JP2006045644A - METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF >=1,150 MPa - Google Patents

METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF >=1,150 MPa Download PDF

Info

Publication number
JP2006045644A
JP2006045644A JP2004230970A JP2004230970A JP2006045644A JP 2006045644 A JP2006045644 A JP 2006045644A JP 2004230970 A JP2004230970 A JP 2004230970A JP 2004230970 A JP2004230970 A JP 2004230970A JP 2006045644 A JP2006045644 A JP 2006045644A
Authority
JP
Japan
Prior art keywords
steel
tensile strength
tempering
mpa
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004230970A
Other languages
Japanese (ja)
Other versions
JP4174041B2 (en
Inventor
Naoki Saito
直樹 斎藤
Katsumi Kurebayashi
勝己 榑林
Hirohide Muraoka
寛英 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004230970A priority Critical patent/JP4174041B2/en
Publication of JP2006045644A publication Critical patent/JP2006045644A/en
Application granted granted Critical
Publication of JP4174041B2 publication Critical patent/JP4174041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a steel sheet for welding for use in construction machinery, industrial machinery or the like requiring welding and also having a tensile strength of ≥1,150 MPa. <P>SOLUTION: A steel containing, by weight, 0.15 to 0.20% C, 0.15 to 0.50% Si, 0.5 to 2.0% Mn, ≤0.02% P, ≤0.01% S, >0.5 to 2.0% Mo, 0.03 to 0.1% V, 0.0003 to 0.0030% B, 0.01 to 0.1% Al and ≤0.01% N as fundamental components, wherein the values defined by the following expressions satisfy F: 0.9 to 2.0 and Ceq: ≤0.64, respectively is heated, is thereafter hot-rolled, is water-cooled from ≥650°C after the completion of the rolling, and is tempered in the range of 400 to 550°C: F=Mo+10×V, and Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建設機械、産業機械などの溶接を必要とし、かつ引張強さが1150MPa 以上を有する溶接用鋼板の製造法に関するものである。   The present invention relates to a method for producing a steel sheet for welding that requires welding of construction machinery, industrial machinery, etc. and has a tensile strength of 1150 MPa or more.

高強度鋼、特に強度レベルが780MPa級鋼の製造方法については、一般に、鋼板をオーステナイト域まで加熱し冷却する焼入れ処理(RQ処理)を行い、それを焼き戻すことで、強度靭性を改善する方法が採用される。最近では、加工熱処理技術の発達により、圧延後、直ちに冷却(DQ処理)を行うことで、再加熱後の焼入れを省略する直接焼入れ鋼が適用される場合もある。   For the manufacturing method of high-strength steel, especially 780MPa grade steel, the strength toughness is generally improved by quenching (RQ treatment) by heating and cooling the steel sheet to the austenite region and tempering it. Is adopted. Recently, due to the development of thermomechanical processing technology, direct quenching steel that omits quenching after reheating may be applied by cooling immediately after rolling (DQ treatment).

例えば、特許文献2、特許文献3、特許文献4および特許文献7は、RQ処理鋼の例であり合金組成とRQ処理条件を組み合わせることを特徴とする。
特許文献1、特許文献6、特許文献10および特許文献11は、DQ処理鋼の例である。いずれも合金組成と加熱−圧延−冷却条件の組み合わせを特徴とする。多くの場合、DQ処理後、焼戻しが施されるが、特許文献10は、圧延後の水冷ままで使用に耐える鋼板を提供するために、圧延後、直ちに急冷し、鋼板表面温度が400 〜150 ℃の温度域に達した時点で急冷を停止、その後放冷することを特徴とする。
特許文献8および特許文献9は、圧延ままで高強度鋼の製造を可能とするもので、圧延後の冷却速度を制御することでVおよびTiの析出強化を利用することを特徴とする。
なお、焼戻し処理が適用さる場合、多くはAc1 点以下の温度で適用されるのが一般的であり、温度条件としては、特許文献1では540 ℃以上、特許文献10では、500 〜650 ℃などと開示されている。
特開平05-1323 号公報 特開平06-65633号公報 特開平06-145787 号公報 特開平06-346144 号公報 特開平09-31537号公報 特開平09-31538号公報 特開平09-67620号公報 特開平10-88231号公報 特開平10-88232号公報 特開平10-195532 号公報 特開2000-319726 号公報
For example, Patent Literature 2, Patent Literature 3, Patent Literature 4 and Patent Literature 7 are examples of RQ-treated steel, and are characterized by combining an alloy composition and RQ treatment conditions.
Patent Literature 1, Patent Literature 6, Patent Literature 10 and Patent Literature 11 are examples of DQ-treated steel. Both are characterized by a combination of alloy composition and heating-rolling-cooling conditions. In many cases, tempering is performed after DQ treatment. However, in order to provide a steel sheet that can be used with water cooling after rolling, Patent Document 10 immediately cools immediately after rolling, and the surface temperature of the steel sheet is 400 to 150. Rapid cooling is stopped when it reaches the temperature range of ° C., and then left to cool.
Patent Document 8 and Patent Document 9 enable production of high-strength steel as it is rolled, and are characterized by utilizing precipitation strengthening of V and Ti by controlling the cooling rate after rolling.
When tempering is applied, most of them are generally applied at a temperature of Ac 1 point or less, and the temperature conditions are 540 ° C. or more in Patent Document 1 and 500 to 650 ° C. in Patent Document 10. Etc. are disclosed.
JP 05-1323 A Japanese Patent Laid-Open No. 06-65633 Japanese Unexamined Patent Publication No. 06-145787 Japanese Unexamined Patent Publication No. 06-346144 JP 09-31537 A JP 09-31538 A JP 09-67620 A Japanese Patent Laid-Open No. 10-88231 Japanese Patent Laid-Open No. 10-88232 Japanese Patent Laid-Open No. 10-195532 JP 2000-319726 A

