JP2007302978A - Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone - Google Patents

Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone Download PDF

Info

Publication number
JP2007302978A
JP2007302978A JP2006135086A JP2006135086A JP2007302978A JP 2007302978 A JP2007302978 A JP 2007302978A JP 2006135086 A JP2006135086 A JP 2006135086A JP 2006135086 A JP2006135086 A JP 2006135086A JP 2007302978 A JP2007302978 A JP 2007302978A
Authority
JP
Japan
Prior art keywords
less
strength
affected zone
toughness
weld heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006135086A
Other languages
Japanese (ja)
Other versions
JP4469354B2 (en
Inventor
Masatake Mizoguchi
昌毅 溝口
Masaaki Fujioka
政昭 藤岡
Manabu Hoshino
学 星野
Yoichi Tanaka
洋一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006135086A priority Critical patent/JP4469354B2/en
Publication of JP2007302978A publication Critical patent/JP2007302978A/en
Application granted granted Critical
Publication of JP4469354B2 publication Critical patent/JP4469354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing high-strength steel of tensile strength of 780 MPa class having excellent toughness of a weld heat affected zone with unexperienced low alloy component and at high productivity. <P>SOLUTION: In themethod for manufacturing the high-strength steel of tensile strength of 780 MPa class having excellent toughness of the weld heat affected zone, a steel slab having the composition consisting of, by mass, ≥0.005% and <0.030% C, <0.05% Si, 1.0-2.5% Mn, 0.02-0.08% Nb, 0.001-0.10% Al, and 0.0001 to ≤0.01% N with the weld cracking parameter PCM being ≤0.25, and the balance Fe with inevitable impurities is heated to 1,020-1,300°C, and rolled so that the cumulative draft in the temperature range of ≤1,020°C and >920°C is >60%, and the cumulative draft below Ar<SB>3</SB>point is 30-95%, and cooled after the rolling. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建築、造船、橋梁および土木等の各分野に用いられる、溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材に関する製造方法に関するものである。   The present invention relates to a method for producing a high strength steel material having a tensile strength of 780 MPa class and excellent in toughness of a weld heat affected zone used in various fields such as construction, shipbuilding, bridges and civil engineering.

近年、船舶や建築物等の鋼構造物の大型化に伴い、使用される鋼材の高強度化が進行している。高強度鋼材を使用することで、鋼材の使用量を減らすことができるため、構造物内の空間の拡大や重量の低減といったメリットが得られる。   In recent years, with the increase in the size of steel structures such as ships and buildings, the strength of steel materials used has been increasing. By using high-strength steel material, the amount of steel material used can be reduced, so that advantages such as expansion of the space in the structure and reduction in weight can be obtained.

従来、高強度鋼材を製造するにあたっては、実製造上で安定的に強度と靭性を得るために、加速冷却による焼入れを行った後に焼戻し熱処理を行う方法にて製造するのが一般的である。例えば、特許文献1には、鋼板を圧延後、オンラインで焼入れし、その後オフラインで焼戻し熱処理を行う発明が開示されている。また、特許文献2には、鋼板を圧延後、焼入れし、その後オンラインで焼戻し熱処理を行う発明が開示されている。   Conventionally, when manufacturing high-strength steel materials, in order to stably obtain strength and toughness in actual manufacturing, it is common to manufacture by a method of performing tempering heat treatment after quenching by accelerated cooling. For example, Patent Document 1 discloses an invention in which a steel plate is rolled, quenched online, and then subjected to tempering heat treatment offline. Patent Document 2 discloses an invention in which a steel sheet is rolled, quenched, and then subjected to tempering heat treatment online.

また、生産性向上のために、焼戻し熱処理自体を省略する製造プロセスの開発も行われている。例えば、特許文献3には、高強度鋼材を製造する方法において、熱間圧延をAr3点以上、800℃以下で終了し、その後450℃以上、540℃以下の温度範囲まで加速冷却を行う発明が開示されている。また、特許文献4には、高強度鋼材を製造する方法において、1020℃未満、920℃超の範囲で累積圧下率が15%以下となるように圧延を行い、920℃以下、860℃以上の範囲で累積圧下率が20%以上、50%以下となるように圧延を行い、その後800℃以上から加速冷却を行い、700℃以下、600℃以上の範囲で加速冷却を停止する発明が開示されている。また、特許文献5および6には、熱間圧延をAr3点以上で終了し、その後平均冷却速度20℃/秒で冷却を行う発明が開示されている。また、特許文献7には、高強度鋼材を製造する方法において、1000℃以上、1250℃範囲で累積圧下率が30%以上の圧延を行い、仕上圧延をAr3点以上で行う発明が開示されている。 In addition, in order to improve productivity, manufacturing processes that omit the tempering heat treatment itself have been developed. For example, Patent Document 3 discloses an invention in which, in a method for producing a high-strength steel material, hot rolling is finished at an Ar 3 point or higher and 800 ° C. or lower, and then accelerated cooling is performed to a temperature range of 450 ° C. or higher and 540 ° C. or lower. Is disclosed. Further, in Patent Document 4, in a method for producing a high-strength steel material, rolling is performed so that the cumulative rolling reduction is 15% or less in a range of less than 1020 ° C. and more than 920 ° C., and 920 ° C. or less and 860 ° C. or more. An invention is disclosed in which rolling is performed so that the cumulative reduction ratio is 20% or more and 50% or less in a range, and then accelerated cooling is performed from 800 ° C or more, and accelerated cooling is stopped in a range of 700 ° C or less and 600 ° C or more. ing. Patent Documents 5 and 6 disclose inventions in which hot rolling is finished at an Ar 3 point or higher and then cooling is performed at an average cooling rate of 20 ° C./second. Patent Document 7 discloses an invention in which, in a method for producing a high-strength steel material, rolling is performed at a cumulative reduction ratio of 30% or more in a range of 1000 ° C. or higher and 1250 ° C., and finish rolling is performed at an Ar 3 point or higher. ing.

さらに、焼戻し熱処理だけでなく、加速冷却も省略し、熱間圧延ままで高強度鋼材を製造する方法の開発も行われている。例えば、特許文献8には、高強度鋼材を製造する方法において、熱間圧延を600℃超、700℃未満にて終了する発明が開示されている。また、特許文献9には、高強度鋼材を製造する方法において、熱間圧延を800℃以上で終了する発明が開示されている。また、特許文献10には、高強度鋼材を製造する方法において、Ar1+10℃以上、Ar3−10℃以下で累積圧下率16%以上、30%以下の圧延を行い、さらにAr1+10℃以上、Ar1+50℃以下の範囲で仕上圧延を行ない、その後空冷する発明が開示されている。また、特許文献11には、高強度鋼材を製造する方法において、熱間圧延を950℃以上で終了する発明が開示されている。また、特許文献12には、高強度鋼材を製造する方法において、オーステナイト部分再結晶温度域で全圧下量の50%以上を熱間圧延し、その後冷却する発明が開示されている。 Furthermore, not only tempering heat treatment but also accelerated cooling is omitted, and a method for producing a high-strength steel material as it is in hot rolling has been developed. For example, Patent Document 8 discloses an invention in which hot rolling is finished at over 600 ° C. and below 700 ° C. in a method for producing a high-strength steel material. Patent Document 9 discloses an invention in which hot rolling is finished at 800 ° C. or higher in a method for producing a high-strength steel material. Patent Document 10, a method for producing a high-strength steel, Ar 1 + 10 ° C. or more, Ar 3 -10 ° C. cumulative rolling reduction of 16% or more below performs the following rolling 30%, more Ar 1 + 10 ° C. As described above, an invention in which finish rolling is performed in a range of Ar 1 + 50 ° C. or lower and then air cooling is disclosed. Patent Document 11 discloses an invention in which hot rolling is finished at 950 ° C. or higher in a method for producing a high-strength steel material. Patent Document 12 discloses an invention in which 50% or more of the total reduction is hot-rolled in the austenite partial recrystallization temperature region and then cooled in a method for producing a high-strength steel material.

特開平05−171272号公報Japanese Patent Laid-Open No. 05-171272 特開2002−317227号公報JP 2002-317227 A 特許第2776174号公報Japanese Patent No. 2776174 特開2005−126819号公報Japanese Patent Laid-Open No. 2005-126819 特開2004−052063号公報JP 2004-052063 A 特開2004−084019号公報JP 2004-084019 A 特開2003−147477号公報JP 2003-147477 A 特公昭62−001457号公報Japanese Patent Publication No. 62-001457 特開平08−144019号公報Japanese Patent Laid-Open No. 08-144019 特開平08−188823号公報Japanese Patent Laid-Open No. 08-188823 特開平10−219390号公報JP-A-10-219390 特開2005−226158号公報JP 2005-226158 A

しかしながら、上記の特許文献1に記載の発明では、鋼板の製造過程においてオフラインでの焼戻し熱処理が必要であり、そのために生産性の低下が避けられないという問題がある。また、特許文献2に記載の発明では、誘導加熱による急速加熱を行うことでオンラインでの焼戻し熱処理を実現しており、強度範囲によらず生産性向上が図れる点において有利であるが、紹介されている誘導加熱炉の導入に非常に大きな設備投資が必要であるという問題がある。また、特許文献3に記載の発明では、実施例によると、80k級の強度を得るためにはC量を0.10%添加する必要があり、そのために溶接熱影響部の靭性が低下すると考えられる。また、C量が多いために、加速冷却の冷却速度や停止温度の変動により鋼板の強度が大きく変動することが予想され、実製造プロセスへの適用は困難と考えられる。また、特許文献4に記載の発明では、加速冷却の冷却速度や停止温度の変動による強度の変化を抑えるために、C量を0.03%以上、0.07%以下に制限しており、加速冷却を用いる場合は高い生産性で製造が可能であるが、該当成分系で加速冷却を用いない場合は、熱間圧延の仕上温度を低くする必要があり、生産性が低下するという問題がある。また、特許文献5に記載の発明では、C量を0.03%以下に制限する等、合金元素を低減しており、溶接熱影響部の靭性では有利と考えられるが、20℃/秒以上の平均冷却速度による加速冷却が可能な、板厚20mm以下の鋼板を対象としており、さらに厚い板厚のもの、および、オンラインでの加速冷却を行うと形状が悪化するために加速冷却が実製造上困難になると思われる板厚10mm程度以下の薄手材に対しては、適用できないプロセスである。また、特許文献6に記載の発明では、熱間圧延後の加速冷却を20℃/秒以上の平均冷却速度で行うことを規定しており、特許文献5と同様の問題を抱えている。また、特許文献7に記載の発明では、C量を0.05%以上に規定しており、溶接熱影響部の靭性が低下すると思われる。また、特許文献8に記載の発明では、C量を0.03%未満に規定しており、溶接熱影響部の靭性には優れると思われるが、合金添加量が低く、また熱間圧延を800℃以上で終了していることもあり、780MPa級の強度は得られていない。また、特許文献9に記載の発明では、C量を0.10%以上、0.20%以下に規定しており、C量が多いために溶接熱影響部の靭性が低下することや、Mo量を0.10%以上、0.80%以下、Bを0.0005%以上、0.0015%以下添加することを規定して、必要以上に焼入れ性を高めており、Ar3点が低くなるために、鋼板の温度が2相域温度に下がるのを待つ時間が長くなり、生産性が必要以上に低下するという問題がある。また、特許文献10に記載の発明では、C量を0.10%以上、0.20%以下に規定しており、溶接熱影響部の靭性が低下すると思われる。また、熱間圧延を950℃以上で終了することを規定しており、そのために、焼戻し熱処理を行わず熱間圧延ままとする場合は、必要以上にYSが低くなるという問題がある。また、特許文献11に記載の発明では、熱間圧延後に冷却を行うとあるが、この冷却に関しては、実施例によると、全て加速冷却を用いなければ実現不可能な冷却速度で行われており、空冷では充分な強度は得られないと考えられる。また、特許文献12に記載の発明では、強度確保のためにNi量を0.40%以上、Cr量を0.30%以上、且つMoを0.10%以上、とそれぞれ規定しており、合金コストが高いという問題がある。 However, the invention described in Patent Document 1 requires an off-line tempering heat treatment in the manufacturing process of the steel sheet, and there is a problem in that a reduction in productivity is inevitable. In the invention described in Patent Document 2, online tempering heat treatment is realized by rapid heating by induction heating, which is advantageous in that productivity can be improved regardless of the strength range. There is a problem that a very large capital investment is required to introduce the induction heating furnace. Further, in the invention described in Patent Document 3, according to the examples, it is necessary to add 0.10% of C in order to obtain the strength of 80k class, and therefore it is considered that the toughness of the weld heat affected zone decreases. It is done. In addition, since the amount of C is large, it is expected that the strength of the steel sheet will fluctuate greatly due to fluctuations in the cooling rate of accelerated cooling and the stop temperature, and it is considered difficult to apply to actual manufacturing processes. Further, in the invention described in Patent Document 4, the C amount is limited to 0.03% or more and 0.07% or less in order to suppress a change in strength due to a change in the cooling rate or stop temperature of accelerated cooling, When accelerated cooling is used, it is possible to manufacture with high productivity. However, when accelerated cooling is not used in the corresponding component system, it is necessary to lower the hot rolling finishing temperature, and there is a problem that productivity decreases. is there. Further, in the invention described in Patent Document 5, the alloying elements are reduced by limiting the C content to 0.03% or less, and it is considered advantageous in the toughness of the weld heat affected zone, but 20 ° C./second or more. Targeted for steel plates with a plate thickness of 20 mm or less that can be accelerated by the average cooling rate of the above, and with thicker plates and on-line accelerated cooling, the shape deteriorates, so accelerated cooling is actually manufactured. This process is not applicable to thin materials with a plate thickness of about 10 mm or less that are considered to be difficult. Moreover, in the invention described in Patent Document 6, it is specified that accelerated cooling after hot rolling is performed at an average cooling rate of 20 ° C./second or more. Further, in the invention described in Patent Document 7, the C content is specified to be 0.05% or more, and it seems that the toughness of the weld heat affected zone is lowered. Further, in the invention described in Patent Document 8, the C content is specified to be less than 0.03%, and it seems that the weld heat-affected zone has excellent toughness, but the alloy addition amount is low, and hot rolling is performed. Since it may be completed at 800 ° C. or higher, the strength of 780 MPa class is not obtained. Further, in the invention described in Patent Document 9, the C content is specified to be 0.10% or more and 0.20% or less, and since the C content is large, the toughness of the weld heat affected zone is reduced, Mo The amount is 0.10% or more and 0.80% or less, B is added 0.0005% or more and 0.0015% or less, and the hardenability is improved more than necessary, and the Ar 3 point is low. Therefore, there is a problem that the time for waiting for the temperature of the steel sheet to fall to the two-phase region temperature becomes long, and the productivity is lowered more than necessary. Moreover, in invention of patent document 10, C amount is prescribed | regulated to 0.10% or more and 0.20% or less, and it seems that the toughness of a welding heat affected zone falls. Moreover, it stipulates that the hot rolling is finished at 950 ° C. or higher. Therefore, when the tempering heat treatment is not performed and the hot rolling is left as it is, there is a problem that YS becomes lower than necessary. Further, in the invention described in Patent Document 11, cooling is performed after hot rolling, but according to the embodiment, all cooling is performed at a cooling rate that cannot be achieved unless accelerated cooling is used. It is considered that sufficient strength cannot be obtained by air cooling. Further, in the invention described in Patent Document 12, to ensure strength, the Ni amount is specified to be 0.40% or more, the Cr amount is set to 0.30% or more, and Mo is set to 0.10% or more, respectively. There is a problem that the alloy cost is high.

そこで、本発明は、上記の問題点を有利に解決して、従来に無い低合金成分且つ高い生産性にて、溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法を提供することを目的とするものである。   Accordingly, the present invention advantageously solves the above-described problems, and provides a method for producing a high strength steel material having a tensile strength of 780 MPa class, which has an unprecedented low alloy component and high productivity and is excellent in the toughness of the weld heat affected zone. It is intended to provide.

本発明者らは、引張強さ780MPa級高強度鋼材を製造方法に関し、熱間圧延後に空冷することで高い生産性を確保できる製造方法について、実験と解析を通して鋭意研究開発を重ねてきた。その結果、鋼のYSおよびTSを支配する因子を明確化し、従来と比べて高い生産性、低合金成分にて、高強度鋼材を製造するための知見を得た。   The inventors of the present invention have made extensive research and development through experiments and analyzes on a manufacturing method that can secure high productivity by air-cooling after hot rolling with respect to a manufacturing method of a high strength steel material having a tensile strength of 780 MPa. As a result, the factors governing the YS and TS of the steel were clarified, and knowledge for producing a high-strength steel material with higher productivity and lower alloy components than conventional ones was obtained.

すなわち、引張強さ780MPa級以上の高強度鋼材を製造するにあたり、熱間圧延ままで650MPa以上の高いYSをも同時に実現するためには、Ar3点前後の温度における制御圧延による、フェライトまたはベイナイト組織の細粒化強化だけでなく、Ar3点以下でのフェライト、ベイナイト、およびパーライト等の変態後の組織を圧延することによる加工強化の方が、実製造上、コスト的に有利である。 That is, in producing a high strength steel material having a tensile strength of 780 MPa or more, in order to simultaneously achieve high YS of 650 MPa or more as hot rolling, ferrite or bainite by controlled rolling at a temperature around Ar 3 point is used. In addition to strengthening the fine structure, strengthening the work by rolling the structure after transformation such as ferrite, bainite, and pearlite at an Ar 3 point or less is more advantageous in terms of cost in actual production.

加速冷却を用いない熱間圧延ままの製造プロセスで高強度鋼を製造する際には、空冷の冷却速度でもベイナイト・マルテンサイト変態による組織強化を得るために、焼入れ性を高める合金元素を大量に添加することや、析出強化や固溶強化を利用するための合金元素を大量に添加することが行われてきた。これらの指針により、確かに高いTSを実現することは可能であるが、このような高合金組成の鋼を熱間圧延すると、島状MAが製造鋼中に多量に生成するためにYSが低下して必要以上に低降伏比となる。そのため、YSを確保するために必要以上の合金元素の添加が必要になっていた。また、焼入れ性を高める合金元素を多量に添加する程Ar3変態点が下がるため、熱間圧延プロセスにおける効果的な強度確保手法である、細粒化強化や二相域圧延による加工強化を利用する際には、鋼片の温度低下を待つ時間が長くなり、生産性の点でも問題となっていた。その他、圧延温度の低下に伴い、鋼材の音響異方性が増大するという問題もある。 When manufacturing high-strength steel by a hot-rolled manufacturing process that does not use accelerated cooling, a large amount of alloying elements that enhance hardenability are obtained in order to obtain structural strengthening by bainite-martensite transformation even at a cooling rate of air cooling. It has been carried out to add a large amount of alloying elements for utilizing precipitation strengthening or solid solution strengthening. With these guidelines, it is possible to achieve a high TS, but when steel with such a high alloy composition is hot-rolled, YS is reduced because a large amount of island-like MA is produced in the manufactured steel. Therefore, the yield ratio is lower than necessary. Therefore, it is necessary to add more alloy elements than necessary to secure YS. In addition, since the Ar 3 transformation point decreases with the addition of a large amount of alloying elements that enhance hardenability, the effective strength securing method in the hot rolling process, which is strengthening by grain refinement and two-phase rolling, is used. In doing so, the time to wait for the temperature drop of the steel slabs becomes longer, which is also a problem in terms of productivity. In addition, there is a problem that the acoustic anisotropy of the steel material increases as the rolling temperature decreases.

さらに、先に述べたように、島状MAによる上降伏点の消失等の問題にあたっては、本発明者らの検討により、Ar3点が高い成分系である程、Ar3点以下での二相域圧延を行った際の上降伏点の回復が大きいことが分かっている。 Further, as noted above, the when problems such as the loss of the upper yield point by islands MA, the study of the present inventors, the higher Ar 3 point is higher component system, the following three points Ar two- It has been found that the recovery of the upper yield point during phase rolling is large.

本発明者らは、以上のような知見を基に、780MPa級以上の高強度鋼材を従来にない低合金系且つ高い生産性で製造するための成分系について詳細に検討を重ねた。その結果、引張強さ780MPa級高強度鋼材を加速冷却を用いない熱間圧延ままのプロセスにおいて製造するためには、従来の高強度鋼の成分設計とは異なり、焼入れ性を向上する元素の添加を極力避けてAr3点を上昇させること、および島状MAの生成を抑制すること、さらに、Ar3点以下での強化量を増大させるために、フェライトおよびベイナイト中での加工誘起析出の速度が速い合金元素を積極的に利用することが有効であるとの結論に至った。 Based on the above findings, the present inventors have studied in detail a component system for producing a high-strength steel material of 780 MPa class or higher with an unprecedented low alloy system and high productivity. As a result, in order to produce a high strength steel material with a tensile strength of 780 MPa class in the process of hot rolling without using accelerated cooling, the addition of elements that improve hardenability, unlike the conventional high strength steel component design In order to increase the Ar 3 point and suppress the formation of island-like MA, and to increase the amount of strengthening below the Ar 3 point, the rate of work-induced precipitation in ferrite and bainite It was concluded that it is effective to actively use a fast alloying element.

本発明者らは、このような知見に従い、引張強さ780MPa級高強度鋼材において、Ar3点を従来の高強度鋼材が想定していないレベルまで高温化するための成分組成、熱間圧延の必要条件等、必要な特性を満足するための具体的要件を鋭意検討し、引張強さ780MPa級の強度を達成するのみならず、従来に無い低合金成分且つ高い生産性にて、良好な溶接熱影響部の靭性を得ることのできる本発明を成すに至った。 In accordance with such knowledge, the present inventors, in a high strength steel material having a tensile strength of 780 MPa, have a component composition for increasing the temperature of the Ar 3 point to a level not assumed by conventional high strength steel materials, Extensive examination of specific requirements for satisfying necessary properties such as necessary conditions, and not only achieving strength of tensile strength of 780 MPa class, but also excellent welding with low alloy components and high productivity that have never been seen before It came to make this invention which can acquire the toughness of a heat affected zone.

本発明の要旨は以下に述べる通りである。
(1) 質量%で、C:0.005%以上、0.030%未満、Si:0.05%未満、Mn:1.0%以上、2.5%以下、Nb:0.02%以上、0.08%以下、Al:0.001%以上、0.10%以下、N:0.0001%以上、0.01%以下を含有し、下記式1で表される溶接割れ感受性指数PCMが0.25以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超の範囲での累積圧下率を60%未満とし、Ar3点未満での累積圧下率を30%以上、95%以下となるように行い、圧延終了後冷却することを特徴とする、溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
式1: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものである。
(2) さらに、質量%で、Cr:0.01%以上、2.0%以下、Ti:0.001%以上、0.05%以下、Cu:0.01%以上、2.0%以下、Mo:0.01%以上、1.0%以下、V:0.001%以上、0.050%以下、W:0.01%以上、3.0%以下の内の1種または2種以上を含有することを特徴とする、上記(1)に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
(3) さらに、質量%で、Zr:0.001〜0.010、Ca:0.001〜0.010、Mg:0.001〜0.010、Hf:0.001〜0.010、REM:0.001〜0.010の内の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
(4) さらに、Ac1点以下の温度で、焼戻し熱処理を行うことを特徴とする、上記(1)ないし(3)のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.005% or more, less than 0.030%, Si: less than 0.05%, Mn: 1.0% or more, 2.5% or less, Nb: 0.02% or more 0.08% or less, Al: 0.001% or more, 0.10% or less, N: 0.0001% or more, 0.01% or less, and a weld cracking sensitivity index P represented by the following formula 1 A steel slab having a component composition consisting of CM of 0.25 or less and the balance of Fe and inevitable impurities is heated to 1020 ° C. or higher and 1300 ° C. or lower, and then rolled to 1020 ° C. or lower and more than 920 ° C. The welding heat-affected zone is characterized in that the cumulative rolling reduction in the range is less than 60%, the cumulative rolling reduction at less than Ar 3 point is 30% or more and 95% or less, and cooling is performed after the end of rolling. A method for producing a high strength steel material having a tensile strength of 780 MPa which is excellent in toughness.
Equation 1: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%.
(2) Further, by mass, Cr: 0.01% or more, 2.0% or less, Ti: 0.001% or more, 0.05% or less, Cu: 0.01% or more, 2.0% or less , Mo: 0.01% or more, 1.0% or less, V: 0.001% or more, 0.050% or less, W: 0.01% or more, 3.0% or less The method for producing a high strength steel material having a tensile strength of 780 MPa class, which is excellent in toughness of the weld heat affected zone as described in (1) above.
(3) Further, in mass%, Zr: 0.001 to 0.010, Ca: 0.001 to 0.010, Mg: 0.001 to 0.010, Hf: 0.001 to 0.010, REM : One or more of 0.001 to 0.010 is contained, and the tensile strength of 780 MPa class excellent in the toughness of the weld heat affected zone according to (1) or (2) above Manufacturing method of high strength steel.
(4) Further, the tempering heat treatment is performed at a temperature of Ac 1 point or less, and the tensile strength excellent in the toughness of the weld heat affected zone according to any one of (1) to (3) above A method for producing a high strength steel material of 780 MPa.

本発明によれば、溶接熱影響部の靭性に優れる引張強さ780MPa級の高強度鋼板を、合金元素の少ない経済的成分系と生産性の高い非調質の製造方法にて得ることが可能となり、その産業上の効果は計り知れない。   According to the present invention, it is possible to obtain a high-strength steel sheet having a tensile strength of 780 MPa, which is excellent in toughness of the heat affected zone, by an economical component system with less alloy elements and a highly productive non-tempered manufacturing method. The industrial effects are immeasurable.

以下に、本発明における成分組成と圧延条件の限定理由について述べる。   The reasons for limiting the component composition and rolling conditions in the present invention will be described below.

まず、本発明においては、780MPa級の高強度鋼のYSおよびTSを確保するために、二相域圧延を積極的に利用することが目的であり、その加工誘起析出による強化、および生産性の向上を目的として、従来以上のAr3点の上昇、および成分組成と圧延条件を実現することが特徴である。 First, in the present invention, in order to secure YS and TS of high-strength steel of 780 MPa class, the purpose is to actively use two-phase rolling, strengthening by work-induced precipitation, and productivity For the purpose of improvement, it is characterized in that the Ar 3 point is increased more than before, and the component composition and rolling conditions are realized.

まず、本発明における熱間圧延条件について述べる。   First, hot rolling conditions in the present invention will be described.

本発明では、鋼片を1020℃以上1300℃以下に加熱し、その後圧延する。1020℃未満のオーステナイト中で長時間保持するとNbやTiが粗大析出してしまい、強度上昇に寄与しなくなるロスが大きくなるので、下限を1020℃とした。一方、本発明鋼の用途及び成分系から考えて、1300℃を超える温度で加熱する必要はなく、また1300℃を超える温度での加熱では不必要に鋼材表面の酸化を助長するので、上限を1300℃とした。   In the present invention, the steel slab is heated to 1020 ° C. or higher and 1300 ° C. or lower and then rolled. If kept for a long time in austenite of less than 1020 ° C., Nb and Ti will coarsely precipitate and increase the loss that does not contribute to the increase in strength, so the lower limit was made 1020 ° C. On the other hand, considering the use and the component system of the steel of the present invention, it is not necessary to heat at a temperature exceeding 1300 ° C, and heating at a temperature exceeding 1300 ° C unnecessarily promotes oxidation of the surface of the steel material. The temperature was 1300 ° C.

本発明では、Ar3点以下での圧延による加工誘起析出の最大限の利用を目指すため、フェライトおよびベイナイト中での析出が最も速いNbを析出強化元素として利用する。
フェライト、ベイナイト、またはオーステナイト中におけるNbの析出は、熱間圧延を行うによって促進される。しかし、高温のオーステナイト中での粗圧延中にNbの析出が起こると、この析出物は急速に粗大化し、鋼板製造後の強度上昇には寄与しない無駄な析出となることが、特許文献4に記載の発明により明らかにされている。従って、このオーステナイト中での粗大析出によるロスを最小限に抑えるためには、920℃超、1020℃以下の温度範囲での圧延を極力行わないことが好ましい。ところが、本発明では、焼入れ性の低下と溶接熱影響部の靭性向上のために特許文献4に記載の発明よりCの成分範囲を低く制限している。そのため、本発明では、Nb−Cの溶解度積から決まるオーステナイト中での固溶限界温度が低下しており、その結果、920℃超、1020℃以下での圧延も許容されるが、その許容される累積圧下量の上限は60%未満である。
In the present invention, Nb, which is the fastest precipitation in ferrite and bainite, is used as a precipitation strengthening element in order to maximize the use of work-induced precipitation by rolling at an Ar 3 point or less.
Precipitation of Nb in ferrite, bainite, or austenite is promoted by hot rolling. However, when precipitation of Nb occurs during rough rolling in high-temperature austenite, this precipitate is rapidly coarsened, resulting in useless precipitation that does not contribute to an increase in strength after manufacturing the steel sheet. It is made clear by the described invention. Therefore, in order to minimize the loss due to coarse precipitation in the austenite, it is preferable not to perform rolling in a temperature range higher than 920 ° C. and not higher than 1020 ° C. as much as possible. However, in the present invention, the component range of C is limited to be lower than that of the invention described in Patent Document 4 in order to reduce the hardenability and improve the toughness of the weld heat affected zone. Therefore, in the present invention, the solid solution limit temperature in austenite determined from the solubility product of Nb-C is lowered, and as a result, rolling above 920 ° C. and below 1020 ° C. is allowed, but this is not allowed. The upper limit of the cumulative reduction amount is less than 60%.

Ar3点未満の温度域での圧下に関しては、その圧下量が大きい程強度が上昇するが、累積圧下量30%未満では650MPa以上のYSが得られないこと、および、95%超では強化が飽和することから、累積圧下量を30%以上、95%以下と規定する。 Regarding the reduction in the temperature range below Ar 3 point, the strength increases as the reduction amount increases, but if the cumulative reduction amount is less than 30%, YS of 650 MPa or more cannot be obtained, and if the reduction amount exceeds 95%, strengthening is achieved. Because of saturation, the cumulative reduction amount is specified as 30% or more and 95% or less.

なお、本発明では、このAr3点以下の圧延による加工強化が大きく得られるように成分設計されているので、圧延後は空気中での放冷で構わないが、さらにこの後に加速冷却を行っても本発明の趣旨を損なうものではない。 In the present invention, the components are designed so that the processing strengthening by rolling at the Ar 3 point or less can be greatly obtained. Therefore, after the rolling, it may be allowed to cool in the air, but further accelerated cooling is performed thereafter. However, it does not detract from the spirit of the present invention.

この際、C含有量が少なく、NbもしくはTiの析出強化を利用しており、さらに島状MAの生成量が少ないため、本発明鋼は水冷停止400〜650℃の広い範囲で、YSおよびTSが安定する結果が得られる。但し、この加速冷却の停止温度は、強度上昇を得るために650℃以下に設定する必要がある。   At this time, since the C content is low, the precipitation strengthening of Nb or Ti is used, and the amount of island-like MA produced is small, the steel according to the present invention is YS and TS in a wide range of water cooling stop 400 to 650 ° C. Stable results are obtained. However, the accelerated cooling stop temperature needs to be set to 650 ° C. or lower in order to obtain an increase in strength.

さらに、熱間圧延後、空気中での放冷を行った後もしくは加速冷却を行った後に、焼戻し熱処理過程を行うことによりさらに強度を上昇させ、安定化することも可能である。この焼戻し熱処理の温度は、安定的な強度の確保の観点から、Ac1点以下に制限する必要がある。 Furthermore, after hot rolling, after cooling in the air or after accelerated cooling, the strength can be further increased and stabilized by performing a tempering heat treatment process. The temperature of this tempering heat treatment needs to be limited to Ac 1 point or less from the viewpoint of securing stable strength.

以下に、本発明における成分組成の限定理由について述べる。   The reasons for limiting the component composition in the present invention will be described below.

Cは、Ar3点の高温化のため、溶接部HAZ靭性の向上のため、および、オーステナイト中におけるNbの粗大析出を抑制するために、添加量を0.030%未満に抑える必要がある。なお、C添加量を0.005%未満に抑えると、Nb等の他の合金元素と形成する炭化物の析出量が低下し強度が不足するために、0.005%以上の添加が必要である。 C needs to be added to less than 0.030% in order to increase the temperature of the Ar 3 point, improve the weld zone HAZ toughness, and suppress coarse precipitation of Nb in austenite. If the C addition amount is suppressed to less than 0.005%, the precipitation amount of carbide formed with other alloy elements such as Nb is reduced and the strength is insufficient, so addition of 0.005% or more is necessary. .

Siは、島状MAの生成を促進しYSを下げるために、添加量を0.05%未満に制限する必要がある。より好ましくは積極的に添加せず、不可避不純物レベルとすることである。   In order to promote the formation of island-like MA and lower YS, the amount of Si needs to be limited to less than 0.05%. More preferably, it is not added positively, but an inevitable impurity level is set.

Mnは、強度上昇に有効な元素であり、TSを確保するために1.0%以上の添加を行うが、Ar3点を低下させるので添加量を抑えることが望ましいため、2.5%以下と限定する。 Mn is an element effective for increasing the strength, and 1.0% or more is added to secure TS. However, since it is desirable to suppress the addition amount because it lowers the Ar 3 point, 2.5% or less Limited.

Nbは、フェライトまたはベイナイト中での析出が速いために、Ar3点以下での加工誘起析出を得るために有効であり、また組織の細粒化にも寄与する。これらの効果を得るためには0.02%以上の添加が必要であるが、0.08%超の添加では溶接部HAZ靭性を著しく低下させること、および強化が鈍くなるので、上限を0.08%に制限する。 Nb is effective for obtaining work-induced precipitation below the Ar 3 point because it precipitates rapidly in ferrite or bainite, and also contributes to the refinement of the structure. In order to obtain these effects, addition of 0.02% or more is necessary. However, if over 0.08% is added, the weld HAZ toughness is remarkably lowered and strengthening becomes dull. Limit to 08%.

Alは、脱酸および加速冷却前のオーステナイト粒径の細粒化等に有効な元素であり、さらに、Ar3点を高温化する効果もあるため、0.001%以上を添加する必要があるが、0.10%を超えて添加すると粗大な酸化物の形成により延性・靭性を大きく低下させるため、0.001〜0.10%の範囲内とする。 Al is an element effective for deoxidation and refinement of the austenite grain size before accelerated cooling, and also has an effect of increasing the temperature of the Ar 3 point, so it is necessary to add 0.001% or more. However, if added over 0.10%, the ductility and toughness are greatly reduced due to the formation of coarse oxides, so the content is made 0.001 to 0.10%.

Nは、AlやNbと結合して、オーステナイト粒の微細化や、フェライトまたはベイナイト中での析出強化に有効な元素であるために0.0001%以上を添加するが、多量の添加では固溶N量を増加させ靭性を劣化させるので、上限を0.01%に限定する。   N is an element effective for refining austenite grains and strengthening precipitation in ferrite or bainite by combining with Al or Nb, so 0.0001% or more is added. Since the N amount is increased and the toughness is deteriorated, the upper limit is limited to 0.01%.

Crは、強度上昇に有効な元素であり、明瞭な強度上昇を得るためには0.01%以上の添加が必要である。しかし、2.0%超の添加は溶接部HAZ靭性を低下させるため、Crを添加する場合は0.01%以上、2.0%以下の範囲とする。   Cr is an effective element for increasing the strength, and in order to obtain a clear increase in strength, it is necessary to add 0.01% or more. However, addition of more than 2.0% lowers the weld zone HAZ toughness, so when adding Cr, the range is 0.01% or more and 2.0% or less.

Tiは、フェライトまたはベイナイト中での析出が速いために、Ar3点以下での加工誘起析出を得るために有効であり、組織の細粒化強化にも大きく寄与し、さらに、強いフェライト安定化元素でありAr3点を高温化することにも寄与する。これらの効果を発揮するためには0.001%以上の添加が必要であるが、0.05%超の添加では溶接熱影響部の靭性を著しく低下させることや強化が飽和することのために、Tiを添加する場合は0.001%以上、0.05%以下の範囲とする。 Since Ti precipitates quickly in ferrite or bainite, it is effective for obtaining work-induced precipitation at an Ar 3 point or lower, greatly contributes to strengthening the refinement of the structure, and further stabilizes ferrite. It is an element and contributes to increasing the temperature of the Ar 3 point. In order to exert these effects, addition of 0.001% or more is necessary, but addition of more than 0.05% significantly reduces the toughness of the weld heat affected zone and saturates the strengthening. When adding Ti, the range is from 0.001% to 0.05%.

Cuは、空冷の冷却速度では焼入れ性を大きく上昇させず、また、析出強化と固溶強化をもたらすために強度上昇に有効な元素である。これらの効果を発揮するためには0.01%以上の添加が必要であるが、2.0%超の添加では溶接熱影響部の靭性を低下させるため、Cuを添加する場合は0.01%以上、2.0%以下の範囲とする。   Cu is an element effective in increasing the strength because it does not significantly increase the hardenability at the cooling rate of air cooling, and also brings about precipitation strengthening and solid solution strengthening. In order to exhibit these effects, addition of 0.01% or more is necessary. However, addition of over 2.0% decreases the toughness of the weld heat affected zone. % Or more and 2.0% or less.

Moは、組織強化による強度上昇に有効であり、明瞭な強度上昇を得るためには0.01%以上の添加を必要とするが、1.0%を超えて添加すると、残留MAの生成によりYSを下げること、および溶接熱影響部の靭性を著しく低下させること等の問題があるために、Moを添加する場合は0.01%以上、1.0%以下の範囲とする。   Mo is effective in increasing the strength by strengthening the structure, and in order to obtain a clear increase in strength, addition of 0.01% or more is necessary. However, if added over 1.0%, residual MA is generated. Since there are problems such as lowering YS and significantly reducing the toughness of the weld heat affected zone, when adding Mo, the range is 0.01% or more and 1.0% or less.

Vは、析出強化による強度上昇に有効であり、明瞭な強度上昇を得るためには0.001%以上の添加を必要とするが、0.050%を超える添加では溶接部HAZ靭性を低下させるため、Vを添加する場合は0.001%以上、0.050%以下に限定する。   V is effective for increasing the strength by precipitation strengthening, and 0.001% or more is necessary to obtain a clear increase in strength, but if added over 0.050%, the weld HAZ toughness is decreased. Therefore, when adding V, it is limited to 0.001% or more and 0.050% or less.

Wは、固溶強化や組織強化により強度上昇に有効な元素であり、この効果を得るためには0.01%以上の添加を必要とするが、3.0%を超えて添加するとコストが高くなるため、Wを添加する場合は0.01%以上、3.0%以下の範囲とする。   W is an element effective for increasing the strength by solid solution strengthening and structure strengthening, and in order to obtain this effect, addition of 0.01% or more is required, but if added over 3.0%, the cost is increased. Therefore, when W is added, the range is 0.01% or more and 3.0% or less.

Zr、Ca、Mg、HfおよびREMに関しては、脱酸や靭性の向上のために添加を行うことができる。これらの効果を得るためには0.001%以上の添加が必要であるが、コストの問題から上限を0.010%と制限する。従って、Zr、Ca、Mg、Hf、およびREMを添加する場合は、0.001%以上、0.010%以下の範囲とする。   Zr, Ca, Mg, Hf and REM can be added to improve deoxidation and toughness. Addition of 0.001% or more is necessary to obtain these effects, but the upper limit is limited to 0.010% due to cost problems. Therefore, when adding Zr, Ca, Mg, Hf, and REM, it is made into the range of 0.001% or more and 0.010% or less.

なお、本発明による成分系は、Cをはじめ焼入れ性に寄与する元素の添加を極力避けているため、溶接の際の熱影響の靭性についても非常に良好な結果を示すものとなっている。   In addition, since the component system according to the present invention avoids the addition of elements that contribute to hardenability including C as much as possible, the toughness of the thermal influence during welding also shows very good results.

本発明は、鋼成分を上記のように定めることにより、Ar3点温度を十分に高温化し、析出強化量とのバランスを取ることが可能となる。 In the present invention, by setting the steel components as described above, it is possible to sufficiently raise the Ar 3 point temperature and balance the precipitation strengthening amount.

また、溶接割れ感受性指数PCMも0.25%以下の水準に抑えており、溶接割れも防止される範囲となっている。
式1: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものである。
Further, weld cracking sensitivity index P CM is also suppressed to a level of 0.25% or less, and has a range of weld crack is prevented.
Equation 1: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%.

表1に示す成分組成の溶鋼を真空溶解炉にて作製しインゴット形に鋳造した。表1の空欄は、その成分を添加していないことを示す。その鋼片を、適宜圧延、鍛造、もしくは切断して、厚さ60〜500mmのスラブを作製し、そのスラブに対して、表2に示す条件の熱間圧延、加速冷却、および焼戻し熱処理を行い、厚さ6〜50mmの厚鋼板とした。   Molten steel having the composition shown in Table 1 was produced in a vacuum melting furnace and cast into an ingot shape. The blank in Table 1 indicates that the component is not added. The steel slab is appropriately rolled, forged, or cut to produce a slab having a thickness of 60 to 500 mm. The slab is subjected to hot rolling, accelerated cooling, and tempering heat treatment under the conditions shown in Table 2. The steel plate was 6 to 50 mm thick.

Ar3点温度は圧延方法によっても若干変動するが、本実施例の範囲であれば鋼成分のみによってほぼ確定することができる。表2に示すAr3点温度は、実験データ及び文献から校正した次の式に基づいて計算している。
Ar3=910−310×[C]−80×[Mn]−15[Nb]−50×[Ni]−80×[Mo]−15×[Cr]−20×[Cu]−15×[W]−1050×[B]+24.6×[Si]+700×[P]+60×[Ti]+190×[V]+40×[Al]
なお、式中の[ ]は各合金元素の添加量を質量%で表したものである。
Although the Ar 3 point temperature varies slightly depending on the rolling method, it can be almost determined only by the steel component within the range of the present embodiment. The Ar 3 point temperatures shown in Table 2 are calculated based on the following equation calibrated from experimental data and literature.
Ar 3 = 910-310 × [C] -80 × [Mn] -15 [Nb] -50 × [Ni] -80 × [Mo] -15 × [Cr] -20 × [Cu] -15 × [W ] −1050 × [B] + 24.6 × [Si] + 700 × [P] + 60 × [Ti] + 190 × [V] + 40 × [Al]
In addition, [] in a formula represents the addition amount of each alloy element in the mass%.

Figure 2007302978
Figure 2007302978

Figure 2007302978
Figure 2007302978

これらの厚鋼板について、JIS Z 2241に準拠の引張試験を行いYSおよびTS等を測定した結果を表2中に示す。引張試験片はJIS Z 2201に準拠の13B号もしくは10号試験片を用いた。また、これらの厚鋼板について、JIS Z 3158準拠の斜めy型溶接割れ試験を行った結果を表2中に示す。また、これらの厚鋼板について、入熱10kJ/mmのサブマージアーク溶接時の熱影響部1mm位置(HAZ1)に相当する熱サイクルを与えたJIS Z 2202に準拠の2mmVノッチ試験片もしくはサブサイズ2mmVノッチ試験片を用いて−5℃にてシャルピー試験を行った結果を表2中に示す。なお、各特性の目標値は、YSが650MPa、TSが780MPa、溶接熱影響部靭性が吸収エネルギー47J以上、溶接割れ試験は割れないことである。   Table 2 shows the results of YS and TS measured for these thick steel plates by performing a tensile test in accordance with JIS Z 2241. As the tensile test piece, a No. 13B or No. 10 test piece based on JIS Z 2201 was used. In addition, Table 2 shows the results of an oblique y-type weld cracking test based on JIS Z 3158 for these thick steel plates. Moreover, about these thick steel plates, the 2 mmV notch test piece or subsize 2mmV notch based on JIS Z2202 which gave the thermal cycle equivalent to the heat affected zone 1mm position (HAZ1) at the time of submerged arc welding of heat input 10kJ / mm Table 2 shows the results of the Charpy test performed at -5 ° C using the test pieces. In addition, the target value of each characteristic is that YS is 650 MPa, TS is 780 MPa, weld heat affected zone toughness is absorption energy 47J or more, and the weld cracking test does not crack.

表1、表2の結果から、本発明法に従った成分組成および製造方法は、YS、TS、溶接割れ、および溶接熱影響部靭性など、全て良好な結果を示すことがわかる。これに対し、本発明鋼の範囲を逸脱する比較鋼は、YS、TS、溶接割れ、および溶接熱影響靭性などの基本特性が少なくとも一つ以上不充分であることが分かる。   From the results in Tables 1 and 2, it can be seen that the component composition and production method according to the method of the present invention all show good results such as YS, TS, weld cracking, and weld heat affected zone toughness. On the other hand, it can be seen that the comparative steel deviating from the scope of the steel of the present invention has at least one or more basic characteristics such as YS, TS, weld cracking, and weld heat-affected toughness.

また、表1と表2の結果を、Ar3点以下の圧下量を横軸に、YSおよびTSを縦軸に取ってプロットした結果を図1に示す。図1中では、本発明鋼は丸、比較鋼は三角にてプロットをしているが、本発明鋼は全て目標の強度範囲を満たす。比較鋼の場合は、強度範囲を満たさないか、もしくは、強度範囲を満たすものの、溶接熱影響部の靭性が悪かったものか、または溶接割れを起こしたものである。 The results of Tables 1 and 2 are plotted in FIG. 1 with the amount of reduction at Ar 3 or less plotted on the horizontal axis and YS and TS plotted on the vertical axis. In FIG. 1, the steel of the present invention is plotted with a circle and the comparative steel is plotted with a triangle, but the steels of the present invention all satisfy the target strength range. In the case of the comparative steel, the strength range is not satisfied, or the strength range is satisfied, but the toughness of the weld heat affected zone is poor or weld cracking occurs.

本発明の実施例による鋼材のAr3点以下の累積圧下率とYS、TSの関係を示す図である。Cumulative rolling reduction and YS below Ar 3 point of the steel according to an embodiment of the present invention, is a diagram showing the relationship between TS.

Claims (4)

質量%で、
C :0.005%以上、0.030%未満、
Si:0.05%未満、
Mn:1.0%以上、2.5%以下、
Nb:0.02%以上、0.08%以下、
Al:0.001%以上、0.10%以下、
N :0.0001%以上、0.01%以下
を含有し、下記式1で表される溶接割れ感受性指数PCMが0.25以下であり、残部がFeおよび不可避的不純物からなる成分組成を有する鋼片を、1020℃以上、1300℃以下に加熱し、その後圧延するにあたり、1020℃以下、920℃超の範囲での累積圧下率を60%未満とし、Ar3点未満での累積圧下率を30%以上、95%以下となるように行い、圧延終了後冷却することを特徴とする、溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
式1: PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]
なお、式1中の[ ]は各合金元素の添加量を質量%で表したものである。
% By mass
C: 0.005% or more, less than 0.030%,
Si: less than 0.05%,
Mn: 1.0% or more, 2.5% or less,
Nb: 0.02% or more, 0.08% or less,
Al: 0.001% or more, 0.10% or less,
N: 0.0001% or more, containing 0.01% or less, the welding crack sensitivity index P CM represented by the following formula 1 is 0.25 or less, the component composition and the balance being Fe and unavoidable impurities When the steel slab is heated to 1020 ° C. or higher and 1300 ° C. or lower and then rolled, the cumulative rolling reduction in the range of 1020 ° C. or lower and over 920 ° C. is less than 60%, and the cumulative rolling reduction is less than the Ar 3 point. 30% or more and 95% or less, and cooling after the end of rolling. A method for producing a high strength steel material having a tensile strength of 780 MPa class excellent in toughness of a weld heat affected zone.
Equation 1: P CM = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]
In addition, [] in Formula 1 represents the addition amount of each alloy element in mass%.
さらに、質量%で、
Cr:0.01%以上、2.0%以下、
Ti:0.001%以上、0.05%以下、
Cu:0.01%以上、2.0%以下、
Mo:0.01%以上、1.0%以下、
V :0.001%以上、0.050%以下、
W :0.01%以上、3.0%以下
の内の1種または2種以上を含有することを特徴とする、請求項1に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
Furthermore, in mass%,
Cr: 0.01% or more, 2.0% or less,
Ti: 0.001% or more, 0.05% or less,
Cu: 0.01% or more, 2.0% or less,
Mo: 0.01% or more, 1.0% or less,
V: 0.001% or more, 0.050% or less,
The tensile strength of 780 MPa class excellent in toughness of the weld heat-affected zone according to claim 1, characterized by containing one or more of W: 0.01% or more and 3.0% or less. Manufacturing method of high strength steel.
さらに、質量%で、
Zr:0.001〜0.010、
Ca:0.001〜0.010、
Mg:0.001〜0.010、
Hf:0.001〜0.010、
REM:0.001〜0.010
の内の1種または2種以上を含有することを特徴とする、請求項1または2に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。
Furthermore, in mass%,
Zr: 0.001 to 0.010,
Ca: 0.001 to 0.010,
Mg: 0.001 to 0.010,
Hf: 0.001 to 0.010,
REM: 0.001 to 0.010
The method for producing a high strength steel material having a tensile strength of 780 MPa class excellent in toughness of the weld heat-affected zone according to claim 1, comprising one or more of the above.
さらに、Ac1点以下の温度で、焼戻し熱処理を行うことを特徴とする、請求項1ないし3のいずれか1項に記載の溶接熱影響部の靭性に優れる引張強さ780MPa級高強度鋼材の製造方法。 Furthermore, the tempering heat treatment is performed at a temperature of Ac 1 point or less, and the tensile strength 780 MPa class high strength steel material excellent in toughness of the weld heat affected zone according to any one of claims 1 to 3. Production method.
JP2006135086A 2006-05-15 2006-05-15 Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone Expired - Fee Related JP4469354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006135086A JP4469354B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006135086A JP4469354B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2007302978A true JP2007302978A (en) 2007-11-22
JP4469354B2 JP4469354B2 (en) 2010-05-26

Family

ID=38837154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006135086A Expired - Fee Related JP4469354B2 (en) 2006-05-15 2006-05-15 Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP4469354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037204B2 (en) * 2007-04-12 2012-09-26 新日本製鐵株式会社 Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
JP5037203B2 (en) * 2007-04-12 2012-09-26 新日本製鐵株式会社 Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone

Also Published As

Publication number Publication date
JP4469354B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5867381B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP6426621B2 (en) High strength steel plate and method of manufacturing the same
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP6311633B2 (en) Stainless steel and manufacturing method thereof
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2017197787A (en) High tensile strength thick steel sheet excellent in ductility and manufacturing method therefor
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP5272759B2 (en) Thick steel plate manufacturing method
JP2009280902A (en) Copper-containing composite bainitic steel, and method for producing the same
JP4506985B2 (en) Extra heavy steel material and method for manufacturing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5037204B2 (en) Method for producing high-strength steel material having yield stress of 500 MPa or more and tensile strength of 570 MPa or more which is excellent in toughness of weld heat affected zone
JP4469353B2 (en) Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP4469354B2 (en) Method for producing high strength steel material with tensile strength of 780 MPa excellent in toughness of weld heat affected zone
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP5037203B2 (en) Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone
JP4821181B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP2006045644A (en) METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF &gt;=1,150 MPa

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R151 Written notification of patent or utility model registration

Ref document number: 4469354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees