JP7045459B2 - High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods - Google Patents

High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods Download PDF

Info

Publication number
JP7045459B2
JP7045459B2 JP2020533253A JP2020533253A JP7045459B2 JP 7045459 B2 JP7045459 B2 JP 7045459B2 JP 2020533253 A JP2020533253 A JP 2020533253A JP 2020533253 A JP2020533253 A JP 2020533253A JP 7045459 B2 JP7045459 B2 JP 7045459B2
Authority
JP
Japan
Prior art keywords
less
excluding
steel material
strength
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020533253A
Other languages
Japanese (ja)
Other versions
JP2021507989A (en
Inventor
オム,ギョン‐グン
イ,ハク‐チョル
キム,ウ‐ギョム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2021507989A publication Critical patent/JP2021507989A/en
Application granted granted Critical
Publication of JP7045459B2 publication Critical patent/JP7045459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、低温での耐破壊特性に優れた極地環境用高強度鋼材及びその製造方法に係り、より詳しくは、造船や海洋構造用鋼材に好適に適用可能な、低温での耐破壊特性に優れた極地環境用高強度鋼材及びその製造方法に関する。 The present invention relates to a high-strength steel material for polar environment and a method for manufacturing the same, which has excellent fracture resistance at low temperature, and more specifically, to provide fracture resistance at low temperature, which can be suitably applied to steel materials for shipbuilding and offshore structures. Regarding excellent high-strength steel materials for polar environment and their manufacturing methods.

地球温暖化により北極地域の氷が次第に減少しており、これに伴い、ヨーロッパと東アジアを結ぶ北極海航路に対する関心が高まっている。近年、夏季に限って試験的に貨物船の運行が行われることがあり、従来の東南アジアを通る航路に比べて、時間とコストが最大30%以上節約できるという結果も報告されている。さらに、20~30年以内に北極の氷が完全に消滅した場合、北極点を横切る直線航路も予想されている。したがって、北極地域を通過する船舶の必要性が益々現実化しており、かかる極地環境で安全な船舶の設計、及び使用される極地環境用鋼材の必要性が益々増加する傾向にある。 Due to global warming, the amount of ice in the Arctic region is gradually decreasing, and as a result, interest in the Arctic Sea Route connecting Europe and East Asia is increasing. In recent years, cargo ships may be operated on a trial basis only in the summer, and it has been reported that time and cost can be saved by up to 30% or more compared to the conventional route through Southeast Asia. In addition, if the Arctic ice disappears completely within 20 to 30 years, a straight route across the Arctic point is expected. Therefore, the need for ships passing through the Arctic region is becoming more and more real, and the need for safe ship design and polar environmental steel materials to be used in such polar environments is increasing.

従来の構造用鋼材は、極地環境、すなわち、-60度に至る低温及び流氷などによる衝撃に曝される環境では破壊に弱いため、これを克服できる新しい低温での耐破壊特性に優れた極地環境用高強度鋼材が必要である。
一般に、大型船舶や石油採掘プラットホームなどで用いられる厚い高強度鋼材が低温での破壊に弱い理由は、下記のとおりである。高強度の極厚物鋼材は、強度を確保するために、Mn、Moなどの合金元素の添加量を増やさなければならず、また、極厚物鋼材の製造時に、低い圧延圧下率と遅い加速冷却速度により、粗大な粒状ベイナイトやMAなどの硬質相の組織が生成されやすいためである。かかる微細組織により、鋼材は、低温での破壊に対する抵抗特性が極めて弱いという特徴を有する。したがって、極厚物材の高強度及び優れた低温での 耐破壊特性を有するためには、組織の微細化と、粒状ベイナイトやMAなどの硬質組織を極度に低減させる必要がある。
Conventional structural steel materials are vulnerable to fracture in a polar environment, that is, an environment exposed to impacts such as low temperatures up to -60 degrees and drift ice, so a new polar environment with excellent fracture resistance at low temperatures can overcome this. High-strength steel material is required.
The reasons why thick high-strength steel materials used in large vessels and oil mining platforms are generally vulnerable to fracture at low temperatures are as follows. For high-strength extra-thick steel materials, the amount of alloying elements such as Mn and Mo must be increased in order to secure the strength, and low rolling reduction and slow acceleration during the production of extra-thick steel materials. This is because a hard phase structure such as coarse granular bainite or MA is likely to be formed depending on the cooling rate. Due to such a fine structure, the steel material has a characteristic that the resistance property against fracture at a low temperature is extremely weak. Therefore, in order to have high strength and excellent fracture resistance at low temperature of ultra-thick materials, it is necessary to miniaturize the structure and extremely reduce hard structures such as granular bainite and MA.

上記の問題を解決するためには、(1)極限的にスラブの再加熱温度を下げ、低温で制御圧延することで組織を微細化するか、(2)Cuを1%以上添加し、低温でテンパリングすることで、微細なCu析出物で強度を向上させるか、(3)硬質相である粒状ベイナイトなどの低温靭性を向上させるために、多量のNiを添加するか、(4)MA組織を極限的に減らすために、Cなどの助長元素を最小化するなどの方法が用いられている。しかし、船舶などの構造物が次第に大型化しており、使用環境が極地環境に変化してきているため、上記のような従来の方法を単に適用するだけでは、低温での破壊開始及び伝播抵抗性を十分に確保しにくいという問題がある。
したがって、低温での破壊開始及び伝播抵抗性がより向上した高強度鋼材及びその製造方法の開発が求められている。
In order to solve the above problems, (1) the reheating temperature of the slab is lowered to the utmost and the structure is refined by controlled rolling at a low temperature, or (2) Cu is added at 1% or more and the temperature is low. By tempering with, the strength is improved with fine Cu precipitates, or (3) a large amount of Ni is added to improve the low temperature toughness of granular bainite, which is a hard phase, or (4) MA structure. In order to reduce the temperature to the utmost, a method such as minimizing the promoting element such as C is used. However, since structures such as ships are gradually becoming larger and the environment in which they are used is changing to polar environments, simply applying the conventional method as described above will result in fracture initiation and propagation resistance at low temperatures. There is a problem that it is difficult to secure enough.
Therefore, there is a demand for the development of high-strength steel materials having improved fracture initiation and propagation resistance at low temperatures and methods for producing the same.

韓国公開特許第2002-0028203号公報Korean Published Patent No. 2002-0028203

本発明は、上記の従来技術の問題を解決するためになされたものであって、その目的とするところは、低温での破壊開始及び伝播抵抗性に優れた高強度鋼材及びその製造方法を提供することにある。
本発明の課題は、上記の内容に限定されず、本明細書の内容全体から理解することができ、本発明が属する技術分野において通常の知識を有する者であれば、本発明の付加的な課題を理解するのに何ら困難がない。
The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to provide a high-strength steel material having excellent fracture initiation and propagation resistance at a low temperature and a method for producing the same. To do.
The subject of the present invention is not limited to the above contents, but can be understood from the entire contents of the present specification, and any person who has ordinary knowledge in the technical field to which the present invention belongs can add to the present invention. There is no difficulty in understanding the challenges.

前記の目的を達成するためになされた本発明の低温での耐破壊特性に優れた高強度鋼材は、
重量%で、C:0.005~0.07%、Si:0.005~0.3%、Mn:1.7~3.0%、Sol.Al:0.001~0.035%、Nb:0.02%以下(0%は除く)、V:0.01%以下(0%は除く)、Ti:0.001~0.02%、Cu:0.01~1.0%、Ni:0.01~2.0%、Cr:0.01~0.5%、Mo:0.001~0.5%、Ca:0.0002~0.005%、N:0.001~0.008%、P:0.02%以下(0%は除く)、S:0.003%以下(0%は除く)、O:0.003%以下(0%は除く)、残部のFe、及び不可避不純物からなり、下記関係式1及び関係式2を満たし、
その微細組織は、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相)を3.5面積%以下含むことを特徴とする。
The high-strength steel material having excellent fracture resistance at low temperature of the present invention made to achieve the above object is
By weight%, C: 0.005 to 0.07%, Si: 0.005 to 0.3%, Mn: 1.7 to 3.0%, Sol. Al: 0.001 to 0.035%, Nb: 0.02% or less (excluding 0%), V: 0.01% or less (excluding 0%), Ti: 0.001 to 0.02%, Cu: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cr: 0.01 to 0.5%, Mo: 0.001 to 0.5%, Ca: 0.0002 to 0.005%, N: 0.001 to 0.008%, P: 0.02% or less (excluding 0%), S: 0.003% or less (excluding 0%), O: 0.003% It consists of the following (excluding 0%), the remaining Fe, and unavoidable impurities, and satisfies the following relational expression 1 and the following relational expression 2.
The microstructure is characterized by containing 70 area% or more of polygonal ferrite and acicular ferrite in total, and 3.5 area% or less of MA phase (martensite-austenite composite phase).

[関係式1]
Mn+0.5x(Ni+Cu)≧2.5wt%
[関係式2]
Mo+Cr+1.5xSi+10xNb≦0.5wt%
(但し、前記関係式1及び2において、各元素は重量%で示した値である。)
[Relational expression 1]
Mn + 0.5x (Ni + Cu) ≧ 2.5 wt%
[Relational expression 2]
Mo + Cr + 1.5xSi + 10xNb ≦ 0.5wt%
(However, in the above relational expressions 1 and 2, each element is a value shown in% by weight.)

また、本発明の低温での耐破壊特性に優れた高強度鋼材の製造方法は、
上記の合金組成を満たす鋼スラブを準備する段階と、
前記鋼スラブを1000~1200℃に加熱する段階と、
前記加熱されたスラブを、650℃以上の温度範囲で、未再結晶域温度区間での総圧下率が30%以上(再結晶域の圧下率は除く)となるように仕上げ熱間圧延する段階と、
前記仕上げ熱間圧延された熱延鋼板を、2~30℃/sの冷却速度で200~550℃の冷却終了温度まで冷却する段階と、を含むことを特徴とする。
Further, the method for producing a high-strength steel material having excellent fracture resistance at low temperatures according to the present invention is
At the stage of preparing a steel slab that meets the above alloy composition,
The step of heating the steel slab to 1000-1200 ° C.
The step of finishing and hot rolling the heated slab in a temperature range of 650 ° C. or higher so that the total reduction rate in the unrecrystallized region temperature section is 30% or more (excluding the reduction rate in the recrystallization region). When,
It is characterized by including a step of cooling the hot-rolled hot-rolled steel sheet to a cooling end temperature of 200 to 550 ° C. at a cooling rate of 2 to 30 ° C./s.

本発明によると、低温での破壊開始及び伝播抵抗性が著しく向上した鋼材を効果的に提供することができる。 According to the present invention, it is possible to effectively provide a steel material having significantly improved fracture initiation and propagation resistance at a low temperature.

本実施例において、発明例1の鋼材のKca値を測定して示したグラフである。In this embodiment, it is a graph which measured and showed the Kca value of the steel material of invention example 1. 本実施例において、発明例3の鋼材の微細組織写真である。In this Example, it is a microstructure photograph of the steel material of Invention Example 3.

以下、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は様々な他の形態に変形されることができ、本発明の範囲は以下で説明する実施形態に限定されない。また、本発明の実施形態は、当該技術分野で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention can be transformed into various other embodiments, and the scope of the invention is not limited to the embodiments described below. Also, embodiments of the invention are provided to more fully explain the invention to those with average knowledge in the art.

本発明者らは低温での破壊開始及び伝播抵抗性をより向上させるために鋭意研究した結果、合金元素、特に、カーバイド(Carbide)を生成させる合金元素であるC、Mo、Cr、及びNbなどの合金の添加量を最小限に抑えるとともに、フェライト基地の強度と靭性を同時に向上させる効果がある合金元素の添加量を最大限に増加させるように精緻に制御する必要があることを確認した。そして、このように制御することで、鋼材の微細組織が、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相)を3.5面積%以下含むようにすることで、低温での破壊開始及び伝播抵抗性を著しく向上させることができることを見出し、本発明を提示するに至った。 As a result of diligent research to further improve the initiation of fracture and propagation resistance at low temperatures, the present inventors have made alloying elements such as C, Mo, Cr, and Nb, which are alloying elements that generate carbide. It was confirmed that it is necessary to precisely control the amount of alloying elements added to the maximum, which has the effect of simultaneously improving the strength and toughness of the ferrite matrix while minimizing the amount of alloy added. By controlling in this way, the microstructure of the steel material contains 70 area% or more of polygonal ferrite and acicular ferrite in total, and 3.5 area% or less of MA phase (martensite-austenite composite phase). By doing so, it has been found that the initiation of fracture at low temperature and the propagation resistance can be remarkably improved, and the present invention has been presented.

すなわち、本発明の低温での耐破壊特性に優れた鋼材は、重量%で、C:0.005~0.07%、Si:0.005~0.3%、Mn:1.7~3.0%、Sol.Al:0.001~0.035%、Nb:0.02%以下(0%は除く)、V:0.01%以下(0%は除く)、Ti:0.001~0.02%、Cu:0.01~1.0%、Ni:0.01~2.0%、Cr:0.01~0.5%、Mo:0.001~0.5%、Ca:0.0002~0.005%、N:0.001~0.008%、P:0.02%以下(0%は除く)、S:0.003%以下(0%は除く)、O:0.003%以下(0%は除く)、残部のFe、及び不可避不純物からなり、上記の関係式1及び2を満たす。そして、その鋼材の微細組織は、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相)を3.5面積%以下含む。 That is, the steel material having excellent fracture resistance at low temperature of the present invention is C: 0.005 to 0.07%, Si: 0.005 to 0.3%, Mn: 1.7 to 3 in weight%. .0%, Sol. Al: 0.001 to 0.035%, Nb: 0.02% or less (excluding 0%), V: 0.01% or less (excluding 0%), Ti: 0.001 to 0.02%, Cu: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cr: 0.01 to 0.5%, Mo: 0.001 to 0.5%, Ca: 0.0002 to 0.005%, N: 0.001 to 0.008%, P: 0.02% or less (excluding 0%), S: 0.003% or less (excluding 0%), O: 0.003% It is composed of the following (excluding 0%), the remaining Fe, and unavoidable impurities, and satisfies the above relational expressions 1 and 2. The microstructure of the steel material contains 70 area% or more of polygonal ferrite and acicular ferrite in total, and 3.5 area% or less of MA phase (martensite-austenite composite phase).

先ず、本発明の鋼材の合金組成、及びその含量の制限理由について詳細に説明する。以下、各元素の含量の単位は重量%である。 First, the alloy composition of the steel material of the present invention and the reasons for limiting the content thereof will be described in detail. Hereinafter, the unit of the content of each element is% by weight.

C:0.01~0.07%
Cは、針状フェライトまたはラス(lath)ベイナイトの形成を助長し、セメンタイトまたはパーライトなどを生成させて強度を確保するのに重要な役割を果たす元素である。Cの含量が0.01%未満である場合には、Cの拡散が殆どなく変態が相対的に速く起こるため、粗大なフェライト組織に変態し、鋼材の強度と靭性が低下し得るという問題がある。一方、Cの含量が0.07%を超える場合には、セメンタイトやMA相が過度に生成されるだけでなく、粗大に形成されるため、低温での破壊開始抵抗性が大きく劣化し得るという問題がある。したがって、Cの含量は0.01~0.07%の範囲を有することが好ましい。Cの含量は、0.01~0.06%であることがより好ましく、0.01~0.05%であることがさらに好ましい。
C: 0.01-0.07%
C is an element that promotes the formation of acicular ferrite or lath bainite and plays an important role in producing cementite, pearlite, etc. to ensure strength. When the C content is less than 0.01%, there is almost no diffusion of C and the transformation occurs relatively quickly, so that the transformation into a coarse ferrite structure may occur and the strength and toughness of the steel material may decrease. be. On the other hand, when the C content exceeds 0.07%, not only cementite and MA phase are excessively formed, but also they are formed coarsely, so that the fracture initiation resistance at low temperature may be significantly deteriorated. There's a problem. Therefore, the content of C is preferably in the range of 0.01 to 0.07%. The content of C is more preferably 0.01 to 0.06%, further preferably 0.01 to 0.05%.

Si:0.005~0.3%
Siは、一般に脱酸、脱硫効果とともに、固溶強化を目的として添加される元素である。しかし、降伏強度及び引張強度を増加させる効果は微小であるのに対し、溶接熱影響部においてオーステナイトの安定性を大きく高め、MA相の分率を増加させることにより、低温での破壊開始抵抗性を大きく劣化させ得るという問題があるため、本発明では0.3%以下に制限することが好ましい。一方、Siの含量を0.005%未満に制御するためには、製鋼工程での処理時間が大きく増えて生産コストが増加し、生産性が劣るという問題があるため、Siの含量の下限は0.005%であることが好ましい。したがって、Siの含量は0.005~0.3%の範囲を有することが好ましい。Siの含量は、0.005~0.25%であることがより好ましく、0.005~0.2%であることがさらに好ましい。
Si: 0.005 to 0.3%
Si is an element that is generally added for the purpose of strengthening solid solution as well as deoxidizing and desulfurizing effects. However, while the effect of increasing the yield strength and tensile strength is small, the stability of austenite is greatly increased in the weld heat-affected zone and the fraction of the MA phase is increased, so that the fracture initiation resistance at low temperature is low. In the present invention, it is preferable to limit it to 0.3% or less because there is a problem that it can be significantly deteriorated. On the other hand, in order to control the Si content to less than 0.005%, there is a problem that the processing time in the steelmaking process increases significantly, the production cost increases, and the productivity is inferior. Therefore, the lower limit of the Si content is set. It is preferably 0.005%. Therefore, the Si content preferably ranges from 0.005 to 0.3%. The Si content is more preferably 0.005 to 0.25%, and even more preferably 0.005 to 0.2%.

Mn:1.7~3.0%
Mnは、固溶強化による強度増加の効果が大きく、低温での靭性低下が大きくないため、十分な高強度を確保するために1.7%以上添加する。しかし、Mnが過多に添加される場合、鋼板の厚さ方向の中心部偏析が激しくなり、且つ偏析されたSとともに、非金属介在物であるMnSの形成を助長する。中心部に生成されたMnS介在物は後続の圧延により延伸され、偏析部位は、高い硬化能により高硬度の低温組織が生成されやすく、結果として、低温での破壊開始及び伝播抵抗性を大きく低下させるため、Mn含量の上限は3.0%であることが好ましい。したがって、Mnの含量は1.7~3.0%であることが好ましい。また、Mnの含量は1.7~2.8%であることがより好ましい。
Mn: 1.7-3.0%
Since Mn has a large effect of increasing strength by strengthening solid solution and does not significantly decrease toughness at low temperatures, it is added in an amount of 1.7% or more in order to secure sufficiently high strength. However, when Mn is added in an excessive amount, segregation at the center in the thickness direction of the steel sheet becomes severe, and together with the segregated S, the formation of MnS, which is a non-metal inclusion, is promoted. The MnS inclusions formed in the central part are stretched by the subsequent rolling, and the segregated site is likely to form a high-hardness low-temperature structure due to its high hardening ability, and as a result, the fracture initiation and propagation resistance at low temperatures are greatly reduced. Therefore, the upper limit of the Mn content is preferably 3.0%. Therefore, the Mn content is preferably 1.7 to 3.0%. Further, the content of Mn is more preferably 1.7 to 2.8%.

Sol.Al:0.005~0.035%
Sol.Alは、Si、Mnとともに製鋼工程で強力な脱酸剤として用いられるものであって、単独または複合脱酸時に少なくとも0.005%以上添加した際に、このような効果を十分に得ることができる。しかし、Sol.Alの含量が0.035%を超える場合には、上記の効果が飽和され、脱酸の結果物として生成される酸化性介在物中のAlの分率が必要以上に増加して介在物のサイズが粗大となり、精錬中に除去されにくいため、鋼材の低温靭性を大きく低下させる問題が発生する。また、Siと同様に、溶接熱影響部でMA相の生成を促進し、低温での破壊開始及び伝播抵抗性を大きく低下させ得る。したがって、Sol.Alの含量は0.005~0.035%であることが好ましい。Sol.Alの含量は、0.005~0.03%であることがより好ましく、0.005~0.02%であることがさらに好ましい。
Sol. Al: 0.005 to 0.035%
Sol. Al is used as a powerful deoxidizing agent in the steelmaking process together with Si and Mn, and such an effect can be sufficiently obtained when at least 0.005% or more is added at the time of single or combined deoxidation. can. However, Sol. When the Al content exceeds 0.035%, the above effects are saturated and the fraction of Al 2 O 3 in the oxidizing inclusions produced as a result of deoxidation increases more than necessary. Since the size of the inclusions becomes coarse and is difficult to be removed during refining, there arises a problem that the low temperature toughness of the steel material is greatly reduced. Further, as with Si, the formation of the MA phase can be promoted at the weld heat-affected zone, and the fracture initiation and propagation resistance at low temperatures can be significantly reduced. Therefore, Sol. The Al content is preferably 0.005 to 0.035%. Sol. The Al content is more preferably 0.005 to 0.03%, and even more preferably 0.005 to 0.02%.

Nb:0.02%以下(0%は除く)
Nbは、スラブの再加熱時にオーステナイトに固溶されてオーステナイトの硬化能を増大させ、熱間圧延時に微細な炭窒化物(Nb、Ti)(C、N)として析出され、圧延や冷却中の再結晶を抑えることで、最終的な微細組織を微細にする効果が非常に大きい元素である。しかし、Nbが過量に添加される場合には、溶接熱影響部での硬化能を過度に増加させてMA相の生成を促進し、低温での破壊開始及び伝播抵抗性を大きく低下させるため、本発明でNbの含量を0.02%以下(0%は除く)に制限する。Nbの含量は、0.015%以下であることがより好ましく、0.012%以下であることがさらに好ましい。
Nb: 0.02% or less (excluding 0%)
Nb is dissolved in austenite during reheating of the slab to increase the curing ability of austenite, and is precipitated as fine carbonitrides (Nb, Ti) (C, N) during hot rolling during rolling and cooling. It is an element that has a great effect of making the final microstructure finer by suppressing recrystallization. However, when Nb is added in an excessive amount, the curing ability in the weld heat-affected zone is excessively increased to promote the formation of the MA phase, and the fracture initiation at low temperature and the propagation resistance are greatly reduced. In the present invention, the content of Nb is limited to 0.02% or less (excluding 0%). The content of Nb is more preferably 0.015% or less, and further preferably 0.012% or less.

V:0.01%以下(0%は除く)
Vは、スラブの再加熱時に殆ど全てが再固溶され、圧延後の冷却中に殆どが析出されて強度を向上させるが、溶接熱影響部では高温で溶解され硬化能を大きく高め、MA相の生成を促進させる。したがって、本発明ではVの含量を0.01%以下(0%は除く)に制限する。Vの含量は、0.008%以下であることがより好ましく、0.005%以下であることがさらに好ましい。
V: 0.01% or less (excluding 0%)
Almost all of V is re-dissolved when the slab is reheated, and most of it is precipitated during cooling after rolling to improve the strength. Promotes the production of. Therefore, in the present invention, the content of V is limited to 0.01% or less (excluding 0%). The content of V is more preferably 0.008% or less, and further preferably 0.005% or less.

Ti:0.001~0.02%
Tiは、主に高温で微細なTiN形態の六角面体の析出物として存在するか、Nbなどとともに添加すると(Ti、Nb)(C、N)析出物を形成し、母材と溶接熱影響部の結晶粒の成長を抑制する効果がある。上記の効果を十分に確保するためには、Tiを0.001%以上添加することが好ましく、その効果を極大化するためには、添加されたNの含量に応じて増加させることが好ましい。一方、Tiの含量が0.02%を超える場合には、必要以上に粗大な炭窒化物が生成され、破壊亀裂の開始点として作用するため、溶接熱影響部の衝撃特性を却って大きく低下させ得る。したがって、Tiの含量は0.001~0.02%であることが好ましい。Tiの含量は、0.001~0.017%であることがより好ましく、0.001~0.015%であることがさらに好ましい。
Ti: 0.001 to 0.02%
Ti mainly exists as a precipitate of a hexagonal surface in the form of a fine TiN at high temperature, or when added together with Nb or the like, a (Ti, Nb) (C, N) precipitate is formed, and the base metal and the weld heat-affected zone are formed. It has the effect of suppressing the growth of crystal grains. In order to sufficiently secure the above effect, it is preferable to add 0.001% or more of Ti, and in order to maximize the effect, it is preferable to increase it according to the content of N added. On the other hand, when the Ti content exceeds 0.02%, an unnecessarily coarse carbonitride is generated and acts as a starting point of fracture cracks, so that the impact characteristics of the weld heat affected zone are significantly reduced. obtain. Therefore, the Ti content is preferably 0.001 to 0.02%. The Ti content is more preferably 0.001 to 0.017%, even more preferably 0.001 to 0.015%.

Cu:0.01~1.0%
Cuは、破壊開始及び伝播抵抗性を大きく損なうことなく、且つ固溶及び析出により強度を大きく向上させることができる元素である。Cuの含量が0.01%未満である場合には前記の効果が不十分である。一方、Cuの含量が1.0%を超える場合には、鋼板の表面にクラックを誘発する虞があり、Cuは高価の元素であるため原価上昇の問題が発生する。したがって、Cuの含量は0.01~1.0%の範囲を有することが好ましい。Cuの含量は、0.01~0.6%であることがより好ましく、0.01~0.4%であることがさらに好ましい。
Cu: 0.01-1.0%
Cu is an element that can greatly improve the strength by solid solution and precipitation without significantly impairing the fracture initiation and propagation resistance. If the Cu content is less than 0.01%, the above effect is insufficient. On the other hand, if the Cu content exceeds 1.0%, cracks may be induced on the surface of the steel sheet, and Cu is an expensive element, which causes a problem of cost increase. Therefore, the Cu content preferably ranges from 0.01 to 1.0%. The Cu content is more preferably 0.01 to 0.6%, even more preferably 0.01 to 0.4%.

Ni:0.01~2.0%
Niは、強度増大の効果は殆どないが、低温での破壊開始及び伝播抵抗性の向上において効果的であり、特に、Cuを添加する場合に、スラブの再加熱時に発生する選択的酸化による表面クラックを抑制する効果を有する。また、Niの添加により、溶接熱影響部に高い温度と速い冷却速度によって粗大な硬質組織が生成されても、低温での靭性を向上させる効果がある。Niの含量が0.01%未満である場合には上述の効果が不十分である。一方、Niは高価な元素であるため、その含量が2.0%を超える場合には原価上昇の問題がある。したがって、Niの含量は0.01~2.0%の範囲を有することが好ましい。Niの含量は、0.2~1.8%であることがより好ましく、0.3~1.2%であることがさらに好ましい。
Ni: 0.01-2.0%
Ni has almost no effect of increasing strength, but is effective in starting fracture at low temperature and improving propagation resistance, and in particular, when Cu is added, the surface due to selective oxidation generated when the slab is reheated. It has the effect of suppressing cracks. Further, the addition of Ni has the effect of improving the toughness at a low temperature even if a coarse hard structure is generated in the weld heat affected zone due to a high temperature and a high cooling rate. When the Ni content is less than 0.01%, the above-mentioned effect is insufficient. On the other hand, since Ni is an expensive element, there is a problem of cost increase when its content exceeds 2.0%. Therefore, the Ni content preferably ranges from 0.01 to 2.0%. The Ni content is more preferably 0.2 to 1.8%, and even more preferably 0.3 to 1.2%.

Cr:0.01~0.5%
Crは、固溶による降伏強度及び引張強度の増大効果は微小であるが、高い硬化能により、遅い冷却速度でも厚物材に微細な組織が生成されるようにし、強度と靭性を向上させる効果がある。Crの含量が0.01%未満である場合には上記の効果が不十分である。一方、Crの含量が0.5%を超える場合には、コストが増加するだけでなく、溶接熱影響部の低温靭性を劣化させ得る。したがって、Crの含量は0.01~0.5%の範囲を有することが好ましい。Crの含量は、0.01~0.4%であることがより好ましく、0.01~0.25%であることがさらに好ましい。
Cr: 0.01-0.5%
Cr has a small effect of increasing yield strength and tensile strength due to solid dissolution, but has a high hardening ability, so that a fine structure is generated in a thick material even at a slow cooling rate, and an effect of improving strength and toughness is achieved. There is. When the Cr content is less than 0.01%, the above effect is insufficient. On the other hand, when the Cr content exceeds 0.5%, not only the cost increases but also the low temperature toughness of the weld heat affected zone can be deteriorated. Therefore, the Cr content preferably ranges from 0.01 to 0.5%. The Cr content is more preferably 0.01 to 0.4%, and even more preferably 0.01 to 0.25%.

Mo:0.01~0.65%
Moは、加速冷却過程での相変態を遅延させ、結果的に強度を大きく増加させる効果があり、Pなどの不純物の粒界偏析による靭性の低下を防止する効果を有する元素である。Moの含量が0.01%未満である場合には上記の効果が不十分である。一方、Moの含量が0.65%を超える場合には、高い硬化能により、溶接熱影響部でのMA相の生成を促進し、低温での破壊開始及び伝播抵抗性を大きく低下させ得る。したがって、Moの含量は0.01~0.65%の範囲を有することが好ましい。Moの含量は、0.01~0.5%であることがより好ましく、0.01~0.4%であることがさらに好ましい。
Mo: 0.01-0.65%
Mo is an element that has the effect of delaying the phase transformation in the accelerated cooling process and, as a result, greatly increasing the strength, and has the effect of preventing a decrease in toughness due to grain boundary segregation of impurities such as P. When the Mo content is less than 0.01%, the above effect is insufficient. On the other hand, when the Mo content exceeds 0.65%, the high curing ability can promote the formation of the MA phase in the weld heat-affected zone, and can greatly reduce the initiation of fracture at low temperature and the propagation resistance. Therefore, the Mo content preferably ranges from 0.01 to 0.65%. The content of Mo is more preferably 0.01 to 0.5%, further preferably 0.01 to 0.4%.

Ca:0.0002~0.005%
Al脱酸後、製鋼中である溶鋼にCaを添加すると、主にMnSとして存在するSと結合し、MnSの生成を抑制するとともに、球状のCaSを形成して、鋼材の中心部における亀裂クラックを抑制する効果を発揮する。したがって、本発明では、添加されたSをCaSとして十分に形成させるために、Caを0.0002%以上添加すべきである。しかし、Caの添加量が過多になると、余剰のCaがOと結合して粗大且つ硬質の酸化性介在物を形成し、後続の圧延で延伸、破折されて低温での亀裂開始点として作用するようになる。そのため、Caの含量の上限は0.005%であることが好ましい。したがって、Caの含量は0.0002~0.005%の範囲を有することが好ましい。Caの含量は、0.0005~0.003%であることがより好ましく、0.0005~0.0025%であることがさらに好ましい。
Ca: 0.0002 to 0.005%
After Al deoxidation, when Ca is added to the molten steel in steelmaking, it binds to S mainly existing as MnS, suppresses the formation of MnS, and forms spherical CaS to form cracks in the center of the steel material. It exerts the effect of suppressing. Therefore, in the present invention, in order to sufficiently form the added S as CaS, 0.0002% or more of Ca should be added. However, when the amount of Ca added is excessive, excess Ca combines with O to form coarse and hard oxidizing inclusions, which are stretched and fractured in the subsequent rolling and act as a crack starting point at low temperature. Will come to do. Therefore, the upper limit of the Ca content is preferably 0.005%. Therefore, the Ca content preferably ranges from 0.0002 to 0.005%. The Ca content is more preferably 0.0005 to 0.003%, even more preferably 0.0005 to 0.0025%.

N:0.001~0.006%
Nは、添加されたNb、Ti、及びAlとともに析出物を形成し、鋼の結晶粒を微細化させて母材の強度と靭性を向上させる元素である。しかし、過度に添加する場合には、余剰のNは原子状態で存在し、冷間変形後の時効現象を起こして低温靭性を低下させる最も代表的な元素として知られている。また、連続鋳造によるスラブの製造時に、高温での脆化により表面部のクラックを助長することで知られている。したがって、本発明では、Tiの含量が0.001~0.02%であることを考慮し、Nの添加量を0.001~0.006%の範囲に限定する。Nの含量は、0.001~0.005%であることがより好ましく、0.001~0.0045%であることがさらに好ましい。
N: 0.001 to 0.006%
N is an element that forms a precipitate together with the added Nb, Ti, and Al to refine the crystal grains of the steel and improve the strength and toughness of the base metal. However, when excessively added, the excess N exists in an atomic state and is known as the most representative element that causes an aging phenomenon after cold deformation and lowers low temperature toughness. It is also known that when a slab is manufactured by continuous casting, embrittlement at a high temperature promotes cracks on the surface portion. Therefore, in the present invention, considering that the Ti content is 0.001 to 0.02%, the amount of N added is limited to the range of 0.001 to 0.006%. The content of N is more preferably 0.001 to 0.005%, further preferably 0.001 to 0.0045%.

P:0.02%以下(0%は除く)
Pは、強度を増加させる役割をするが、低温靭性を劣化させる元素である。特に、熱処理鋼において粒界偏析により低温靭性を大きく劣化させるという問題がある。したがって、Pをできる限り低く制御することが好ましい。但し、製鋼工程でPを極度に除去するためには多くのコストがかかるため、0.02%以下に限定する。Pの含量は、0.015%以下であることがより好ましく、0.012%以下であることがさらに好ましい。
P: 0.02% or less (excluding 0%)
P is an element that plays a role in increasing strength but deteriorates low temperature toughness. In particular, in heat-treated steel, there is a problem that low-temperature toughness is significantly deteriorated due to grain boundary segregation. Therefore, it is preferable to control P as low as possible. However, since it costs a lot to remove P extremely in the steelmaking process, it is limited to 0.02% or less. The content of P is more preferably 0.015% or less, and further preferably 0.012% or less.

S:0.003%以下(0%は除く)
Sは、Mnと結合し、主に鋼板の厚さ方向の中心部にMnS介在物を生成させ、低温靭性を劣化させる主な原因となる。したがって、低温での変形時効衝撃特性を確保するためには、Sを製鋼工程でできる限り除去することが好ましい。但し、過多なコストがかかるため、0.003%以下の範囲に制限する。Sの含量は、0.002%以下であることがより好ましく、0.0015%以下であることがさらに好ましい。
S: 0.003% or less (excluding 0%)
S combines with Mn to form MnS inclusions mainly in the central portion of the steel sheet in the thickness direction, which is a main cause of deterioration of low temperature toughness. Therefore, in order to secure the deformation aging impact characteristics at low temperatures, it is preferable to remove S as much as possible in the steelmaking process. However, since it costs too much, it is limited to the range of 0.003% or less. The content of S is more preferably 0.002% or less, and further preferably 0.0015% or less.

O:0.003%以下(0%は除く)
Oは、製鋼過程でSi、Mn、Alなどの脱酸剤の添加により酸化性介在物として除去する。脱酸剤の添加量及び介在物の除去工程が十分ではないと、溶鋼中に残留する酸化性介在物の量が多くなり、且つ介在物のサイズも大きく増加する。このように除去されなかった粗大な酸化性介在物は、後続の鋼材の製造工程で圧延工程中に破砕された形態または球状の形態で内部に残存するようになり、低温での破壊の開始点または亀裂の伝播経路として作用する。したがって、低温での衝撃特性及びCTOD特性を確保するためには、粗大な酸化性介在物をできる限り抑制すべきであり、そのために、Oの含量を0.003%以下に限定する。Oの含量は、0.0025%以下であることがより好ましく、0.0022%以下であることがさらに好ましい。
O: 0.003% or less (excluding 0%)
O is removed as an oxidizing inclusion by adding a deoxidizing agent such as Si, Mn, and Al in the steelmaking process. If the amount of the deoxidizing agent added and the step of removing the inclusions are not sufficient, the amount of the oxidizing inclusions remaining in the molten steel increases, and the size of the inclusions also greatly increases. The coarse oxidative inclusions not removed in this way will remain inside in the crushed or spherical form during the rolling process in the subsequent steel manufacturing process, and will be the starting point of fracture at low temperature. Or it acts as a propagation path for cracks. Therefore, in order to secure the impact characteristics and CTOD characteristics at low temperature, coarse oxidizing inclusions should be suppressed as much as possible, and therefore, the content of O is limited to 0.003% or less. The content of O is more preferably 0.0025% or less, further preferably 0.0022% or less.

本発明において、残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料または周囲環境から意図しない元素ないし不純物が不可避に混入され得るため、これを排除することはできない。例えば、ボロン(B)などを5ppm以下含有することもありえる。これらの不純物は、通常の製造過程の技術者であれば誰でも周知のものであるため、その全ての内容を特に本明細書で言及しない。 In the present invention, the remaining component is iron (Fe). However, in the normal manufacturing process, unintended elements or impurities may be unavoidably mixed from the raw materials or the surrounding environment, and therefore this cannot be excluded. For example, it may contain 5 ppm or less of boron (B) or the like. All of these impurities are not specifically mentioned herein, as they are well known to any technician in the normal manufacturing process.

また、本発明の合金組成は、上記の各元素の含量を満たすとともに、下記関係式1及び2を満たすようにMn、Ni、Cu、Cr、及びNbが含有されることが求められる。
[関係式1]
Mn+0.5x(Ni+Cu)≧2.5wt%
[関係式2]
Mo+Cr+1.5xSi+10xNb≦0.5wt%
(但し、前記関係式1及び2において、各元素は重量%で示した値である。)
Further, the alloy composition of the present invention is required to contain Mn, Ni, Cu, Cr, and Nb so as to satisfy the contents of each of the above elements and the following relational formulas 1 and 2.
[Relational expression 1]
Mn + 0.5x (Ni + Cu) ≧ 2.5 wt%
[Relational expression 2]
Mo + Cr + 1.5xSi + 10xNb ≦ 0.5wt%
(However, in the above relational expressions 1 and 2, each element is a value shown in% by weight.)

前記関係式1を成すMn、Ni、Cuは、代表的な面心立方金属であり、鉄鋼材に添加した際に、固溶強化により強度を増加させるだけでなく、低温でも靭性を大きく損なわない元素である。本発明者らは、前記金属が鋼材の強度と靭性に与える影響度を考慮して関係式1を設計した。この際、関係式1の値が増加するにつれて固溶強化の効果が増加し、結果として、鋼材及び溶接熱影響部の強度が増加する。したがって、十分な強度を得るためには、前記関係式1の値を2.5以上に制御することが好ましい。 Mn, Ni, and Cu forming the above relational expression 1 are typical face-centered cubic metals, and when added to steel materials, they not only increase the strength by solid solution strengthening but also do not significantly impair the toughness even at low temperatures. It is an element. The present inventors designed the relational expression 1 in consideration of the degree of influence of the metal on the strength and toughness of the steel material. At this time, as the value of the relational expression 1 increases, the effect of solid solution strengthening increases, and as a result, the strength of the steel material and the weld heat-affected zone increases. Therefore, in order to obtain sufficient strength, it is preferable to control the value of the relational expression 1 to 2.5 or more.

前記関係式2は、鋼材及び溶接熱影響部の靭性を大きく損なう代表的な組織であるMA相の形成を助長する元素の影響度を考慮して設計された式であって、関係式2の値が増加するにつれて、MA相の分率が大きく増加し、結果として、鋼材の低温衝撃特性である延性-脆性遷移温度が増加する。すなわち、関係式2の値が増加するほど、低温靭性が低下する傾向を示す。したがって、鋼材の低温衝撃特性、特に、CTOD値を十分に確保するためには、前記関係式2の値を0.5以下に制御することが好ましい。溶接部、特に、低温CTOD値を保証するための最も重要な位置であるSC-HAZ(Sub-Critically reheated Heat Affected Zone)は、溶接時の温度が二相域温度以下であるため、母材の微細組織とほぼ類似の微細組織を有する。したがって、前記関係式2の値を0.5以下に制御することで、溶接部の低温衝撃特性及びCTOD値も十分に確保することができる。前記関係式2の値は、0.48以下であることがより好ましく、0.45以下であることがさらに好ましい。 The relational expression 2 is a formula designed in consideration of the degree of influence of an element that promotes the formation of the MA phase, which is a typical structure that greatly impairs the toughness of the steel material and the weld heat affected zone, and is the relational expression 2. As the value increases, the MA phase fraction increases significantly, resulting in an increase in the ductile-brittle transition temperature, which is the low temperature impact characteristic of steel. That is, as the value of the relational expression 2 increases, the low temperature toughness tends to decrease. Therefore, in order to sufficiently secure the low temperature impact characteristics of the steel material, particularly the CTOD value, it is preferable to control the value of the relational expression 2 to 0.5 or less. The welded part, especially the SC-HAZ (Sub-Critically reheated Heat Affected Zone), which is the most important position for guaranteeing the low temperature CTOD value, has a base material because the temperature at the time of welding is lower than the two-phase temperature. It has a microstructure that is almost similar to the microstructure. Therefore, by controlling the value of the relational expression 2 to 0.5 or less, the low temperature impact characteristic and the CTOD value of the welded portion can be sufficiently secured. The value of the relational expression 2 is more preferably 0.48 or less, and further preferably 0.45 or less.

一方、本発明の鋼材の微細組織は、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相)を3.5面積%以下含む。
針状フェライトは、微細な結晶粒サイズ効果によって強度を増加させるだけでなく、低温で発生したクラックの伝播を妨げる、最も重要で且つ基本的な微細組織である。ポリゴナルフェライトは、針状フェライトに比べて粗大であるため、相対的に強度増加への寄与は小さいが、低い転位密度及び高傾角粒界を有するため、低温での伝播を抑えるのに大きく寄与する微細組織である。
前記ポリゴナルフェライトと針状フェライトの合計が70面積%未満である場合には、低温での亀裂の開始と伝播を抑制しにくく、高強度を確保しにくいという問題がある。したがって、ポリゴナルフェライトと針状フェライトの合計が70面積%以上であることが好ましく、より好ましくは85面積%以上、さらに好ましくは90面積%以上である。
On the other hand, the microstructure of the steel material of the present invention contains 70 area% or more of polygonal ferrite and acicular ferrite in total, and 3.5 area% or less of MA phase (martensite-austenite composite phase).
Needle-shaped ferrite is the most important and basic microstructure that not only increases the strength due to the fine grain size effect, but also hinders the propagation of cracks generated at low temperatures. Polygonal ferrite is coarser than needle-shaped ferrite, so its contribution to increasing strength is relatively small, but it has a low dislocation density and high-inclined grain boundaries, which greatly contributes to suppressing propagation at low temperatures. It is a fine structure.
When the total of the polygonal ferrite and the needle-shaped ferrite is less than 70 area%, there is a problem that it is difficult to suppress the start and propagation of cracks at a low temperature and it is difficult to secure high strength. Therefore, the total of the polygonal ferrite and the needle-shaped ferrite is preferably 70 area% or more, more preferably 85 area% or more, and further preferably 90 area% or more.

また、本発明において、前記ポリゴナルフェライトと針状フェライトは、結晶粒間の結晶方位差が15°以上と定義される大傾角結晶粒界の比率が全結晶粒界中において40%以上であり、また、単位面積当たりの大傾角結晶粒界の長さが300mm/mm以上であることが好ましい。
そして、前記MA相は、高い硬度により変形を受け入れないため、その周囲の軟質のフェライト基地の変形に集中させるだけでなく、その限界点以上では、周囲のフェライト基地との界面が分離されたり、MA相自体が破壊されたりして、亀裂開始点として作用する。したがって、鋼材の低温破壊特性を劣化させる最も重要な原因となるため、MA相をできる限り低く制御すべきであり、3.5面積%以下に制御することが好ましい。
Further, in the present invention, in the polygonal ferrite and the needle-like ferrite, the ratio of the large tilt angle grain boundaries defined that the crystal orientation difference between the crystal grains is 15 ° or more is 40% or more in the total grain boundaries. Further, it is preferable that the length of the large tilt angle crystal grain boundary per unit area is 300 mm / mm 2 or more.
Since the MA phase does not accept deformation due to its high hardness, it not only concentrates on the deformation of the soft ferrite matrix around it, but also separates the interface with the surrounding ferrite matrix above the limit point. The MA phase itself is destroyed and acts as a crack starting point. Therefore, the MA phase should be controlled as low as possible because it is the most important cause of deterioration of the low temperature fracture characteristics of the steel material, and it is preferable to control it to 3.5 area% or less.

この際、本発明において、前記MA相は、円相当径で測定した平均サイズが2.5μm以下であることが好ましい。これは、MA相の平均サイズが2.5μmを超える場合には、応力がさらに集中されるため、MA相が破壊されやすく、亀裂開始点として作用するためである。
また、本発明において、前記ポリゴナルフェライトと針状フェライトは、熱間圧延により加工硬化されていないものであることがよい。すなわち、前記ポリゴナルフェライトと針状フェライトは熱間圧延により延伸されたものではなく、熱間圧延後に生成されたものであることが好ましい。
At this time, in the present invention, it is preferable that the MA phase has an average size of 2.5 μm or less measured with a diameter equivalent to a circle. This is because when the average size of the MA phase exceeds 2.5 μm, the stress is further concentrated, so that the MA phase is easily broken and acts as a crack starting point.
Further, in the present invention, the polygonal ferrite and the needle-like ferrite may not be work-hardened by hot rolling. That is, it is preferable that the polygonal ferrite and the needle-like ferrite are not stretched by hot rolling, but are produced after hot rolling.

本発明による鋼材の微細組織は、上記のポリゴナルフェライト、針状フェライト、MA相の他に、ベイニティックフェライト、セメンタイトなどを含んでもよい。
ベイニティックフェライトは、低温で変態された組織であって、内部に多くの転位を有しているが、各種フェライトに比べて相対的に粗大である特徴を有しており、また、内部にMA相を含んでいて強度は高いが、亀裂の開始と伝播に弱い特性を示すため、最小限に制御すべきである。
The microstructure of the steel material according to the present invention may contain bainitic ferrite, cementite and the like in addition to the above-mentioned polygonal ferrite, acicular ferrite and MA phase.
Bainitic ferrite is a structure transformed at low temperature and has many dislocations inside, but it has the characteristic that it is relatively coarse compared to various ferrites, and it is also inside. It contains the MA phase and is strong, but it is vulnerable to crack initiation and propagation and should be controlled to a minimum.

また、本発明の鋼材は、そのサイズが10μm以上である介在物を11個/cm以下の範囲で含むことができる。前記サイズは円相当径で測定したサイズである。そのサイズが10μm以上である介在物が11個/cmを超える場合には、低温での亀裂開始点として作用するという問題が発生する。このように粗大な介在物を制御するためには、二次精錬の最終段階でCaまたはCa合金を投入した後、3分以上、Arガスでバブリング及び還流処理することが好ましい。 Further, the steel material of the present invention can contain inclusions having a size of 10 μm or more in a range of 11 pieces / cm 2 or less. The size is a size measured with a diameter equivalent to a circle. When the number of inclusions having a size of 10 μm or more exceeds 11 pieces / cm 2 , the problem of acting as a crack starting point at a low temperature arises. In order to control such coarse inclusions, it is preferable to add Ca or a Ca alloy in the final stage of the secondary refining, and then bubbling and refluxing with Ar gas for 3 minutes or more.

また、本発明の鋼材は、降伏強度が460MPa以上であり、-60℃での衝撃エネルギー値が300J以上であり、-20℃でのCTOD値が0.2mm以上であることができる。また、本発明の鋼材は、引張強度が570MPa以上であることができる。そして、本発明の鋼材は、DBTT(延性-脆性遷移温度)が-80℃以下であることができる。
次に、本発明の低温での破壊開始及び伝播抵抗性に優れた高強度鋼材の製造方法を説明する。
Further, the steel material of the present invention can have a yield strength of 460 MPa or more, an impact energy value of 300 J or more at −60 ° C., and a CTOD value of 0.2 mm or more at −20 ° C. Further, the steel material of the present invention can have a tensile strength of 570 MPa or more. The steel material of the present invention can have a DBTT (ductility-brittle transition temperature) of −80 ° C. or lower.
Next, a method for producing a high-strength steel material having excellent fracture initiation and propagation resistance at a low temperature of the present invention will be described.

本発明の鋼材の製造方法は、上述の合金組成を満たす鋼スラブを準備する段階と、前記鋼スラブを1000~1200℃に加熱する段階と、前記加熱されたスラブを650℃以上の温度範囲で仕上げ熱間圧延する段階と、前記仕上げ熱間圧延された熱延鋼板を、2~30℃/sの冷却速度で200~550℃の冷却終了温度まで冷却する段階と、を含む。 The method for producing a steel material of the present invention includes a step of preparing a steel slab satisfying the above alloy composition, a step of heating the steel slab to 1000 to 1200 ° C., and a step of heating the heated slab in a temperature range of 650 ° C. or higher. It includes a step of hot-rolling for finishing and a step of cooling the hot-rolled hot-rolled steel sheet to a cooling end temperature of 200 to 550 ° C. at a cooling rate of 2 to 30 ° C./s.

鋼スラブ準備段階
上記のような合金組成を満たす鋼スラブを準備する。
この際、本発明では、鋼スラブを準備するに際し、溶鋼の二次精錬の最終段階において、溶鋼にCaまたはCa合金を投入する段階と、前記CaまたはCa合金を投入した後、3分以上、Arガスでバブリング及び還流処理する段階と、を含む工程を行うことが好ましい。これは、粗大な介在物を制御するためである。
Steel slab preparation stage Prepare a steel slab that meets the above alloy composition.
At this time, in the present invention, when preparing the steel slab, in the final stage of the secondary refining of the molten steel, the step of adding Ca or Ca alloy to the molten steel and the step of adding the Ca or Ca alloy to the molten steel for 3 minutes or more. It is preferable to carry out a step including a step of bubbling and reflux treatment with Ar gas. This is to control coarse inclusions.

鋼スラブ加熱段階
前記鋼スラブを1000~1200℃に加熱する。
スラブの加熱温度が1000℃未満である場合には、連鋳中にスラブ内に生成された炭化物などの再固溶が困難であり、偏析された元素の均質化処理が不十分になる。したがって、添加されたNbの50%以上が再固溶可能な温度である1000℃以上に加熱することが好ましい。
Steel slab heating stage The steel slab is heated to 1000-1200 ° C.
When the heating temperature of the slab is less than 1000 ° C., it is difficult to re-dissolve the carbides generated in the slab during continuous casting, and the homogenization treatment of the segregated elements becomes insufficient. Therefore, it is preferable to heat to 1000 ° C. or higher, which is a temperature at which 50% or more of the added Nb can be re-dissolved.

一方、スラブの加熱温度が1200℃を超える場合には、オーステナイト結晶粒のサイズが過度に粗大に成長することがあり、後続の圧延によっても微細化が十分に行えないため、鋼板の引張強度、低温靭性などの機械的物性が大きく低下し得る。
鋼スラブの加熱温度は1000~1160℃であることがより好ましく、1000~1140℃であることがさらに好ましい。
On the other hand, when the heating temperature of the slab exceeds 1200 ° C., the size of the austenite crystal grains may grow excessively coarsely, and the subsequent rolling cannot sufficiently miniaturize the austenite crystal grains. Mechanical properties such as low temperature toughness can be significantly reduced.
The heating temperature of the steel slab is more preferably 1000 to 1160 ° C, even more preferably 1000 to 1140 ° C.

熱間圧延段階
前記加熱されたスラブを、ベイナイト生成開始温度である650℃以上で仕上げ熱間圧延して、熱延鋼板を得る。
仕上げ熱間圧延の温度が650℃未満である場合には、粗大なベイナイトが生成され、圧延中に加工硬化されて強度が必要以上に過度に増加し、反対に低温での衝撃靭性は大きく低下するため、圧延終了温度は650℃以上に制限することが好ましい。すなわち、熱間圧延の温度が低い場合、熱間圧延仕上げの前に粗大な初析フェライトが生成され、後続の圧延により延伸されて加工硬化が行われ、残りのオーステナイトは、バンド状に残存するとともに、MA硬化相の密度が高い組織に変態することになり、低温靭性が低下するためである。
Hot-rolling step The heated slab is finished and hot-rolled at a bainite formation start temperature of 650 ° C. or higher to obtain a hot-rolled steel sheet.
When the temperature of the finish hot rolling is less than 650 ° C, coarse bainite is generated and work-hardened during rolling to increase the strength more than necessary, and conversely, the impact toughness at low temperature is greatly reduced. Therefore, it is preferable to limit the rolling end temperature to 650 ° C. or higher. That is, when the temperature of hot rolling is low, coarse proeutectoid ferrite is generated before hot rolling finish, and it is stretched and work-hardened by subsequent rolling, and the remaining austenite remains in a band shape. At the same time, the MA hardened phase is transformed into a structure with a high density, and the low temperature toughness is lowered.

また、本発明では、未再結晶域温度区間での総圧下率が30%以上(再結晶域の圧下率は除く)となるように行うことで、オーステナイトに十分な変形エネルギーを蓄積させ、後続の変態時に低温靭性に有利なポリゴナル及び針状フェライトを十分に生成させるとともに、大傾角粒界の比率と密度を確保することが好ましい。
前記圧下率は40%以上であることがより好ましく、45%以上であることがさらに好ましい。
Further, in the present invention, by setting the total reduction rate in the unrecrystallized region temperature section to 30% or more (excluding the reduction rate in the recrystallized region), sufficient deformation energy is accumulated in austenite, and the austenite is subsequently subjected to. It is preferable to sufficiently generate polygonal and acicular ferrite which are advantageous for low temperature toughness at the time of transformation, and to secure the ratio and density of large tilt angle grain boundaries.
The reduction rate is more preferably 40% or more, further preferably 45% or more.

冷却段階
次いで、本発明では、前記仕上げ熱間圧延された熱延鋼板を冷却する。
この際、熱延鋼板を、2~30℃/sの冷却速度で200~550℃の冷却終了温度まで冷却することが好ましい。冷却速度が2℃/s未満である場合には、冷却速度が遅すぎて粗大なフェライト、パーライト、及びベイナイト変態区間を避けることができず、強度と低温靭性が劣化し、30℃/sを超える場合には、粒状ベイナイトまたはマルテンサイトが形成されて強度は上昇するものの、低温靭性が非常に劣化する虞がある。
Cooling stage Then, in the present invention, the hot-rolled hot-rolled steel sheet is cooled.
At this time, it is preferable to cool the hot-rolled steel sheet at a cooling rate of 2 to 30 ° C./s to a cooling end temperature of 200 to 550 ° C. When the cooling rate is less than 2 ° C / s, the cooling rate is too slow to avoid coarse ferrite, pearlite, and bainite transformation sections, and the strength and low temperature toughness deteriorate, resulting in 30 ° C / s. If it exceeds, granular bainite or martensite is formed and the strength is increased, but the low temperature toughness may be significantly deteriorated.

そして、冷却終了温度が550℃を超える場合には、針状フェライトなどの微細な組織が生成されにくく、粗大なベイナイトまたはパーライトが生成される可能性が高い。一方、冷却終了温度が200℃未満である場合には微細組織上、問題はないが、冷却に過度な時間がかかって生産性が大きく劣るという問題がある。
前記冷却終了温度は、200~500℃であることがより好ましく、200~450℃であることがさらに好ましい。
When the cooling end temperature exceeds 550 ° C., fine structures such as needle-like ferrite are unlikely to be formed, and coarse bainite or pearlite is likely to be formed. On the other hand, when the cooling end temperature is less than 200 ° C., there is no problem in terms of microstructure, but there is a problem that the cooling takes an excessive time and the productivity is significantly inferior.
The cooling end temperature is more preferably 200 to 500 ° C, further preferably 200 to 450 ° C.

一方、本発明は、必要に応じて、前記冷却された熱延鋼板を450~650℃に加熱した後、(1.3×t+5)分~(1.3×t+200)分間維持してから冷却するテンパリング段階をさらに含むことができる[ここで、前記tは、熱延鋼板の厚さをmm単位で測定した値である]。これは、MAやマルテンサイトが過剰に生成された際に、MAやマルテンサイトを分解し、内部の高い転位密度を除去し、微量ではあるが固溶されたNbなどを炭窒化物として析出して降伏強度または低温靭性をより向上させるためである。 On the other hand, in the present invention, if necessary, the cooled hot-rolled steel sheet is heated to 450 to 650 ° C., maintained for (1.3 × t + 5) to (1.3 × t + 200) minutes, and then cooled. Further tempering steps may be included [where t is a value measured in mm for the thickness of the hot-rolled steel sheet]. This decomposes MA and martensite when MA and martensite are excessively generated, removes the high dislocation density inside, and precipitates a small amount of solid-dissolved Nb and the like as carbonitride. This is to further improve the yield strength or low temperature toughness.

しかし、加熱温度が450℃未満である場合には、フェライト基地が十分に軟化されず、P偏析などによる脆化現象が生じるため、靭性を却って劣化させる虞がある。一方、加熱温度が650℃を超える場合には、結晶粒の回復及び成長が急激に起こり、また、さらに高温になると、オーステナイトに一部逆変態され、降伏強度が却って大きく低下するとともに、低温靭性も悪くなる虞がある。
そして、前記維持時間が(1.3×t+5)分未満である場合には、組織の均質化が十分に行われず、(1.3×t+200)分を超える場合には、生産性が低下するという問題がある。
However, when the heating temperature is less than 450 ° C., the ferrite matrix is not sufficiently softened and embrittlement due to P segregation or the like occurs, so that the toughness may be deteriorated. On the other hand, when the heating temperature exceeds 650 ° C, the recovery and growth of crystal grains occur rapidly, and when the temperature becomes higher, austenite is partially reverse-transformed, the yield strength is rather lowered, and the low temperature toughness is reduced. May get worse.
When the maintenance time is less than (1.3 × t + 5) minutes, the tissue is not sufficiently homogenized, and when it exceeds (1.3 × t + 200) minutes, the productivity is lowered. There is a problem.

以下、実施例を挙げて本発明をより詳細に説明する。
(実施例)
下記表1に示した成分組成を有するスラブを、下記表2に記載の条件で加熱、熱間圧延、及び冷却して鋼材を製造した。
前記製造された鋼材の微細組織を観察し、物性を測定して下記表3に記載した。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example)
A slab having the composition shown in Table 1 below was heated, hot-rolled, and cooled under the conditions shown in Table 2 below to produce a steel material.
The microstructure of the manufactured steel material was observed, the physical properties were measured, and the results are shown in Table 3 below.

また、前記製造された鋼材を溶接した後、溶接熱影響部(SCHAZ)のCTOD値(-20℃)を測定し、下記表3に記載した。鋼材のCTOD値(-20℃)は溶接熱影響部よりも高いため、鋼材のCTOD値(-20℃)については別途測定しなかった。
この際、鋼材の微細組織は、製造された鋼材の断面を鏡面研磨した後、目的に応じてナイタル(Nital)またはラペラ(LePera)でエッチングし、試験片の一定面積を光学または走査型電子顕微鏡で100~5000倍の倍率で画像を測定した。各相の分率は、測定された画像から画像分析プログラム(image analyzer)を用いて測定した。統計的に有意な値を得るために、同一の試験片に対して位置を変更しながら繰り返し測定し、その平均値を求めた。
Further, after welding the manufactured steel material, the CTOD value (-20 ° C.) of the weld heat-affected zone (SCHAZ) was measured and shown in Table 3 below. Since the CTOD value (-20 ° C) of the steel material is higher than that of the weld heat affected zone, the CTOD value (-20 ° C) of the steel material was not measured separately.
At this time, the microstructure of the steel material is mirror-polished on the cross section of the manufactured steel material and then etched with Nital or LePera depending on the purpose, and a certain area of the test piece is optically or scanned with an electron microscope. The image was measured at a magnification of 100 to 5000 times. The fraction of each phase was measured from the measured image using an image analyzer. In order to obtain a statistically significant value, the same test piece was repeatedly measured while changing its position, and the average value was calculated.

また、製造された組織の特性をさらに詳細に観察するために、Nitalでエッチングされた試験片を走査型電子顕微鏡にてEBSD(Electron Back Scatter Diffraction)測定を行い、製造された鋼材の結晶粒界の特性を定量的に測定した。
鋼材の物性は、通常の引張試験により求められた公称歪み-公称応力の曲線から測定して記載した。
溶接熱影響部の衝撃エネルギー値(-60℃)は、シャルピーV-ノッチ(Charpy V-notch)衝撃試験を行って測定した。
Further, in order to observe the characteristics of the manufactured structure in more detail, EBSD (Electron Backscatter Diffraction) measurement was performed on the test piece etched by Nital with a scanning electron microscope, and the grain boundaries of the manufactured steel material were measured. The characteristics of the were quantitatively measured.
The physical properties of the steel material are described by measuring from the nominal strain-nominal stress curve obtained by a normal tensile test.
The impact energy value (-60 ° C.) of the weld heat-affected zone was measured by performing a Charpy V-notch impact test.

CTOD値(-20℃)は、BS7448規格に準じて、試験片を圧延方向に垂直にB(厚さ)xB(幅)x5B(長さ)のサイズに加工し、疲労亀裂の長さが試験片の幅の約50%になるように疲労亀裂を入れた後、-20℃でCTOD試験を行った。ここで、Bは製作した鋼材の厚さである。 The CTOD value (-20 ° C) is based on the BS7448 standard, and the test piece is processed to a size of B (thickness) x B (width) x 5B (length) perpendicular to the rolling direction, and the length of the fatigue crack is tested. After fatigue cracking was made to be about 50% of the width of the piece, a CTOD test was performed at −20 ° C. Here, B is the thickness of the manufactured steel material.

Kca値は、ESSO試験法によりそれぞれ3回試験し、各試験で測定された亀裂の伝播停止温度とK値のグラフを求め、温度が-10度である時のK値(Kca:crack arrest K)から求めた。また、CAT(Crack arrest temperature)は、NRL試験からNDTT(Nil-ductility transition temperature)を測定し、これを式1の変換式により計算された値から求めた。ここで、Bは鋼材の厚さを示す。 The Kca value was tested three times by the ESSO test method, and the graph of the crack propagation stop temperature and the K value measured in each test was obtained, and the K value (Kca: arrest K) when the temperature was -10 degrees. ). Further, CAT (Crack arrest temperature) measured NDTT (Nil-ductility transition temperature) from the NRL test, and obtained this from the value calculated by the conversion formula of Equation 1. Here, B indicates the thickness of the steel material.

Figure 0007045459000001
Figure 0007045459000001

Figure 0007045459000002
Figure 0007045459000002

Figure 0007045459000003
Figure 0007045459000003

Figure 0007045459000004
*前記表3において、フェライト系は、ポリゴナルフェライトと針状フェライトの合計を意味する。
Figure 0007045459000004
* In Table 3 above, the ferrite system means the total of polygonal ferrite and acicular ferrite.

表1から3に示したとおり、本発明で提示した合金組成及び製造条件をともに満たす発明例1~4は、降伏強度、引張強度、衝撃エネルギー値、Kca、及びCATなどを考慮した際、低温での耐破壊靭性に優れており、溶接熱影響部でのCTOD値も高いことが確認できる。特に、図1に示したとおり、本発明例1で測定されたKca値は、要求値である8000を大きく上回る値を示している。このような優れた強度と低温靭性特性はまた、図2に示したとおり、十分に生成された微細なポリゴナル及び針状フェライト組織から得られた結果であることが確認できる。 As shown in Tables 1 to 3, Invention Examples 1 to 4 satisfying both the alloy composition and the production conditions presented in the present invention have low temperatures when the yield strength, tensile strength, impact energy value, Kca, CAT and the like are taken into consideration. It can be confirmed that the fracture resistance is excellent and the CTOD value at the weld heat affected zone is also high. In particular, as shown in FIG. 1, the Kca value measured in Example 1 of the present invention is much higher than the required value of 8000. It can be confirmed that such excellent strength and low temperature toughness properties are also the result obtained from the sufficiently produced fine polygonal and acicular ferrite structures, as shown in FIG.

これに対し、比較例1は、Cの含量が本発明の範囲を超えた場合であって、添加されたCは、粒状ベイナイト及びMAを助長する最も強力な元素である。したがって、Cの過多添加により、靭性に有利なフェライトの分率を大きく低下させ、母材における強度は高いが、衝撃エネルギー値などの低温靭性が劣化し、特に、溶接熱影響部のCTOD値が大きく低下した。
比較例2は、添加されたMnの含量が本発明の範囲を超えた場合である。この場合、Mnの含量が高いため、鋼材の中心部偏析の確率が大きく増加し、鋼材の厚さ方向の中心部での衝撃エネルギーが大きく劣化し、また、溶接熱影響部でも中心部の偏析帯では硬度が著しく高い硬化組織が部分的に発生して早期破壊現象(pop-in)が現れ、CTOD値が大きく減少した。
On the other hand, Comparative Example 1 is a case where the content of C exceeds the range of the present invention, and the added C is the most potent element that promotes granular bainite and MA. Therefore, due to the excessive addition of C, the fraction of ferrite, which is advantageous for toughness, is greatly reduced, and the strength of the base metal is high, but the low temperature toughness such as the impact energy value deteriorates, and in particular, the CTOD value of the weld heat affected zone becomes high. It dropped significantly.
Comparative Example 2 is a case where the content of the added Mn exceeds the range of the present invention. In this case, since the Mn content is high, the probability of segregation of the central portion of the steel material is greatly increased, the impact energy at the central portion in the thickness direction of the steel material is greatly deteriorated, and the segregation of the central portion is also performed at the weld heat affected zone. In the band, a hardened structure with extremely high hardness was partially generated, an early fracture phenomenon (pop-in) appeared, and the CTOD value was greatly reduced.

比較例3は、一般に強度の向上及び組織の微細化のために広く用いられるNbの含量が本発明の範囲を超えた場合である。一般に、Nbの添加は、組織を微細化して強度と靭性をともに増加させるのに有利であるが、必要以上に添加すると、靭性に有利なポリゴナル及び針状フェライトの生成を抑制し、粒状ベイナイトなどの組織を助長するように作用する。したがって、亀裂伝播の抑制に有利な15°以上の大傾角粒界の比率及び密度を大きく低下させ、亀裂の伝播を相対的に容易にする。結果として、表3に示したとおり、比較例3で測定されたKca値は5860の水準であって要求値である8000を大きく下回っている。また、溶接熱影響部では、低温靭性に特に不利に作用するMA組織の生成を大きく助長し、結果としてCTODを大きく減少させるという影響を与えた。 Comparative Example 3 is a case where the content of Nb, which is generally widely used for improving the strength and miniaturizing the structure, exceeds the range of the present invention. In general, the addition of Nb is advantageous for refining the structure and increasing both strength and toughness, but when added more than necessary, it suppresses the formation of polygonal and acicular ferrite which are advantageous for toughness, and granular bainite or the like. Acts to promote the tissue of. Therefore, the ratio and density of the large tilt angle grain boundaries of 15 ° or more, which is advantageous for suppressing crack propagation, are greatly reduced, and crack propagation is relatively facilitated. As a result, as shown in Table 3, the Kca value measured in Comparative Example 3 is at the level of 5860, which is far below the required value of 8000. In addition, the weld heat-affected zone greatly promoted the formation of MA structure, which has a particularly disadvantageous effect on low-temperature toughness, and as a result, had the effect of greatly reducing CTOD.

比較例4、5、及び6は、各元素の含量の範囲は本発明の範囲を満たすが、関係式1と関係式2の値が発明の範囲を外れた場合であって、強度が低いか、低温靭性が大きく低下することが分かる。
具体的に、比較例4は低温靭性の向上に有利な成分で構成された関係式1は満たすが、低温靭性を損なう成分で構成された関係式2が本発明の範囲を超えた場合である。結果として、強度は十分に高いが、母材での衝撃エネルギー値や溶接熱影響部でのCTOD値が劣化していた。
In Comparative Examples 4, 5, and 6, the range of the content of each element satisfies the range of the present invention, but the values of the relational expression 1 and the relational expression 2 are out of the range of the invention, and the strength is low. It can be seen that the low temperature toughness is greatly reduced.
Specifically, Comparative Example 4 is a case where the relational expression 1 composed of components advantageous for improving low temperature toughness is satisfied, but the relational expression 2 composed of components impairing low temperature toughness exceeds the scope of the present invention. .. As a result, although the strength is sufficiently high, the impact energy value in the base metal and the CTOD value in the weld heat affected zone are deteriorated.

また、比較例5は、関係式2は発明の範囲を満たすが、関係式1が本発明の範囲に外れた場合であって、全体的に鋼材の強度を確保するには成分の添加量が不足し、母材の強度が大きく低下した。
比較例6は、関係式1と関係式2の両方が発明の範囲を外れた場合である。すなわち、低温靭性に有利な成分は不足し、低温靭性に不利な成分は超過して、低温靭性の特性値が何れも劣化している場合である。
Further, in Comparative Example 5, the relational expression 2 satisfies the scope of the invention, but the relational expression 1 is out of the scope of the present invention, and the amount of the component added is required to secure the strength of the steel material as a whole. There was a shortage, and the strength of the base metal was greatly reduced.
Comparative Example 6 is a case where both the relational expression 1 and the relational expression 2 are out of the scope of the invention. That is, there is a case where the components advantageous for low temperature toughness are insufficient, the components disadvantageous for low temperature toughness are exceeded, and the characteristic values of low temperature toughness are all deteriorated.

比較例7は、鋼材の成分はいずれも発明の範囲を満たすが、鋼材の製造工程において、未再結晶域圧延の総圧下量が発明の範囲を満たしていない場合である。すなわち、未再結晶域での圧下量が不十分であり、鋼材の微細組織で亀裂の伝播を妨げる作用をするフェライトの分率も低く、且つ大傾角粒界の比率と密度が大きく低下し、低温靭性の特性値が良好ではなかった。
そして、比較例8も、鋼材の成分はいずれも発明の範囲を満たすが、鋼材の製造工程において、制御圧延後に加速冷却を適用せずに、空冷により製造された場合であって、遅い冷却速度により、低温靭性に有利なフェライトは十分に生成されたものの粗大で、強度が大きく低下した場合である。
Comparative Example 7 is a case where all the components of the steel material satisfy the scope of the invention, but the total rolling reduction amount of unrecrystallized area rolling does not satisfy the scope of the invention in the manufacturing process of the steel material. That is, the amount of reduction in the unrecrystallized region is insufficient, the fraction of ferrite that hinders the propagation of cracks in the fine structure of the steel material is low, and the ratio and density of the large grain boundaries are greatly reduced. The characteristic value of low temperature toughness was not good.
Further, in Comparative Example 8, all the components of the steel material satisfy the scope of the invention, but in the steel material manufacturing process, the cooling rate is slow because it is manufactured by air cooling without applying accelerated cooling after controlled rolling. As a result, ferrite, which is advantageous for low-temperature toughness, is sufficiently produced but coarse, and the strength is greatly reduced.

以上、本発明の実施形態について詳細に説明したが、本発明の技術的範囲はこれに限定されず、特許請求の範囲に記載された本発明の技術的思想から逸脱しない範囲内で多様な修正及び変形が可能であるということは、当技術分野の通常の知識を有する者には明らかである。
Although the embodiments of the present invention have been described in detail above, the technical scope of the present invention is not limited to this, and various modifications are made within the range not deviating from the technical idea of the present invention described in the claims. And the possibility of modification is obvious to those with ordinary knowledge in the art.

Claims (9)

重量%で、C:0.005~0.07%、Si:0.005~0.3%、Mn:1.7~3.0%、Sol.Al:0.001~0.035%、Nb:0.02%以下(0%は除く)、V:0.01%以下(0%は除く)、Ti:0.001~0.02%、Cu:0.01~1.0%、Ni:0.01~2.0%、Cr:0.01~0.5%、Mo:0.001~0.5%、Ca:0.0002~0.005%、N:0.001~0.008%、P:0.02%以下(0%は除く)、S:0.003%以下(0%は除く)、O:0.003%以下(0%は除く)、残部のFe、及び不可避不純物からなり、下記関係式1及び関係式2を満たし、
その微細組織が、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相を3.5面積%以下含むことを特徴とする低温での耐破壊特性に優れた高強度鋼材。
[関係式1] Mn+0.5x(Ni+Cu)≧2.5wt%
[関係式2] Mo+Cr+1.5xSi+10xNb≦0.5wt%
(但し、前記関係式1及び2において、各元素は重量%で示した値である。)
By weight%, C: 0.005 to 0.07%, Si: 0.005 to 0.3%, Mn: 1.7 to 3.0%, Sol. Al: 0.001 to 0.035%, Nb: 0.02% or less (excluding 0%), V: 0.01% or less (excluding 0%), Ti: 0.001 to 0.02%, Cu: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cr: 0.01 to 0.5%, Mo: 0.001 to 0.5%, Ca: 0.0002 to 0.005%, N: 0.001 to 0.008%, P: 0.02% or less (excluding 0%), S: 0.003% or less (excluding 0%), O: 0.003% It consists of the following (excluding 0%), the remaining Fe, and unavoidable impurities, and satisfies the following relational expression 1 and the following relational expression 2.
Its fine structure contains 70 area% or more of polygonal ferrite and acicular ferrite in total, and has a fracture resistance property at low temperature characterized by containing 3.5 area% or less of the MA phase (martensite-austenite composite phase). Excellent high-strength steel material.
[Relational formula 1] Mn + 0.5x (Ni + Cu) ≧ 2.5 wt%
[Relational formula 2] Mo + Cr + 1.5xSi + 10xNb ≦ 0.5 wt%
(However, in the above relational expressions 1 and 2, each element is a value shown in% by weight.)
前記ポリゴナルフェライトと針状フェライトは、結晶粒間の結晶方位差が15°以上と定義される大傾角結晶粒界の比率が、全結晶粒界中において40%以上であり、また、単位面積当たりの大傾角結晶粒界の長さが300mm/mm以上であることを特徴とする請求項1に記載の低温での耐破壊特性に優れた高強度鋼材。 In the polygonal ferrite and the acicular ferrite, the ratio of the large tilt angle grain boundaries defined as the crystal orientation difference between the crystal grains is 15 ° or more is 40% or more in the total grain boundaries, and the unit area is The high-strength steel material having excellent fracture resistance at low temperatures according to claim 1, wherein the length of the grain boundaries with a large tilt angle per hit is 300 mm / mm 2 or more. 降伏強度が460MPa以上であり、-60℃での衝撃エネルギー値が250J以上であり、ESSO試験で測定したKca値が8000N/mm3/2以上であるか、NRL試験で測定されたNDTT(Nil-ductility transition temperature)から計算されたCAT(crack arrest temperature)が-10℃未満であることを特徴とする請求項1に記載の低温での耐破壊特性に優れた高強度鋼材。 The yield strength is 460 MPa or more, the impact energy value at -60 ° C is 250 J or more, and the Kca value measured in the ESSO test is 8000 N / mm 3/2 or more, or NDTT (Nil) measured in the NRL test. The high-strength steel material having excellent fracture resistance at low temperatures according to claim 1, wherein the CAT (crack arrest temperature) calculated from the ductility measurement temperature is less than −10 ° C. 引張強度が570MPa以上であり、DBTT(延性-脆性遷移温度)が-80℃以下であることを特徴とする請求項1に記載の低温での耐破壊特性に優れた高強度鋼材。 The high-strength steel material having excellent fracture resistance at low temperatures according to claim 1, wherein the tensile strength is 570 MPa or more and the DBTT (ductility-brittle transition temperature) is −80 ° C. or lower. 円相当径で測定したサイズが10μm以上である介在物を11個/cm以下の範囲で含むことを特徴とする請求項1に記載の低温での耐破壊特性に優れた高強度鋼材。 The high-strength steel material having excellent fracture resistance at low temperatures according to claim 1, wherein inclusions having a size of 10 μm or more measured in a circle equivalent diameter are contained in a range of 11 pieces / cm 2 or less. 重量%で、C:0.005~0.07%、Si:0.005~0.3%、Mn:1.7~3.0%、Sol.Al:0.001~0.035%、Nb:0.02%以下(0%は除く)、V:0.01%以下(0%は除く)、Ti:0.001~0.02%、Cu:0.01~1.0%、Ni:0.01~2.0%、Cr:0.01~0.5%、Mo:0.001~0.5%、Ca:0.0002~0.005%、N:0.001~0.008%、P:0.02%以下(0%は除く)、S:0.003%以下(0%は除く)、O:0.003%以下(0%は除く)、残部のFe、及び不可避不純物からなり、下記関係式1及び関係式2を満たす鋼スラブを準備する段階と、
前記鋼スラブを1000~1200℃に加熱する段階と、
前記加熱されたスラブを、650℃以上の温度範囲で、未再結晶域温度区間での総圧下率が30%以上(再結晶域の圧下率は除く)となるように仕上げ熱間圧延する段階と、
前記仕上げ熱間圧延された熱延鋼板を、2~30℃/sの冷却速度で200~550℃の冷却終了温度まで冷却して鋼材を製造する段階と、を含み、
前記冷却された鋼材は、その微細組織が、ポリゴナルフェライトと針状フェライトを合計で70面積%以上含み、MA相(マルテンサイト-オーステナイト複合相)を3.5面積%以下含むことを特徴とする低温での耐破壊特性に優れた高強度鋼材の製造方法。
[関係式1] Mn+0.5x(Ni+Cu)≧2.5wt%
[関係式2] Mo+Cr+1.5xSi+10xNb≦0.5wt%
(但し、前記関係式1及び2において、各元素は重量%で示した値である。)
By weight%, C: 0.005 to 0.07%, Si: 0.005 to 0.3%, Mn: 1.7 to 3.0%, Sol. Al: 0.001 to 0.035%, Nb: 0.02% or less (excluding 0%), V: 0.01% or less (excluding 0%), Ti: 0.001 to 0.02%, Cu: 0.01 to 1.0%, Ni: 0.01 to 2.0%, Cr: 0.01 to 0.5%, Mo: 0.001 to 0.5%, Ca: 0.0002 to 0.005%, N: 0.001 to 0.008%, P: 0.02% or less (excluding 0%), S: 0.003% or less (excluding 0%), O: 0.003% Below (excluding 0%), the stage of preparing a steel slab consisting of the remaining Fe and unavoidable impurities and satisfying the following relational expressions 1 and 2 and
The step of heating the steel slab to 1000-1200 ° C.
The step of finishing and hot rolling the heated slab in a temperature range of 650 ° C. or higher so that the total reduction rate in the unrecrystallized region temperature section is 30% or more (excluding the reduction rate in the recrystallization region). When,
The step of producing a steel material by cooling the hot-rolled hot-rolled steel sheet to a cooling end temperature of 200 to 550 ° C. at a cooling rate of 2 to 30 ° C./s is included.
The cooled steel material is characterized in that its fine structure contains 70 area% or more of polygonal ferrite and acicular ferrite in total, and 3.5 area% or less of MA phase (martensite-austenite composite phase). A method for manufacturing high-strength steel with excellent fracture resistance at low temperatures.
[Relational formula 1] Mn + 0.5x (Ni + Cu) ≧ 2.5 wt%
[Relational formula 2] Mo + Cr + 1.5xSi + 10xNb ≦ 0.5 wt%
(However, in the above relational expressions 1 and 2, each element is a value shown in% by weight.)
前記冷却した熱延鋼板を450~650℃に加熱した後、(1.3×t+5)分~(1.3×t+200)分間維持してから冷却するテンパリング段階をさらに含むことを特徴とする請求項6に記載の低温での耐破壊特性に優れた高強度鋼材の製造方法。 A claim comprising a tempering step in which the cooled hot-rolled steel sheet is heated to 450 to 650 ° C., maintained for (1.3 × t + 5) minutes to (1.3 × t + 200) minutes, and then cooled. Item 6. The method for producing a high-strength steel material having excellent fracture resistance at low temperatures. 前記鋼スラブを準備する段階において、
溶鋼の二次精錬の最終段階で、溶鋼にCaまたはCa合金を投入する段階と、
前記CaまたはCa合金を投入した後、少なくとも3分以上、Arガスでバブリング及び還流処理する段階と、を含む工程を行うことを特徴とする請求項6に記載の低温での耐破壊特性に優れた高強度鋼材の製造方法。
At the stage of preparing the steel slab,
At the final stage of secondary refining of molten steel, the stage of adding Ca or Ca alloy to the molten steel, and
The excellent fracture resistance at low temperature according to claim 6, wherein a step including a step of bubbling and reflux treatment with Ar gas is performed for at least 3 minutes after the Ca or Ca alloy is charged. A method for manufacturing high-strength steel materials.
前記ポリゴナルフェライトと針状フェライトは、結晶粒間の結晶方位差が15°以上と定義される大傾角結晶粒界の比率が、全結晶粒界中に40%以上であり、また、単位面積当たりの大傾角結晶粒界の長さが300mm/mm以上であることを特徴とする請求項6に記載の低温での耐破壊特性に優れた高強度鋼材の製造方法。
In the polygonal ferrite and the needle-like ferrite, the ratio of the large tilt angle grain boundaries defined as the crystal orientation difference between the crystal grains is 15 ° or more is 40% or more in the total grain boundaries, and the unit area. The method for producing a high-strength steel material having excellent fracture resistance at low temperatures according to claim 6, wherein the length of the grain boundaries with a large tilt angle per hit is 300 mm / mm 2 or more.
JP2020533253A 2017-12-22 2018-12-18 High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods Active JP7045459B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0178817 2017-12-22
KR1020170178817A KR102045641B1 (en) 2017-12-22 2017-12-22 High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
PCT/KR2018/016155 WO2019124945A1 (en) 2017-12-22 2018-12-18 High-strength steel material for polar region environment having excellent anti-fracture characteristics at low temperatures and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2021507989A JP2021507989A (en) 2021-02-25
JP7045459B2 true JP7045459B2 (en) 2022-03-31

Family

ID=66993564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020533253A Active JP7045459B2 (en) 2017-12-22 2018-12-18 High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods

Country Status (5)

Country Link
EP (1) EP3730659A4 (en)
JP (1) JP7045459B2 (en)
KR (1) KR102045641B1 (en)
CN (1) CN111492085B (en)
WO (1) WO2019124945A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237486B1 (en) * 2019-10-01 2021-04-08 주식회사 포스코 High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
CN114058942B (en) * 2020-07-31 2022-08-16 宝山钢铁股份有限公司 Steel plate for torsion beam and manufacturing method thereof, torsion beam and manufacturing method thereof
KR102397583B1 (en) * 2020-09-25 2022-05-13 주식회사 포스코 High Strength Hot Rolled Steel Sheet with Excellent Elongation and Method of Manufacturing Thereof
KR102409896B1 (en) * 2020-10-23 2022-06-20 주식회사 포스코 High strength steel plate having excellent workability and method for manufacturing the same
CN112695254A (en) * 2020-10-30 2021-04-23 南京钢铁股份有限公司 Medium-manganese low-nickel high-performance steel for marine environment and preparation method thereof
CN114134432B (en) * 2021-05-06 2022-12-06 江阴兴澄特种钢铁有限公司 High-strength steel plate with high tempering resistance and stability produced by TMCP (thermal mechanical control processing) process and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234742A (en) 2010-04-23 2011-11-09 宝山钢铁股份有限公司 Steel plate for longitudinal welded pipe and manufacturing method thereof
JP2013204103A (en) 2012-03-29 2013-10-07 Jfe Steel Corp High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2013227670A (en) 2012-03-29 2013-11-07 Jfe Steel Corp Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
WO2014199488A1 (en) 2013-06-13 2014-12-18 新日鐵住金株式会社 Ultrahigh-tensile-strength steel plate for welding
US20150089912A1 (en) 2013-09-30 2015-04-02 Deere & Company Agricultural combine with windrow control circuit
JP2017504722A (en) 2013-12-24 2017-02-09 ポスコPosco Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983722A (en) * 1982-11-05 1984-05-15 Kawasaki Steel Corp Preparation of low carbon equivalent unnormalized high tensile steel plate
JPH0615689B2 (en) * 1987-05-19 1994-03-02 新日本製鐵株式会社 Method of manufacturing low yield ratio high strength steel
JP3699657B2 (en) 2000-05-09 2005-09-28 新日本製鐵株式会社 Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
JP2002194488A (en) * 2000-12-27 2002-07-10 Nkk Corp High tensile strength steel and its production method
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
CN100588734C (en) * 2007-11-27 2010-02-10 湖南华菱湘潭钢铁有限公司 High-strength shipbuilding section and production method thereof
KR100957970B1 (en) * 2007-12-27 2010-05-17 주식회사 포스코 High-strength and high-toughness thick steel plate and method for producing the same
CN101514424A (en) * 2008-02-21 2009-08-26 宝山钢铁股份有限公司 TMCP ocean structure thick plate and method for manufacturing same
CN101705433B (en) * 2009-09-29 2011-12-21 燕山大学 196 DEG C below zero ultralow-temperature quake-proof structural steel
KR101304859B1 (en) * 2009-12-04 2013-09-05 주식회사 포스코 Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
CN102409235A (en) * 2010-09-21 2012-04-11 鞍钢股份有限公司 High-strength cold-rolled phase-change induced plasticity steel plate and preparation method thereof
KR20120074705A (en) * 2010-12-28 2012-07-06 주식회사 포스코 High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
CN104024453B (en) * 2011-12-28 2016-08-24 新日铁住金株式会社 Deformation performance and the high tensile steel tube of excellent in low temperature toughness, high-strength steel sheet and the manufacture method of aforementioned steel plate
EP3042976B1 (en) * 2013-08-30 2020-05-13 Nippon Steel Corporation Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP6252291B2 (en) * 2014-03-26 2017-12-27 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
JP5733484B1 (en) * 2014-09-05 2015-06-10 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
KR20160078714A (en) * 2014-12-24 2016-07-05 주식회사 포스코 High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
CN106480381B (en) * 2015-08-31 2018-02-27 鞍钢股份有限公司 Hot-rolled wide and thick plate with good plastic toughness for low-temperature pipeline and manufacturing method thereof
KR101736611B1 (en) * 2015-12-04 2017-05-17 주식회사 포스코 Steel having superior brittle crack arrestability and resistance brittle crack initiation of welding point and method for manufacturing the steel
KR101778406B1 (en) * 2015-12-23 2017-09-14 주식회사 포스코 Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
CN105525213A (en) * 2016-01-21 2016-04-27 东北大学 High-strength-toughness and high-temperature hot rolled steel plate and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102234742A (en) 2010-04-23 2011-11-09 宝山钢铁股份有限公司 Steel plate for longitudinal welded pipe and manufacturing method thereof
JP2013204103A (en) 2012-03-29 2013-10-07 Jfe Steel Corp High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2013227670A (en) 2012-03-29 2013-11-07 Jfe Steel Corp Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
WO2014199488A1 (en) 2013-06-13 2014-12-18 新日鐵住金株式会社 Ultrahigh-tensile-strength steel plate for welding
US20150089912A1 (en) 2013-09-30 2015-04-02 Deere & Company Agricultural combine with windrow control circuit
JP2017504722A (en) 2013-12-24 2017-02-09 ポスコPosco Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method

Also Published As

Publication number Publication date
EP3730659A4 (en) 2021-03-03
JP2021507989A (en) 2021-02-25
CN111492085A (en) 2020-08-04
WO2019124945A1 (en) 2019-06-27
KR102045641B1 (en) 2019-11-15
CN111492085B (en) 2021-10-29
EP3730659A1 (en) 2020-10-28
KR20190076758A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
JP7045459B2 (en) High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods
JP6883107B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures and its manufacturing method
CN108368594B (en) High-strength steel material having excellent low-temperature strain aging impact characteristics and weld heat-affected zone impact characteristics, and method for producing same
JP6989606B2 (en) High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method
WO2014185405A1 (en) Hot-rolled steel sheet and production method therefor
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2021509446A (en) Steel materials for pressure vessels and their manufacturing methods
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP7221475B6 (en) High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
JP6616002B2 (en) High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same
KR20150112489A (en) Steel and method of manufacturing the same
JP7022822B2 (en) Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
KR101467049B1 (en) Steel sheet for line pipe and method of manufacturing the same
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JP7076325B2 (en) Thick steel plate and its manufacturing method and welded structure
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP7348947B2 (en) Structural steel material with excellent brittle fracture resistance and its manufacturing method
JP2688312B2 (en) High strength and high toughness steel plate
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2007277697A (en) High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220318

R150 Certificate of patent or registration of utility model

Ref document number: 7045459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350