近年、建設機械の大型化・性能向上の傾向から、部材の軽量化がさらに求められるようになり、その結果、従来使用されてきた780 〜950MPa級の引張強さを超える1150MPa 級鋼の製造が求められている。このような従来レベルを大きく超える高強度でかつ溶接しやすい鋼を提供するためには、従来発明された種々の製造方法では、炭素含有量や合金元素量に制約があり製造が困難である。また、引張強さの確保から合金元素が多量に添加される必要があり、溶接性の大幅な低下が懸念される。   In recent years, the trend toward larger construction machines and improved performance has led to further demands for lighter parts, and as a result, the production of 1150 MPa class steel that exceeds the conventional tensile strength of 780 to 950 MPa has been achieved. It has been demanded. In order to provide such high strength steel that greatly exceeds the conventional level and is easy to be welded, the various production methods invented heretofore have restrictions on the carbon content and the amount of alloying elements, and are difficult to produce. Moreover, it is necessary to add a large amount of alloy elements in order to ensure the tensile strength, and there is a concern about a significant decrease in weldability.

一般に、焼入れされた鋼に焼戻し処理を施す場合、焼き戻し温度の上昇とともに、降伏点および靭性は向上する傾向にあるが、回復により400 ℃以上の温度では引張強さが著しく低下する傾向にある。従って、780MPa程度強度レベルの鋼の製造においては、製造方法の多くは、RQ後およびDQ後の焼戻しにおいては、目的とする強度−靭性を達成するために、合金元素量および焼戻し温度が適宜選択されていた。しかしながら、これらの方法では溶接性を損なわない程度に合金元素量を抑え、1150MPa 以上の引張強さを確保するためには、焼入れ後の焼戻しによる強度の低下をできるだけ小さくすることが必要である。このような場合、従来から、焼戻し時に析出強化をする合金元素(Cr,Mo,Vなど)を使用する方法や、焼戻し温度をできるだけ低温化するなどの技術が知られていた。
しかしながら、明瞭な析出強化を発揮させうるためには、多くの場合、550 ℃を超える高い焼戻し温度範囲が必要であり、より高い引張強さを得ようとすると、多量の合金添加が避けられない。
In general, when tempering a hardened steel, the yield point and toughness tend to improve as the tempering temperature increases, but the tensile strength tends to decrease significantly at temperatures above 400 ° C due to recovery. . Therefore, in the production of steel with a strength level of about 780 MPa, many of the production methods are appropriately selected in terms of alloy element amount and tempering temperature in order to achieve the desired strength-toughness in tempering after RQ and after DQ. It had been. However, in these methods, in order to suppress the alloy element amount to such an extent that the weldability is not impaired and to secure a tensile strength of 1150 MPa or more, it is necessary to minimize the decrease in strength due to tempering after quenching. In such a case, conventionally, a method of using an alloy element (Cr, Mo, V, etc.) that strengthens precipitation during tempering and a technique of reducing the tempering temperature as much as possible have been known.
However, in order to achieve clear precipitation strengthening, a high tempering temperature range exceeding 550 ° C is required in many cases, and adding a large amount of alloy is unavoidable in order to obtain higher tensile strength. .

一方、焼戻し温度を低温化は、強度の低下が小さい分だけ強度確保に有利であり、合金元素添加量も低減できる可能性があるが、あまりその温度が低いと0.2 %耐力得られないために、400 ℃以上の温度が必要である。しかしながら、このような低温での焼戻し温度においても、発明者らの実験によれば、焼入れ時に比べ、硬さが60ポイント程度低下するために、焼戻し後に1150MPa 以上を確保可能とするためには、現状の技術では上記の硬度差を考慮して、初期の焼入れ強度(焼入れ硬さ)を上げておかなければならず、このためには、炭素を多量に添加する必要が生じ、溶接性が著しく損なわれる懸念がある。従って、400 〜550 ℃の比較的低い温度で焼戻した時に、焼入れ時からの引張強さ(硬さ)の低下が小さい手段が必要となる。   On the other hand, lowering the tempering temperature is advantageous in securing the strength by a small decrease in strength, and the amount of alloying elements may be reduced. However, if the temperature is too low, 0.2% yield strength cannot be obtained. A temperature of 400 ° C or higher is required. However, even at such a low tempering temperature, according to the experiments by the inventors, the hardness is reduced by about 60 points as compared to the time of quenching, so that it is possible to ensure 1150 MPa or more after tempering. In the current technology, it is necessary to increase the initial quenching strength (quenching hardness) in consideration of the above hardness difference. For this purpose, it is necessary to add a large amount of carbon, and the weldability is remarkably increased. There is concern that it will be damaged. Therefore, when tempering is performed at a relatively low temperature of 400 to 550 ° C., a means for reducing the decrease in tensile strength (hardness) from the time of quenching is required.

本発明は、上記の課題を解決するために、できるだけ少ない合金元素の添加で1150MPa 級以上の引張強さを有する鋼を提供するために、なされた溶接用鋼の製造法であって、その骨子は、
(1)質量%で、
C :0.15〜0.20%
Si:0.15〜0.50%
Mn:0.5 〜2.0 %
P :0.02%以下
S :0.01%以下
Mo:0.5 超え、2.0 %以下
V :0.03〜0.1 %
B :0.0003〜0.0030%
Al:0.01〜0.1 %
N :0.01%以下
を基本成分として含有し、さらに、次式で定義される値がそれぞれ
F :0.9 〜2.0
Ceq:0.64以下
である鋼を加熱後、熱間圧延を行い、圧延終了後、650 ℃以上から水冷し、400 ℃〜550 ℃の範囲で焼き戻すことを特徴とする1150MPa 級以上の引張強さを有する溶接用鋼の製造法。
F=Mo+10×V
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
(2)質量%で、
Cr:0.01〜0.5 %
Cu:0.01〜0.5 %
Ni:0.01〜0.5 %
Nb:0.005 〜0.05%
Ti:0.005 〜0.03%
Ca:0.0005〜0.05%
Mg:0.0005〜0.05%
REM:0.001 〜0.1 %
の1種または2種以上を含有することを特徴とする(1)記載の1150MPa 級以上の引張強さを有する溶接用鋼の製造法、
である。
In order to solve the above-mentioned problems, the present invention is a method for producing a welding steel, which is made in order to provide a steel having a tensile strength of 1150 MPa class or more with the addition of as few alloying elements as possible. Is
(1) In mass%,
C: 0.15-0.20%
Si: 0.15-0.50%
Mn: 0.5 to 2.0%
P: 0.02% or less S: 0.01% or less Mo: More than 0.5, 2.0% or less V: 0.03-0.1%
B: 0.0003 to 0.0030%
Al: 0.01 to 0.1%
N: 0.01% or less is contained as a basic component, and the values defined by the following formulas are F: 0.9 to 2.0, respectively.
Tensile strength of 1150MPa class or higher, characterized by heating steel after Ceq: 0.64 or less, hot rolling, and after cooling, water cooling from 650 ° C or higher and tempering in the range of 400 ° C to 550 ° C Method for producing welding steel having
F = Mo + 10 × V
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
(2) In mass%,
Cr: 0.01-0.5%
Cu: 0.01 to 0.5%
Ni: 0.01-0.5%
Nb: 0.005 to 0.05%
Ti: 0.005 to 0.03%
Ca: 0.0005 to 0.05%
Mg: 0.0005-0.05%
REM: 0.001 to 0.1%
A method for producing a welding steel having a tensile strength of 1150 MPa class or higher according to (1), characterized by containing one or more of
It is.

発明者らは、多くの実験の結果、直接焼入れされた鋼を400 〜550 ℃の比較的低温の焼戻しをする際に、特定の合金元素を組み合わせて添加することで、焼入れ時と焼戻し後 の硬さの差を低減できることを見出した。図1は、その結果を示したもので、基本成分として、0.17%C−0.27%Si−1.35%Mn−0.025 %Al−0.0010%B鋼を含有し、さらにV:0.03〜0.07%、Mo:0.04〜1.2 %の範囲で変化させた鋼を鋳造後、1150℃に加熱し圧延後、760 ℃以上の温度から直ちに焼入れを行い、16mmの鋼板を製造し、引き続き、450 〜500 ℃にて30分間保持する焼戻しを行ったときの焼戻した後の硬さと焼入れ時の硬さとの差をMo+10×Vに対して図示したものである。   As a result of many experiments, the inventors have found that when a directly quenched steel is tempered at a relatively low temperature of 400 to 550 ° C., a specific alloy element is added in combination, so that the steel after quenching and after tempering are added. It has been found that the difference in hardness can be reduced. FIG. 1 shows the results. As a basic component, 0.17% C-0.27% Si-1.35% Mn-0.025% Al-0.0010% B steel is contained, and V: 0.03-0.07%, Mo: After casting the steel changed in the range of 0.04 to 1.2%, heated to 1150 ° C, rolled, and immediately quenched from a temperature of 760 ° C or higher to produce a 16mm steel plate, followed by 30 to 450-500 ° C. The difference between the hardness after tempering and the hardness at the time of quenching when tempering for a minute is performed is illustrated for Mo + 10 × V.

図1から明らかなように、低温焼戻し時においてもV, Moの添加により焼入れ時の硬さの低下が小さくなることが分かる。従って、1150MPa 以上の引張強さ(硬さに換算してHv:370 程度)を得るためには、焼入れ時の焼入れ硬さが与えられれば、図1より必要な合金元素添加量を求めることができる。焼入れ時の硬さは、主として、C量により依存することが知られており、溶接性を損なわない範囲のC量の添加(本発明では、0.15〜0.20%)を考慮すると、ΔHvは、−55以上であることが必要であるので、添加されるV,Mo量は、Mo+10×V(F値)で、0.9 以上が必要であることが明らかとなる。   As is apparent from FIG. 1, it can be seen that even when tempering at a low temperature, the addition of V and Mo reduces the decrease in hardness during quenching. Therefore, in order to obtain a tensile strength of 1150 MPa or more (in terms of hardness, Hv: about 370), if the quenching hardness at the time of quenching is given, the required alloying element addition amount can be obtained from FIG. it can. It is known that the hardness at the time of quenching mainly depends on the amount of C. In consideration of the addition of the amount of C in a range that does not impair the weldability (in the present invention, 0.15 to 0.20%), ΔHv is − Since it is necessary to be 55 or more, it becomes clear that the amount of V and Mo to be added is Mo + 10 × V (F value), and 0.9 or more is necessary.

本発明を実施する上で、溶接用鋼材としての強度および靭性さらに、溶接性を確保する上で、合金組成の規定は非常に重要である。
C:強度を向上させる最も重要な元素であり、焼入れ硬さを確保するためには、0.15%以上の添加が必要であるが、0.20%を超えると、溶接性を著しく損なうので、その上限を0.20%とする。
Si:脱酸材および強化元素として作用し、0.15%以上の添加でその効果が認められるが、0.50%を超えて添加すると、靭性を阻害する恐れがあるため、上限を0.5%とする。
Mn:主として焼入れ性を高め、強度改善元素有効であり、0.5 %以上の添加が必要であるが、2.0 %を超えて添加されると、靭性および溶接性が低下する恐れがあるため、その上限を2.0 %とする。
P:多量に存在すると靭性を低下させるので少ない方が望ましく、 上限の含有量は0.02%とする。不可避的に混入する含有量をできる限り少なくするのがよい。
S:多量に存在すると靭性を低下させるので少ない方が望ましく、 上限の含有量は0.01%とする。SもPと同様に不可避的な混入量をできる限り少なくするのがよい。
Mo:焼入れを改善すると同時に、焼戻し時の析出強化により強度向上に寄与する元素である。0.5 %を超える添加が必要となるが、2.0 %を超えて添加されると、溶接性を損なうため、その上限を2.0 %とする。
V:焼戻し時の析出強化により強度向上に寄与する元素である。0.03%以上の添加が必要となるが、0.1%を超えて添加されると、靭性を損なうため、その上限を0.1%とする。
B:フェライトの生成を抑制し焼入れ性を著しく向上させる元素であり、0.0003%以上の添加が必要であるが、0.0030%を超えた添加量では、窒化物を生成し、かえって焼入れ性が低下する傾向があるため、その上限を0.003 %とする。
Al:脱酸元素として鋼中に添加され、0.01%以上を必要とするが、0.1 %を超える添加では、靭性そ阻害する傾向があるため、その上限を0.1 %とする。
N:鋼板の多量に添加されると靭性を低下させるので、少ない方が望ましく、上限の含有量は、0.01%以下とする。
In practicing the present invention, the strength and toughness as a steel material for welding, and the provision of the alloy composition are very important for ensuring weldability.
C: The most important element for improving the strength. In order to ensure quenching hardness, addition of 0.15% or more is necessary. However, if it exceeds 0.20%, the weldability is significantly impaired. 0.20%.
Si: Acts as a deoxidizing material and a strengthening element, and its effect is observed when added in an amount of 0.15% or more. However, if added over 0.50%, the toughness may be impaired, so the upper limit is made 0.5%.
Mn: Mainly improves hardenability and is effective in improving the strength. Addition of 0.5% or more is necessary, but if added over 2.0%, the toughness and weldability may be lowered. Is 2.0%.
P: When present in a large amount, the toughness is lowered, so the smaller one is desirable. The upper limit content is 0.02%. It is preferable to reduce the content inevitably mixed in as much as possible.
S: If present in a large amount, the toughness is lowered, so the smaller one is desirable. The upper limit content is 0.01%. S, like P, should have the unavoidable amount of contamination as small as possible.
Mo: An element that improves quenching and contributes to strength improvement by precipitation strengthening during tempering. Addition over 0.5% is required, but if over 2.0% is added, weldability is impaired, so the upper limit is made 2.0%.
V: An element that contributes to strength improvement by precipitation strengthening during tempering. Addition of 0.03% or more is required, but if added over 0.1%, the toughness is impaired, so the upper limit is made 0.1%.
B: An element that suppresses the formation of ferrite and significantly improves the hardenability. Addition of 0.0003% or more is necessary, but if the added amount exceeds 0.0030%, nitride is formed and the hardenability is lowered. Since there is a tendency, the upper limit is set to 0.003%.
Al: added to steel as a deoxidizing element and needs to be 0.01% or more, but addition exceeding 0.1% tends to inhibit toughness, so the upper limit is made 0.1%.
N: When added in a large amount of steel sheet, the toughness is lowered, so the smaller one is desirable, and the upper limit content is 0.01% or less.

以上が本発明にかかる基本成分であるが、さらに、本発明においては、母材の強度を改善する元素として、Cr、Cu、Ni、NbおよびTiを、さらに延性や靭性を改善する元素として、Ca,MgおよびREMの1種または2種以上を添加できる。
Cr、Cu、Ni:いずれも焼入れ性を向上させ、強度向上に有効な元素であるが、多量の添加は、溶接性を損なうため、0.01%以上、0.5 %以下の範囲とする。
Nb、Ti:母材の結晶粒の微細化により、降伏強度・靭性を改善できる元素であり、いずれも0.005 %の添加で効果が得られるが、著しい添加は、靭性を損なう恐れがあるため、その添加量を、Nb:0.005 〜0.05%、Ti:0.005 〜0.03%の範囲とする。
Ca、Mg、REM:これらの元素は、いずれも熱間圧延中の硫化物の展伸による延性の低下を防止する元素として有効であり、それぞれ、Ca、Mgは、0.0005%以上、REMは、0.001%以上の添加により効果が発揮されるが、過剰の添加は、硫化物の粗大化と同時に、溶製時に粗大な酸化物を生じる可能性がある。従って、その添加の範囲を、それぞれ、Ca:0.0005〜0.05%、Mg:0.0005〜0.05%、REM:0.001 〜0.1 %とする。
The above is the basic component according to the present invention, but in the present invention, Cr, Cu, Ni, Nb and Ti as elements for improving the strength of the base material, further as elements for improving ductility and toughness, One or more of Ca, Mg and REM can be added.
Cr, Cu, Ni: All are elements effective in improving the hardenability and improving the strength. However, a large amount of addition impairs the weldability, so the range is 0.01% or more and 0.5% or less.
Nb, Ti: elements that can improve the yield strength and toughness by refining the crystal grains of the base material, both of which can be effective with 0.005% addition, but significant addition may impair the toughness, The addition amount is set to a range of Nb: 0.005 to 0.05% and Ti: 0.005 to 0.03%.
Ca, Mg, REM: All of these elements are effective as elements for preventing the reduction of ductility due to the extension of sulfide during hot rolling. Ca, Mg are 0.0005% or more, respectively. The effect is exhibited by addition of 0.001% or more, but excessive addition may cause coarse oxides at the time of melting simultaneously with the coarsening of sulfides. Therefore, the range of the addition is set to Ca: 0.0005 to 0.05%, Mg: 0.0005 to 0.05%, and REM: 0.001 to 0.1%, respectively.

以上の成分範囲を基本に、本発明では、さらに、下記、2つの式により成分範囲の制約を設ける。
F=Mo+10×V
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
F値は、前述したように、低い焼戻し温度の範囲での焼戻しによる強度低下を抑えるのに有効なV,Moの添加量を規定するものであって、本発明の目的である1150MPa 鋼の強度を得るためには、0.9 以上が必要であるが、2.0 を超える添加では、溶接性を損なうため、その範囲を0.9 〜2.0 とする。
Ceqは、炭素当量とも呼ばれ、溶接性の指標として知られている。大きいほど溶接時の硬化性が大きく、溶接割れ性が低下するため、小さいほうが好ましい。本発明では、z従来の780MPa級鋼の溶接条件を著しく超えた場合、溶接予熱による環境の著しい劣化とともに、作業効率の低下を招くため、その上限を0.64以下とした。
Based on the above component ranges, the present invention further constrains the component ranges by the following two equations.
F = Mo + 10 × V
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
As described above, the F value defines the amount of addition of V and Mo effective for suppressing the strength reduction due to tempering in the range of the low tempering temperature, and is the strength of the 1150 MPa steel which is the object of the present invention. In order to obtain the above, 0.9 or more is necessary. However, if it exceeds 2.0, the weldability is impaired, so the range is set to 0.9 to 2.0.
Ceq is also called a carbon equivalent and is known as an indicator of weldability. The larger the value, the greater the curability during welding and the lower the weld cracking property. In the present invention, when the welding conditions of the conventional 780 MPa class steel are significantly exceeded, the upper limit is set to 0.64 or less because the environment deteriorates due to welding preheating and the work efficiency decreases.

本発明法においては、上記の成分系を有する鋼片を出発材として、加熱・圧延工程、熱処理を経て製造される。鋼片は、転炉あるいは、電気炉により成分調整され溶製後、連続鋳造法および造塊・分塊法などの工程により、鋼片として製造される。   In the method of the present invention, the steel slab having the above-described component system is used as a starting material and is manufactured through a heating / rolling process and a heat treatment. The steel slab is manufactured as a steel slab by a continuous casting method, an ingot-making / splitting method, or the like after the components are adjusted and melted by a converter or an electric furnace.

次に、鋼片を加熱後、熱間圧延により目的とする板厚まで圧延されるが、この時、鋼片の加熱温度および圧延の条件は、通常一般に用いられる条件であれば良い。例えば、鋼片加熱は、1000℃以上1250℃以下、熱間圧延においては、仕上げ温度、仕上げ圧延での累積圧下率が、30%以上で、仕上げ温度が850 ℃以上などである。特に、仕上げ圧延条件においては、結晶粒の細粒化を目的として、制御圧延を施しても本発明には、なんら差し支えがない。   Next, after heating the steel slab, it is rolled to the target thickness by hot rolling. At this time, the heating temperature of the steel slab and the rolling conditions may be those generally used. For example, the slab heating is 1000 ° C. or more and 1250 ° C. or less. In hot rolling, the finishing temperature, the cumulative rolling reduction in finishing rolling is 30% or more, and the finishing temperature is 850 ° C. or more. In particular, under the finish rolling conditions, there is no problem in the present invention even if the controlled rolling is performed for the purpose of refining crystal grains.

さらに、本発明では圧延後、本鋼板を650 ℃以上の温度から水冷を開始し、室温まで冷却し、その後、400 〜550 ℃での焼戻しを行う。水冷の開始の条件は、適切な焼入れ組織を得るために必要なものであって、650 ℃未満では、水冷により適切な硬化組織(ほぼ100 %マルテンサイト組織)を得ることができない。従って、下限温度を650 ℃とする。
本発明の焼戻し温度は、焼戻しによる強度の低下を極力抑えるとともに、降伏点および靭性が回復する範囲として設定されており、V、Moが所定の量添加された鋼においては、400 ℃以上の温度でその効果が現れるが、550 ℃を超えると析出により、降伏点が上昇するものの、強度の上昇はあまり認められず、靭性が低下する場合もある。そのために、400 〜550 ℃の範囲とする。
Further, in the present invention, after rolling, the steel sheet is cooled with water from a temperature of 650 ° C. or higher, cooled to room temperature, and then tempered at 400 to 550 ° C. The conditions for starting water cooling are necessary to obtain an appropriate quenched structure, and if it is less than 650 ° C., an appropriate hardened structure (almost 100% martensite structure) cannot be obtained by water cooling. Therefore, the lower limit temperature is set to 650 ° C.
The tempering temperature of the present invention is set as a range in which the yield point and toughness are restored while suppressing the decrease in strength due to tempering as much as possible. In steels to which a predetermined amount of V and Mo are added, the temperature is 400 ° C. or higher. The effect appears at 550 ° C. However, when the temperature exceeds 550 ° C, the yield point increases due to precipitation, but the increase in strength is not observed so much and the toughness may decrease. Therefore, it is set as the range of 400-550 degreeC.

次に、本発明の実施例について述べる。
表1に実施例に用いた供試鋼の化学成分を示す。各供試鋼は、造塊分塊法あるいは、連続鋳造法により鋼片として製造されたものであり、表の中で、A〜H鋼においては、本発明範囲の化学成分を有するもの、I〜P鋼は、本発明の化学成分範囲を逸脱して製造されたものである。
Next, examples of the present invention will be described.
Table 1 shows the chemical composition of the test steel used in the examples. Each test steel was produced as a steel piece by the ingot-making or continuous casting method. In the table, A to H steels have chemical components within the scope of the present invention, I -P steel is manufactured out of the chemical component range of the present invention.

表1に示した鋼片を表2に示した製造条件にて鋼板として製造し、母材については、板厚方向1/4tでそれぞれ圧延方向に引張試験および衝撃試験片を採取し、室温の引張強度および-20 ℃での吸収エネルギーを測定した。また、溶接性については、各供試鋼板から20mm厚×300 ×300mm の鋼板を切削加工などで加工し、鋼板中央部にV型開先を加工した後、溶接時の変形を阻止するように両端を固定してから、予熱125 ℃で入熱2.3kJ/mmの手溶接を施した。その時の溶接環境は室温で湿度70%であった。その後、72時間経過後、溶接線の中央部(250mm 長さ)について、50mm間隔でマクロ試験片を5個づつ切り出し、溶接熱影響部における割れの有無を観察した。それらの結果を表2に示す。   The steel slabs shown in Table 1 were manufactured as steel plates under the manufacturing conditions shown in Table 2. For the base material, tensile test and impact test specimens were taken in the rolling direction at a thickness of 1/4 t, Tensile strength and absorbed energy at −20 ° C. were measured. As for weldability, 20 mm thick x 300 x 300 mm steel plates are cut from each test steel plate by cutting, etc., and after processing a V-shaped groove in the center of the steel plate, deformation during welding is prevented. After fixing both ends, manual welding with a heat input of 2.3 kJ / mm was performed with a preheating of 125 ° C. The welding environment at that time was room temperature and 70% humidity. Thereafter, after 72 hours, five macro test pieces were cut out at intervals of 50 mm at the center portion (250 mm length) of the weld line, and the presence or absence of cracks in the weld heat affected zone was observed. The results are shown in Table 2.

表2において、鋼1から鋼8については、本発明範囲内でのものである。いずれにおいても、母材の引張強さで1150MPa 以上で靭性も40J以上の値を示していると同時に、溶接割れも全く認められなかった。
それに対し、鋼9から鋼25は化学成分あるいは、鋼板の製造条件の一方もしくは両方が本発明範囲を逸脱しているものの例である。
In Table 2, Steel 1 to Steel 8 are within the scope of the present invention. In either case, the tensile strength of the base material was 1150 MPa or more, the toughness was 40 J or more, and no weld cracks were observed.
On the other hand, Steel 9 to Steel 25 are examples in which one or both of the chemical components and / or the manufacturing conditions of the steel plate depart from the scope of the present invention.

まず、鋼9〜鋼14においては、化学成分は発明範囲のものであるが、鋼板の製造条件が発明範囲を満たしていない。すなわち、鋼9 、鋼12は、水冷開始温度が発明範囲である650 ℃以上を満たしておらず、引張強さが1150MPa 以下であると同時に、吸収エネルギーも40J 以下である。
鋼10および鋼14は焼戻し温度がそれぞれ625 、350 ℃であり、本発明範囲を逸脱した例である。すなわち、鋼10は高めにはずれており、引張強さが1150MPa を満たしておらず、鋼14では逆に高めにはずれており、引張強さは高いものの靭性値が12Jと極めて低下している。
鋼11は水冷された鋼板について、焼戻しの前に再加熱焼入れ処理を加えた例である。引張強さの低下が認められる。
鋼13は、熱間圧延後、水冷を実施せずに圧延した後、やはり再加熱焼入れ処理およびその後、焼戻し処理を実施した例である。鋼11と同様に引張強さが低い。
次に、鋼15,17,18,19,20,22,23および24はいずれも化学成分のみが本発明範囲を満たしていない例である。すなわち、鋼15および鋼17はCが本発明範囲の下限および上限をそれぞれ逸脱したものであり、鋼15は引張強さが低く、鋼17は溶接割れ性に劣る。
鋼18はMnが本発明範囲の上限を超えて添加された例である。それにより、Ceqが0.69と高くなっており、溶接割れ性が劣る。
鋼19および鋼20はMoが本発明範囲を満たしていない例である。鋼19はMo量が下限を、鋼20は上限をそれぞれ超えて添加された例であり、鋼19についてはF値も、鋼20についてはF値およびCeqも本発明範囲を満たしていない。従って、鋼19では引張強さが低く、鋼20では靭性の低下とともに、溶接割れ性も劣っている。
鋼22はVが上限値を超えて添加された例である。母材の引張強さは満足するものの、靭性が低い。
鋼23および鋼24はNiおよびCrが発明範囲の上限を超えて添加された例である。いずれの場合もCeqも本発明の上限範囲を超えており、溶接割れ性が劣っている。
さらに、鋼16,21 および25は化学成分および製造条件の両者が本発明範囲を満たしていない例である。すなわち、鋼16では製造条件においても水冷をされずに、再加熱焼入れ後、焼戻しをされたものであり、引張強さが所定お1150MPa に及ばない。
鋼21は焼戻し温度が下限を超えて実施されたものである。引張強さが非常に高くなるが、靭性が極めて低い。また、溶接性も劣っている。
最後に鋼25は水冷開始温度が本発明範囲を逸脱した例である。引張強さが1150MPa を満足してない。
First, in Steel 9 to Steel 14, the chemical components are within the scope of the invention, but the manufacturing conditions of the steel sheet do not satisfy the scope of the invention. That is, Steel 9 and Steel 12 do not satisfy the water cooling start temperature of 650 ° C. or higher, which is the range of the invention, have a tensile strength of 1150 MPa or less, and an absorbed energy of 40 J or less.
Steels 10 and 14 have tempering temperatures of 625 and 350 ° C., respectively, which are examples that depart from the scope of the present invention. That is, the steel 10 is not high, the tensile strength does not satisfy 1150 MPa, and the steel 14 is not high. On the other hand, the tensile strength is high, but the toughness value is extremely reduced to 12 J.
Steel 11 is an example in which a water-cooled steel sheet is subjected to reheating and quenching before tempering. A decrease in tensile strength is observed.
Steel 13 is an example in which, after hot rolling, after rolling without water cooling, reheating quenching and then tempering were performed. Like steel 11, the tensile strength is low.
Next, steels 15, 17, 18, 19, 20, 22, 23, and 24 are examples in which only chemical components do not satisfy the scope of the present invention. That is, in Steel 15 and Steel 17, C deviates from the lower limit and the upper limit of the range of the present invention, Steel 15 has low tensile strength, and Steel 17 is inferior in weld cracking.
Steel 18 is an example in which Mn is added exceeding the upper limit of the range of the present invention. Thereby, Ceq is as high as 0.69, and the weld cracking property is inferior.
Steel 19 and steel 20 are examples in which Mo does not satisfy the scope of the present invention. Steel 19 is an example in which the amount of Mo is added in excess of the lower limit and steel 20 is added in excess of the upper limit, and F value for steel 19 and F value and Ceq for steel 20 do not satisfy the scope of the present invention. Therefore, steel 19 has a low tensile strength, and steel 20 has a poor toughness and a poor weld cracking property.
Steel 22 is an example in which V is added exceeding the upper limit. Although the tensile strength of the base material is satisfactory, the toughness is low.
Steel 23 and steel 24 are examples in which Ni and Cr were added exceeding the upper limit of the scope of the invention. In any case, Ceq exceeds the upper limit range of the present invention, and the weld cracking property is inferior.
Further, Steels 16, 21 and 25 are examples in which both chemical composition and production conditions do not satisfy the scope of the present invention. That is, the steel 16 is not cooled with water even under manufacturing conditions, and is tempered after reheating and quenching, and the tensile strength does not reach the predetermined 1150 MPa.
Steel 21 was obtained with the tempering temperature exceeding the lower limit. Tensile strength is very high but toughness is very low. Also, the weldability is poor.
Finally, Steel 25 is an example in which the water cooling start temperature deviates from the scope of the present invention. The tensile strength does not satisfy 1150MPa.

本発明は、高価な合金元素を削減し、また溶接時の作業性を低下させることなく、引張強さが1150MPa 以上の強度を有する鋼を提供できる優れた方法であり、鋼板の製造コストの低下、溶接構造物の製造コストの低減、さらに、構造物の安全性の向上など産業上の効果は極めて大きい。   The present invention is an excellent method capable of providing steel having a tensile strength of 1150 MPa or more without reducing expensive alloying elements and without reducing workability during welding, and reducing the manufacturing cost of the steel sheet. Industrial effects such as reduction of manufacturing cost of welded structures and improvement of safety of structures are extremely large.

Figure 2006045644
Figure 2006045644

Figure 2006045644
Figure 2006045644

焼戻しによる引張強さ(硬さ)の低下代に対し、Mo,V添加の効果を示した図である。It is the figure which showed the effect of addition of Mo and V with respect to the fall of the tensile strength (hardness) by tempering.

Claims (2)

質量%で、
C :0.15〜0.20%
Si:0.15〜0.50%
Mn:0.5 〜2.0 %
P :0.02%以下
S :0.01%以下
Mo:0.5 超え、2.0 %以下
V :0.03〜0.1 %
B :0.0003〜0.0030%
Al:0.01〜0.1 %
N :0.01%以下
を基本成分として含有し、さらに、次式で定義される値がそれぞれ
F :0.9 〜2.0
Ceq:0.64以下
である鋼を加熱後、熱間圧延を行い、圧延終了後、650 ℃以上から水冷し、400 ℃〜550 ℃の範囲で焼き戻すことを特徴とする1150MPa 級以上の引張強さを有する溶接用鋼の製造法。
F=Mo+10×V
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
% By mass
C: 0.15-0.20%
Si: 0.15-0.50%
Mn: 0.5 to 2.0%
P: 0.02% or less S: 0.01% or less Mo: More than 0.5, 2.0% or less V: 0.03-0.1%
B: 0.0003 to 0.0030%
Al: 0.01 to 0.1%
N: 0.01% or less is contained as a basic component, and the values defined by the following formulas are F: 0.9 to 2.0, respectively.
Tensile strength of 1150MPa class or higher, characterized by heating steel after Ceq: 0.64 or less, hot rolling, and after cooling, water cooling from 650 ° C or higher and tempering in the range of 400 ° C to 550 ° C Method for producing welding steel having
F = Mo + 10 × V
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
質量%で、
Cr:0.01〜0.5 %
Cu:0.01〜0.5 %
Ni:0.01〜0.5 %
Nb:0.005 〜0.05%
Ti:0.005 〜0.03%
Ca:0.0005〜0.05%
Mg:0.0005〜0.05%
REM:0.001 〜0.1 %
の1種または2種以上を含有することを特徴とする請求項1記載の1150MPa 級以上の引張強さを有する溶接用鋼の製造法。
% By mass
Cr: 0.01-0.5%
Cu: 0.01 to 0.5%
Ni: 0.01-0.5%
Nb: 0.005 to 0.05%
Ti: 0.005 to 0.03%
Ca: 0.0005 to 0.05%
Mg: 0.0005-0.05%
REM: 0.001 to 0.1%
The method for producing a welding steel having a tensile strength of 1150 MPa class or more according to claim 1, comprising one or more of the following.
JP2004230970A 2004-08-06 2004-08-06 Method for producing welding steel having a tensile strength of 1150 MPa or more Expired - Fee Related JP4174041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230970A JP4174041B2 (en) 2004-08-06 2004-08-06 Method for producing welding steel having a tensile strength of 1150 MPa or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230970A JP4174041B2 (en) 2004-08-06 2004-08-06 Method for producing welding steel having a tensile strength of 1150 MPa or more

Publications (2)

Publication Number Publication Date
JP2006045644A true JP2006045644A (en) 2006-02-16
JP4174041B2 JP4174041B2 (en) 2008-10-29

Family

ID=36024566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230970A Expired - Fee Related JP4174041B2 (en) 2004-08-06 2004-08-06 Method for producing welding steel having a tensile strength of 1150 MPa or more

Country Status (1)

Country Link
JP (1) JP4174041B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077340A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion
CN102943204A (en) * 2012-11-28 2013-02-27 东北大学 Yield strength 1100MPa level engineering machinery non-quenched and tempered hot rolled strip and preparation method thereof
JP2019501280A (en) * 2015-11-16 2019-01-17 ドイチェ エデルシュタールヴェルケ スペシャルティ スチール ゲーエムベーハー ウント コンパニー カーゲー Industrial steel materials having a bainite structure, forged parts produced from the steel materials, and methods for producing forged parts
CN115261717A (en) * 2021-04-30 2022-11-01 宝山钢铁股份有限公司 1800 MPa-grade high-strength self-strength and self-toughness steel plate for protection and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077340A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion
CN102943204A (en) * 2012-11-28 2013-02-27 东北大学 Yield strength 1100MPa level engineering machinery non-quenched and tempered hot rolled strip and preparation method thereof
JP2019501280A (en) * 2015-11-16 2019-01-17 ドイチェ エデルシュタールヴェルケ スペシャルティ スチール ゲーエムベーハー ウント コンパニー カーゲー Industrial steel materials having a bainite structure, forged parts produced from the steel materials, and methods for producing forged parts
CN115261717A (en) * 2021-04-30 2022-11-01 宝山钢铁股份有限公司 1800 MPa-grade high-strength self-strength and self-toughness steel plate for protection and manufacturing method thereof

Also Published As

Publication number Publication date
JP4174041B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
KR20090070484A (en) High-strength and high-toughness thick steel plate and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP2006241552A (en) High tensile fire resistant steel having excellent weldability and gas cutting property and its production method
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP7082669B2 (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2008297570A (en) Low yield ratio steel sheet
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4174041B2 (en) Method for producing welding steel having a tensile strength of 1150 MPa or more
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2004091916A (en) Wear-resisting steel
JP4311226B2 (en) Manufacturing method of high-tensile steel sheet
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP4821181B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080815

R151 Written notification of patent or utility model registration

Ref document number: 4174041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees