るべく鋭意研究を行った。
その結果、
(a)Cを0.09%以下、Siを0.25%以下と比較的低めに設定した上で、規定量のB、NおよびTiのバランスを最適化し、且つ一定量のNbを添加すれば、オーステナイト粒界からの粗大なフェライト(以下、単に「粒界フェライト」ということがある)の生成が十分に抑制され、オーステナイト粒内の結晶粒微細化を達成できる、
(b)更には、強度をより高めるべくCu、Ni、Vを添加する場合に、このCu、Ni、VとNbの含有量を総合的に制御すれば、HAZ靭性の劣化を抑制できる、
との着想のもとでその具体的方法を見出した。
The present inventor has intensively studied to obtain a high-strength steel sheet that is particularly excellent in low temperature toughness of HAZ when welding with high heat input is performed.
as a result,
(A) After setting C to be 0.09% or less and Si to be 0.25% or less, the balance between the prescribed amounts of B, N and Ti is optimized, and a certain amount of Nb is added. For example, the generation of coarse ferrite from the austenite grain boundary (hereinafter sometimes simply referred to as “grain boundary ferrite”) is sufficiently suppressed, and the grain refinement within the austenite grain can be achieved.
(B) Furthermore, when Cu, Ni, and V are added to further increase the strength, if the contents of Cu, Ni, V, and Nb are comprehensively controlled, deterioration of the HAZ toughness can be suppressed.
The specific method was found based on the idea.

まず本発明では、個々の規定量のB、NおよびTiのバランスを最適化して固溶B量の最適化を厳密に図ることにより、オーステナイト粒内の結晶粒を微細化でき、その結果としてHAZの低温靭性を格段に高めることができた点に特徴がある。   First, in the present invention, by optimizing the balance of individual prescribed amounts of B, N, and Ti and rigorously optimizing the amount of dissolved B, the crystal grains in the austenite grains can be refined, and as a result, HAZ It is characterized in that the low-temperature toughness of can be greatly improved.

図1は、0.06%C−0.20%Si−1.4%Mn−0.03%Al−0.010%Nbを基本成分とし、B、NおよびTiをそれぞれ後述する規定範囲内で変化させ、(B−NT/1.3){BはB含有量(質量ppm)、NTは、N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、
(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す。
以下、式(1)についても同じ}
を種々の値とした鋼板を用いて、熱サイクル試験を行い、HAZの低温靭性(vE-60)を後述する実施例の通り測定し、これらの結果を整理したものである。尚、熱サイクル試験は、溶接入熱:60kJ/cm(板厚12mm)を想定して、1400℃×5秒に加熱保持後、800℃から500℃までを150秒で冷却した。
FIG. 1 shows that 0.06% C-0.20% Si-1.4% Mn-0.03% Al-0.010% Nb is a basic component, and B, N, and Ti are within the specified ranges described later. (B-NT / 1.3) {B is B content (mass ppm), NT is N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) Relationship
When (N-Ti / 3.4) ≧ 0, NT = (N-Ti / 3.4),
When (N-Ti / 3.4) <0, NT = 0 is indicated.
The same applies to equation (1) below}
A heat cycle test was performed using steel sheets having various values of and the low temperature toughness (vE- 60 ) of HAZ was measured as described in the examples described later, and these results were organized. In the thermal cycle test, welding heat input: 60 kJ / cm (plate thickness 12 mm) was assumed, and after heating and holding at 1400 ° C. × 5 seconds, cooling from 800 ° C. to 500 ° C. was performed in 150 seconds.

この図1より、HAZの低温靭性として、vE-60:100J以上を達成させるには、下記式(1)に示す通り、(B−NT/1.3)の値が−20ppm以上、10ppm以下の範囲に収まるようにする必要があることが分かる。
−20≦(B−NT/1.3)≦10 …(1)
From FIG. 1, in order to achieve a low temperature toughness of HAZ of vE- 60 : 100 J or more, as shown in the following formula (1), the value of (B-NT / 1.3) is -20 ppm or more and 10 ppm or less. It is understood that it is necessary to make it fall within the range.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)

上記式(1)の通り、B、NおよびTiのバランスを最適化することで、オーステナイト粒内の粒界に存在する固溶Bによる、粒界フェライトの粗大化を抑制し、且つ粒界からのフェライトサイドプレートの生成も抑制するといった効果、およびBNのフェライト変態核としての効果を最大限に発揮し得たものと考えられる。   By optimizing the balance of B, N and Ti as in the above formula (1), the coarsening of the grain boundary ferrite due to the solid solution B existing at the grain boundary in the austenite grain is suppressed, and from the grain boundary. It is considered that the effect of suppressing the formation of the ferrite side plate and the effect of BN as the ferrite transformation nucleus could be maximized.

上記の通りB、NおよびTiのバランスを最適化してHAZの低温靭性を確実に高めると共に、母材(鋼材)の強度等を確保するには、上記B、N、Tiの含有量をそれぞれ下記範囲内とする必要がある。   As described above, to optimize the balance of B, N, and Ti to reliably increase the low temperature toughness of HAZ and to ensure the strength of the base material (steel material), the contents of B, N, and Ti are as follows. Must be within range.

一方、上記のHAZ靭性および母材特性を損なうことなく、引張強さTSが530MPa以上の高強度鋼板において降伏強さYSが440MPa以下という低い降伏比YRを達成するためには、硬質のベイナイト組織および/またはマルテンサイト組織の中に軟質のフェライト相を適正量存在させ、且つその軟質相の粒径を細粒化させれば良いことをも見出した。   On the other hand, in order to achieve a low yield ratio YR of a yield strength YS of 440 MPa or less in a high-strength steel sheet having a tensile strength TS of 530 MPa or more without impairing the above HAZ toughness and base material properties, a hard bainite structure It has also been found that an appropriate amount of a soft ferrite phase may be present in the martensite structure and the particle size of the soft phase may be reduced.

図2は、フェライト分率と、降伏強さYS(下降伏点YPまたは0.2%耐力σ0.2)、引張強さTSとの関係を示すグラフであり、後述する実施例のデータを整理したものである。この結果から明らかなように、フェライト分率を45〜85面積%の範囲とすることによって、引張強さTS:530MPa以上、降伏強さYS:440MPa以下の両特性を満足できることが分かる。このフェライト分率の好ましい範囲は、50〜80面積%である。 FIG. 2 is a graph showing the relationship between the ferrite fraction, the yield strength YS (the yield point YP or 0.2% yield strength σ 0.2 ), and the tensile strength TS. Is. As is clear from this result, it can be seen that, when the ferrite fraction is in the range of 45 to 85 area%, both properties of tensile strength TS: 530 MPa or more and yield strength YS: 440 MPa or less can be satisfied. A preferable range of this ferrite fraction is 50 to 80 area%.

尚、本発明において、「残部がベイナイト組織および/またはマルテンサイト組織」とは、基本的にはフェライト以外がベイナイトおよび/またはマルテンサイト組織であることを意味するが(即ち、ベイナイト組織および/またはマルテンサイト組織の分率が15〜55面積%)、製造過程において不可避的に形成される他の元素(セメンタイトや島状マルテンサイト)をも含む趣旨である。   In the present invention, “the remainder is a bainite structure and / or martensite structure” basically means that other than ferrite is a bainite structure and / or a martensite structure (that is, a bainite structure and / or a martensite structure). The martensite fraction is 15 to 55 area%), and includes other elements inevitably formed in the manufacturing process (cementite and island martensite).

図3は、フェライト粒径と母材靭性(−60℃におけるシャルピー衝撃吸収エネルギーvE-60)との関係を示したグラフである。この結果から明らかなように、フェライトの平均粒径を19μm以下とすることによって、良好な母材靭性(vE-60で100J以上)が達成されていることが分かる。 FIG. 3 is a graph showing the relationship between the ferrite grain size and the base material toughness (Charpy impact absorption energy vE- 60 at −60 ° C.). As is apparent from this result, it is understood that good base material toughness (vJ- 60 of 100 J or more) is achieved by setting the average grain size of ferrite to 19 μm or less.

本発明の高張力鋼板では、その鋼板としての基本的特性を満足させるために、C、Si、Mn、P、S、Al等の基本成分の他、前記(1)式に関与する成分であるB、N、Ti等も適切に調整する必要があるが、まずB、N、Ti等の範囲限定理由は次の通りである。   In the high-tensile steel plate of the present invention, in addition to basic components such as C, Si, Mn, P, S, and Al, in order to satisfy the basic characteristics of the steel plate, it is a component involved in the above formula (1). B, N, Ti and the like need to be adjusted appropriately. First, the reasons for limiting the ranges of B, N, Ti, etc. are as follows.

[B:0.0006〜0.0020%]
Bは、BNを生成することによりHAZ靭性に有害な固溶Nを固定する共に、粒内フェライトの生成を促進する作用を有する。また固溶Bは、粒界フェライトの粗大化およびフェライトサイドプレートの生成を抑制し、オーステナイト粒内の結晶粒を微細化する効果も有する。該作用効果を十分発揮させるには、Bを0.0006%以上含有させる必要がある。一方、Bが多過ぎると、過剰の固溶Bの作用により結晶が一定方向に形成され、HAZ靭性が却って劣化する。よってB含有量は、0.0020%以下に抑える。尚、B含有量の好ましい下限は0.0008%であり、好ましい上限は0.0018%である。
[B: 0.0006 to 0.0020%]
B has the effect of fixing solute N which is harmful to the HAZ toughness by generating BN and promoting the formation of intragranular ferrite. Solid solution B also has the effect of suppressing the coarsening of grain boundary ferrite and the formation of ferrite side plates, and making the crystal grains in the austenite grains finer. In order to fully exhibit this effect, it is necessary to contain B 0.0006% or more. On the other hand, when there is too much B, a crystal | crystallization is formed in a fixed direction by the effect | action of excess solute B, and HAZ toughness deteriorates on the contrary. Therefore, the B content is limited to 0.0020% or less. In addition, the minimum with preferable B content is 0.0008%, and a preferable upper limit is 0.0018%.

[N:0.0045〜0.0090%]
Nは、TiやAl等の元素と窒化物を形成してHAZ靭性を向上させる元素であるため、0.0045%以上(好ましくは0.0060%以上)含んでいてもよい。尚、固溶Nは、HAZの靭性を劣化させる原因となる。全窒素量の増加により、先述の窒化物は増加するが固溶Nも過剰となるため、本発明ではN含有量を0.0090%以下に抑える。
[N: 0.0045 to 0.0090%]
N is an element that forms nitrides with elements such as Ti and Al to improve the HAZ toughness, and therefore may be contained in an amount of 0.0045% or more (preferably 0.0060% or more). In addition, the solid solution N causes the HAZ toughness to deteriorate. By increasing the total nitrogen amount, the above-mentioned nitride increases, but solid solution N also becomes excessive. Therefore, in the present invention, the N content is suppressed to 0.0090% or less.

[Ti:0.008〜0.020%]
Tiは、TiN系析出物を生成して粒内フェライトの生成を促進すると共に、オーステナイト粒の粗大化抑制にも有効な元素である。また、高強度化に寄与する元素でもある。こうした作用を有効に発揮させるには、Tiを0.008%以上含有させる必要があり、好ましくは0.012%以上である。しかし、Tiを過剰に含有させると、却ってHAZ靭性の低下を招くため0.020%以下とする。
[Ti: 0.008 to 0.020%]
Ti is an element that generates TiN-based precipitates and promotes the formation of intragranular ferrite, and is also effective in suppressing austenite grain coarsening. It is also an element contributing to high strength. In order to exert such an action effectively, it is necessary to contain Ti by 0.008% or more, and preferably 0.012% or more. However, if Ti is excessively contained, the HAZ toughness is reduced instead, so the content is made 0.020% or less.

本発明では、上記の通り、個々の規定量のB、Ti、Nのバランスを最適化すると共に、一定量のNbを添加する。Nbは、粗大な粒界フェライトの生成を十分に抑制し、オーステナイト粒内の結晶粒微細化を達成させるのに有用な元素である。本発明では、この様な効果を十分発揮させるべくNbを0.005%以上含有させる。しかし過剰に含まれていると、硬質相である島状マルテンサイト(MA:Martensite−Austenite constituent)が生成し易く、また結晶が一定方向に形成され、HAZ靭性の劣化を招くので、0.016%以下に抑える。   In the present invention, as described above, the balance of individual prescribed amounts of B, Ti, and N is optimized, and a certain amount of Nb is added. Nb is an element useful for sufficiently suppressing the formation of coarse grain boundary ferrite and achieving crystal grain refinement in the austenite grains. In the present invention, Nb is contained in an amount of 0.005% or more in order to sufficiently exhibit such an effect. However, if it is excessively contained, island-like martensite (MA), which is a hard phase, is easily generated, and crystals are formed in a certain direction, resulting in deterioration of HAZ toughness. % Or less.

HAZの低温靭性をより確実に高めるには、更にC、Siを低減させることが有効である。本発明では、MAのHAZ部での生成を抑制し、約−60℃でのHAZ靭性を確保すべく、C量を0.09%以下に抑える。一方、Cは、鋼板の強度確保に必須の元素でもあることから、0.03%以上含有させる。   In order to increase the low temperature toughness of HAZ more reliably, it is effective to further reduce C and Si. In this invention, in order to suppress the production | generation in the HAZ part of MA and to ensure the HAZ toughness at about -60 degreeC, C amount is suppressed to 0.09% or less. On the other hand, C is an element essential for securing the strength of the steel sheet, so 0.03% or more is contained.

更に、Siも0.25%以下に低減することにより、MAの生成を十分に抑制でき、HAZの低温靭性を容易に確保することができる。一方、Siは、溶鋼の脱酸に使用されると共に強度向上に有効に作用する元素であるため、0.01%以上含まれていてもよく、好ましくは0.05%以上含有させる。   Furthermore, by reducing Si to 0.25% or less, the formation of MA can be sufficiently suppressed, and the low temperature toughness of HAZ can be easily ensured. On the other hand, since Si is an element that is used for deoxidation of molten steel and effectively acts to improve the strength, it may be contained in an amount of 0.01% or more, preferably 0.05% or more.

尚、上記の通りHAZ靭性を確実に高めると共に、鋼板(母材)の強度や靭性等その他の特性を具備させるには、上記以外の成分の含有量を下記範囲内とする必要がある。   In addition, as described above, in order to reliably increase the HAZ toughness and to provide other characteristics such as strength and toughness of the steel plate (base material), it is necessary to set the content of components other than the above within the following ranges.

[Mn:1.20〜1.60%]
Mnは、SをMnSとして捕捉し、SによるHAZ靭性の劣化を抑制するのに有用な元素である。また、焼入れ性を高めて鋼板の高強度化(高引張強度TS化)に寄与する元素でもある。こうした作用を有効に発揮させるには、Mnを1.20%以上含有させる必要がある。しかし、Mn量が過剰になるとHAZ靭性が却って劣化するため、1.60%以下に抑える。好ましくは、1.50%以下である。
[Mn: 1.20 to 1.60%]
Mn is an element useful for capturing S as MnS and suppressing degradation of HAZ toughness due to S. It is also an element that contributes to increasing the strength (high tensile strength TS) of the steel sheet by increasing the hardenability. In order to exhibit such an action effectively, it is necessary to contain 1.20% or more of Mn. However, if the amount of Mn becomes excessive, the HAZ toughness deteriorates on the contrary, so it is suppressed to 1.60% or less. Preferably, it is 1.50% or less.

[P:0.010%以下(0%を含まない)]
Pは、HAZ靭性を劣化させる元素であるため極力低減する必要があり、本発明では0.010%以下に抑える。
[P: 0.010% or less (excluding 0%)]
P is an element that deteriorates the HAZ toughness, so it is necessary to reduce it as much as possible. In the present invention, P is suppressed to 0.010% or less.

[S:0.003%以下(0%を含まない)]
Sは、粗大な硫化物を生成してHAZ靭性を劣化させる元素である。よって極力低減する必要があり、本発明では0.003%以下に抑える。
[S: 0.003% or less (excluding 0%)]
S is an element that generates coarse sulfides and degrades the HAZ toughness. Therefore, it is necessary to reduce as much as possible, and in the present invention, it is suppressed to 0.003% or less.

[Al:0.02〜0.04%]
Alは、脱酸剤として使用されると共に、AlN系析出物を生成して大入熱溶接時のHAZ靭性を向上させる元素であり、本発明では0.02%以上含有させる。しかしAl含有量が過剰になると、アルミナ等の酸化物系介在物が増大すると共に、MAの生成が促進されHAZ靭性が劣化するので、0.04%以下に抑える。
[Al: 0.02-0.04%]
Al is an element that is used as a deoxidizer and that also generates AlN-based precipitates to improve the HAZ toughness during high heat input welding. In the present invention, Al is contained in an amount of 0.02% or more. However, when the Al content is excessive, oxide inclusions such as alumina increase and MA formation is promoted to deteriorate the HAZ toughness. Therefore, the Al content is suppressed to 0.04% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。また、更に下記元素を積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and as the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. Further, it is possible to further contain the following elements.

[Cu:0.5%以下(0%を含まない)、Ni:0.8%以下(0%を含まない)、およびV:0.05%以下(0%を含まない)よりなる群から選択される1種以上(但し、下記式(2)の範囲内とする)]
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu,Ni,NbおよびVは、それぞれの元素の含有量(質量%)を示す}
[From the group consisting of Cu: 0.5% or less (not including 0%), Ni: 0.8% or less (not including 0%), and V: 0.05% or less (not including 0%) 1 or more types selected (however, within the range of the following formula (2))]
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb and V represent the content (mass%) of each element}

Cu、Ni、Vは、いずれも強度確保に有用な元素である。Cuは、固溶強化および析出強化により強度(引張強さTS)を高めるのに有効な元素である。しかし過剰に含有させると、熱間加工性を阻害させるため0.5%以下に抑える。   Cu, Ni, and V are all elements useful for ensuring strength. Cu is an element effective for increasing the strength (tensile strength TS) by solid solution strengthening and precipitation strengthening. However, if excessively contained, the hot workability is inhibited, so the content is suppressed to 0.5% or less.

Niは、母材の強度と靭性を同時に向上させる元素である。こうした作用を有効に発揮させるには、0.2%以上含有させることが好ましい。しかし、過剰な添加はコストアップとなると共に、液化アンモニア中でSCCを誘起する可能性がるため0.8%以下に抑える。   Ni is an element that simultaneously improves the strength and toughness of the base material. In order to exhibit such an action effectively, it is preferable to contain 0.2% or more. However, excessive addition increases the cost and may induce SCC in liquefied ammonia, so it is suppressed to 0.8% or less.

Vは、焼入れ性を高めて高強度を確保すると共に、焼戻し軟化抵抗を高めるのに有用な元素である。しかし過剰に含有されると、HAZ靭性が劣化するため0.05%以下に抑える。   V is an element useful for increasing the hardenability and ensuring high strength, and for increasing the temper softening resistance. However, if excessively contained, the HAZ toughness deteriorates, so the content is limited to 0.05% or less.

また本発明では、前述の通りNbを0.016%以下に抑制すると共に、Cu、Ni、Nb、Vの含有量を下記式(2)の通り制限することにより、Cu、NiおよびVよりなる群から選択される1種以上を含有させる場合であっても、優れたHAZ靭性を確保することができる。   In the present invention, as described above, Nb is suppressed to 0.016% or less, and the contents of Cu, Ni, Nb, and V are limited as shown in the following formula (2), thereby comprising Cu, Ni, and V. Even when one or more selected from the group is contained, excellent HAZ toughness can be ensured.

図4は、0.06%C−0.20%Si−1.4%Mn−0.03%Al−0.014Ti−0.0014%B−0.0065%Nを基本成分とし、Cu:0.5%以下、Ni:0.8%以下、およびV:0.05%以下よりなる群から選択される1種以上と規定量のNbを、(Cu+Ni+60Nb+20V)が種々の値となるよう含んだ鋼板を用いて、熱サイクル試験を行い、HAZの低温靭性(vE-60)を後述する実施例の通り測定し、これらの結果を整理したものである。尚、熱サイクル試験は、溶接入熱:60kJ/cm(板厚12mm)を想定して、1400℃×5秒に加熱保持後、800℃から500℃までを150秒で冷却したものである。 FIG. 4 shows that 0.06% C-0.20% Si-1.4% Mn-0.03% Al-0.014Ti-0.0014% B-0.0065% N as a basic component, Cu: One or more selected from the group consisting of 0.5% or less, Ni: 0.8% or less, and V: 0.05% or less, and a specified amount of Nb, including (Cu + Ni + 60Nb + 20V) having various values. A heat cycle test was conducted using a steel plate, and the low temperature toughness (vE- 60 ) of HAZ was measured as described in Examples below, and these results were arranged. The heat cycle test was conducted by heating at 1400 ° C. × 5 seconds and then cooling from 800 ° C. to 500 ° C. in 150 seconds assuming welding heat input: 60 kJ / cm (plate thickness 12 mm).

この図4より、Cu:0.5%以下、Ni:0.8%以下およびV:0.05%以下よりなる群から選択される1種以上を含有させる場合、HAZの低温靭性としてvE-60:100J以上を達成させるには、下記式(2)に示す通り、(Cu+Ni+60Nb+20V)の値が1.4%以下となるようにする必要があることが分かる。Nbを0.016%以下に抑制すると共に、上記の通りCu、Ni、Nb、Vの含有量を総合的に制限することにより、硬質相であるMAの生成を抑制して、優れたHAZ靭性を確保することができる。
(Cu+Ni+60Nb+20V)≦1.4(%) …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
From FIG. 4, when one or more selected from the group consisting of Cu: 0.5% or less, Ni: 0.8% or less, and V: 0.05% or less is contained, vE as the low temperature toughness of HAZ. It can be seen that in order to achieve 60 : 100 J or more, the value of (Cu + Ni + 60Nb + 20V) needs to be 1.4% or less as shown in the following formula (2). While suppressing Nb to 0.016% or less and comprehensively limiting the contents of Cu, Ni, Nb, and V as described above, the formation of MA, which is a hard phase, is suppressed and excellent HAZ toughness is achieved. Can be secured.
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (%) (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}

[Ca:0.003%以下(0%を含まない)]
Caは、HAZ靭性に悪影響を及ぼすSをCaSとして固定すると共に、非金属介在物を粒状に形態制御して靭性を向上させるのに有効な元素である。この様な効果を十分発揮させるには、Caを0.0010%以上含有させることが好ましいが、過剰に含有させても、これらの効果は飽和しHAZ靭性が却って劣化する。よってCa含有量は、0.003%以下とすることが好ましい。
[Ca: 0.003% or less (excluding 0%)]
Ca is an element effective for fixing S, which adversely affects HAZ toughness, as CaS, and for improving the toughness by controlling the form of nonmetallic inclusions in a granular form. In order to exert such effects sufficiently, it is preferable to contain 0.0010% or more of Ca, but even if Ca is contained excessively, these effects are saturated and the HAZ toughness deteriorates. Therefore, the Ca content is preferably 0.003% or less.

上記のような組織にして本発明の鋼材を製造するには、例えば下記に示す方法によって、HAZの低温靭性に優れた低降伏比高張力鋼板を得ることができる。   In order to produce the steel material of the present invention having the above-described structure, a low yield ratio high-tensile steel plate excellent in low temperature toughness of HAZ can be obtained by, for example, the following method.

前述した成分組成を満足する鋼材を、1050〜1200℃以下に加熱し、所定の板厚まで熱間圧延を施し、880〜720℃で熱間圧延を終了した後、10℃/秒以上の冷却速度で600〜700℃まで冷却し(1回目の冷却)、途中で冷却を停止して30秒以上空冷し、引き続き当該温度範囲から10℃/秒以上の冷却速度で550〜350℃まで冷却する。この方法で各条件の範囲設定理由は次の通りである。   The steel material satisfying the above-described component composition is heated to 1050 to 1200 ° C. or lower, hot-rolled to a predetermined plate thickness, and after hot rolling at 880 to 720 ° C., cooling at 10 ° C./second or more. Cool to 600 to 700 ° C. at the rate (first cooling), stop the cooling in the middle, air cool for 30 seconds or more, and subsequently cool from the temperature range to 550 to 350 ° C. at a cooling rate of 10 ° C./s or more. . The reason for setting the range of each condition in this method is as follows.

[加熱温度:1050〜1200℃]
鋼素材は、鋳造欠陥を圧着させるため、1050℃以上に加熱する。一方、加熱温度が1200℃を超えるとオーステナイト粒が粗大化し、母材靭性が劣化するため、1050〜1200℃で加熱する必要がある。
[Heating temperature: 1050 to 1200 ° C.]
The steel material is heated to 1050 ° C. or higher in order to crimp the casting defect. On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grains become coarse and the base material toughness deteriorates. Therefore, it is necessary to heat at 1050 to 1200 ° C.

[熱間圧延温度:880〜720℃]
上記温度に加熱後、圧延を開始して880℃以下で熱間圧延を行って、720℃以上で圧延を終了する。圧延温度が880℃未満では、圧延によってオーステナイトが再結晶するか、若しくは再結晶せずともオーステナイト粒内部に変形帯の欠陥が導入されることにより、フェライト変態の核生成サイトが増加し、組織を微細化し、母材靭性が向上する。こうしたことから、圧延は880℃以下で行う必要がある。但し、熱間圧延終了温度(FRT)720℃以上とする。熱間圧延終了温度が720℃未満となると、初析フェライトが加工を受け、降伏強さYSおよび降伏比YRが上昇することになる。
[Hot rolling temperature: 880-720 ° C]
After heating to the above temperature, rolling is started, hot rolling is performed at 880 ° C. or lower, and rolling is finished at 720 ° C. or higher. When the rolling temperature is less than 880 ° C., the austenite is recrystallized by rolling, or defects in the deformation band are introduced into the austenite grains without recrystallization, thereby increasing the number of nucleation sites of ferrite transformation and Refinement and base material toughness are improved. For these reasons, rolling needs to be performed at 880 ° C. or lower. However, the hot rolling finish temperature (FRT) is 720 ° C. or higher. When the hot rolling end temperature is less than 720 ° C., the pro-eutectoid ferrite is processed, and the yield strength YS and the yield ratio YR are increased.

[冷却条件]
(a)1回目の冷却速度:10℃/秒以上
上記温度で圧延を終了後、10℃/秒以上(好ましくは15℃/秒以上)の冷却速度で600〜700℃の温度域まで冷却し、その途中で冷却を停止することで、過冷されたオーステナイトから微細なフェライトが析出する。その後、その温度(1回目の冷却停止温度)で30秒以上保持することによって、フェライト分率を適切な範囲に制御できる。このときの保持時間が、30秒未満ではフェライト分率が不足し、冷却停止温度が600℃未満や700℃を超えてもフェライト分率が低下する。但し、この保持時間は、150秒を超えると、パーライト組織となり易いので150秒以下とするのが良い。
(b)2回目の冷却速度:10℃/秒以上
上記冷却停止温度から、10℃/秒以上の冷却速度で550℃以下(2回目の冷却停止温度)まで冷却することによって、硬質な第二相を生成させることができる。冷却速度が10℃/秒未満になったり、冷却停止温度が550℃よりも高くなると、第二相がパーライト主体の組織となる。
[Cooling conditions]
(A) First cooling rate: 10 ° C./second or more After completion of rolling at the above temperature, the material is cooled to a temperature range of 600 to 700 ° C. at a cooling rate of 10 ° C./second or more (preferably 15 ° C./second or more). By stopping the cooling in the middle, fine ferrite precipitates from the overcooled austenite. Thereafter, the ferrite fraction can be controlled within an appropriate range by holding at that temperature (first cooling stop temperature) for 30 seconds or more. If the holding time at this time is less than 30 seconds, the ferrite fraction is insufficient, and even if the cooling stop temperature is less than 600 ° C. or exceeds 700 ° C., the ferrite fraction is lowered. However, if this holding time exceeds 150 seconds, a pearlite structure tends to be formed, so it is preferable to set it to 150 seconds or less.
(B) Second cooling rate: 10 ° C./second or more From the above cooling stop temperature, by cooling to a cooling rate of 10 ° C./second or more to 550 ° C. or less (second cooling stop temperature), a hard second A phase can be generated. When the cooling rate is less than 10 ° C./second or the cooling stop temperature is higher than 550 ° C., the second phase becomes a pearlite-based structure.

上記のように550℃以下まで冷却した後は、室温まで特に冷却方法を問わず、空冷(AC)することが好ましい。500〜600℃で焼戻しを行うこともでき、こうした工程を付加することによって、強度の調整が可能となる。   After cooling to 550 ° C. or lower as described above, it is preferable to perform air cooling (AC) to room temperature regardless of the cooling method. Tempering can also be performed at 500 to 600 ° C., and by adding such a process, the strength can be adjusted.

尚、上記で示した温度は、鋼板の平均的な性能を発揮する位置として、t/4部(t:板厚)の位置の温度で管理したものである。また、本発明の鋼材は、いわゆる厚鋼板に有利に適用できる。このときの板厚は、約7mm以上であり上限は特に限定されないが、通常40mm以下程度である。   In addition, the temperature shown above was managed by the temperature of the position of t / 4 part (t: board thickness) as a position which exhibits the average performance of a steel plate. The steel material of the present invention can be advantageously applied to so-called thick steel plates. The plate thickness at this time is about 7 mm or more, and the upper limit is not particularly limited, but is usually about 40 mm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

下記表1、2に示す化学成分組成の鋼片を、1050〜1200℃に加熱し、所定の板厚(12mmまたは30mm)まで熱間圧延を施し、880〜720℃の温度範囲で熱間圧延を終了した後、10℃/秒以上の冷却速度で700〜600℃まで冷却し、その途中で冷却を停止し、30秒以上空冷した。その後、当該温度範囲から10℃/秒以上の冷却速度で550℃以下(冷却停止温度)まで冷却した。このときの製造条件を表3、4に示す。   Steel pieces having the chemical composition shown in Tables 1 and 2 below are heated to 1050 to 1200 ° C., hot-rolled to a predetermined plate thickness (12 mm or 30 mm), and hot-rolled in a temperature range of 880 to 720 ° C. After finishing the above, it was cooled to 700 to 600 ° C. at a cooling rate of 10 ° C./second or more, the cooling was stopped in the middle, and air cooling was performed for 30 seconds or more. Then, it cooled to 550 degrees C or less (cooling stop temperature) with the cooling rate of 10 degrees C / second or more from the said temperature range. The production conditions at this time are shown in Tables 3 and 4.

Figure 0004881773
Figure 0004881773

Figure 0004881773
Figure 0004881773

Figure 0004881773
Figure 0004881773

Figure 0004881773
Figure 0004881773

上記の様にして得られた各鋼板について、母材組織(フェライト分率、フェライト粒径)、母材特性[板厚、降伏強さYS、引張強さTS、靭性(vE-60)]、およびHAZ靭性(vE-60)の評価を、それぞれ下記の要領で実施した。 For each steel plate obtained as described above, the base material structure (ferrite fraction, ferrite grain size), base material properties [plate thickness, yield strength YS, tensile strength TS, toughness (vE- 60 )], And HAZ toughness (vE- 60 ) were evaluated in the following manner.

[フェライト分率、フェライト粒径の測定]
フェライト(ポリゴナルフェライト)の分率は、各鋼板のt/4部(t:板厚)について、光学顕微鏡を用いて倍率200倍で1視野:300μm×300μmの領域を観察し、画像解析ソフトを用いて測定し、5視野の平均値を求めた。また、フェライトの平均結晶粒径は、各鋼板のt/4部(t:板厚)の位置において、400倍で10視野を観察してJIS G 0551で規定される比較法によって測定した。
[Measurement of ferrite fraction and ferrite particle size]
For the fraction of ferrite (polygonal ferrite), t / 4 parts (t: plate thickness) of each steel plate were observed with an optical microscope at a magnification of 200 times and a field of view: 300 μm × 300 μm. The average value of 5 fields of view was obtained. Further, the average crystal grain size of ferrite was measured by a comparison method defined in JIS G 0551 by observing 10 visual fields at 400 times at a position of t / 4 part (t: plate thickness) of each steel plate.

[母材特性の評価]
各鋼板の全厚から、圧延方向に直角の方向にJIS Z 2201の1B号試験片を採取して、JIS Z 2241の要領で引張試験を行ない、降伏強さYS(降伏点があるときは下降伏点YP、ないときは0.2%耐力σ0.2)および引張強さ(TS)を測定した。そして降伏強さ:440MPa以下、引張強さ:530MPa以上で、降伏比(YP/TS)が75%以下のものを、低降伏比高張力鋼板と評価した。
[Evaluation of base material properties]
JIS Z 2201 No. 1B test piece was taken from the total thickness of each steel plate in the direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241, yield strength YS (if there is a yield point, Yield point YP, 0.2% yield strength (σ 0.2 ) when not present, and tensile strength (TS) were measured. And the thing with yield strength: 440 MPa or less, tensile strength: 530 MPa or more and a yield ratio (YP / TS) of 75% or less was evaluated as a low yield ratio high-tensile steel plate.

また各鋼板の表面側から1mm削った部位から、圧延方向にJIS Z 2202のVノッチ試験片を採取して、JIS Z 2242の要領でシャルピー衝撃試験を行い、試験温度:−60℃での吸収エネルギー(vE-60)を測定した。そして、該吸収エネルギー(vE-60)が100J以上のものを優れた母材靭性を具備していると評価した。 In addition, a V-notch test piece of JIS Z 2202 was taken in the rolling direction from a portion cut by 1 mm from the surface side of each steel plate, and a Charpy impact test was performed in the same manner as in JIS Z 2242. The energy (vE- 60 ) was measured. And it was evaluated that the absorbed energy (vE- 60 ) is 100 J or more and has excellent base material toughness.

[HAZ靭性の評価]
上記鋼板を用いた片面サブマージアーク溶接をFCB法で実施した。FCB法は銅板の上に裏当てフラックスを敷き、開先裏面に押し当て、表面片側から裏ビードを形成しながら溶接を完了させる方法であり、造船等の板継ぎ溶接で一般的に適用されている。開先形状を図5[(a)は板厚12mmの場合、(b)は板厚30mmの場合]に示す。溶接材料は、下記の低温用鋼溶接材料(神戸製鋼所製)を使用し、図6および表5の溶接条件で溶接継手を作製した。
[溶接材料]
・ワイヤ;US−255
・表フラックス;PFI−50LT
・裏当てフラックス;MF−1R
[Evaluation of HAZ toughness]
Single-sided submerged arc welding using the steel plate was performed by the FCB method. The FCB method is a method of laying a backing flux on a copper plate, pressing it against the back of the groove, and completing the welding while forming a back bead from one side of the surface. Yes. The groove shape is shown in FIG. 5 [(a) when the plate thickness is 12 mm, (b) when the plate thickness is 30 mm]. As the welding material, the following low-temperature steel welding material (manufactured by Kobe Steel) was used, and a welded joint was produced under the welding conditions shown in FIG.
[Welding material]
・ Wire; US-255
・ Front flux; PFI-50LT
・ Backing flux; MF-1R

Figure 0004881773
Figure 0004881773

そして、表面側から1mm削り、HAZ(ボンド部、ボンド部+1mm[HAZ1mm])の位置に板表面に垂直に切欠きを入れたJIS Z 2202のVノッチ試験片を、それぞれ3個採取し、JIS Z 2242の要領でシャルピー衝撃試験を行った。そして、試験温度:−60℃での吸収エネルギー(vE-60)を測定した。そして、該吸収エネルギー(vE-60)が吸収エネルギーの平均値が100J以上のものを、HAZの低温靭性に優れると評価した。 Then, 3 V-notch test pieces of JIS Z 2202 each cut by 1 mm from the surface side and cut into the HAZ (bond part, bond part + 1 mm [HAZ 1 mm]) position perpendicular to the plate surface were sampled. A Charpy impact test was conducted in the manner of Z2242. And the absorbed energy (vE- 60 ) in test temperature: -60 degreeC was measured. And the thing whose average value of this absorbed energy (vE- 60 ) absorbed energy was 100J or more was evaluated that it was excellent in the low temperature toughness of HAZ.

これらの結果を、実溶接施工条件(施工法、入熱量)と共に、一括して下記表6、7に示す。   These results are shown in Tables 6 and 7 below together with the actual welding conditions (construction method, heat input).

Figure 0004881773
Figure 0004881773

Figure 0004881773
Figure 0004881773

これらの結果から、次の様に考察することができる(尚、下記No.は、表中の実験No.を示す)。   From these results, it can be considered as follows (note that the following No. indicates the experiment No. in the table).

本発明で規定する要件を満たすNo.1〜17の鋼板は、HAZの低温靭性に優れていると共に、母材特性(靭性、降伏強さYS:440MPa以下、引張強さTS:530MPa以上、降伏比YR:75%以下)も優れた高張力鋼板であり、該鋼板を、大入熱片面サブマージアーク溶接法で溶接し、低温条件の用途に用いる場合にも優れた特性を発揮する。   No. satisfying the requirements defined in the present invention. The steel sheets 1 to 17 are excellent in low temperature toughness of HAZ, and are excellent in base material properties (toughness, yield strength YS: 440 MPa or less, tensile strength TS: 530 MPa or more, yield ratio YR: 75% or less). It is a high-strength steel plate, and exhibits excellent characteristics even when the steel plate is welded by a high heat input single-sided submerged arc welding method and used for low temperature conditions.

これに対し、本発明の規定を満足しないNo.18〜40は、夫々、以下の不具合を有している。即ち、No.18〜20は、HAZの低温靭性に優れているものの、母材のフェライト分率が低く、希望する母材特性(降伏強さYS:440MPa以下、降伏比YR:75%以下)が得られていない。   On the other hand, No. which does not satisfy the provisions of the present invention. Each of 18 to 40 has the following problems. That is, no. Nos. 18 to 20 have excellent low-temperature toughness of HAZ, but the ferrite fraction of the base material is low, and the desired base material characteristics (yield strength YS: 440 MPa or less, yield ratio YR: 75% or less) are obtained. Absent.

No.21は、C含有量が上限を超えており、No.22は、Si含有量が上限を超えているため、HAZ靭性に劣っている。また、No.22では、フェライト粒径も大きくなっており、母材靭性も劣っている。更に、何れも母材のフェライト分率が低くなっており、希望する母材特性(降伏強さYS:440MPa以下、引張強さTS:530MPa以上、降伏比YR:75%以下)が得られていない。   No. No. 21 has a C content exceeding the upper limit. No. 22 is inferior in HAZ toughness because the Si content exceeds the upper limit. No. In No. 22, the ferrite particle size is large and the base material toughness is also inferior. Furthermore, in all cases, the ferrite fraction of the base material is low, and the desired base material characteristics (yield strength YS: 440 MPa or less, tensile strength TS: 530 MPa or more, yield ratio YR: 75% or less) are obtained. Absent.

No.23は、Mn含有量が不足しているためHAZ靭性が劣っている。また希望する母材特性(引張強さTS:530MPa以上、降伏比YR:75%以下)が得られていない。一方、No.24は、Mn含有量が過剰であるため、優れたHAZ靭性を確保できていない。   No. No. 23 is inferior in HAZ toughness because the Mn content is insufficient. Moreover, the desired base material characteristics (tensile strength TS: 530 MPa or more, yield ratio YR: 75% or less) are not obtained. On the other hand, no. In No. 24, since the Mn content is excessive, excellent HAZ toughness cannot be secured.

No.25はP含有量が過剰であり、またNo.26はS含有量が過剰であるため、いずれもHAZ靭性に劣っている。また、いずれも母材のフェライト分率が低くなっており、希望する母材特性(降伏強さYS:440MPa以下、降伏比YR:75%以下)が得られていない。   No. No. 25 has an excessive P content. No. 26 is inferior in HAZ toughness because the S content is excessive. In either case, the ferrite fraction of the base material is low, and the desired base material characteristics (yield strength YS: 440 MPa or less, yield ratio YR: 75% or less) are not obtained.

No.27はAl含有量が不足しており、No.28はAl含有量が過剰であるため、HAZ靭性に劣っている。また、No.29はNb含有量が不足しており、No.30はNb含有量が過剰であるため、いずれもHAZ靭性に劣っている。このうち、No.29のものでは、フェライト粒径も大きくなっており、母材靭性が劣化している。   No. No. 27 lacks the Al content. No. 28 is inferior in HAZ toughness because the Al content is excessive. No. No. 29 lacks the Nb content. No. 30 is inferior in HAZ toughness because the Nb content is excessive. Of these, No. In No. 29, the ferrite grain size is also large, and the base material toughness is deteriorated.

No.31はTi含有量が不足しており、No.32はTi含有量が過剰であるため、HAZ靭性に劣っている。No.33はB含有量が不足しており、No.34はB含有量が過剰であるため、いずれもHAZ靭性に劣っている。またNo.35はN含有量が不足しており、一方、No.36はN含有量が過剰であるため、いずれもHAZ靭性に劣っている。   No. No. 31 lacks Ti content. No. 32 is inferior in HAZ toughness because the Ti content is excessive. No. No. 33 has insufficient B content. No. 34 is inferior in HAZ toughness because the B content is excessive. No. No. 35 lacks the N content. No. 36 is inferior in HAZ toughness because the N content is excessive.

No.37は、(B−NT/1.3)が式(1)の下限を上回っており、またNo.38は、(B−NT/1.3)が式(1)の上限を下回っているため、いずれもHAZ靭性に劣っている。   No. No. 37 (B-NT / 1.3) exceeds the lower limit of the formula (1). No. 38 is inferior in HAZ toughness because (B-NT / 1.3) is below the upper limit of formula (1).

No.39、40は、Cu、NiおよびVよりなる群から選択される1種以上を含むものであるが、式(2)の上限を上回っているため、HAZ靭性に劣っている。   No. Although 39 and 40 contain 1 or more types selected from the group which consists of Cu, Ni, and V, since it exceeds the upper limit of Formula (2), it is inferior to HAZ toughness.

(B−NT/1.3)とHAZのvE-60との関係を示すグラフである。It is a graph which shows the relationship between (B-NT / 1.3) and vE- 60 of HAZ. フェライト分率と降伏強さYSとの関係を示すグラフである。It is a graph which shows the relationship between a ferrite fraction and yield strength YS. フェライト粒径と母材の吸収エネルギーvE-60との関係を示すグラフである。It is a graph which shows the relationship between a ferrite particle size and the absorbed energy vE- 60 of a base material. (Cu+Ni+60Nb+20V)とHAZのvE-60との関係を示すグラフである。It is a graph which shows the relationship between (Cu + Ni + 60Nb + 20V) and vE- 60 of HAZ. 実施例での溶接における開先形状の断面図を示す。Sectional drawing of the groove shape in the welding in an Example is shown. FCB溶接時の電極配置の模式図を示す。The schematic diagram of the electrode arrangement | positioning at the time of FCB welding is shown.

Claims (3)

C:0.03〜0.09%(「質量%」の意味、化学成分については以下同じ)、Si:0.01〜0.25%、Mn:1.20〜1.60%、P:0.010%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.02〜0.04%、Nb:0.005〜0.016%、B:0.0006〜0.0020%、N:0.0045〜0.0090%、Ti:0.008〜0.020%を夫々含有すると共に、下記式(1)を満たし、残部鉄および不可避不純物であり、且つ全組織に占めるフェライト分率が45〜85面積%であり、残部がベイナイト組織および/またはマルテンサイト組織からなり、前記フェライトの平均結晶粒径が19μm以下であることを特徴とする溶接熱影響部の低温靭性に優れた低降伏比高張力鋼板。
−20≦(B−NT/1.3)≦10 …(1)
{式中、BはB含有量(質量ppm)を示す。
またNTは、
N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、
(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す}
C: 0.03 to 0.09% (meaning “mass%”, chemical components are the same hereinafter), Si: 0.01 to 0.25%, Mn: 1.20 to 1.60%, P: 0.010% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0.02 to 0.04%, Nb: 0.005 to 0.016%, B: 0.0006 to 0.0020%, N: 0.0045 to 0.0090%, Ti: 0.008 to 0.020%, respectively, satisfy the following formula (1), the remaining iron and inevitable It is an impurity, the ferrite fraction occupying the whole structure is 45 to 85 area%, the balance is a bainite structure and / or a martensite structure, and the average crystal grain size of the ferrite is 19 μm or less. Low yield ratio with excellent low temperature toughness of weld heat affected zone Tension steel plate.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)
{In formula, B shows B content (mass ppm).
NT is
The relationship between N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) is
When (N-Ti / 3.4) ≧ 0, NT = (N-Ti / 3.4),
(N-Ti / 3.4) <0 indicates NT = 0}
更に、Cu:0.5%以下(0%を含まない)、Ni:0.8%以下(0%を含まない)、およびV:0.05%以下(0%を含まない)よりなる群から選択される1種以上を、下記式(2)を満たすように含む請求項1に記載の低降伏比高張力鋼板。
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
Further, Cu: 0.5% or less (not including 0%), Ni: 0.8% or less (not including 0%), and V: 0.05% or less (not including 0%) The low-yield-ratio high-tensile steel sheet according to claim 1, comprising at least one selected from the group consisting of:
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}
更に、Ca:0.003%以下(0%を含まない)を含む請求項1または2に記載の低降伏比高張力鋼板。   Furthermore, the low yield ratio high-tensile steel sheet according to claim 1 or 2, comprising Ca: 0.003% or less (not including 0%).
JP2007077757A 2007-03-23 2007-03-23 Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone Expired - Fee Related JP4881773B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007077757A JP4881773B2 (en) 2007-03-23 2007-03-23 Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
CN201010154697XA CN101899615A (en) 2007-03-23 2008-02-28 The high tensile steel of the low-temperature flexibility excellence of welding heat affected zone
CN2008100815331A CN101270442B (en) 2007-03-23 2008-02-28 High-tension steel with excellent low-temperature toughness at welding hot-effect section
CN2010101547154A CN101942602A (en) 2007-03-23 2008-02-28 The high tensile steel of the low-temperature flexibility excellence of welding heat affected zone
KR1020080026459A KR100992254B1 (en) 2007-03-23 2008-03-21 High tension steel having superior low temperature toughness in weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077757A JP4881773B2 (en) 2007-03-23 2007-03-23 Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2008240004A JP2008240004A (en) 2008-10-09
JP4881773B2 true JP4881773B2 (en) 2012-02-22

Family

ID=39911691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077757A Expired - Fee Related JP4881773B2 (en) 2007-03-23 2007-03-23 Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone

Country Status (2)

Country Link
JP (1) JP4881773B2 (en)
CN (1) CN101270442B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972451B2 (en) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
CN101701317B (en) * 2009-11-27 2011-07-20 武汉钢铁(集团)公司 Steel for stud welding pins with yield strength not less than 320MPa and production method thereof
CN102839320B (en) * 2011-06-24 2015-04-01 宝山钢铁股份有限公司 High-heat input steel plate for welding and manufacturing method thereof
JP5668668B2 (en) * 2011-11-04 2015-02-12 新日鐵住金株式会社 Steel with excellent toughness of weld heat affected zone, welded joint, and method for manufacturing welded joint
JP5884714B2 (en) * 2012-01-31 2016-03-15 Jfeスチール株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
KR101482359B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Method for manufacturing high strength steel plate having excellent toughness and low-yield ratio property
JP5556948B1 (en) * 2013-10-28 2014-07-23 Jfeスチール株式会社 Low temperature steel sheet and method for producing the same
CN104131235B (en) * 2014-07-22 2016-06-29 武汉钢铁(集团)公司 LPG ship storage steel plate for tanks and production method thereof
JP6763141B2 (en) * 2015-02-10 2020-09-30 日本製鉄株式会社 Manufacturing method of steel plate for LPG tank
JP6641875B2 (en) * 2015-10-21 2020-02-05 日本製鉄株式会社 Low yield ratio steel sheet and method of manufacturing the same
WO2017163987A1 (en) * 2016-03-22 2017-09-28 新日鐵住金株式会社 Electric resistance welded steel tube for line pipe
KR101988764B1 (en) 2017-12-21 2019-06-12 주식회사 포스코 Hot rolled steel sheet for electro resistance welded pipe with excellent expandability and method for manufacturing thereof
CN114645183B (en) * 2022-03-26 2023-01-03 湖南华菱湘潭钢铁有限公司 Production method of high-toughness low-yield-ratio low-alloy high-strength steel plate
CN114752724B (en) * 2022-05-25 2023-05-16 宝武集团鄂城钢铁有限公司 750 MPa-grade bridge steel with excellent low internal stress welding performance and preparation method thereof
CN116555673B (en) * 2023-05-08 2024-09-17 邯郸钢铁集团有限责任公司 Low-alloy high-strength galvanized strip steel with yield strength of 460MPa and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
CN100432261C (en) * 2003-06-12 2008-11-12 杰富意钢铁株式会社 Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for producing thereof
JP4305216B2 (en) * 2004-02-24 2009-07-29 Jfeスチール株式会社 Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same
JP2005002476A (en) * 2004-08-03 2005-01-06 Jfe Steel Kk Weld joint
JP4284258B2 (en) * 2004-09-27 2009-06-24 株式会社神戸製鋼所 Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP4778779B2 (en) * 2005-11-04 2011-09-21 株式会社神戸製鋼所 High-tensile steel plate with excellent low-temperature toughness in heat affected zone

Also Published As

Publication number Publication date
JP2008240004A (en) 2008-10-09
CN101270442A (en) 2008-09-24
CN101270442B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4881773B2 (en) Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5509923B2 (en) Method for producing high-tensile steel sheet having a tensile strength of 1100 MPa or more for laser welding or laser-arc hybrid welding
JP4490472B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP6451871B2 (en) Steel material for large heat input welding
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP5147276B2 (en) High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JP4778779B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP2019173053A (en) High strength high ductility steel sheet
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
WO2017135179A1 (en) Steel for high heat input welding
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP5147275B2 (en) Steel material with excellent fatigue crack growth resistance and low temperature toughness of weld heat affected zone
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JP2005200716A (en) Steel material superior in toughness of weld heat-affected zone
WO2021200572A1 (en) High-strength low-alloy steel sheet having exceptional parent-material toughness and welded-joint toughness, and method for manufacturing said steel sheet
JP7330862B2 (en) High-strength steel sheet with excellent low-temperature toughness of base material and joint, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4881773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees