JP7076325B2 - Thick steel plate and its manufacturing method and welded structure - Google Patents

Thick steel plate and its manufacturing method and welded structure Download PDF

Info

Publication number
JP7076325B2
JP7076325B2 JP2018144318A JP2018144318A JP7076325B2 JP 7076325 B2 JP7076325 B2 JP 7076325B2 JP 2018144318 A JP2018144318 A JP 2018144318A JP 2018144318 A JP2018144318 A JP 2018144318A JP 7076325 B2 JP7076325 B2 JP 7076325B2
Authority
JP
Japan
Prior art keywords
mass
temperature
less
thick steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018144318A
Other languages
Japanese (ja)
Other versions
JP2020019995A (en
Inventor
智之 東南
久司 斉藤
雅人 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018144318A priority Critical patent/JP7076325B2/en
Publication of JP2020019995A publication Critical patent/JP2020019995A/en
Application granted granted Critical
Publication of JP7076325B2 publication Critical patent/JP7076325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、厚鋼板およびその製造方法ならびに溶接構造物に関する。 The present invention relates to a thick steel sheet, a method for manufacturing the same, and a welded structure.

厚鋼板は、船舶、海洋構造物、プラント、橋梁、土木、建築など多くの分野で溶接構造物に用いられる。該厚鋼板を構成する鋼材として、例えば特許文献1には耐食性を確保した鋼材が示されている。特許文献1には、所定量のCuおよびCrに加えて、Ti、NbまたはZrのいずれか1種または2種以上を適量添加した素地鋼材において、その製造工程でのスケール生成条件を最適化することにより、密着性と緻密性の高いスケール層を素地鋼材の表面に形成することができ、長期間にわたり優れた一時防錆効果が得られること、また、鋼材のCuやCrなどの添加元素の含有量を適正化することにより、不可避的に生じるスケール欠陥部における素地鋼材の腐食を抑制できることが示されている。 Thick steel sheets are used for welded structures in many fields such as ships, marine structures, plants, bridges, civil engineering, and construction. As a steel material constituting the thick steel sheet, for example, Patent Document 1 discloses a steel material having ensured corrosion resistance. Patent Document 1 optimizes the scale generation conditions in the manufacturing process of a base steel material to which one or more of Ti, Nb or Zr is appropriately added in addition to a predetermined amount of Cu and Cr. As a result, a scale layer with high adhesion and denseness can be formed on the surface of the base steel material, and an excellent temporary rust prevention effect can be obtained for a long period of time. It has been shown that by optimizing the content, it is possible to suppress the corrosion of the base steel material in the scale defects that inevitably occur.

また特許文献2には、C、Si、Mo、Nb等の合金元素を適正範囲内に調整し、熱間圧延、加速冷却条件を適切な範囲に調整することにより、組織を、ベイナイトを主相とし、面積率で30%以下の第二相からなり、第二相が面積率で5%以上のMA相を含む組織とすることができ、これにより、引張強さTS:590MPa以上の高強度と、降伏比:80%以下の低降伏比と、入熱400kJ/cm以下程度の中入熱溶接の熱影響部の靭性および耐溶接割れ性に優れた厚鋼板が得られたことが示されている。 Further, in Patent Document 2, alloy elements such as C, Si, Mo, and Nb are adjusted within an appropriate range, and hot rolling and accelerated cooling conditions are adjusted within an appropriate range to form a structure and bainite as the main phase. The structure can be composed of a second phase having an area ratio of 30% or less, and the second phase can have a structure containing an MA phase having an area ratio of 5% or more. It was shown that a thick steel plate having a low yield ratio of 80% or less and excellent toughness and weld cracking resistance of the heat-affected portion of medium heat welding of about 400 kJ / cm or less was obtained. ing.

特開2016-199778号公報Japanese Unexamined Patent Publication No. 2016-199778 特開2016-180171号公報Japanese Unexamined Patent Publication No. 2016-180171

溶接構造物に用いられる厚鋼板には、該溶接構造物の安全性とメンテナンスフリーを実現するため、特性として下記に示す(a)優れた耐腐食性、(b)高降伏強度、及び(c)溶接継手部の高靭性が求められる。 In order to realize the safety and maintenance-free of the welded structure, the thick steel plate used for the welded structure has the following characteristics (a) excellent corrosion resistance, (b) high yield strength, and (c). ) High toughness of welded joints is required.

(a)優れた耐腐食性
構造物の安全性を確保するために使用される鋼材には将来的な腐食量を想定してあらかじめ板厚を増加させるか、腐食を防止するために塗装が施される。しかし板厚が増加すると溶接施工負荷が増加する。また、前記塗装の場合には、定期的なメンテナンスとして塗り直しが必要となり、経済的に好ましくない。そのため、鋼材そのものに耐腐食性を付与することが要求される。
(A) Excellent corrosion resistance Steel materials used to ensure the safety of structures are either increased in thickness in advance in anticipation of the amount of corrosion in the future, or painted to prevent corrosion. Will be done. However, as the plate thickness increases, the welding load increases. Further, in the case of the above-mentioned painting, repainting is required as regular maintenance, which is economically unfavorable. Therefore, it is required to impart corrosion resistance to the steel material itself.

(b)高降伏強度
地震などにより構造物に荷重が負荷されたときに早期に降伏(塑性変形)することにより、地震等のエネルギーを吸収し安全性を確保する考え方がある。しかし一度降伏した場合に、当該箇所を交換しなければならなくなるため、経済的には好ましくない。よって、地震などがあっても変形しない鋼材を使用することにより、安全性および経済性を確保する考え方がある。この場合、鋼材には高い降伏強度が求められる。
(B) High yield strength There is an idea of absorbing energy such as an earthquake and ensuring safety by yielding (plastic deformation) at an early stage when a load is applied to the structure due to an earthquake or the like. However, once it surrenders, it is economically unfavorable because the relevant part must be replaced. Therefore, there is an idea to ensure safety and economy by using steel materials that do not deform even in the event of an earthquake. In this case, the steel material is required to have a high yield strength.

(c)溶接継手部の高靭性
溶接構造物において、溶接継手部は応力集中が生じやすい形状となっているため、亀裂が発生しやすい。安全性確保の観点から、亀裂の発生進展を防止するため、溶接継手部の特に熱影響部(Heat Affected Zone、以下「HAZ」ということがある)の低温靭性が優れていることが要求される。また、溶接施工面から、溶接割れを安定して抑制する必要がある。
(C) High toughness of welded joints In welded structures, the welded joints are shaped so that stress concentration is likely to occur, so cracks are likely to occur. From the viewpoint of ensuring safety, in order to prevent the growth of cracks, it is required that the welded joint has excellent low temperature toughness, especially the heat-affected zone (hereinafter referred to as "HAZ"). .. In addition, it is necessary to stably suppress welding cracks from the welding construction surface.

上記特許文献1は、耐食性を確保した鋼材が示されているが、HAZ靭性を確保するための合金元素添加量の管理手段や、高い降伏強度を達成するための製造条件については一切規定されていない。また特許文献2は、耐震性の観点から、塑性変形能を確保するために低降伏比を図っている。具体的には、MA(島状マルテンサイト)をある一定分率生成させて、降伏強度の低減を図っている。つまり特許文献2は、上記(b)高降伏強度を達成する技術ではない。 The above-mentioned Patent Document 1 discloses a steel material having corrosion resistance, but does not specify any means for controlling the amount of alloying elements added to ensure HAZ toughness and manufacturing conditions for achieving high yield strength. do not have. Further, Patent Document 2 aims at a low yield ratio in order to secure the plastic deformability from the viewpoint of earthquake resistance. Specifically, MA (island martensite) is generated in a certain fraction to reduce the yield strength. That is, Patent Document 2 is not a technique for achieving the above (b) high yield strength.

以上の通り、上記(a)~(c)の要求特性を全て満たすものは実現されていない。本発明は、この様な事情に鑑みてなされたものであり、上記(a)~(c)の要求特性を全て満たす、溶接構造物の安全性確保とメンテナンスフリーに寄与する厚鋼板を提供することを目的とする。また本発明は、更に、前記厚鋼板の製造方法、および前記厚鋼板を用いて得られる溶接構造物を提供することを目的とする。 As described above, the one that satisfies all the required characteristics of the above (a) to (c) has not been realized. The present invention has been made in view of such circumstances, and provides a thick steel sheet that satisfies all of the above-mentioned required characteristics (a) to (c) and contributes to ensuring the safety and maintenance-free of the welded structure. The purpose is. Another object of the present invention is to provide a method for manufacturing the thick steel plate and a welded structure obtained by using the thick steel plate.

態様1は、成分組成が、
C :0.03~0.05質量%、
Si:0.15~0.55質量%、
Mn:1.40~1.90質量%、
P :0質量%超、0.020質量%以下、
S :0質量%超、0.006質量%以下、
Al:0.01~0.07質量%、
Cu:0.30~0.50質量%、
Ni:0.10~0.30質量%、
Cr:0.45~0.75質量%、
Nb:0.015~0.050質量%、
Ti:0.003~0.030質量%、
B :0質量%以上、0.0007質量%以下、
N :0.0010~0.0100質量%、および
Ca:0.0003~0.0060質量%を満たし、
残部が鉄および不可避的不純物からなり、降伏強度が500MPa以上、母材の全組織に占める島状マルテンサイト(MA)の分率が4.0面積%以下であり、かつ
下記式(1)で表されるPmが1.0以上、2.3以下であると共に、下記式(2)で表されるPcmが0.200質量%以下の厚鋼板である。
Pm=(50×[C])×(1.2×[Si]+1)×{0.3×([Mn]-1.4)}×(0.3×[Cu]+1)×(0.25×[Ni]+1)×(1.2×[Cr]+1)×(30×[Mo]+1)×(2.75×[V]+1)×(100×[B]+1)×(3×[Nb]+1) …(1)
Pcm[質量%]=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B] …(2)
ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]および[Nb]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、V、BおよびNbの含有量を示し、含まない元素はゼロとする。
Aspect 1 has a component composition of
C: 0.03 to 0.05% by mass,
Si: 0.15 to 0.55% by mass,
Mn: 1.40 to 1.90% by mass,
P: More than 0% by mass, 0.020% by mass or less,
S: More than 0% by mass, 0.006% by mass or less,
Al: 0.01-0.07% by mass,
Cu: 0.30 to 0.50% by mass,
Ni: 0.10 to 0.30% by mass,
Cr: 0.45 to 0.75% by mass,
Nb: 0.015 to 0.050% by mass,
Ti: 0.003 to 0.030% by mass,
B: 0% by mass or more, 0.0007% by mass or less,
N: 0.0010 to 0.0100% by mass, and Ca: 0.0003 to 0.0060% by mass,
The balance consists of iron and unavoidable impurities, the yield strength is 500 MPa or more, the fraction of island-shaped martensite (MA) in the entire structure of the base metal is 4.0 area% or less, and the following formula (1) is used. It is a thick steel sheet having a Pm of 1.0 or more and 2.3 or less and a Pcm of 0.200 mass% or less represented by the following formula (2).
Pm = (50 x [C]) 2 x (1.2 x [Si] +1) x {0.3 x ([Mn] -1.4)} x (0.3 x [Cu] +1) x ( 0.25 x [Ni] +1) x (1.2 x [Cr] +1) x (30 x [Mo] +1) x (2.75 x [V] +1) x (100 x [B] +1) x (3 x [Nb] + 1) ... (1)
Pcm [mass%] = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B] and [Nb] are shown in% by mass, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, B and Nb are shown, and the elements not included are zero.

態様2は、更に、Mo:0質量%超、0.30質量%以下と、V:0質量%超、0.10質量%以下のうちの少なくとも1種の元素を含む態様1に記載の厚鋼板である。 Aspect 2 further comprises the thickness according to the aspect 1 containing at least one element of Mo: more than 0% by mass and 0.30% by mass or less and V: more than 0% by mass and 0.10% by mass or less. It is a steel plate.

態様3は、溶接入熱が10kJ/mmのサブマージアーク溶接を施して溶接継手部を形成したときに、該溶接継手部における溶接熱影響部の全組織に占めるMAの分率が4.4面積%以下である態様1または2に記載の厚鋼板である。 In the third aspect, when a welded joint portion is formed by performing submerged arc welding with a welding heat input of 10 kJ / mm, the fraction of MA in the entire structure of the weld heat affected zone in the welded joint portion is 4.4 area. % Is the thick steel plate according to aspect 1 or 2.

態様4は、溶接継手部と非溶接部を有する溶接構造物であって、前記非溶接部は、態様1~3のいずれかに記載の厚鋼板からなり、前記溶接継手部における溶接熱影響部の全組織に占めるMAの分率が4.4面積%以下である溶接構造物である。 Aspect 4 is a welded structure having a welded joint portion and a non-welded portion, wherein the non-welded portion is made of the thick steel plate according to any one of aspects 1 to 3, and is a weld heat affected zone in the welded joint portion. It is a welded structure in which the fraction of MA in the total structure of is 4.4 area% or less.

態様5は、態様1~3のいずれかに記載の厚鋼板を製造する方法であって、
態様1または2に記載の成分組成を有する鋼片を、900~1250℃に加熱する工程と、
前記加熱後の熱間圧延工程と、
前記熱間圧延後の焼戻し工程を含み、
前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度~(仕上圧延温度-150℃)の冷却開始温度から、室温~680℃の冷却停止温度までを、平均冷却速度0.5℃/s以上で冷却し、
前記焼戻し工程では、400℃から下記式(4)により求められるAc変態点までの温度域で焼戻しを行う厚鋼板の製造方法である。
Ar変態点=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo] …(3)
Ac変態点=723-14×[Mn]+22×[Si]-14.4×[Ni]+23.3×[Cr] …(4)
ただし、[C]、[Mn]、[Cu]、[Cr]、[Ni]、[Mo]および[Si]は、それぞれ、質量%で示したC、Mn、Cu、Cr、Ni、MoおよびSiの含有量を示し、含まない元素はゼロとする。
Aspect 5 is a method for manufacturing a thick steel sheet according to any one of Aspects 1 to 3.
A step of heating a steel piece having the composition according to the first or second aspect to 900 to 1250 ° C.
The hot rolling process after heating and
Including the tempering step after the hot rolling
In the hot rolling step, rolling is performed in a temperature range of Ar 3 transformation point to 950 ° C. where the surface temperature is obtained by the following formula (3), the cumulative rolling reduction rate is 20% or more, and the surface temperature is 650 to 900. Finish rolling is performed in the temperature range of ° C, and after hot rolling, the average cooling rate is 0.5 from the cooling start temperature of the finish rolling temperature to (finish rolling temperature -150 ° C) to the cooling stop temperature of room temperature to 680 ° C. Cool at ° C / s or higher,
The tempering step is a method for manufacturing a thick steel sheet in which tempering is performed in a temperature range from 400 ° C. to the Ac 1 transformation point determined by the following formula (4).
Ar 3 transformation point = 910-310 x [C] -80 x [Mn] -20 x [Cu] -15 x [Cr] -55 x [Ni] -80 x [Mo] ... (3)
Ac 1 transformation point = 723-14 × [Mn] +22 × [Si] -14.4 × [Ni] +23.3 × [Cr]… (4)
However, [C], [Mn], [Cu], [Cr], [Ni], [Mo] and [Si] are C, Mn, Cu, Cr, Ni, Mo and Mo in mass%, respectively. The Si content is shown, and the elements that do not contain it are set to zero.

態様6は、態様1~3のいずれかに記載の厚鋼板を製造する方法であって、
態様1または2に記載の成分組成を有する鋼片を、900~1250℃に加熱する工程と、前記加熱後の熱間圧延工程を含み、
前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から、200~480℃の急冷停止温度までを、平均冷却速度12℃/s以上で冷却する厚鋼板の製造方法である。
Ar変態点=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo] …(3)
ただし、[C]、[Mn]、[Cu]、[Cr]、[Ni]および[Mo]は、それぞれ、質量%で示したC、Mn、Cu、Cr、NiおよびMoの含有量を示し、含まない元素はゼロとする。
Aspect 6 is a method for manufacturing the thick steel sheet according to any one of Aspects 1 to 3.
A step of heating a steel piece having the component composition according to the first or second aspect to 900 to 1250 ° C. and a hot rolling step after the heating are included.
In the hot rolling step, rolling is performed in a temperature range of Ar 3 transformation point to 950 ° C. where the surface temperature is obtained by the following formula (3), the cumulative rolling reduction rate is 20% or more, and the surface temperature is 650 to 900. Finish rolling is performed in the temperature range of ° C, and after hot rolling, the average cooling is from the cooling start temperature below the finish rolling temperature (finish rolling temperature -150 ° C) to the quenching stop temperature of 200 to 480 ° C. This is a method for manufacturing a thick steel plate that is cooled at a speed of 12 ° C./s or higher.
Ar 3 transformation point = 910-310 x [C] -80 x [Mn] -20 x [Cu] -15 x [Cr] -55 x [Ni] -80 x [Mo] ... (3)
However, [C], [Mn], [Cu], [Cr], [Ni] and [Mo] indicate the contents of C, Mn, Cu, Cr, Ni and Mo shown in% by mass, respectively. , Elements not included are zero.

本発明によれば、優れた耐腐食性と高降伏強度を示すと共に、溶接を施したときに溶接継手部の溶接熱影響部が高靭性である厚鋼板とその製造方法、及び、前記厚鋼板を用いて得られる、溶接継手部の溶接熱影響部が高靭性である溶接構造物を提供することができる。 According to the present invention, a thick steel plate having excellent corrosion resistance and high yield strength, and having a high toughness in the heat-affected zone of the welded joint when welded, a method for manufacturing the thick steel plate, and the thick steel plate. It is possible to provide a welded structure in which the weld heat-affected zone of the welded joint portion is highly tough, which is obtained by using.

図1は、母材のMA分率と降伏強度の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the MA fraction of the base metal and the yield strength. 図2は、PmとHAZのMA分率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the MA fraction of Pm and HAZ. 図3は、Pmと降伏強度の関係を示すグラフである。FIG. 3 is a graph showing the relationship between Pm and yield strength. 図4は、急冷停止温度と母材のMA分率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the quenching stop temperature and the MA fraction of the base metal. 図5は、HAZのMA分率と、HAZの靭性の指標である試験温度-5℃におけるシャルピー吸収エネルギー(vE-5)との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the MA fraction of HAZ and the Charpy absorption energy (vE -5 ) at a test temperature of −5 ° C., which is an index of HAZ toughness.

溶接構造物に用いられる厚鋼板には、前述の通り特性として、(a)優れた耐腐食性、(b)高降伏強度、及び(c)溶接継手部の高靭性が求められる。個々の特性を改善する知見はあるが、(a)~(c)の特性はトレードオフの関係にあるため、これら(a)~(c)を併せて実現することは難しい。そこで本発明者らは、前記(a)~(c)の要求特性を全て満たすべく鋭意検討した。 As described above, the thick steel sheet used for the welded structure is required to have (a) excellent corrosion resistance, (b) high yield strength, and (c) high toughness of the welded joint. Although there are findings to improve individual characteristics, it is difficult to realize these (a) to (c) together because the characteristics of (a) to (c) are in a trade-off relationship. Therefore, the present inventors have diligently studied to satisfy all the required characteristics of (a) to (c).

まず成分組成において、前記(a)優れた耐腐食性はCu,Ni及びCrを含有させることにより実現できる。Cu,Ni及びCrを添加することにより、鋼材表面に保護性の錆が生成し、それ以降の腐食進展を抑制する効果があることが知られている。そのため、JIS規格(JIS G 3114)ではCu,Ni,Crを所定量添加することが規定されている。 First, in the component composition, the excellent corrosion resistance (a) can be realized by containing Cu, Ni and Cr. It is known that the addition of Cu, Ni and Cr produces protective rust on the surface of the steel material and has the effect of suppressing the subsequent progress of corrosion. Therefore, the JIS standard (JIS G 3114) stipulates that Cu, Ni, and Cr should be added in predetermined amounts.

次に、前記(b)高降伏強度を達成するための手段について検討する。上記Cu,Ni及びCrと共に、その他の焼入れ性向上元素(C,Si,Mn,Mo,V,B,Nb等)を添加することにより、焼入れ性を向上させて母材強度を高めることが考えられる。しかし、これら焼入れ性向上元素の添加により、MA(島状マルテンサイト)などの硬質第二相が生成しやすい。この硬質第二相の周囲の組織に可動転位が導入され、外力が負荷されたとき、当該可動転位は容易に移動することから、塑性変形が早期に起こりやすい。つまり降伏強度が低下しやすく、上記(b)高降伏強度を達成できないという問題がある。さらにこれらの元素の添加は、溶接継手部の熱影響部においてもMAの生成を助長させ、脆性破壊の原因となり、(c)溶接継手部の高靭性を達成できないという問題がある。 Next, the means for achieving the above (b) high yield strength will be examined. It is considered that the hardenability is improved and the strength of the base metal is increased by adding other hardenability improving elements (C, Si, Mn, Mo, V, B, Nb, etc.) together with the above Cu, Ni and Cr. Be done. However, by adding these hardenable elements, a hard second phase such as MA (island martensite) is likely to be formed. When a movable dislocation is introduced into the structure around the hard second phase and an external force is applied, the movable dislocation easily moves, so that plastic deformation is likely to occur at an early stage. That is, there is a problem that the yield strength tends to decrease and the above (b) high yield strength cannot be achieved. Further, the addition of these elements promotes the formation of MA even in the heat-affected zone of the welded joint portion, which causes brittle fracture, and (c) there is a problem that high toughness of the welded joint portion cannot be achieved.

よって、Cu,Ni及びCrと共に、その他の焼入れ性向上元素(C,Si,Mn,Mo,V,B,Nb等)を添加するときに、(b)高降伏強度と(c)溶接継手部の高靭性を達成するため、厚鋼板(母材)と溶接継手部のHAZにおいて、MAの生成を抑制する必要があること、具体的に、厚鋼板の全組織に占めるMAの分率(以下、単に「MA分率」ということがある)を4.0面積%以下とし、HAZの全組織に占めるMAの分率を4.4面積%以下とする必要があることをまず見出した。 Therefore, when other hardenability improving elements (C, Si, Mn, Mo, V, B, Nb, etc.) are added together with Cu, Ni and Cr, (b) high yield strength and (c) welded joint portion. In order to achieve high toughness, it is necessary to suppress the formation of MA in the HAZ of the thick steel plate (base material) and the welded joint, specifically, the fraction of MA in the entire structure of the thick steel plate (hereinafter referred to as First, it was found that it is necessary to set the percentage of MA to 4.0 area% or less, and the percentage of MA in the entire tissue of HAZ to be 4.4 area% or less.

そして、これらMA低減を実現させるには、成分組成において、後記する式(1)で算出されるPmを1.0以上、2.3以下に制御し、かつ厚鋼板の製造工程において、特に圧延後に所定の条件で焼戻しを行うか、圧延後の冷却条件を制御する必要があることを見出した。以下では、本発明の厚鋼板の鋼組織、所定の式(1)を含めた成分組成、厚鋼板の製造方法、及び溶接構造物について順に説明する。 Then, in order to realize these MA reductions, the Pm calculated by the formula (1) described later is controlled to 1.0 or more and 2.3 or less in the component composition, and especially in the manufacturing process of the thick steel sheet, rolling. Later, it was found that it is necessary to perform tempering under predetermined conditions or control the cooling conditions after rolling. Hereinafter, the steel structure of the thick steel sheet of the present invention, the composition including the predetermined formula (1), the method for manufacturing the thick steel sheet, and the welded structure will be described in order.

1.厚鋼板の鋼組織
MAは、前述の通り硬質な組織であり、MAを低減することによって可動転位が低減する。その結果、外力が付加されたときに塑性変形が起こりにくくなり、降伏強度が上昇する。本発明では、厚鋼板(母材)の全組織に占めるMAの分率を4.0面積%以下とする。前記MAの分率は、好ましくは3.8面積%以下、より好ましくは3.6面積%以下である。前記MAの分率は低ければ低いほど好ましく、最も好ましくは0面積%である。
1. 1. The steel structure MA of a thick steel sheet has a hard structure as described above, and by reducing MA, movable dislocations are reduced. As a result, when an external force is applied, plastic deformation is less likely to occur and the yield strength increases. In the present invention, the fraction of MA in the entire structure of the thick steel plate (base material) is 4.0 area% or less. The fraction of MA is preferably 3.8 area% or less, more preferably 3.6 area% or less. The lower the fraction of MA, the more preferable, and most preferably 0 area%.

図1は、後記する実施例のデータを用いて得た、厚鋼板(母材)のMA分率と降伏強度(YS,YP)との関係を示すグラフである。この図1から、所望の降伏強度を得るには、母材のMA分率を4.0面積%以下とすればよいことがわかる。 FIG. 1 is a graph showing the relationship between the MA fraction of a thick steel sheet (base material) and the yield strength (YS, YP) obtained using the data of the examples described later. From FIG. 1, it can be seen that the MA fraction of the base metal should be 4.0 area% or less in order to obtain the desired yield strength.

上記MA以外の組織については特に限定されない。MA以外の組織としてフェライト、パーライト、ベイナイト等が挙げられる。本発明の厚鋼板の一形態として、全組織に占めるフェライト、パーライト、及びベイナイトの合計の割合が90面積%以上であることが挙げられる。 Organizations other than the above MA are not particularly limited. Examples of the structure other than MA include ferrite, pearlite, bainite and the like. As one form of the thick steel sheet of the present invention, the total ratio of ferrite, pearlite, and bainite to the entire structure is 90 area% or more.

2.成分組成
本発明の厚鋼板の成分組成において、下記式(1)で算出されるPmを1.0以上、2.3以下に制御する。
Pm=(50×[C])×(1.2×[Si]+1)×{0.3×([Mn]-1.4)}×(0.3×[Cu]+1)×(0.25×[Ni]+1)×(1.2×[Cr]+1)×(30×[Mo]+1)×(2.75×[V]+1)×(100×[B]+1)×(3×[Nb]+1) …(1)
ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]および[Nb]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、V、BおよびNbの含有量を示し、含まない元素はゼロとする。
2. 2. Component composition In the component composition of the thick steel sheet of the present invention, Pm calculated by the following formula (1) is controlled to 1.0 or more and 2.3 or less.
Pm = (50 x [C]) 2 x (1.2 x [Si] +1) x {0.3 x ([Mn] -1.4)} x (0.3 x [Cu] +1) x ( 0.25 x [Ni] +1) x (1.2 x [Cr] +1) x (30 x [Mo] +1) x (2.75 x [V] +1) x (100 x [B] +1) x (3 x [Nb] + 1) ... (1)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B] and [Nb] are shown in% by mass, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, B and Nb are shown, and the elements not included are zero.

上記式(1)は、次の通り見出した。耐腐食性確保の観点から、上述の通り耐候性元素であるCu,Ni及びCrの含有量を制御する必要がある。さらに降伏強度の向上とHAZにおけるMA生成に影響する元素として、上記Cu,Ni,Crだけでなく、C,Si,Mn,Mo,V,B,Nbを制御する必要がある。本発明者らは、これらの元素の降伏強度向上能とHAZにおけるMA生成能を考慮して各元素の係数を定め、上記式(1)を設定するに至った。 The above equation (1) was found as follows. From the viewpoint of ensuring corrosion resistance, it is necessary to control the contents of the weathering resistant elements Cu, Ni and Cr as described above. Further, it is necessary to control not only Cu, Ni, Cr but also C, Si, Mn, Mo, V, B, and Nb as elements that affect the improvement of yield strength and MA formation in HAZ. The present inventors have determined the coefficients of each element in consideration of the yield strength improving ability of these elements and the MA producing ability in HAZ, and have set the above formula (1).

上記Pmが大きいほど降伏強度は高くなりやすい。本発明では、Pmを1.0以上とし、かつ後記する製造条件の通り、焼戻しの条件または熱間圧延後の冷却条件を制御し、厚鋼板のMA分率を4.0面積%以下に抑えることによって、上記(b)高降伏強度を確保する。一方、Pmが大きくなりすぎると、溶接構造物において、HAZのMA分率が高くなりHAZ靭性が劣化する。よって、本発明では前記Pmを2.3以下とし、後記するとおりHAZのMA分率を4.4面積%以下に抑えることによって、(c)溶接継手部の高靭性を確保する。 The larger the Pm, the higher the yield strength tends to be. In the present invention, the Pm is set to 1.0 or more, and the tempering condition or the cooling condition after hot rolling is controlled according to the manufacturing conditions described later, and the MA fraction of the thick steel sheet is suppressed to 4.0 area% or less. This ensures the above (b) high yield strength. On the other hand, if Pm becomes too large, the MA fraction of HAZ increases in the welded structure and the HAZ toughness deteriorates. Therefore, in the present invention, the Pm is set to 2.3 or less, and the MA fraction of HAZ is suppressed to 4.4 area% or less as described later, thereby ensuring the high toughness of the welded joint portion (c).

図2は、後記する実施例のデータを用いて得た、PmとHAZのMA分率の関係を示すグラフである。この図2から、HAZのMA分率を4.4面積%以下に抑えるには、上記Pmを2.3以下とすればよいことがわかる。 FIG. 2 is a graph showing the relationship between the MA fraction of Pm and HAZ obtained using the data of the examples described later. From FIG. 2, it can be seen that in order to suppress the MA fraction of HAZ to 4.4 area% or less, the Pm should be 2.3 or less.

また図3は、後記する実施例のデータを用いて得た、Pmと降伏強度(YS,YP)との関係を示すグラフである。この図3において、黒丸は、母材のMA分率が4.0面積%以下に抑えられた例であり、白四角は、後記する製造条件の通り、焼戻し条件または圧延後の冷却条件を制御していないため、母材のMA分率が4.0面積%を超えた例である。この図3から、500MPa以上の降伏強度を得るには、上記Pmを1.0以上にすると共に、後記する製造条件の通り、焼戻し条件または圧延後の冷却条件を制御する必要があることがわかる。 Further, FIG. 3 is a graph showing the relationship between Pm and the yield strength (YS, YP) obtained by using the data of the examples described later. In FIG. 3, the black circles are examples in which the MA fraction of the base metal is suppressed to 4.0 area% or less, and the white squares control the tempering conditions or the cooling conditions after rolling according to the manufacturing conditions described later. This is an example in which the MA fraction of the base metal exceeds 4.0 area%. From FIG. 3, it can be seen that in order to obtain a yield strength of 500 MPa or more, it is necessary to set the Pm to 1.0 or more and to control the tempering condition or the cooling condition after rolling according to the manufacturing conditions described later. ..

前記Pmは、好ましくは1.2以上、より好ましくは1.4以上であり、好ましくは2.1以下、より好ましくは1.9以下である。 The Pm is preferably 1.2 or more, more preferably 1.4 or more, preferably 2.1 or less, and more preferably 1.9 or less.

更に本発明では、下記式(2)で表されるPcmを0.200質量%以下とすることで、溶接割れを安定して抑制する。
Pcm[質量%]=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B] …(2)
ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Further, in the present invention, by setting the Pcm represented by the following formula (2) to 0.200% by mass or less, welding cracks are stably suppressed.
Pcm [mass%] = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are C, Si, respectively shown in mass%. The contents of Mn, Cu, Ni, Cr, Mo, V and B are shown, and the elements not contained are set to zero.

前記Pcmは溶接割れ感受性組成と呼ばれ、板厚が例えば100mmと厚肉で拘束度が大きい鋼板においても、溶接割れを安定して抑制するため、前記Pcmを0.200質量%以下とする。前記Pcmは好ましくは0.190質量%以下である。Pcmは小さいほど好ましいが、本発明で規定する成分組成を考慮すると、Pcmの下限はおおよそ0.14質量%となる。 The Pcm is called a weld crack sensitive composition, and the Pcm is set to 0.200% by mass or less in order to stably suppress weld cracks even in a steel plate having a thick plate thickness of, for example, 100 mm and a large degree of restraint. The Pcm is preferably 0.190% by mass or less. The smaller the Pcm, the more preferable, but considering the component composition defined in the present invention, the lower limit of the Pcm is approximately 0.14% by mass.

(a)優れた耐腐食性を確保すると共に、特に上記Pmと製法の制御による(b)高降伏強度と(c)溶接継手部の高靭性の確保を実現させるため、各元素の範囲を下記の通りとする。 In order to secure (a) excellent corrosion resistance, (b) high yield strength and (c) high toughness of the welded joint by controlling the above Pm and manufacturing method, the range of each element is as follows. The street.

[C:0.03~0.05質量%]
Cは、鋼板の強度を高める効果があるが、硬質相を増加させ延性を劣化させる元素でもある。高強度を確保するため、C量は0.03質量%以上とする。C量は、好ましくは0.032質量%以上、より好ましくは0.034質量%以上である。一方、硬質相の増加を抑えて延性を確保するため、C量は0.05質量%以下とする。C量は、好ましくは0.048質量%以下、より好ましくは0.046質量%以下である。
[C: 0.03 to 0.05% by mass]
C has the effect of increasing the strength of the steel sheet, but is also an element that increases the hard phase and deteriorates ductility. In order to secure high strength, the amount of C is 0.03% by mass or more. The amount of C is preferably 0.032% by mass or more, more preferably 0.034% by mass or more. On the other hand, in order to suppress the increase in the hard phase and secure ductility, the amount of C is set to 0.05% by mass or less. The amount of C is preferably 0.048% by mass or less, more preferably 0.046% by mass or less.

[Si:0.15~0.55質量%]
Siは、固溶強化により高強度を確保するために必要な元素である。この作用を有効に発揮させるため、Si量は0.15質量%以上とする。Si量は、好ましくは0.16質量%以上、より好ましくは0.17質量%以上である。しかし、Si量が過剰になるとMAが生成しやすくなる。MAの生成を抑えて上記(b)及び(c)の特性を確保するため、Si量は0.55質量%以下とする。Si量は、好ましくは0.40質量%以下、より好ましくは0.30質量%以下である。
[Si: 0.15 to 0.55% by mass]
Si is an element necessary to secure high strength by strengthening solid solution. In order to effectively exert this action, the amount of Si is 0.15% by mass or more. The amount of Si is preferably 0.16% by mass or more, more preferably 0.17% by mass or more. However, when the amount of Si becomes excessive, MA is likely to be generated. In order to suppress the formation of MA and secure the above-mentioned characteristics (b) and (c), the amount of Si is 0.55% by mass or less. The amount of Si is preferably 0.40% by mass or less, more preferably 0.30% by mass or less.

[Mn:1.40~1.90質量%]
Mnは、焼入れ性を向上させ、強度と靭性を確保する上で有効な元素である。こうした効果を発揮させるため、Mnを1.40質量%以上含有させる。Mn量は、好ましくは1.45質量%以上、より好ましくは1.50質量%以上である。しかしながらMnを過剰に含有させると、HAZにMAが生成しやすくなり溶接性などの劣化を招く。よって本発明ではMn量を1.90質量%以下とする。Mn量は、好ましくは1.85質量%以下、より好ましくは1.80質量%以下である。
[Mn: 1.40 to 1.90% by mass]
Mn is an effective element for improving hardenability and ensuring strength and toughness. In order to exert such an effect, Mn is contained in an amount of 1.40% by mass or more. The amount of Mn is preferably 1.45% by mass or more, more preferably 1.50% by mass or more. However, if Mn is excessively contained, MA is likely to be generated in HAZ, which causes deterioration such as weldability. Therefore, in the present invention, the amount of Mn is 1.90% by mass or less. The amount of Mn is preferably 1.85% by mass or less, more preferably 1.80% by mass or less.

[P:0質量%超、0.020質量%以下]
Pは、母材と溶接部の靭性に悪影響を及ぼす不可避的不純物である。こうした不都合を招かないように、その含有量を0.020質量%以下に抑制する。P量は、好ましくは0.019質量%以下、より好ましくは0.018質量%以下である。尚、工業上0質量%にすることは困難であり、下限は0.002質量%程度である。
[P: More than 0% by mass, 0.020% by mass or less]
P is an unavoidable impurity that adversely affects the toughness of the base metal and the weld. The content is suppressed to 0.020% by mass or less so as not to cause such inconvenience. The amount of P is preferably 0.019% by mass or less, more preferably 0.018% by mass or less. It is industrially difficult to make it 0% by mass, and the lower limit is about 0.002% by mass.

[S:0質量%超、0.006質量%以下]
Sは、靭性や鋼板の板厚方向の延性に悪影響を及ぼす不可避的不純物であり、少ない方が好ましい。こうした観点から、S量は0.006質量%以下に抑制する。S量は、より好ましくは0.003質量%以下、さらに好ましくは0.001質量%以下である。
[S: More than 0% by mass, 0.006% by mass or less]
S is an unavoidable impurity that adversely affects the toughness and ductility of the steel sheet in the plate thickness direction, and is preferably less. From this point of view, the amount of S is suppressed to 0.006% by mass or less. The amount of S is more preferably 0.003% by mass or less, still more preferably 0.001% by mass or less.

[Al:0.01~0.07質量%]
Alは、脱酸に必要な元素であるとともに、鋼中のNを固定して、固溶Nによる母材靭性劣化を防ぐ効果もある。このような効果を発揮させるため、Al量を0.01質量%以上含有させる。Al量は、好ましくは0.015質量%以上、より好ましくは0.020質量%以上である。一方、Al量が過剰になると、アルミナ系の粗大な介在物が形成しやすく、母材靭性の確保が困難になる。よって本発明では、Al量は0.07質量%以下とする。Al量は、好ましくは0.065質量%以下、より好ましくは0.050質量%以下である。
[Al: 0.01 to 0.07% by mass]
Al is an element necessary for deoxidation, and also has an effect of fixing N in the steel and preventing deterioration of the toughness of the base metal due to the solid solution N. In order to exert such an effect, the Al content is 0.01% by mass or more. The amount of Al is preferably 0.015% by mass or more, more preferably 0.020% by mass or more. On the other hand, when the amount of Al is excessive, coarse alumina-based inclusions are likely to be formed, and it becomes difficult to secure the toughness of the base metal. Therefore, in the present invention, the amount of Al is 0.07% by mass or less. The amount of Al is preferably 0.065% by mass or less, more preferably 0.050% by mass or less.

[Cu:0.30~0.50質量%]
Cuは、スケール層を緻密化し防食性を高める作用を発揮することで耐候性を向上させる元素である。また強度確保のためにも必要な元素である。これらの作用を有効に発揮させるため、Cu量は0.30質量%以上とする必要がある。Cu量は、好ましくは0.31質量%以上、より好ましくは0.32質量%以上である。しかし、Cu量が過剰となると析出により延性を低下させるだけでなく、焼入れ性が過剰となり熱間加工時に割れなどが生じやすくなる。よってCu量は、0.50質量%以下とする必要がある。Cu量は、好ましくは0.45質量%以下、より好ましくは0.44質量%以下、更に好ましくは0.43質量%以下である。
[Cu: 0.30 to 0.50% by mass]
Cu is an element that improves weather resistance by densifying the scale layer and exerting an action of enhancing corrosion resistance. It is also an element necessary for ensuring strength. In order to effectively exert these effects, the amount of Cu needs to be 0.30% by mass or more. The amount of Cu is preferably 0.31% by mass or more, more preferably 0.32% by mass or more. However, if the amount of Cu is excessive, not only the ductility is lowered due to precipitation, but also the hardenability becomes excessive and cracks and the like are likely to occur during hot working. Therefore, the amount of Cu needs to be 0.50% by mass or less. The amount of Cu is preferably 0.45% by mass or less, more preferably 0.44% by mass or less, still more preferably 0.43% by mass or less.

[Ni:0.10~0.30質量%]
Niは、焼入れ性を向上させる効果があると同時に、Cu添加により生じやすくなる熱間加工時の割れを抑制する効果がある。このような効果を発揮させるため、Ni量を0.10質量%以上含有させる必要がある。Ni含有量は、好ましくは0.11質量%以上、より好ましくは0.12質量%以上である。しかし、Niを過剰に含有させると焼入れ性が過剰となり、上記(b)及び(c)の特性が得られない。よって、Ni量は0.30質量%以下とする。Ni量は、好ましくは0.29質量%以下、より好ましくは0.28質量%以下である。
[Ni: 0.10 to 0.30% by mass]
Ni has the effect of improving hardenability and at the same time has the effect of suppressing cracking during hot working, which tends to occur due to the addition of Cu. In order to exert such an effect, it is necessary to contain the amount of Ni in an amount of 0.10% by mass or more. The Ni content is preferably 0.11% by mass or more, more preferably 0.12% by mass or more. However, if Ni is excessively contained, the hardenability becomes excessive, and the above-mentioned characteristics (b) and (c) cannot be obtained. Therefore, the amount of Ni is set to 0.30% by mass or less. The amount of Ni is preferably 0.29% by mass or less, more preferably 0.28% by mass or less.

[Cr:0.45~0.75質量%]
Crは、スケール層を緻密化し防食性を高める作用を発揮することで耐候性を向上させる元素である。また強度確保のためにも必要な元素である。これらの作用を有効に発揮させるため、Cr量は0.45質量%以上とする必要がある。Cr量は、好ましくは0.46質量%以上、より好ましくは0.47質量%以上である。しかし、Crを過剰に含有させると焼入れ性が過剰となり、所望とする上記(b)及び(c)の特性が得られない。よって、Cr量は0.75質量%以下とする。Cr量は、好ましくは0.70質量%以下、より好ましくは0.55質量%以下である。
[Cr: 0.45 to 0.75% by mass]
Cr is an element that improves weather resistance by exerting an action of densifying the scale layer and enhancing corrosion resistance. It is also an element necessary for ensuring strength. In order to effectively exert these effects, the amount of Cr needs to be 0.45% by mass or more. The amount of Cr is preferably 0.46% by mass or more, more preferably 0.47% by mass or more. However, if Cr is excessively contained, the hardenability becomes excessive, and the desired properties (b) and (c) cannot be obtained. Therefore, the amount of Cr is set to 0.75% by mass or less. The amount of Cr is preferably 0.70% by mass or less, more preferably 0.55% by mass or less.

[Nb:0.015~0.050質量%]
Nbは、炭化物、炭窒化物を形成して強度を向上させるのに有効な元素である。このような効果を得るには、Nb量を0.015質量%以上含有させる必要がある。Nb量は、好ましくは0.016質量%以上、より好ましくは0.017質量%以上である。一方、Nbが過剰に含まれるとHAZ靭性が劣化するため、Nb量は0.050質量%以下とする必要がある。Nb含有量は、好ましくは0.049質量%以下、より好ましくは0.048質量%以下である。
[Nb: 0.015 to 0.050% by mass]
Nb is an element effective for forming carbides and carbonitrides and improving the strength. In order to obtain such an effect, it is necessary to contain the amount of Nb in an amount of 0.015% by mass or more. The amount of Nb is preferably 0.016% by mass or more, more preferably 0.017% by mass or more. On the other hand, if Nb is excessively contained, the HAZ toughness deteriorates, so the amount of Nb needs to be 0.050% by mass or less. The Nb content is preferably 0.049% by mass or less, more preferably 0.048% by mass or less.

[Ti:0.003~0.030質量%]
Tiは、Nと結合してTiNを形成し、熱間圧延前の加熱時におけるオーステナイト粒、即ちγ粒の粗大化を防止し、母材靭性の向上に寄与する元素である。また、鋼中のNを固定して、固溶Nによる母材靭性の劣化を防ぐ効果もある。これらの効果を発揮させるには、Tiを0.003質量%以上含有させる必要がある。Ti含有量は、好ましくは0.004質量%以上、より好ましくは0.005質量%以上である。一方、Ti量が過剰になると、TiNが粗大化して母材靭性が劣化するので、0.030質量%以下とする必要がある。Ti量は、好ましくは0.020質量%以下、より好ましくは0.015質量%以下である。
[Ti: 0.003 to 0.030% by mass]
Ti is an element that combines with N to form TiN, prevents the coarsening of austenite grains, that is, γ grains, during heating before hot rolling, and contributes to the improvement of the toughness of the base metal. It also has the effect of fixing N in the steel and preventing deterioration of the toughness of the base metal due to the solid solution N. In order to exert these effects, it is necessary to contain Ti in an amount of 0.003% by mass or more. The Ti content is preferably 0.004% by mass or more, more preferably 0.005% by mass or more. On the other hand, if the amount of Ti becomes excessive, TiN becomes coarse and the toughness of the base metal deteriorates, so it is necessary to make it 0.030% by mass or less. The amount of Ti is preferably 0.020% by mass or less, more preferably 0.015% by mass or less.

[B:0質量%以上、0.0007質量%以下]
Bの含有量が過剰になると焼入れ性が過剰となるため、上記(b)と(c)の特性が得られない。よってB量は、0.0007質量%以下とする。B量は好ましくは0.0005質量%以下、より好ましくは0.0003質量%以下である。
[B: 0% by mass or more, 0.0007% by mass or less]
If the content of B is excessive, the hardenability becomes excessive, so that the above-mentioned characteristics (b) and (c) cannot be obtained. Therefore, the amount of B is set to 0.0007% by mass or less. The amount of B is preferably 0.0005% by mass or less, more preferably 0.0003% by mass or less.

[N:0.0010~0.0100質量%]
Nは、TiN、AlNを生成し、熱間圧延前の加熱時、および溶接時におけるγ粒の粗大化を防止し、母材靭性やHAZ靭性を向上させるのに有効な元素である。Nの含有量が0.0010質量%未満であると、上記TiN等が不足し、上記γ粒が粗大になり、母材靭性が劣化する。よってN量は0.0010質量%以上とする必要がある。N量は、好ましくは0.0012質量%以上であり、より好ましくは0.0014質量%以上である。一方、N量が0.0100質量%を超えて過剰になると、固溶Nの増大により、母材靭性とHAZ靭性に悪影響を及ぼす。よって、N量は0.0100質量%以下とする。N量は、好ましくは0.0080質量%以下、より好ましくは0.0070質量%以下である。N量は、更に0.0060質量%以下、より更には0.0050質量%以下とすることもできる。
[N: 0.0010 to 0.0100% by mass]
N is an element that produces TiN and AlN, prevents coarsening of γ grains during heating before hot rolling and during welding, and is effective in improving base metal toughness and HAZ toughness. When the content of N is less than 0.0010% by mass, the TiN and the like are insufficient, the γ grains become coarse, and the toughness of the base metal deteriorates. Therefore, the amount of N needs to be 0.0010% by mass or more. The amount of N is preferably 0.0012% by mass or more, and more preferably 0.0014% by mass or more. On the other hand, if the amount of N exceeds 0.0100% by mass and becomes excessive, the increase in solid solution N adversely affects the toughness of the base metal and the toughness of HAZ. Therefore, the amount of N is set to 0.0100% by mass or less. The amount of N is preferably 0.0080% by mass or less, more preferably 0.0070% by mass or less. The amount of N can be further set to 0.0060% by mass or less, and further to 0.0050% by mass or less.

[Ca:0.0003~0.0060質量%]
Caは、MnSの球状化に寄与し、母材靭性や板厚方向の延性の改善に有効な元素である。このような効果を発揮させるため、Ca量を0.0003質量%以上とする。Ca量は、好ましくは0.0005質量%以上、より好ましくは0.0007質量%以上、更に好ましくは0.0009質量%以上である。一方、介在物の粗大化を抑制して母材靭性を確保するため、Ca量を0.0060質量%以下とする。好ましくは0.0050質量%以下、より好ましくは0.0040質量%以下である。Ca量は、更に0.0030質量%以下、より更には0.0020質量%以下とすることもできる。
[Ca: 0.0003 to 0.0060% by mass]
Ca contributes to the spheroidization of MnS and is an effective element for improving the toughness of the base metal and the ductility in the plate thickness direction. In order to exert such an effect, the amount of Ca is set to 0.0003% by mass or more. The amount of Ca is preferably 0.0005% by mass or more, more preferably 0.0007% by mass or more, and further preferably 0.009% by mass or more. On the other hand, the amount of Ca is set to 0.0060% by mass or less in order to suppress the coarsening of inclusions and secure the toughness of the base metal. It is preferably 0.0050% by mass or less, more preferably 0.0040% by mass or less. The amount of Ca can be further set to 0.0030% by mass or less, and further to 0.0020% by mass or less.

本発明の厚鋼板の基本成分は上記の通りであり、残部は鉄および不可避的不純物である。不可避的不純物は、原料、資材、製造設備等の状況によって持ち込まれる元素であり、例えばO、Sb等が挙げられる。なお、例えば、PおよびSのように、通常、含有量が少ないほど好ましく、従って不可避的不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避的不純物」という場合は、別途その組成範囲が規定されている元素を除いた概念である。 The basic components of the thick steel sheet of the present invention are as described above, and the balance is iron and unavoidable impurities. The unavoidable impurities are elements brought in depending on the conditions of raw materials, materials, manufacturing equipment and the like, and examples thereof include O and Sb. In addition, for example, there are elements such as P and S, which are usually preferable as the content is smaller and are therefore unavoidable impurities, but the composition range thereof is separately specified as described above. Therefore, in the present specification, the term "unavoidable impurities" constituting the balance is a concept excluding the elements whose composition range is separately defined.

本発明の厚鋼板は、必要に応じて下記元素を更に含有させても良い。 The thick steel sheet of the present invention may further contain the following elements, if necessary.

[Mo:0質量%超、0.30質量%以下と、V:0質量%超、0.10質量%以下のうちの少なくとも1種の元素]
Moは、焼入れ性を高めるとともに、鋼中で炭化物を生成しやすい元素である。この効果を得るには、Mo量を0質量%超とすることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。しかし、Moが過剰に含まれると焼入れ性が過剰となり、結果として耐溶接割れ性が劣化するので、Moを含有する場合、Mo量は0.30質量%以下とすることが好ましい。Mo量はより好ましくは0.25質量%以下である。
[Mo: more than 0% by mass, 0.30% by mass or less, V: more than 0% by mass, 0.10% by mass or less, at least one element]
Mo is an element that enhances hardenability and easily forms carbides in steel. In order to obtain this effect, the amount of Mo is preferably more than 0% by mass, more preferably 0.05% by mass or more, and further preferably 0.10% by mass or more. However, if Mo is contained in excess, the hardenability becomes excessive, and as a result, the weld cracking resistance deteriorates. Therefore, when Mo is contained, the amount of Mo is preferably 0.30% by mass or less. The amount of Mo is more preferably 0.25% by mass or less.

Vは、炭化物、窒化物を形成して強度を向上させると共に、焼入れ性を高めるのに有効な元素である。この効果を得るには、V量を0質量%超とすることが好ましく、より好ましくは0.01質量%以上、更に好ましくは0.05質量%以上である。しかし、Vが過剰に含まれると、焼入れ性が過剰となるため、上記(b)と(c)の特性が得られない。よって、Vを含有する場合、V量は0.10質量%以下とすることが好ましい。 V is an element effective for forming carbides and nitrides to improve strength and hardenability. In order to obtain this effect, the amount of V is preferably more than 0% by mass, more preferably 0.01% by mass or more, and further preferably 0.05% by mass or more. However, if V is excessively contained, the hardenability becomes excessive, so that the above-mentioned characteristics (b) and (c) cannot be obtained. Therefore, when V is contained, the amount of V is preferably 0.10% by mass or less.

本発明の厚鋼板は、板厚が例えば6~100mmであることが挙げられる。 The thick steel plate of the present invention has a plate thickness of, for example, 6 to 100 mm.

上記特性を有する本発明の厚鋼板は、造船、建築、橋梁、海洋構造物等の溶接構造物に好適に使用される。本発明の厚鋼板を前記溶接構造物に用いれば、前記溶接構造物の安全性確保とメンテナンスフリーを実現できる。 The thick steel plate of the present invention having the above characteristics is suitably used for welded structures such as shipbuilding, construction, bridges, and offshore structures. If the thick steel plate of the present invention is used for the welded structure, the safety of the welded structure can be ensured and maintenance-free can be realized.

3.製造方法
次に本発明に係る厚鋼板の製造方法について説明する。
本発明者らは、所定の成分組成を有する鋼片に、後述する熱間圧延を行い、その後に後述する焼戻しを行うか、前記熱間圧延後の冷却条件を制御することによって、上述の所望の鋼組織を有し、その結果、上述の所望の特性を有する厚鋼板が得られることを見出した。
3. 3. Manufacturing Method Next, a manufacturing method for a thick steel sheet according to the present invention will be described.
The present inventors perform hot rolling described later on a steel piece having a predetermined composition, and then tempering described later, or control the cooling conditions after the hot rolling to obtain the above-mentioned desired conditions. It has been found that a thick steel sheet having the above-mentioned desired properties can be obtained as a result of having the above-mentioned steel structure.

本発明に係る厚鋼板は、下記の製造方法Iまたは製造方法IIによる。
(製造方法I)
前記成分組成を有する鋼片を、900~1250℃に加熱する工程と、前記加熱後の熱間圧延工程と、前記熱間圧延後の焼戻し工程を含み、前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度~(仕上圧延温度-150℃)の冷却開始温度から、室温~680℃の冷却停止温度までを、平均冷却速度0.5℃/s以上で冷却し、前記焼戻し工程では、400℃から下記式(4)により求められるAc変態点までの温度域で焼戻しを行う。
(製造方法II)
前記成分組成を有する鋼片を、900~1250℃に加熱する工程と、前記加熱後の熱間圧延工程を含み、前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から、200~480℃の急冷停止温度までを、平均冷却速度12℃/s以上で冷却する。
Ar変態点(℃)=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo] …(3)
Ac変態点(℃)=723-14×[Mn]+22×[Si]-14.4×[Ni]+23.3×[Cr] …(4)
ただし、[C]、[Mn]、[Cu]、[Cr]、[Ni]、[Mo]および[Si]は、それぞれ、質量%で示したC、Mn、Cu、Cr、Ni、MoおよびSiの含有量を示し、含まない元素はゼロとする。
The thick steel sheet according to the present invention is according to the following manufacturing method I or manufacturing method II.
(Manufacturing method I)
A step of heating a steel piece having the component composition to 900 to 1250 ° C., a hot rolling step after the heating, and a tempering step after the hot rolling are included. In the hot rolling step, the surface temperature is high. Rolling is performed so that the cumulative rolling reduction is 20% or more in the temperature range of Ar 3 transformation point to 950 ° C. determined by the following formula (3), and finish rolling is performed in the temperature range of surface temperature of 650 to 900 ° C. After hot rolling, the temperature from the cooling start temperature of the finish rolling temperature to (finish rolling temperature -150 ° C) to the cooling stop temperature of room temperature to 680 ° C is cooled at an average cooling rate of 0.5 ° C / s or more, and the tempering is performed. In the step, rolling is performed in the temperature range from 400 ° C. to the Ac 1 transformation point obtained by the following formula (4).
(Manufacturing method II)
Ar 3 includes a step of heating a steel piece having the component composition to 900 to 1250 ° C. and a hot rolling step after the heating, and in the hot rolling step, the surface temperature is determined by the following formula (3). Rolling with a cumulative rolling reduction of 20% or more in the temperature range of transformation point to 950 ° C, finish rolling in the temperature range of surface temperature of 650 to 900 ° C, hot rolling, and then below the finish rolling temperature. From the cooling start temperature of (finish rolling temperature −150 ° C.) or higher to the quenching stop temperature of 200 to 480 ° C., the temperature is cooled at an average cooling rate of 12 ° C./s or higher.
Ar 3 transformation point (° C.) = 910-310 x [C] -80 x [Mn] -20 x [Cu] -15 x [Cr] -55 x [Ni] -80 x [Mo] ... (3)
Ac 1 transformation point (° C.) = 723-14 × [Mn] +22 × [Si] -14.4 × [Ni] +23.3 × [Cr]… (4)
However, [C], [Mn], [Cu], [Cr], [Ni], [Mo] and [Si] are C, Mn, Cu, Cr, Ni, Mo and Mo in mass%, respectively. The Si content is shown, and the elements that do not contain it are set to zero.

以下、まず製造方法Iの各工程について説明する。
(i)鋼片の加熱工程
前記成分組成を有する鋼片を、900~1250℃に加熱する。鋼片の加熱温度を1250℃以下とすることでオーステナイト粒の粗大化を抑制できる。その結果、微細な結晶が得られやすく高強度を確保しやすい。加熱温度は、一方、圧延時の過度な変形抵抗の増加を抑えて熱間圧延を容易に行うため、加熱温度は900℃以上とする。加熱温度は、好ましくは1000℃以上、より好ましくは1050℃以上であり、好ましくは1200℃以下、より好ましくは1150℃以下である。
Hereinafter, each step of the manufacturing method I will be described first.
(I) Heating step of steel pieces The steel pieces having the above-mentioned composition are heated to 900 to 1250 ° C. By setting the heating temperature of the steel pieces to 1250 ° C. or lower, coarsening of austenite grains can be suppressed. As a result, it is easy to obtain fine crystals and to secure high strength. On the other hand, the heating temperature is set to 900 ° C. or higher in order to facilitate hot rolling by suppressing an excessive increase in deformation resistance during rolling. The heating temperature is preferably 1000 ° C. or higher, more preferably 1050 ° C. or higher, preferably 1200 ° C. or lower, and more preferably 1150 ° C. or lower.

(ii)熱間圧延工程
熱間圧延工程では、表面温度が上記式(3)により求められるAr変態点~950℃の温度域で累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度~(仕上圧延温度-150℃)の冷却開始温度から室温~680℃の冷却停止温度までを、平均冷却速度0.5℃/s以上で冷却する。
(Ii) Hot rolling process In the hot rolling process, rolling is performed so that the cumulative reduction rate is 20% or more in the temperature range from the Ar 3 transformation point to 950 ° C. where the surface temperature is obtained by the above formula (3), and the surface is surfaced. Finish rolling is performed in a temperature range of 650 to 900 ° C, and after hot rolling, average cooling is performed from the cooling start temperature of the finish rolling temperature to (finish rolling temperature -150 ° C) to the cooling stop temperature of room temperature to 680 ° C. Cool at a rate of 0.5 ° C./s or higher.

表面温度がAr変態点から950℃までの温度域は、熱間圧延時にオーステナイトが再結晶しない、いわゆる未再結晶域である。所定の母材強度と母材靭性を確保するため、この未再結晶域で累積圧下率を20%以上確保することが必要である。これによりオーステナイトに歪を蓄積させ、熱間圧延後の冷却過程での変態核を増加させることができ、変態後の最終組織を微細化することができる。この温度域での累積圧下率は、好ましくは25%以上、より好ましくは30%以上である。結晶粒微細化の観点からは累積圧下率がより大きい方が好ましいが、圧延工程の生産性の観点からは、この温度域での累積圧下率を80%以下とすることが好ましい。 The temperature range from the Ar 3 transformation point to 950 ° C. is the so-called unrecrystallized region where austenite does not recrystallize during hot rolling. In order to secure a predetermined base metal strength and base material toughness, it is necessary to secure a cumulative reduction rate of 20% or more in this unrecrystallized region. As a result, strain can be accumulated in austenite, the number of transformed nuclei in the cooling process after hot rolling can be increased, and the final structure after transformation can be miniaturized. The cumulative reduction rate in this temperature range is preferably 25% or more, more preferably 30% or more. From the viewpoint of grain refinement, it is preferable that the cumulative reduction rate is larger, but from the viewpoint of productivity in the rolling process, the cumulative reduction rate in this temperature range is preferably 80% or less.

仕上圧延温度は、所定の母材強度を確保するため、表面温度で650~900℃の範囲内とする。仕上圧延温度は、好ましくは660℃以上、より好ましくは670℃以上であり、好ましくは890℃以下、より好ましくは880℃以下である。 The finish rolling temperature shall be within the range of 650 to 900 ° C. in terms of surface temperature in order to secure a predetermined base metal strength. The finish rolling temperature is preferably 660 ° C. or higher, more preferably 670 ° C. or higher, preferably 890 ° C. or lower, and more preferably 880 ° C. or lower.

熱間圧延後、仕上圧延温度~(仕上圧延温度-150℃)の冷却開始温度から、室温~680℃の冷却停止温度までを、平均冷却速度0.5℃/s以上で冷却する。冷却停止温度を680℃以下にすることによって、高い降伏強度を確保できる。前記冷却停止温度は650℃以下であることが好ましく、より好ましくは630℃以下である。また、平均冷却速度を0.5℃/s以上とすることによって、高い降伏強度を確保できる。前記平均冷却速度は、好ましくは1.0℃/s以上である。一方、上記平均冷却速度が100℃/sを超えると、鋼板の表面部の組織は、剪断変態によりマルテンサイト主体となり、表面硬さが大きくなってしまう。よって、上記平均冷却速度の上限は、100℃/s以下であることが好ましく、より好ましくは80℃/s以下である。 After hot rolling, the temperature from the cooling start temperature of the finish rolling temperature to (finish rolling temperature −150 ° C.) to the cooling stop temperature of room temperature to 680 ° C. is cooled at an average cooling rate of 0.5 ° C./s or more. High yield strength can be ensured by setting the cooling shutdown temperature to 680 ° C. or lower. The cooling shutdown temperature is preferably 650 ° C. or lower, more preferably 630 ° C. or lower. Further, by setting the average cooling rate to 0.5 ° C./s or more, high yield strength can be ensured. The average cooling rate is preferably 1.0 ° C./s or higher. On the other hand, when the average cooling rate exceeds 100 ° C./s, the structure of the surface portion of the steel sheet becomes mainly martensite due to shear transformation, and the surface hardness becomes large. Therefore, the upper limit of the average cooling rate is preferably 100 ° C./s or less, and more preferably 80 ° C./s or less.

前記冷却が、例えば平均冷却速度2.0℃/s以下の空冷の場合は、冷却開始温度を仕上圧延温度とすることができる。平均冷却速度2.0℃/s超の水冷等の場合は、冷却開始温度を、仕上圧延温度よりも低い温度であって、(仕上圧延温度-150℃)以上の範囲内とすることができる。 When the cooling is, for example, air cooling having an average cooling rate of 2.0 ° C./s or less, the cooling start temperature can be set as the finish rolling temperature. In the case of water cooling with an average cooling rate of more than 2.0 ° C./s, the cooling start temperature can be set to a temperature lower than the finish rolling temperature and within the range of (finish rolling temperature −150 ° C.) or higher. ..

(iii)焼戻し工程
400℃から上記式(4)により求められるAc変態点の範囲内の焼戻し温度で、焼戻しを行う。
上記温度域、特に焼戻し温度400℃以上で焼戻しを行うことによって、母材のMAを全組織に占める面積率で4.0%以下に低減させることができる。その結果、降伏強度が向上する。上記焼戻し温度は好ましくは500℃以上である。一方、焼戻し温度がAc変態点を超えると、組織の一部が逆変態し、その後空冷されるため、ポリゴナルフェライトが混在するようになる。その結果、強度低下を招く。また、逆変態部は組織が粗いため、靭性低下も招く。よって、焼戻し温度はAc変態点以下とする。焼戻し温度は、好ましくは700℃以下である。
(Iii) Tempering step Tempering is performed at a tempering temperature within the range of the Ac 1 transformation point obtained by the above formula (4) from 400 ° C.
By tempering in the above temperature range, particularly at a tempering temperature of 400 ° C. or higher, the MA of the base metal can be reduced to 4.0% or less in terms of the area ratio of the entire structure. As a result, the yield strength is improved. The tempering temperature is preferably 500 ° C. or higher. On the other hand, when the tempering temperature exceeds the Ac 1 transformation point, a part of the structure is reverse-transformed and then air-cooled, so that polygonal ferrite is mixed. As a result, the strength is lowered. In addition, since the structure of the reverse metamorphosis part is coarse, the toughness is also lowered. Therefore, the tempering temperature is set to be equal to or lower than the Ac 1 transformation point. The tempering temperature is preferably 700 ° C. or lower.

前記焼戻し温度は、後述する実施例に示す通り、鋼板内部の温度である。鋼板内部が前記焼戻し温度に到達してからの保持時間は特に限定されない。該保持時間は、上述の通りMAを消失させる観点からは長い方が好ましいが、生産性を高めたり、強度の確保を図るべく母相組織中の転位密度の維持や、過度の炭化物の析出や粗大化を抑制する観点からは、例えば15分間以下とするのがよい。前記焼戻し温度から室温までの冷却は、特に限定されず、空冷を行うことができる。 The tempering temperature is the temperature inside the steel sheet as shown in Examples described later. The holding time after the inside of the steel sheet reaches the tempering temperature is not particularly limited. As described above, the retention time is preferably long from the viewpoint of eliminating MA, but the dislocation density in the matrix structure is maintained in order to increase productivity and secure strength, and excessive carbide precipitation occurs. From the viewpoint of suppressing coarsening, it is preferable to set it to 15 minutes or less, for example. Cooling from the tempering temperature to room temperature is not particularly limited, and air cooling can be performed.

次に、製造方法IIについて説明する。下記製造方法IIの説明では、前記製造方法Iと同じ工程については説明を省略する。この製造方法IIでは、焼戻し工程を含まない。製造方法IIでは熱間圧延後の冷却でMAの生成を抑制する。 Next, the manufacturing method II will be described. In the following description of the manufacturing method II, the description of the same process as the manufacturing method I will be omitted. This manufacturing method II does not include a tempering step. In the production method II, the formation of MA is suppressed by cooling after hot rolling.

製造方法IIでは、仕上げ圧延までを、製造方法Iと同様の方法で行う。そして熱間圧延後、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から、200~480℃の急冷停止温度までを、平均冷却速度12℃/s以上で冷却する。 In the manufacturing method II, the finishing rolling is performed by the same method as in the manufacturing method I. Then, after hot rolling, the temperature from the cooling start temperature lower than the finish rolling temperature (finish rolling temperature −150 ° C.) to the quenching stop temperature of 200 to 480 ° C. is cooled at an average cooling rate of 12 ° C./s or more. ..

MA生成は、未変態γへのC濃縮度合いに影響を受ける。上記温度域の冷却速度を高めることによって、未変態γへのC濃縮を抑制し、MAの生成を抑える。急冷停止温度が480℃超えの場合、未変態γへのC濃縮が生じやすくMA分率が上昇する。急冷停止温度は、好ましくは450℃以下である。一方、急冷停止温度が200℃未満の場合、セルフ焼戻し効果が弱まり、この場合もMA分率が上昇する。急冷停止温度は、好ましくは250℃以上である。 MA formation is affected by the degree of C enrichment to untransformed γ. By increasing the cooling rate in the above temperature range, C concentration in untransformed γ is suppressed and MA formation is suppressed. When the quenching stop temperature exceeds 480 ° C., C concentration in untransformed γ is likely to occur and the MA fraction increases. The quenching stop temperature is preferably 450 ° C. or lower. On the other hand, when the quenching stop temperature is less than 200 ° C., the self-tempering effect is weakened, and the MA fraction increases in this case as well. The quenching stop temperature is preferably 250 ° C. or higher.

また、熱間圧延後、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から前記急冷停止温度までを、平均冷却速度12℃/s以上で冷却する。前記平均冷却速度は、好ましくは15℃/s以上、より好ましくは20℃/s以上、更に好ましくは25℃/s以上である。一方、前記平均冷却速度が速すぎると、鋼板の表面部の組織が、剪断変態によりマルテンサイト主体となり、表面硬さが大きくなってしまう。よって、前記平均冷却速度は100℃/s以下とすることが好ましい。 Further, after hot rolling, the temperature from the cooling start temperature lower than the finish rolling temperature (finish rolling temperature −150 ° C.) to the quenching stop temperature is cooled at an average cooling rate of 12 ° C./s or more. The average cooling rate is preferably 15 ° C./s or higher, more preferably 20 ° C./s or higher, and even more preferably 25 ° C./s or higher. On the other hand, if the average cooling rate is too fast, the structure of the surface portion of the steel sheet becomes mainly martensite due to shear transformation, and the surface hardness becomes large. Therefore, the average cooling rate is preferably 100 ° C./s or less.

図4は、後記する実施例のデータを用いて得た、急冷停止温度と母材のMA分率の関係を示すグラフである。図4において、黒丸は規定する平均冷却速度が12℃/s以上の例であり、白四角は規定する平均冷却速度が12℃/s未満の例である。この図4から、製造方法Iの通り焼戻し工程を設けなくても、熱間圧延後の冷却工程で、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から、平均冷却速度12℃/s以上で、200~480℃の急冷停止温度まで冷却することによって、母材のMA分率を4.0面積%以下に抑えられることがわかる。 FIG. 4 is a graph showing the relationship between the quenching stop temperature and the MA fraction of the base metal obtained by using the data of the examples described later. In FIG. 4, the black circle is an example in which the specified average cooling rate is 12 ° C./s or more, and the white square is an example in which the specified average cooling rate is less than 12 ° C./s. From FIG. 4, it is averaged from the cooling start temperature which is lower than the finish rolling temperature (finish rolling temperature −150 ° C.) or higher in the cooling step after hot rolling even if the tempering step is not provided as in the manufacturing method I. It can be seen that the MA fraction of the base metal can be suppressed to 4.0 area% or less by cooling to a quenching stop temperature of 200 to 480 ° C. at a cooling rate of 12 ° C./s or more.

上記急冷の方法として、例えば水冷が挙げられる。上記急冷後は、室温までを非強制冷却、例えば空冷で冷却すればよい。前記空冷では、急冷停止温度から室温までの平均冷却速度を1.0℃/s未満とすることができる。 As the above-mentioned quenching method, for example, water cooling can be mentioned. After the quenching, the room temperature may be cooled to room temperature by non-forced cooling, for example, air cooling. In the air cooling, the average cooling rate from the quenching stop temperature to room temperature can be set to less than 1.0 ° C./s.

4.溶接構造物とその製造方法
本発明には、前記厚鋼板を溶接して得られる溶接構造物も含まれる。溶接構造物は、溶接継手部と非溶接部を有し、前記溶接継手部は、溶接金属と溶接熱影響部を有する。本発明の溶接構造物は、前記非溶接部が本発明に係る厚鋼板からなり、前記溶接継手部における溶接熱影響部は、その組織に占める島状マルテンサイト(MA)の割合が抑えられている。破壊の発生起点となるMAを低減させることで、HAZ靭性を向上できる。本発明においては、HAZのMA分率が4.4面積%以下に抑えられている。
4. Welded Structure and Method for Manufacturing The present invention also includes a welded structure obtained by welding the thick steel plate. The welded structure has a welded joint and a non-welded portion, and the welded joint has a weld metal and a weld heat affected zone. In the welded structure of the present invention, the non-welded portion is made of a thick steel plate according to the present invention, and the weld heat-affected zone in the welded joint portion is suppressed in the proportion of island-shaped martensite (MA) in the structure. There is. HAZ toughness can be improved by reducing MA, which is the starting point of fracture. In the present invention, the MA fraction of HAZ is suppressed to 4.4 area% or less.

図5は後記する実施例のデータを用いて得た、HAZのMA分率と、HAZの靭性、具体的に試験温度-5℃におけるシャルピー吸収エネルギー(vE-5)との関係を示すグラフである。この図5から、HAZの低温靭性を高める、特にはvE-5を47J以上とするには、HAZのMA分率を4.4面積%以下に抑えるのがよいことがわかる。 FIG. 5 is a graph showing the relationship between the MA fraction of HAZ and the toughness of HAZ, specifically, the Charpy absorption energy (vE -5 ) at a test temperature of −5 ° C., obtained using the data of the examples described later. be. From FIG. 5, it can be seen that in order to increase the low temperature toughness of HAZ, particularly to make vE -5 47J or more, it is better to suppress the MA fraction of HAZ to 4.4 area% or less.

前記HAZのMA分率は、好ましくは4.2面積%以下、より好ましくは4.0面積%以下である。最も好ましくは0面積%である。上記MA以外の組織については特に限定されず、例えばフェライト、パーライト、及びベイナイト等を合計で90面積%以上含むことが挙げられる。 The MA fraction of the HAZ is preferably 4.2 area% or less, more preferably 4.0 area% or less. Most preferably, it is 0 area%. The structure other than MA is not particularly limited, and examples thereof include ferrite, pearlite, bainite and the like in a total of 90 area% or more.

前記溶接構造物の製造方法は、特に限定されず、本発明の厚鋼板を用いて、従来公知の方法で溶接すればよい。例えば、被覆アーク溶接法、マグ溶接法、ティグ溶接法、セルフシールド溶接法、サブマージアーク溶接法、エレクトロスラグ溶接法、エレクトロガスアーク溶接法など各種の溶接法を用いることができる。 The method for manufacturing the welded structure is not particularly limited, and the thick steel plate of the present invention may be used for welding by a conventionally known method. For example, various welding methods such as a shielded metal arc welding method, a mag welding method, a tig welding method, a self-shield welding method, a submerged arc welding method, an electroslag welding method, and an electrogas arc welding method can be used.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by the following examples, and can be carried out with appropriate modifications to the extent that it can meet the above-mentioned and later-described intent, and both of them are the technical scope of the present invention. Included in.

下記表1に示す成分組成を満たす鋼材150kgを真空溶製し、鋳造し、鋼片としてスラブを得た。そして表2-1、表2-2に示す温度で前記スラブを加熱してから、表2-1、表2-2に示す条件で熱間圧延を行い、その後、一部の例では、表2-1、表2-2に示す焼戻し温度で焼戻しを行って、仕上厚9~100mmの厚鋼板を得た。尚、表1におけるPm、Pcm、Ac変態点、Ar変態点はそれぞれ、表1に示す成分組成を用い前述の式(1)~(4)から求めた。 150 kg of a steel material satisfying the composition shown in Table 1 below was vacuum-melted and cast to obtain a slab as a steel piece. Then, after heating the slab at the temperatures shown in Tables 2-1 and 2-2, hot rolling is performed under the conditions shown in Tables 2-1 and 2-2, and then, in some examples, the table. Tempering was performed at the tempering temperatures shown in 2-1 and Table 2-2 to obtain thick steel sheets having a finished thickness of 9 to 100 mm. The Pm, Pcm, Ac 1 transformation points, and Ar 3 transformation points in Table 1 were obtained from the above formulas (1) to (4) using the component compositions shown in Table 1, respectively.

前記熱間圧延では、表面温度が950℃からAr変態点までの累積圧下率と仕上圧延温度を表2-1、表2-2に示す通りとした。また仕上げ圧延後の冷却を、表2-1、表2-2に示す通りとした。表2-1、表2-2において、急冷停止温度が300℃以上の例はいずれも、該急冷停止温度から室温までを空冷(1.0℃/s未満)とした。表2-1、表2-2において、冷却開始温度が「-」の例は、仕上圧延温度から空冷を行ったことを示している。また急冷停止温度が「-」である例は、空冷(平均冷却速度は表2-1、表2-2の通り)を室温まで行ったことを示している。前記焼戻しを行う場合、焼戻し時間は焼戻し温度に到達してからの保持時間として15分とし、また焼戻し後の室温までの冷却は空冷とした。 In the hot rolling, the cumulative rolling reduction and the finish rolling temperature from the surface temperature of 950 ° C. to the Ar 3 transformation point are as shown in Tables 2-1 and 2-2. The cooling after finish rolling was as shown in Table 2-1 and Table 2-2. In Tables 2-1 and 2-2, in all the examples where the quenching stop temperature was 300 ° C. or higher, the temperature from the quenching stop temperature to room temperature was defined as air cooling (less than 1.0 ° C./s). In Tables 2-1 and 2-2, the example in which the cooling start temperature is "-" indicates that air cooling was performed from the finish rolling temperature. Further, the example in which the quenching stop temperature is "-" indicates that air cooling (the average cooling rate is as shown in Table 2-1 and Table 2-2) was performed to room temperature. When the tempering was performed, the tempering time was 15 minutes as the holding time after reaching the tempering temperature, and the cooling to room temperature after the tempering was air cooling.

また、ある温度域における累積圧下率は下記式で算出した。
ある温度域における累積圧下率[%]=(H1-H2)/H1×100
ここでH1:ある温度域の温調開始厚[mm]
H2:ある温度域の温調完了厚[mm]
In addition, the cumulative reduction rate in a certain temperature range was calculated by the following formula.
Cumulative reduction rate [%] = (H1-H2) / H1 × 100 in a certain temperature range
Here, H1: Temperature control start thickness [mm] in a certain temperature range
H2: Temperature control completion thickness [mm] in a certain temperature range

焼戻し温度は、鋼板内部の温度である。焼戻しの温度以外は、鋼板表面の温度である。鋼板内部の温度は、次の様にして求めた。即ち、焼戻し処理時、対象材と一緒に鋼板内部に熱電対を内蔵したダミー材を装入し、ダミー材の実測温度を対象材の鋼板内部の温度とした。 The tempering temperature is the temperature inside the steel sheet. Except for the tempering temperature, it is the temperature of the surface of the steel sheet. The temperature inside the steel sheet was determined as follows. That is, at the time of tempering, a dummy material having a thermocouple built in the steel sheet was charged together with the target material, and the measured temperature of the dummy material was set to the temperature inside the steel sheet of the target material.

得られた厚鋼板について、以下の要領で、母材の引張試験を行った。また厚鋼板の母材のMA分率を測定した。更に、一部の例では下記に説明する通り、溶接を模擬した下記条件の熱サイクルを付与するか、または、後記の通り実際に溶接継手を作製して、溶接構造物に相当するサンプルを得た。そして、溶接構造物に相当するサンプルを用い、HAZのMA分率とHAZの靭性を評価した。尚、前記厚鋼板の母材のMA分率は、前記溶接構造物に相当するサンプルの非溶接部でも測定できる。 The obtained thick steel sheet was subjected to a tensile test of the base metal in the following manner. Moreover, the MA fraction of the base material of the thick steel plate was measured. Further, in some examples, as described below, a thermal cycle under the following conditions simulating welding is applied, or a welded joint is actually manufactured as described later to obtain a sample corresponding to a welded structure. rice field. Then, using a sample corresponding to the welded structure, the MA fraction of HAZ and the toughness of HAZ were evaluated. The MA fraction of the base material of the thick steel plate can also be measured in the non-welded portion of the sample corresponding to the welded structure.

(熱サイクル条件または溶接条件)
試験No.23、25、27~30では、厚鋼板から12.5mm×33mm×55mmの試料を採取し、該試料に対し、溶接入熱が10kJ/mm相当となる条件の熱サイクルを付与して溶接構造物のHAZに相当するサンプルを得た。この溶接入熱は例えば橋梁の施工において用いられるサブマージアーク溶接(SAW、Submerge-Arc metal-Welding法)において現実的に適用される最大の入熱量に相当する。
(Thermal cycle conditions or welding conditions)
Test No. In 23, 25, 27 to 30, a sample of 12.5 mm × 33 mm × 55 mm is taken from a thick steel plate, and a heat cycle is applied to the sample under the condition that the welding heat input is equivalent to 10 kJ / mm. A sample corresponding to the HAZ of the thing was obtained. This welding heat input corresponds to the maximum amount of heat input practically applied in submerged arc welding (SAW, Submerged-Arc metal-welding method) used in, for example, bridge construction.

また試験No.1と試験No.38では、厚鋼板から50mm×250mm×900mmの鋼片2枚を採取し、上記入熱にてSAWにより溶接継手サンプルを作製した。溶接入熱量が高いほどHAZの靭性は劣化しやすいことから、最も安全側の評価となる本条件にて熱サイクルを付与した。これらのサンプルにおいて、鋼板の圧延方向は、鋼板長さ900mmの方向である。溶接線もこの鋼板長さ方向である。 In addition, the test No. 1 and test No. In No. 38, two pieces of steel having a size of 50 mm × 250 mm × 900 mm were collected from a thick steel plate, and a welded joint sample was prepared by SAW by the above heat input. Since the toughness of HAZ tends to deteriorate as the amount of heat input to welding increases, the heat cycle was applied under these conditions, which is the safest evaluation. In these samples, the rolling direction of the steel sheet is the direction of the steel sheet length of 900 mm. The weld line is also in the length direction of this steel plate.

[母材のMA分率の測定]
前記熱サイクルまたは溶接を施していない厚鋼板、または溶接継手サンプルの非溶接部において、表面から板厚t/4の深さの箇所で、板厚方向±3mmの範囲を「測定領域」とした。各鋼板について、圧延方向に垂直な面で切断し、その断面をレペラ試薬で腐食し、上記測定領域内を1000倍にて光学顕微鏡で1視野観察した。画像解析により、MA部分の面積を求めMA分率を算出した。尚、いずれの例においても、全組織に占めるフェライト、パーライト、及びベイナイトの合計の割合は90面積%以上であった。
[Measurement of MA fraction of base material]
In the non-welded portion of the thick steel plate or the welded joint sample that has not been subjected to the thermal cycle or welding, the range of ± 3 mm in the plate thickness direction at the depth of the plate thickness t / 4 from the surface was defined as the “measurement region”. .. Each steel sheet was cut on a plane perpendicular to the rolling direction, its cross section was corroded with a repera reagent, and the inside of the measurement area was observed in one field with an optical microscope at 1000 times. The area of the MA portion was obtained by image analysis, and the MA fraction was calculated. In each example, the total ratio of ferrite, pearlite, and bainite to the entire structure was 90 area% or more.

[HAZのMA分率の測定]
熱サイクルを施したサンプルは板厚t/2の深さの箇所で、また、溶接継手サンプルはHAZ部の表面から板厚t/4の深さの箇所で、それぞれ板厚方向±3mmの範囲内を測定領域とした。各鋼板について、圧延方向に垂直な面で切断し、その断面をレペラ試薬で腐食し、上記測定領域内を1000倍にて光学顕微鏡で1視野観察した。そして画像解析により、MA部分の面積を求めMA分率を算出した。
[Measurement of MA fraction of HAZ]
The heat-cycled sample is at a depth of plate thickness t / 2, and the welded joint sample is at a depth of plate thickness t / 4 from the surface of the HAZ portion, each in the range of ± 3 mm in the plate thickness direction. The inside was used as the measurement area. Each steel sheet was cut on a plane perpendicular to the rolling direction, its cross section was corroded with a repera reagent, and the inside of the measurement area was observed in one field with an optical microscope at 1000 times. Then, the area of the MA portion was obtained by image analysis, and the MA fraction was calculated.

[母材強度の測定]
各厚鋼板から、JIS Z 2201の4号試験片を作製した。仕上げ厚9mmの鋼材のみJIS Z 2201の5号試験片を作製した。前記4号試験片は、厚鋼板の表面から板厚t/4の深さ位置から、圧延方向と垂直方向に切り出した。前記5号試験片は、厚鋼板の全厚で、圧延方向と垂直方向に切り出した。前記試験片を用いて、JIS Z 2241に従って各1回の引張試験を行い、降伏強度YS、YPおよび引張強度TSを測定した。そして、降伏強度(YS、YP)が500MPa以上、かつ引張強度(TS)が570MPa以上の場合を高強度であると評価した。
[Measurement of base metal strength]
JIS Z 2201 No. 4 test piece was prepared from each thick steel plate. A JIS Z 2201 No. 5 test piece was prepared only for a steel material having a finishing thickness of 9 mm. The No. 4 test piece was cut out from the surface of the thick steel plate at a depth of t / 4 in the plate thickness in the direction perpendicular to the rolling direction. The No. 5 test piece was cut out in the direction perpendicular to the rolling direction with the total thickness of the thick steel plate. Using the test piece, a tensile test was performed once for each according to JIS Z 2241, and yield strengths YS, YP and tensile strength TS were measured. Then, when the yield strength (YS, YP) was 500 MPa or more and the tensile strength (TS) was 570 MPa or more, it was evaluated as high strength.

[HAZ靭性の評価]
熱サイクルを付与したサンプル、または、溶接継手のHAZから、JIS Z 2242のVノッチシャルピー衝撃試験片を3本ずつ採取した。尚、熱サイクルを施したサンプルは、試験片全体がHAZに相当する組織となっているため、採取位置は特に問わない。3本の試験片を用いて、試験温度-5℃における吸収エネルギーを求めた。当該吸収エネルギーの最小値が47J以上であるとき、HAZの靭性が優れていると評価した。
[Evaluation of HAZ toughness]
Three V-notch Charpy impact test pieces of JIS Z 2242 were taken from the sample to which the heat cycle was applied or from the HAZ of the welded joint. Since the entire test piece of the sample subjected to the heat cycle has a structure corresponding to HAZ, the sampling position is not particularly limited. Absorption energy at a test temperature of −5 ° C. was determined using three test pieces. When the minimum value of the absorbed energy was 47 J or more, it was evaluated that the toughness of HAZ was excellent.

Figure 0007076325000001
Figure 0007076325000001

Figure 0007076325000002
Figure 0007076325000002

Figure 0007076325000003
Figure 0007076325000003

Figure 0007076325000004
Figure 0007076325000004

表1~3から次の通り考察する。 Consider the following from Tables 1 to 3.

試験No.1、2、5、6、10~15、17、19、21~25、36~41は、本発明で規定する成分組成、即ち、各元素の含有量、Pm及びPcmを満たし、かつ本発明で規定する条件で製造したので、高降伏強度を具備しており、また、一部の例で確認した通り、溶接構造物のHAZの優れた靭性も具備していた。またCu、Ni及びCrを所定量含んでいるため、優れた耐腐食性も兼備しているといえる。 Test No. 1, 2, 5, 6, 10 to 15, 17, 19, 21 to 25, 36 to 41 satisfy the component composition specified in the present invention, that is, the content of each element, Pm and Pcm, and the present invention. Since it was manufactured under the conditions specified in the above, it had high yield strength, and as confirmed in some examples, it also had excellent toughness of HAZ of the welded structure. Further, since it contains a predetermined amount of Cu, Ni and Cr, it can be said that it also has excellent corrosion resistance.

これに対して、上記以外の例は、成分組成と製造条件の少なくともいずれかを満たさず、降伏強度、溶接構造物のHAZの靭性、耐腐食性の少なくともいずれかが劣る結果となった。 On the other hand, the examples other than the above did not satisfy at least one of the component composition and the production conditions, and the result was that at least one of the yield strength, the toughness of HAZ of the welded structure, and the corrosion resistance was inferior.

試験No.3、9、16、18及び20は、製造工程において、焼戻しを行わず、かつ熱間圧延後に急冷停止温度までの急冷も実施しなかったため、母材にMA組織が多く存在した。その結果、高降伏強度が得られなかった。 Test No. In 3, 9, 16, 18 and 20, no tempering was performed in the manufacturing process, and quenching to the quenching stop temperature was not performed after hot rolling, so that a large amount of MA structure was present in the base metal. As a result, high yield strength could not be obtained.

試験No.4、7及び8は、熱間圧延後の急冷を、所定の急冷停止温度域よりも高い温度で終了し、また、焼戻しを行っていないため、母材にMA組織が多く存在した。その結果、高降伏強度が得られなかった。 Test No. In Nos. 4, 7 and 8, the quenching after hot rolling was completed at a temperature higher than the predetermined quenching stop temperature range, and tempering was not performed, so that a large amount of MA structure was present in the base metal. As a result, high yield strength could not be obtained.

試験No.26は、熱間圧延後の急冷を、急冷停止温度域よりも低い温度で終了し、また、焼戻しを行っていないため、母材にMA組織が多く存在した。その結果、高降伏強度が得られなかった。 Test No. In No. 26, quenching after hot rolling was completed at a temperature lower than the quenching stop temperature range, and tempering was not performed, so that a large amount of MA structure was present in the base metal. As a result, high yield strength could not be obtained.

試験No.27及び28は、Pmが規定範囲の上限を上回ったため、HAZのMA分率が高くなり、溶接構造物のHAZの靭性が劣った。 Test No. In 27 and 28, since Pm exceeded the upper limit of the specified range, the MA fraction of HAZ was high, and the toughness of HAZ in the welded structure was inferior.

試験No.29~35は、Pmが規定範囲の下限を下回ったため、降伏強度が低くなった。 Test No. In 29 to 35, the yield strength was low because Pm was below the lower limit of the specified range.

Claims (6)

成分組成が、
C :0.03~0.05質量%、
Si:0.15~0.55質量%、
Mn:1.40~1.90質量%、
P :0質量%超、0.020質量%以下、
S :0質量%超、0.006質量%以下、
Al:0.01~0.07質量%、
Cu:0.30~0.50質量%、
Ni:0.10~0.30質量%、
Cr:0.45~0.75質量%、
Nb:0.015~0.050質量%、
Ti:0.003~0.030質量%、
B :0質量%以上、0.0007質量%以下、
N :0.0010~0.0100質量%、および
Ca:0.0003~0.0060質量%を満たし、
残部が鉄および不可避的不純物からなり、降伏強度が500MPa以上、厚鋼板表面から板厚t/4の深さの箇所で、全組織に占める島状マルテンサイト(MA)の分率が4.0面積%以下(0面積%を含む)であり、全組織に占めるフェライト、パーライト、及びベイナイトの合計の割合は90面積%以上であり、かつ
下記式(1)で表されるPmが1.0以上、2.3以下であると共に、下記式(2)で表されるPcmが0.200質量%以下である厚鋼板。
Pm=(50×[C])×(1.2×[Si]+1)×{0.3×([Mn]-1.4)}×(0.3×[Cu]+1)×(0.25×[Ni]+1)×(1.2×[Cr]+1)×(30×[Mo]+1)×(2.75×[V]+1)×(100×[B]+1)×(3×[Nb]+1) …(1)
Pcm[質量%]=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B] …(2)
ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[B]および[Nb]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、V、BおよびNbの含有量を示し、含まない元素はゼロとする。
Ingredient composition,
C: 0.03 to 0.05% by mass,
Si: 0.15 to 0.55% by mass,
Mn: 1.40 to 1.90% by mass,
P: More than 0% by mass, 0.020% by mass or less,
S: More than 0% by mass, 0.006% by mass or less,
Al: 0.01-0.07% by mass,
Cu: 0.30 to 0.50% by mass,
Ni: 0.10 to 0.30% by mass,
Cr: 0.45 to 0.75% by mass,
Nb: 0.015 to 0.050% by mass,
Ti: 0.003 to 0.030% by mass,
B: 0% by mass or more, 0.0007% by mass or less,
N: 0.0010 to 0.0100% by mass, and Ca: 0.0003 to 0.0060% by mass,
3. The balance consists of iron and unavoidable impurities, the yield strength is 500 MPa or more, and the fraction of island-shaped martensite (MA) in the entire structure is at a depth of t / 4 from the surface of the thick steel sheet . It is 0 area% or less (including 0 area%) , the total ratio of ferrite, pearlite, and bainite to the entire structure is 90 area% or more, and Pm represented by the following formula (1) is 1. A thick steel sheet having a Pcm of 0 or more and 2.3 or less and having a Pcm represented by the following formula (2) of 0.200 mass% or less.
Pm = (50 x [C]) 2 x (1.2 x [Si] +1) x {0.3 x ([Mn] -1.4)} x (0.3 x [Cu] +1) x ( 0.25 x [Ni] +1) x (1.2 x [Cr] +1) x (30 x [Mo] +1) x (2.75 x [V] +1) x (100 x [B] +1) x (3 x [Nb] + 1) ... (1)
Pcm [mass%] = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B] ... (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [B] and [Nb] are shown in% by mass, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, B and Nb are shown, and the elements not included are zero.
更に、Mo:0質量%超、0.30質量%以下と、V:0質量%超、0.10質量%以下のうちの少なくとも1種の元素を含む請求項1に記載の厚鋼板。 The thick steel sheet according to claim 1, further comprising at least one element of Mo: more than 0% by mass and 0.30% by mass or less and V: more than 0% by mass and 0.10% by mass or less. 溶接入熱が10kJ/mmのサブマージアーク溶接を施して溶接継手部を形成したときに、該溶接継手部における溶接熱影響部の全組織に占めるMAの分率が4.4面積%以下である請求項1または2に記載の厚鋼板。 When a welded joint is formed by performing submerged arc welding with a welding heat input of 10 kJ / mm, the fraction of MA in the entire structure of the weld heat affected zone in the welded joint is 4.4 area% or less. The thick steel plate according to claim 1 or 2. 溶接継手部と非溶接部を有する溶接構造物であって、
前記非溶接部は、請求項1~3のいずれかに記載の厚鋼板からなり、
前記溶接継手部における溶接熱影響部の全組織に占めるMAの分率が4.4面積%以下である溶接構造物。
A welded structure having a welded joint and a non-welded portion.
The non-welded portion is made of the thick steel plate according to any one of claims 1 to 3.
A welded structure in which the fraction of MA in the entire structure of the weld heat affected zone in the welded joint is 4.4 area% or less.
請求項1~3のいずれかに記載の厚鋼板を製造する方法であって、
請求項1または2に記載の成分組成を有する鋼片を、900~1250℃に加熱する工程と、
前記加熱後の熱間圧延工程と、
前記熱間圧延後の焼戻し工程を含み、
前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度~(仕上圧延温度-150℃)の冷却開始温度から、室温~680℃の冷却停止温度までを、平均冷却速度0.5℃/s以上で冷却し、
前記焼戻し工程では、400℃から下記式(4)により求められるAc変態点までの温度域で焼戻しを行う厚鋼板の製造方法。
Ar変態点=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo] …(3)
Ac変態点=723-14×[Mn]+22×[Si]-14.4×[Ni]+23.3×[Cr] …(4)
ただし、[C]、[Mn]、[Cu]、[Cr]、[Ni]、[Mo]および[Si]は、それぞれ、質量%で示したC、Mn、Cu、Cr、Ni、MoおよびSiの含有量を示し、含まない元素はゼロとする。
The method for manufacturing a thick steel sheet according to any one of claims 1 to 3.
A step of heating a steel piece having the component composition according to claim 1 or 2 to 900 to 1250 ° C.
The hot rolling process after heating and
Including the tempering step after the hot rolling
In the hot rolling step, rolling is performed in a temperature range of Ar 3 transformation point to 950 ° C. where the surface temperature is obtained by the following formula (3), the cumulative rolling reduction rate is 20% or more, and the surface temperature is 650 to 900. Finish rolling is performed in the temperature range of ° C, and after hot rolling, the average cooling rate is 0.5 from the cooling start temperature of the finish rolling temperature to (finish rolling temperature -150 ° C) to the cooling stop temperature of room temperature to 680 ° C. Cool at ° C / s or higher,
In the tempering step, a method for manufacturing a thick steel sheet in which tempering is performed in a temperature range from 400 ° C. to the Ac 1 transformation point determined by the following formula (4).
Ar 3 transformation point = 910-310 x [C] -80 x [Mn] -20 x [Cu] -15 x [Cr] -55 x [Ni] -80 x [Mo] ... (3)
Ac 1 transformation point = 723-14 × [Mn] +22 × [Si] -14.4 × [Ni] +23.3 × [Cr]… (4)
However, [C], [Mn], [Cu], [Cr], [Ni], [Mo] and [Si] are C, Mn, Cu, Cr, Ni, Mo and Mo in mass%, respectively. The Si content is shown, and the elements that do not contain it are set to zero.
請求項1~3のいずれかに記載の厚鋼板を製造する方法であって、
請求項1または2に記載の成分組成を有する鋼片を、900~1250℃に加熱する工程と、
前記加熱後の熱間圧延工程を含み、
前記熱間圧延工程では、表面温度が下記式(3)により求められるAr変態点~950℃の温度域で、累積圧下率が20%以上となる圧延を行い、かつ表面温度が650~900℃の温度域で仕上げ圧延を行い、熱間圧延後、仕上圧延温度未満であって(仕上圧延温度-150℃)以上の冷却開始温度から、200~480℃の急冷停止温度までを、平均冷却速度12℃/s以上で冷却する厚鋼板の製造方法。
Ar変態点=910-310×[C]-80×[Mn]-20×[Cu]-15×[Cr]-55×[Ni]-80×[Mo] …(3)
ただし、[C]、[Mn]、[Cu]、[Cr]、[Ni]および[Mo]は、それぞれ、質量%で示したC、Mn、Cu、Cr、NiおよびMoの含有量を示し、含まない元素はゼロとする。
The method for manufacturing a thick steel sheet according to any one of claims 1 to 3.
A step of heating a steel piece having the component composition according to claim 1 or 2 to 900 to 1250 ° C.
Including the hot rolling step after heating,
In the hot rolling step, rolling is performed in a temperature range of Ar 3 transformation point to 950 ° C. where the surface temperature is obtained by the following formula (3), the cumulative rolling reduction rate is 20% or more, and the surface temperature is 650 to 900. Finish rolling is performed in the temperature range of ° C, and after hot rolling, the average cooling is from the cooling start temperature below the finish rolling temperature (finish rolling temperature -150 ° C) to the quenching stop temperature of 200 to 480 ° C. A method for manufacturing a thick steel plate that is cooled at a speed of 12 ° C./s or higher.
Ar 3 transformation point = 910-310 x [C] -80 x [Mn] -20 x [Cu] -15 x [Cr] -55 x [Ni] -80 x [Mo] ... (3)
However, [C], [Mn], [Cu], [Cr], [Ni] and [Mo] indicate the contents of C, Mn, Cu, Cr, Ni and Mo shown in% by mass, respectively. , Elements not included are zero.
JP2018144318A 2018-07-31 2018-07-31 Thick steel plate and its manufacturing method and welded structure Active JP7076325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144318A JP7076325B2 (en) 2018-07-31 2018-07-31 Thick steel plate and its manufacturing method and welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144318A JP7076325B2 (en) 2018-07-31 2018-07-31 Thick steel plate and its manufacturing method and welded structure

Publications (2)

Publication Number Publication Date
JP2020019995A JP2020019995A (en) 2020-02-06
JP7076325B2 true JP7076325B2 (en) 2022-05-27

Family

ID=69587464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144318A Active JP7076325B2 (en) 2018-07-31 2018-07-31 Thick steel plate and its manufacturing method and welded structure

Country Status (1)

Country Link
JP (1) JP7076325B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255818B1 (en) * 2019-06-24 2021-05-25 주식회사 포스코 High strength steel for a structure having excellent corrosion resistance and manufacturing method for the same
CN113444973A (en) * 2021-06-30 2021-09-28 重庆钢铁股份有限公司 Q420qENH heat-treatment-free steel plate for bridge and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053912A (en) 2000-08-01 2002-02-19 Kobe Steel Ltd Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2005126818A (en) 2003-09-29 2005-05-19 Jfe Steel Kk Steel part having excellent fatigue property, and steel stock for induction hardening
JP2013087334A (en) 2011-10-19 2013-05-13 Nippon Steel & Sumitomo Metal Corp Steel sheet having excellent toughness in weld heat affected zone and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053912A (en) 2000-08-01 2002-02-19 Kobe Steel Ltd Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2005126818A (en) 2003-09-29 2005-05-19 Jfe Steel Kk Steel part having excellent fatigue property, and steel stock for induction hardening
JP2013087334A (en) 2011-10-19 2013-05-13 Nippon Steel & Sumitomo Metal Corp Steel sheet having excellent toughness in weld heat affected zone and method for manufacturing the same

Also Published As

Publication number Publication date
JP2020019995A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP4768447B2 (en) Weatherproof steel plate with excellent toughness of weld heat affected zone
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
JP7045459B2 (en) High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP6006477B2 (en) Method for producing high-strength steel sheet excellent in balance between low-temperature toughness and strength, and control method thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
KR101024802B1 (en) Process for production of thick high-tensile-strength steel plates
JP2020537047A (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP2002266048A (en) High tensile strength thick steel plate having excellent weldability and uniform elongation
JP7410438B2 (en) steel plate
JPH06240406A (en) Steel plate with high strength and high toughness
JP3842720B2 (en) Cast steel for welding with excellent toughness
JP6164171B2 (en) Low yield ratio high strength steel sheet with excellent high temperature strength and weldability and method for producing the same
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220517

R151 Written notification of patent or utility model registration

Ref document number: 7076325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151