JP2012077340A - High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion - Google Patents

High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion Download PDF

Info

Publication number
JP2012077340A
JP2012077340A JP2010222482A JP2010222482A JP2012077340A JP 2012077340 A JP2012077340 A JP 2012077340A JP 2010222482 A JP2010222482 A JP 2010222482A JP 2010222482 A JP2010222482 A JP 2010222482A JP 2012077340 A JP2012077340 A JP 2012077340A
Authority
JP
Japan
Prior art keywords
less
toughness
steel sheet
low temperature
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010222482A
Other languages
Japanese (ja)
Other versions
JP5208178B2 (en
Inventor
Makoto Kariyazaki
誠 仮屋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010222482A priority Critical patent/JP5208178B2/en
Priority to CN201110293946.8A priority patent/CN102443742B/en
Priority to KR1020110098810A priority patent/KR101365351B1/en
Publication of JP2012077340A publication Critical patent/JP2012077340A/en
Application granted granted Critical
Publication of JP5208178B2 publication Critical patent/JP5208178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet which is excellent in low temperature toughness at the HAZ of a joint portion even while having the tensile strength of 980 MPa or more.SOLUTION: The steel sheet contains 0.12-0.16% (meaning mass%, and the same hereinafter) of C, 0.05-0.5% of Si, 0.8-1.2% of Mn, 0.01-0.07% of Al, 0.5-0.8% of Mo, 0.025-0.08% of Nb, 0.0004-0.002% of B, and 0.8% or less of Cr and/or 0.06% or less of V, respectively, and the balance comprising iron and inevitable impurities. An MP value specified by equation (1) is 0.550 or larger, and a carbon equivalent Ceq specified by equation (2) is 0.63% or less, wherein equation (1) : MP value=(12/[C])×(([Mo]/96)+([Nb]/93)) and equation (2): Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15.

Description

本発明は、多層盛溶接継手を形成したときに該継手部の熱影響部(以下、「HAZ」と呼ぶことがある)の低温靭性に優れた特性を有すると共に、引張強度が980MPa以上である高強度鋼板に関するものである。   The present invention has excellent properties in low temperature toughness of the heat affected zone (hereinafter sometimes referred to as “HAZ”) of the joint when a multi-layer welded joint is formed, and has a tensile strength of 980 MPa or more. It relates to high-strength steel sheets.

このような鋼板の用途としては、例えば各種建設材や各種建設機械が挙げられる。具体的にはペンストック(水圧鉄管)、無損傷建物向けの建材、ショベル、クレーン、スクレイパーなどの工事現場などで使用される建設機械が挙げられる。   Examples of the use of such a steel sheet include various construction materials and various construction machines. Specific examples include penstock (hydraulic iron pipes), building materials for undamaged buildings, construction machines used at construction sites such as excavators, cranes, and scrapers.

以下では、建設機械を中心に説明するが、本発明はこの用途に限定する趣旨ではない。   In the following, the construction machine will be mainly described, but the present invention is not limited to this application.

工事現場等で使用される大型のクレーンなどの建設機械は、車両に積載して現場に輸送されているが、大型の建設機械はそのままでは輸送が難しいことから建設機械を分解して輸送している。そのため、建設機械の軽量化が求められている。一方で、建設機械は過酷な現場での作業に耐え得るだけの強度も必要である。また建設機械は寒冷地での使用も多いので、母材および溶接継手部において良好な低温靭性を有することが要求されている。こうした要求に応じるために、建設機械には薄肉でありながら100kg級の強度し、且つ優れた低温靭性を有する鋼板が求められている。   Construction machines such as large cranes used at construction sites are loaded on vehicles and transported to the site, but large construction machines are difficult to transport as they are. Yes. Therefore, there is a demand for weight reduction of construction machines. On the other hand, construction machines need to be strong enough to withstand harsh field work. In addition, since construction machines are often used in cold regions, it is required that the base material and the welded joint have good low temperature toughness. In order to meet these demands, a construction machine is required to have a steel plate that is thin but has a strength of 100 kg and has excellent low-temperature toughness.

上記のような用途に適用される鋼板の高強度化には、一定量以上(例えば、0.12質量%以上)の炭素が必要である。また、鋼板を溶接して溶接継手を形成する際には、多層盛溶接されるが(多層盛溶接継手)、こうした溶接継手における靭性を確保するためには、炭素含有量は少ないほど好ましいとされている。   A certain amount or more (for example, 0.12% by mass or more) of carbon is necessary for increasing the strength of a steel sheet applied to the above-described uses. In addition, when a steel sheet is welded to form a welded joint, multilayer prime welding is performed (multilayer prime welded joint). In order to ensure the toughness of such a welded joint, the smaller the carbon content, the better. ing.

多層盛溶接継手部においては、継手構造との関係から組織上複雑な様相を呈したものとなっている。即ち、多層盛溶接継手部においては、その部位によって、焼戻し粗粒HAZ(CG−HAZ)組織、焼戻し細粒HAZ(FG−HAZ)組織、および2相域加熱HAZ(IR−CGHAZ)組織が存在しており、これらの組織のうちでIR−CGHAZ組織が最脆化部であることが知られている。即ち、溶接継手の低温HAZ靭性を良好にする上で、IR−CGHAZ組織の靭性を改善すること最も有効な手段であると考えられている。   In the multi-layer welded joint, the structure is complicated due to the relationship with the joint structure. That is, in the multi-layer welded joint, there are a tempered coarse grain HAZ (CG-HAZ) structure, a tempered fine grain HAZ (FG-HAZ) structure, and a two-phase region heated HAZ (IR-CGHAZ) structure depending on the portion. Among these structures, the IR-CGHAZ structure is known to be the most brittle part. That is, in improving the low temperature HAZ toughness of the welded joint, it is considered to be the most effective means to improve the toughness of the IR-CGHAZ structure.

IR−CGHAZ組織が低靭性(最脆化部)になることの原因としては、MA(マルテンサイト−オーステナイト混合組織)と呼ばれる硬質相の存在が挙げられる。即ち、当該組織の粒界に存在するMAの割れに起因して亀裂が発生することから、MAが多いほど亀裂発生点が多いことになり、こうしたことが低靭性となる原因と考えられる。   The cause of the IR-CGHAZ structure becoming low toughness (most brittle part) is the presence of a hard phase called MA (martensite-austenite mixed structure). That is, since cracks are generated due to MA cracks existing at the grain boundaries of the structure, the more MA there are, the more cracks are generated, which is considered to be the cause of low toughness.

溶接継手の低温靭性に優れた鋼板を実現するための技術としては、かねてより様々提案されている。こうした技術としては、例えば特許文献1には、MgAl24を核としてその周辺にTiNを有するMgAl24−TiN複合粒子を含有することにより超大入熱溶接の熱影響部の靭性を改善した厚鋼板が提案されている。この技術は、MgAl24−TiN複合粒子を鋼中に分散させ、そのピン止め作用により、HAZのγ粒成長を抑制することによってHAZ靭性を向上させるものである。 Various techniques have been proposed for realizing a steel sheet excellent in low temperature toughness of a welded joint. As such a technique, for example, in Patent Document 1, MgAl 2 O 4 —TiN composite particles having MgN 2 O 4 as a core and TiN in the periphery thereof are included to improve the toughness of the heat affected zone of super large heat input welding. A thick steel plate has been proposed. In this technique, MgAl 2 O 4 —TiN composite particles are dispersed in steel and the HAZ toughness is improved by suppressing the γ grain growth of HAZ by its pinning action.

また特許文献2には、炭素当量(Ceq)、溶接割れ感受性指数(PcM)、合金元素の固溶量を満たすように鋼板の化学成分組成を制御すると共に、鋼中のNb化合物やオーステナイト粒の大きさ等を所定の範囲に制御することによって、板厚方向の均質性、靭性に優れるとともに、異方性が小さい高強度鋼板が提案されている。この技術は、添加合金元素を過飽和に固溶することによってマトリックスの強化を図ると共に、微細なNb化合物によってオーステナイト結晶粒の粗大化を抑制するとともに、マトリックスの強化を図ることによって、板厚中心部での強度と靭性を向上させると共に、表層部の高靭性を確保し、更には異方性が小さい高張力鋼板を提供するものである。   In Patent Document 2, the chemical composition of the steel sheet is controlled so as to satisfy the carbon equivalent (Ceq), the weld cracking susceptibility index (PcM), and the solid solution amount of the alloy element, and the Nb compound and austenite grains in the steel are controlled. By controlling the size and the like within a predetermined range, a high-strength steel sheet having excellent uniformity and toughness in the thickness direction and low anisotropy has been proposed. This technique aims to strengthen the matrix by dissolving the additive alloy element in a supersaturated state, suppress coarsening of the austenite crystal grains by the fine Nb compound, and strengthen the matrix, thereby improving the center of the plate thickness. In addition to improving the strength and toughness of the steel, the high toughness of the surface layer portion is ensured, and furthermore, a high-tensile steel sheet having low anisotropy is provided.

しかしながら、こうした技術においても、MAが依然として残存した状態となっており、IR−CGHAZ組織におけるMAを低減して低温靭性を改善するという観点からすれば、十分な改善効果が発揮されているとは言い難いのが実情である。   However, even in such a technique, MA still remains, and from the viewpoint of reducing the MA in the IR-CGHAZ structure and improving the low temperature toughness, a sufficient improvement effect is exhibited. The situation is hard to say.

特開平11−236645号公報Japanese Patent Laid-Open No. 11-236645 特開平10−265893号公報Japanese Patent Laid-Open No. 10-265893

本発明はこのような状況に鑑みてなされたものであって、その目的は、980MPa以上の引張強度を有しながらも、継手部のHAZの低温靭性に優れる高強度鋼板を提供することにある。   This invention is made | formed in view of such a condition, Comprising: The objective is to provide the high strength steel plate which is excellent in the low temperature toughness of HAZ of a joint part, although it has the tensile strength of 980 Mpa or more. .

上記課題を達成し得た本発明の鋼板は、C:0.12〜0.16%(質量%の意味。以下同じ)、Si:0.05〜0.5%、Mn:0.8〜1.2%、Al:0.01〜0.07%、Mo:0.5〜0.8%、Nb:0.025〜0.08%、B:0.0004〜0.002%、並びにCr:0.8%以下、および/またはV:0.06%以下、を夫々含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で規定されるMP値が0.550以上であると共に、下記(2)式で規定される炭素当量Ceqが0.63%以下であることに要旨を有する。
MP値=(12/[C])×(([Mo]/96)+([Nb]/93))・・・(1)
但し、[C]、[Mo]、及び[Nb]は、夫々C、Mo、及びNbの含有量(質量%)を示す。
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(2)
但し、[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、及び[Ni]は、夫々C、Mn、Cr、Mo、V、Cu、及びNiの含有量(質量%)を示す。
The steel sheet of the present invention that has achieved the above-mentioned problems is: C: 0.12-0.16% (meaning mass%; the same applies hereinafter), Si: 0.05-0.5%, Mn: 0.8- 1.2%, Al: 0.01-0.07%, Mo: 0.5-0.8%, Nb: 0.025-0.08%, B: 0.0004-0.002%, and Cr: 0.8% or less and / or V: 0.06% or less, respectively, the balance is made of iron and inevitable impurities, and the MP value defined by the following formula (1) is 0.550 or more. And the carbon equivalent Ceq defined by the following formula (2) is 0.63% or less.
MP value = (12 / [C]) × (([Mo] / 96) + ([Nb] / 93)) (1)
However, [C], [Mo], and [Nb] indicate the contents (mass%) of C, Mo, and Nb, respectively.
Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Cu] + [Ni]) / 15 (2)
However, [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%) is shown.

本発明の鋼板には、他の元素として、Cu:0.5%以下(0%を含まない)、および/またはNi:2.0%以下(0%を含まない)を含有することも好ましい実施態様である。   The steel plate of the present invention preferably contains Cu: 0.5% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%) as other elements. This is an embodiment.

また本発明の鋼板には、更に他の元素として、Ca:0.006%以下(0%を含まない)、および/またはTi:0.025%以下(0%を含まない)を含有することも好ましい実施態様である。   Further, the steel sheet of the present invention further contains, as other elements, Ca: 0.006% or less (not including 0%) and / or Ti: 0.025% or less (not including 0%). Is also a preferred embodiment.

本発明によれば、C、Mo、およびNbの含有量を上記(1)式の関係を満足させるように制御すると共に、鋼板の化学成分組成を適切な範囲内に納めることによって、多層盛溶接継手のIR−CGHAZ組織におけるMAの生成を低減でき、該継手部HAZの低温靭性に優れると共に、引張強度が980MPa以上の高強度鋼板が実現できる。このような鋼板は各種建材、建機の素材として極めて有用である。   According to the present invention, the contents of C, Mo, and Nb are controlled so as to satisfy the relationship of the above formula (1), and the chemical composition of the steel sheet is kept within an appropriate range, so that multilayer welding is performed. The production of MA in the IR-CGHAZ structure of the joint can be reduced, and the joint part HAZ can be excellent in low-temperature toughness, and a high-strength steel sheet having a tensile strength of 980 MPa or more can be realized. Such a steel sheet is extremely useful as a material for various building materials and construction machines.

図1は、MP値とMA面積率(%)の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the MP value and the MA area ratio (%). 図2は、MP値とvE−20minとの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the MP value and vE-20 min.

本発明者らは、多層盛溶接継手の最脆化部であるIR−CGHAZ組織におけるMAの生成を低減するべく、特にMAの析出に及ぼす化学成分の影響について広範囲且つ詳細に研究を重ねた。その結果、980MPa以上の高強度および母材靭性の安定性が確保できるC含有量(0.12%以上)であっても、IR−CGHAZ組織におけるMA生成量を抑制できる成分系を見出すことによって、溶接継手のHAZの良好な低温靭性が確保できる鋼板が実現できることを見出し、本発明を完成した。本発明が完成された経緯に沿って、本発明の作用効果について説明する。   In order to reduce the formation of MA in the IR-CGHAZ structure, which is the most brittle part of a multi-layer welded joint, the present inventors have made extensive and detailed studies on the influence of chemical components particularly on the precipitation of MA. As a result, even by C content (0.12% or more) that can ensure high strength of 980 MPa or more and stability of base metal toughness, by finding a component system that can suppress the amount of MA produced in the IR-CGHAZ structure The present invention was completed by finding that a steel sheet capable of ensuring good low temperature toughness of the HAZ of the welded joint can be realized. The operational effects of the present invention will be described along the background of the completion of the present invention.

鋼板の溶接時においては(溶接加熱温度:1350℃以上)、全ての析出物は固溶し、続く冷却過程において、順次析出物が形成されることになる。具体的には、まず、溶接加熱部の鋼材が溶接熱によって融点直下まで加熱されると、オーステナイト(以下、γと略記する。)粒が粗大化してCGHAZ組織が形成される。その際、γ粒内のCが移動(拡散)してγ粒界に濃縮する。そして該溶接加熱部が冷却されると濃縮したCが該粒界で固定され、粒界にC濃縮帯が形成される。更に後続の溶接(加熱)により、IR−CGHAZ組織が形成されるが、該C濃縮帯は二相域加熱され、溶接後の冷却過程でγ粒に変態し、更にその後冷却によってγ粒がマルテンサイト変態を起こして、MAが形成される。   At the time of welding the steel plate (welding heating temperature: 1350 ° C. or higher), all precipitates are dissolved, and precipitates are sequentially formed in the subsequent cooling process. Specifically, first, when the steel material of the welding heating part is heated to just below the melting point by welding heat, austenite (hereinafter abbreviated as γ) grains are coarsened to form a CGHAZ structure. At that time, C in the γ grains moves (diffuses) and concentrates at the γ grain boundaries. When the welded heating part is cooled, the concentrated C is fixed at the grain boundary, and a C enriched zone is formed at the grain boundary. Further, the IR-CGHAZ structure is formed by subsequent welding (heating), but the C enriched zone is heated in a two-phase region and transformed into γ grains in the cooling process after welding. Site transformation occurs and MA is formed.

上記MA形成過程に鑑みると、MAを抑制する方策としては、γ粒が粗大化してCGHAZ組織が形成される際に、Cがγ粒界に濃縮することを抑制すること、すなわち、Cがγ粒界に移動するのを抑制することが有効であると考えられる。   In view of the MA formation process, as a measure for suppressing MA, when γ grains are coarsened to form a CGHAZ structure, C is prevented from concentrating at the γ grain boundary, that is, C is γ. It is considered effective to suppress the movement to the grain boundary.

そのための方法として本発明者らは、溶接加熱部が融点直下まで加熱されて、γ粒が粗大化する際に、Cを引きつけ易い元素、即ち、Cと炭化物を形成し易い元素をγ粒内に存在させておけば、Cがγ粒界に移動するのを抑制できると考えた。   As a method for this purpose, the present inventors have found that an element that easily attracts C, that is, an element that easily forms carbide with C, is contained in the γ grain when the welded heating part is heated to just below the melting point and the γ grain becomes coarse. It was thought that C can be prevented from moving to the γ grain boundary.

そこで、各元素とCとの関係について調査したところ、Ti、Nb、V、Moは他の元素と比べてCと炭化物(TiC、NbC、VC、MoC)を形成し易い元素(強炭化物形成元素)であり、Cの捕捉に有効であると考えられた。 Therefore, when the relationship between each element and C was investigated, Ti, Nb, V, and Mo are elements (strong carbides) that easily form C and carbides (TiC, NbC, VC, Mo 2 C) compared to other elements. It was thought that it was effective for trapping C.

但し、上記γ粒粗大化時にCを捕捉するためには、強炭化物形成元素がγ粒内に存在している必要があり、そのためには強炭化物形成元素は固溶体として母相(Fe)に存在していなければならない。具体的には、強炭化物形成元素の原子半径、及び電気陰性度がFe(母相)と原子半径、及び電気陰性度が同程度(±15%以内)であれば固溶する。そこで本発明者らが上記Ti、Nb、V、Moの原子半径、及び電気陰性度について調べたところ、Nb、V、MoはFeと同程度の原子半径、及び電気陰性度を有しており、固溶することが分かった。   However, in order to capture C during the γ grain coarsening, a strong carbide forming element needs to be present in the γ grain, and for this purpose, the strong carbide forming element exists in the parent phase (Fe) as a solid solution. Must be. Specifically, if the atomic radius and electronegativity of the strong carbide-forming element are the same as those of Fe (matrix) and the atomic radius and electronegativity are approximately the same (within ± 15%), the element is solid-solved. Therefore, the present inventors examined the atomic radii and electronegativity of Ti, Nb, V, and Mo, and Nb, V, and Mo have the same atomic radius and electronegativity as Fe. , It was found to dissolve.

もっとも、溶接時の高温下(溶融状態)において、これら元素がγ粒界に移動しないためにはFeよりも重い元素でなければならない。具体的にはNb(原子量93)、Mo(原子量96)はFe(原子量56)よりも重く、γ粒界への移動を抑制できるのに対し、V(原子量51)はFeよりも軽く、炭化物(VC)の移動を抑制できないと考えられる。   However, in order to prevent these elements from moving to the γ grain boundary at high temperatures during welding (molten state), they must be heavier than Fe. Specifically, Nb (atomic weight 93) and Mo (atomic weight 96) are heavier than Fe (atomic weight 56) and can suppress movement to the γ grain boundary, whereas V (atomic weight 51) is lighter than Fe and carbide. It is considered that the movement of (VC) cannot be suppressed.

以上の検討結果から、Nb、MoがCと炭化物を形成し、Cの移動を抑制する割合は、Moの物質量([Mo]/96:[Mo]はMoの含有量(質量%)、96はMo原子量)とNbの物質量([Nb]/93:[Nb]はNbの含有量(質量%)、93はNb原子量)の和([Mo]/96+[Nb]/93)に比例することになる。すなわち、([Mo]/96+[Nb]/93)が高いほど、Cの移動抑制効果が高く、その結果、MAの析出抑制効果も高くなる。   From the above examination results, Nb and Mo form carbides with C, and the ratio of suppressing the migration of C is the amount of Mo ([Mo] / 96: [Mo] is the Mo content (mass%), 96 is the sum of Mo atomic weight) and the amount of Nb ([Nb] / 93: [Nb] is Nb content (% by mass), 93 is Nb atomic weight) ([Mo] / 96 + [Nb] / 93) It will be proportional. That is, the higher the ([Mo] / 96 + [Nb] / 93), the higher the C movement suppression effect, and the higher the MA precipitation suppression effect.

上記効果はCの物質量(12/[C]:[C]はCの含有量(質量%)、12はC原子量)に対するMoとNbの物質量の和([Mo]/96+[Nb]/93)の比率が高い程、Cの濃縮抑制効果が高いので、MAの形成抑制パラメータとして、下記(1)式で求められるMP値が求められる。
MP値=(12/[C])×(([Mo]/96)+([Nb]/93))・・・(1)
但し、[C]、[Mo]、及び[Nb]は、夫々C、Mo、及びNbの含有量(質量%)を示す。
The above effect is the sum of the amounts of Mo and Nb ([Mo] / 96 + [Nb]) relative to the amount of C (12 / [C]: [C] is the C content (mass%), 12 is the C atomic weight). As the ratio of / 93) is higher, the C concentration suppression effect is higher, and therefore, the MP value determined by the following equation (1) is determined as the MA formation suppression parameter.
MP value = (12 / [C]) × (([Mo] / 96) + ([Nb] / 93)) (1)
However, [C], [Mo], and [Nb] indicate the contents (mass%) of C, Mo, and Nb, respectively.

C、Mo、Nbの含有量によって規定されるMP値が大きければ大きいほど、析出するMA量が少なくなるのであるが、析出するMA量を所定量以下に抑制して、優れた低温靭性を発揮させるためには、上記MP値は0.550以上とする必要があり、好ましくは0.570以上、より好ましく0.590以上である。   The larger the MP value defined by the C, Mo, and Nb contents, the smaller the amount of precipitated MA. However, the amount of precipitated MA is suppressed to a predetermined amount or less, and excellent low temperature toughness is exhibited. In order to achieve this, the MP value must be 0.550 or more, preferably 0.570 or more, and more preferably 0.590 or more.

MP値の上限は後記するMo、Nb、Cの範囲によって決定される値を取り得るため特に限定されない。   The upper limit of the MP value is not particularly limited because it can take values determined by the ranges of Mo, Nb, and C described later.

更に本発明の鋼板では、低温継手靭性を良好に維持するために、下記(2)式で規定される炭素当量Ceqが0.63%以下であることも必要である。炭素当量が0.63%を超えると、IR−CGHAZ部の素地組織が硬化してしまい、靭性が劣化する。好ましい炭素当量は0.62%以下である。   Furthermore, in the steel plate of the present invention, in order to maintain the low temperature joint toughness satisfactorily, it is also necessary that the carbon equivalent Ceq defined by the following formula (2) is 0.63% or less. When the carbon equivalent exceeds 0.63%, the substrate structure of the IR-CGHAZ part is cured, and the toughness is deteriorated. A preferable carbon equivalent is 0.62% or less.

この炭素当量Ceqは、低温継手靭性に与える各元素の影響力を炭素量に換算したものであり、様々な分野で利用されているものである(ASTM規格)。本発明ではこうした炭素当量Ceqを低温継手靭性の判断基準として利用するものである。尚、下記(2)式には、本発明の鋼材の基本成分(C、Mn、およびMo)以外にも必要によって含有されるCuやNiも項として含むものであるが、CuやNiを含む場合に限ってその量も考慮して計算すればよい。
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(2)
但し、[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、及び[Ni]は、夫々C、Mn、Cr、Mo、V、Cu、及びNiの含有量(質量%)を示す。
This carbon equivalent Ceq is obtained by converting the influence of each element on the low temperature joint toughness into a carbon amount, and is used in various fields (ASTM standard). In the present invention, such a carbon equivalent Ceq is used as a criterion for determining low temperature joint toughness. In addition, the following formula (2) includes Cu and Ni contained as necessary in addition to the basic components (C, Mn, and Mo) of the steel material of the present invention. For example, the calculation may be performed in consideration of the amount.
Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Cu] + [Ni]) / 15 (2)
However, [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%) is shown.

本発明の鋼板では、上記(1)式で規定されるMP値を0.550以上とすると共に、上記(2)式で規定される炭素当量Ceqを0.63%以下とすることによって、強度および低温継手靭性が良好なものとなるのであるが、これら関係式を満たすだけに限らず、鋼板の化学成分組成との関係も考慮する必要がある。   In the steel sheet of the present invention, the MP value defined by the above formula (1) is 0.550 or more, and the carbon equivalent Ceq defined by the above formula (2) is 0.63% or less, thereby increasing the strength. In addition, the low temperature joint toughness is good, but it is necessary not only to satisfy these relational expressions but also to consider the relationship with the chemical composition of the steel sheet.

以下、本発明の鋼材(母材)における他の成分組成について説明する。上記のように、本発明の鋼板は、その化学成分組成が上記(1)式で規定されるMP値が所定の範囲を満足していても、夫々の化学成分(元素)の含有量が適正範囲内になければ、優れた低温靭性と引張強度を達成できない。従って、本発明の鋼板では、適正量のC、Mo、及びNbで規定されるMP値[上記(1)式]が所定の範囲に制御されることに加えて、夫々の化学成分の量が、以下に記載するような適正範囲内にあることも必要である。これらの成分の範囲限定理由は、下記の通りである。   Hereinafter, other component compositions in the steel material (base material) of the present invention will be described. As described above, the steel composition of the present invention has an appropriate content of each chemical component (element) even if the chemical component composition satisfies the predetermined range of the MP value defined by the above formula (1). If it is not within the range, excellent low temperature toughness and tensile strength cannot be achieved. Therefore, in the steel plate of the present invention, in addition to controlling the MP values [formula (1)] defined by appropriate amounts of C, Mo, and Nb within a predetermined range, the amount of each chemical component is It is also necessary to be within an appropriate range as described below. The reasons for limiting the ranges of these components are as follows.

[C:0.12〜0.16%]
Cは、鋼板の焼入れ性を向上させて強度を確保する上で重要な元素であるが、その含有量が過剰になると継手靭性を劣化させるので、0.16%以下とする必要がある。C含有量の好ましい上限は0.15%である。溶接性を確保するという観点からすると、C含有量は少ないほど好ましいが、0.12%未満になると、焼入れ性が却って低下し、強度が確保できなくなる。C含有量の好ましい下限は0.13%である。
[C: 0.12-0.16%]
C is an important element for improving the hardenability of the steel sheet and ensuring the strength. However, if its content is excessive, the joint toughness is deteriorated, so it is necessary to be 0.16% or less. The upper limit with preferable C content is 0.15%. From the standpoint of ensuring weldability, the smaller the C content, the better. However, when it is less than 0.12%, the hardenability deteriorates and the strength cannot be secured. A preferable lower limit of the C content is 0.13%.

[Si:0.05〜0.5%]
Siは、鋼を溶製する際に脱酸剤として作用し、鋼の強度を上昇させる効果を発揮する。こうした効果を有効に発揮させるためには、Si含有量は0.05%以上とする必要がある。しかしながら、Si含有量が過剰になると継手靭性が劣化するので、0.5%以下にする必要がある。尚、Si含有量に好ましい下限は0.15%であり、好ましい上限は0.4%である。
[Si: 0.05 to 0.5%]
Si acts as a deoxidizer when melting steel, and exhibits the effect of increasing the strength of the steel. In order to exhibit such an effect effectively, the Si content needs to be 0.05% or more. However, since the joint toughness deteriorates when the Si content is excessive, it is necessary to make it 0.5% or less. In addition, the minimum with preferable Si content is 0.15%, and a preferable upper limit is 0.4%.

[Mn:0.8〜1.2%]
Mnは、鋼板の強度を高める効果を発揮する元素である。こうした効果を有効に発揮させるには、Mnは0.8%以上含有させる必要がある。好ましくは0.9%以上である。しかしながら、Mn含有量が1.2%を超えて過剰になると継手靭性が劣化することになる。好ましくは1.1%以下とするのが良い。
[Mn: 0.8 to 1.2%]
Mn is an element that exhibits the effect of increasing the strength of the steel sheet. In order to exhibit such an effect effectively, it is necessary to contain 0.8% or more of Mn. Preferably it is 0.9% or more. However, when the Mn content exceeds 1.2% and becomes excessive, the joint toughness deteriorates. Preferably it is 1.1% or less.

[Al:0.01〜0.07%]
Alは、脱酸剤として添加されるが、その含有量が0.01%未満では十分な効果が発揮されず、0.07%を超えて過剰に含有されると、鋼板における清浄性が阻害されることになる。Al含有量の好ましい下限は0.015%であって、好ましい上限は0.065%である。
[Al: 0.01 to 0.07%]
Al is added as a deoxidizer, but if its content is less than 0.01%, sufficient effects are not exhibited, and if it exceeds 0.07% and excessively contained, cleanliness in the steel sheet is hindered. Will be. The preferable lower limit of the Al content is 0.015%, and the preferable upper limit is 0.065%.

[Mo:0.5〜0.8%、Nb:0.025〜0.08%]
MoとNbは、上記したようにCとの親和性が強く、また母相(Fe)へ固溶する元素であり、低温靭性低減に高い効果を発揮する元素である。こうした効果を発揮するには、Moは0.5%以上含有させる必要があり、好ましくは0.55%以上である。またNbは0.025%以上含有させる必要があり、好ましくは0.035%以上である。
[Mo: 0.5-0.8%, Nb: 0.025-0.08%]
Mo and Nb are elements that have a strong affinity for C as described above, are solid-solved in the parent phase (Fe), and are highly effective in reducing low-temperature toughness. In order to exhibit such an effect, Mo needs to be contained by 0.5% or more, preferably 0.55% or more. Moreover, Nb needs to be contained by 0.025% or more, and preferably 0.035% or more.

もっとも、Mo、Nbを過剰に含有させると、巨大析出物を形成して溶接性が阻害されることになるので、Mo含有量は0.8%以下とし、好ましくは0.75%以下である。またNbの含有量は0.08%以下とし、好ましくは0.07%以下とする。   However, if Mo and Nb are contained excessively, huge precipitates are formed and weldability is hindered, so the Mo content is 0.8% or less, preferably 0.75% or less. . Further, the Nb content is 0.08% or less, preferably 0.07% or less.

[B:0.0004〜0.002%]
Bは、BNを生成することによってHAZ靭性に有害な固溶Nを固定すると共に、低温靭性を一層改善する元素である。このような作用効果を十分に発揮させるにはBを0.0004%以上含有させる必要があり、好ましい含有量は0.0005%以上である。一方、Bが多過ぎると、過剰の固溶Bの作用により結晶が一定方向に形成され、HAZ靭性が却って劣化する。よってB含有量は、0.002%以下に抑える。好ましいB含有量は0.0018%以下である。
[B: 0.0004 to 0.002%]
B is an element that fixes solute N harmful to the HAZ toughness by generating BN and further improves the low temperature toughness. In order to sufficiently exert such effects, it is necessary to contain B in an amount of 0.0004% or more, and a preferable content is 0.0005% or more. On the other hand, when there is too much B, a crystal | crystallization is formed in a fixed direction by the effect | action of excess solute B, and HAZ toughness deteriorates on the contrary. Therefore, the B content is limited to 0.002% or less. A preferable B content is 0.0018% or less.

[Cr:0.8%以下、および/またはV:0.06%以下]
CrとVは、いずれも析出強化による高強度化に有効な元素である。これらは単独で添加してもよいし、併用してもよい。こうした効果は、それらの含有量が増加するにつれて増大するため、Crは好ましくは0.2%以上、Vは好ましくは0.025%以上含有させることが望ましい。一方、過剰に含有させると、HAZ靭性の劣化を招くので、Crは0.8%以下、Vは0.06%以下に夫々抑えるのが好ましい。より好ましくは、Crは0.78%以下、Vは0.055%以下である。
[Cr: 0.8% or less and / or V: 0.06% or less]
Cr and V are both effective elements for increasing the strength by precipitation strengthening. These may be added alone or in combination. Since these effects increase as their content increases, it is desirable that Cr is contained in an amount of 0.2% or more, and V is preferably contained in an amount of 0.025% or more. On the other hand, if excessively contained, the HAZ toughness is deteriorated, so it is preferable to suppress Cr to 0.8% or less and V to 0.06% or less, respectively. More preferably, Cr is 0.78% or less, and V is 0.055% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、P,S,N,Sn,As,Pb等)の混入が許容され得る。これらの不純物のうち、P,S,Nについては、下記のように抑制することが好ましい。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and the elements (for example, P, S) brought in as raw materials, materials, production facilities, etc. as the unavoidable impurities. , N, Sn, As, Pb, etc.) can be permitted. Of these impurities, P, S, and N are preferably suppressed as follows.

[P:0.02%以下(0%を含まない)]
不純物元素であるPは、焼戻し脆化を引き起こすので、その量はできるだけ少ないことが好ましい。靭性を確保するという観点からして、P含有量は0.02%以下に抑制することが好ましく、より好ましくは0.015%以下とする。しかし、工業的に、鋼中のPを0%にすることは困難である。
[P: 0.02% or less (excluding 0%)]
Since P which is an impurity element causes temper embrittlement, the amount is preferably as small as possible. From the viewpoint of securing toughness, the P content is preferably suppressed to 0.02% or less, and more preferably 0.015% or less. However, industrially, it is difficult to make P in steel 0%.

[S:0.01%以下(0%を含まない)]
Sは、焼戻し脆化を引き起こす不純物であり、その量ができるだけ少ないことが好ましい。靭性を確保するという観点からして、S含有量は0.01%以下に抑制することが好ましく、より好ましくは0.005%以下とする。しかし、工業的に、鋼中のSを0%にすることは困難である。
[S: 0.01% or less (excluding 0%)]
S is an impurity that causes temper embrittlement, and its amount is preferably as small as possible. From the viewpoint of ensuring toughness, the S content is preferably suppressed to 0.01% or less, and more preferably 0.005% or less. However, industrially, it is difficult to reduce S in steel to 0%.

[N:0.01%以下(0%を含まない)]
Nは、硬化を引き起こす不純物であり、その量はできるだけ少ないことが好ましい。靭性を確保するという観点からして、N含有量は0.01%以下に抑制することが好ましく、より好ましくは0.006%以下とする。しかし、工業的に、鋼中のNを0%にすることは困難である。
[N: 0.01% or less (excluding 0%)]
N is an impurity that causes curing, and the amount thereof is preferably as small as possible. From the viewpoint of ensuring toughness, the N content is preferably suppressed to 0.01% or less, more preferably 0.006% or less. However, industrially, it is difficult to reduce N in steel to 0%.

また、更に本発明の鋼板には、必要に応じて(a)Cu:0.5%以下(0%を含まない)、および/またはNi:2.0%以下(0%を含まない)、(b)Ca:0.006%以下(0%を含まない)、および/またはTi:0.025%以下(0%を含まない)、等を含有させることも可能であり、含有させる成分の種類に応じて鋼板の特性が改善される。   Further, in the steel sheet of the present invention, if necessary, (a) Cu: 0.5% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%), (B) Ca: 0.006% or less (not including 0%), and / or Ti: 0.025% or less (not including 0%), and the like can be included. Depending on the type, the properties of the steel sheet are improved.

(a)[Cu:0.5%以下(0%を含まない)、および/またはNi:2.0%以下(0%を含まない)]
CuとNiは、いずれも固溶強化による高強度化に有効な元素である。これらは単独で添加してもよいし、併用してもよい。
(A) [Cu: 0.5% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%)]
Cu and Ni are both effective elements for increasing the strength by solid solution strengthening. These may be added alone or in combination.

詳細には、Cuは、強度上昇に有効な元素であり、0.2%以上含有させることが好ましい。一方、その含有量が過剰になると、熱間加工の際に割れが発生しやすくなり、また継手靭性が劣化することにもなるので、0.5%以下にすることが好ましい。   Specifically, Cu is an element effective for increasing the strength, and is preferably contained in an amount of 0.2% or more. On the other hand, if the content is excessive, cracking is likely to occur during hot working, and joint toughness is also deteriorated.

Niは、鋼板の強度および靭性を向上させる上で有効な元素であり、0.2%以上含有させることが好ましい。しかしながら、Ni含有量が過剰になると、継手靭性が劣化することにもなるので、2.0%以下にすることが好ましい。   Ni is an element effective in improving the strength and toughness of the steel sheet, and is preferably contained in an amount of 0.2% or more. However, when the Ni content is excessive, the joint toughness is also deteriorated.

(b)[Ca:0.006%以下(0%を含まない)、および/またはTi:0.025%以下(0%を含まない)]
CaとTiは、いずれもHAZ靭性向上に有効な元素である。これらは単独で添加してもよいし、併用してもよい。
(B) [Ca: 0.006% or less (not including 0%) and / or Ti: 0.025% or less (not including 0%)]
Ca and Ti are both effective elements for improving HAZ toughness. These may be added alone or in combination.

詳細には、Caは、鋼中硫化物の形態を制御することにより、Z方向(板厚方向)の材質改善に有効な元素である。しかしながら、Ca含有量が過剰になると鋼中介在物が増加し、鋼板の靭性や継手靭性を損なうので、0.006%以下とすることが好ましい。尚、Caによる効果を有効に発揮させるための好ましい下限は0.001%である。   Specifically, Ca is an element effective for improving the material in the Z direction (plate thickness direction) by controlling the form of sulfide in steel. However, if the Ca content is excessive, inclusions in the steel increase and the toughness and joint toughness of the steel sheet are impaired, so 0.006% or less is preferable. In addition, a preferable lower limit for effectively exhibiting the effect of Ca is 0.001%.

Tiは、溶接継手のHAZにおいてNと共に析出物を形成し、組織の粗大化をピン止めにより抑制するのに有効な元素である。こうした効果は、その含有量が増加するにつれて増大するが、過剰に含有されると、継手靭性が劣化するので、0.025%以下に抑えることが好ましい。Tiによる効果を有効に発揮させるための好ましい下限は0.005%である。   Ti is an element effective in forming precipitates with N in the HAZ of the welded joint and suppressing the coarsening of the structure by pinning. Such an effect increases as the content increases, but if it is excessively contained, joint toughness deteriorates, so it is preferable to suppress it to 0.025% or less. A preferable lower limit for effectively exhibiting the effect of Ti is 0.005%.

以上の様に本発明では、上記(1)式、(2)式だけでなく、鋼板の化学成分組成を満足することによって、980MPa以上の引張強度を有すると共に、母材及びHAZ部の低温継手靭性が良好なものとなるのである。   As described above, in the present invention, not only the above formulas (1) and (2) but also the chemical composition of the steel sheet is satisfied, so that it has a tensile strength of 980 MPa or more and the base material and the HAZ part low-temperature joint. The toughness is good.

特に本発明の鋼板は980MPa以上の高強度を有するものであるが、好ましくは990MPa以上、より好ましく1000MPa以上の引張強度を有する場合であっても優れた低温継手靭性を発揮し得る。   In particular, the steel sheet of the present invention has a high strength of 980 MPa or more, but can exhibit excellent low temperature joint toughness even when it has a tensile strength of preferably 990 MPa or more, more preferably 1000 MPa or more.

また本発明の鋼板(母材)の組織は、(焼戻し)ベイナイトを主体(90%以上がベイナイト)とするものである。強度と靭性を向上させる観点からは好ましくは92%以上、より好ましく94%以上のベイナイト主体の組織とすることが望ましい。   The structure of the steel sheet (base material) of the present invention is mainly composed of (tempered) bainite (90% or more is bainite). From the viewpoint of improving strength and toughness, a bainite-based structure is preferably 92% or more, more preferably 94% or more.

本発明の鋼板を製造するには、上記成分組成を満たす溶鋼を用い、通常の条件(圧延温度、圧下率、焼入れ温度、焼戻し温度)に従って鋼板(焼入れ・焼戻し鋼板:QT鋼板)とすれば良い。本発明は厚鋼板に関するものであり、該分野において厚鋼板とは、JISで定義されるように、一般に板厚が3.0mm以上であるものを指す。本発明では、鋼板を多層盛溶接によって溶接継手を形成した場合であっても、高い強度と良好なHAZ靭性を示すものとなる。本発明の鋼板は、例えば低温継手靭性が要求される構造物の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接や強度においても、溶接熱影響部の低温靭性劣化を防ぐことができる。   In order to produce the steel sheet of the present invention, a molten steel satisfying the above component composition is used, and a steel sheet (quenched / tempered steel sheet: QT steel sheet) may be used according to normal conditions (rolling temperature, rolling reduction, quenching temperature, tempering temperature). . The present invention relates to a thick steel plate. In this field, a thick steel plate generally refers to one having a plate thickness of 3.0 mm or more as defined by JIS. In the present invention, even when a welded joint is formed by multi-layer welding of steel plates, high strength and good HAZ toughness are exhibited. The steel sheet of the present invention can be used as a material for structures requiring low temperature joint toughness, for example, to prevent low temperature toughness deterioration of weld heat affected zone not only in small to medium heat input welding but also in large heat input welding and strength. Can do.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す組成の鋼塊を、通常の真空溶製法によって溶製し、この鋼塊に対して熱間圧延して板厚25mmの熱間圧延板とし、930℃に加熱して焼入れ(Q)し、500℃に加熱して焼戻し(T)して鋼板(QT鋼板)を製造した。なお、鋼板の組織について調べたところ、いずれも90%以上のベイナイトを含むベイナイト主体の組織であった。   A steel ingot having the composition shown in Table 1 below is melted by a normal vacuum melting method, hot rolled to the steel ingot to form a hot rolled plate having a thickness of 25 mm, and heated to 930 ° C. and quenched ( Q) and heated to 500 ° C. and tempered (T) to produce a steel plate (QT steel plate). In addition, when the structure of the steel sheet was examined, all of them were bainite-based structures including 90% or more of bainite.

Figure 2012077340
Figure 2012077340

上記の様にして得られた各鋼板を用いて、下記の方法によって母材の強度(TS)および靭性(vE−20min)、IR−CGHAZにおける靭性(vE−20min)およびMA面積率を評価した。尚、以下の測定方法においては、いずれの鋼板についても、各3本ずつの試験片を用い、その最低値を求めた。   Using each steel plate obtained as described above, the strength (TS) and toughness (vE-20 min) of the base material, the toughness (vE-20 min) in IR-CGHAZ, and the MA area ratio were evaluated by the following methods. . In the following measurement method, for each steel plate, three test pieces were used for each steel plate, and the minimum value was obtained.

[母材の強度(TS)の評価]
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJIS Z2201の4号試験片を採取して、JIS Z2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、TSが980MPa以上のものを合格と評価した。
[Evaluation of base material strength (TS)]
Sample No. 4 of JIS Z2201 was taken from the t (plate thickness) / 4 part of each steel plate in the direction perpendicular to the rolling direction, and subjected to a tensile test according to the procedure of JIS Z2241, and the tensile strength (TS) was measured. It was measured. And the thing with TS of 980 MPa or more was evaluated as a pass.

[母材の靭性(vE−20min)の評価]
各鋼板(母材)のt(板厚)/4部位から、圧延方向に対してJIS Z2242の試験片を採取し、母材の靭性を評価した。JIS Z2242に準拠して、−20℃でシャルピー衝撃試験を行ない、吸収エネルギー(vE−20)を測定した。そして、vE−20の最低値(vE−20min)が47J以上のものを靭性に優れると評価した。
[Evaluation of toughness of base metal (vE-20 min)]
Test pieces of JIS Z2242 were taken from the t (plate thickness) / 4 part of each steel plate (base material) in the rolling direction, and the toughness of the base material was evaluated. Based on JIS Z2242, a Charpy impact test was performed at -20 ° C., and the absorbed energy (vE-20) was measured. And it evaluated that the minimum value (vE-20min) of vE-20 was 47J or more as being excellent in toughness.

[IR−CGHAZにおける靭性(vE−20min)の評価]
IR−CGHAZ組織を得るために、各鋼板(母材)のt(板厚)/4部位から、12.5mm(板厚方向長さ)×55mm(幅方向長さ)×32mm(圧延方向長さ)の試験片を採取し、下記条件の熱サイクル試験を行ない、IR−CGHAZにおける靭性を評価した。このとき熱サイクル試験は、上記試験片を1350℃に加熱して5秒間保持した後、800〜500℃の温度範囲を約7秒かけて冷却した後、後続パスによる熱影響を模擬して830℃に加熱して5秒間保持した後、800〜500℃の温度範囲を約7秒かけて冷却することにより、溶接入熱量が17kJ/cmに相当する熱サイクルを与えた。JIS Z2242に準拠して、−20℃でシャルピー衝撃試験を行い、吸収エネルギー(vE−20)を測定した。そして、vE−20の最低値(vE−20min)が47J以上のものをIR−CGHAZの靭性に優れると評価した。
[Evaluation of toughness (vE-20min) in IR-CGHAZ]
In order to obtain an IR-CGHAZ structure, 12.5 mm (length in the plate thickness direction) × 55 mm (length in the width direction) × 32 mm (length in the rolling direction) from t (plate thickness) / 4 portion of each steel plate (base material) The test piece was taken and subjected to a thermal cycle test under the following conditions to evaluate toughness in IR-CGHAZ. At this time, in the thermal cycle test, the test piece was heated to 1350 ° C. and held for 5 seconds, then the temperature range of 800 to 500 ° C. was cooled over about 7 seconds, and then the thermal effect of the subsequent pass was simulated 830. After heating to ° C. and holding for 5 seconds, the temperature range of 800 to 500 ° C. was cooled over about 7 seconds to give a heat cycle corresponding to a welding heat input of 17 kJ / cm. Based on JIS Z2242, the Charpy impact test was performed at -20 degreeC and the absorbed energy (vE-20) was measured. And the minimum value (vE-20min) of vE-20 evaluated 47J or more as being excellent in the toughness of IR-CGHAZ.

[IR−CGHAZにおけるMA面積率の測定]
上記で熱サイクル試験を行なった各試験片の中心箇所を、レペラー腐食を行ない、光学顕微鏡により倍率:1000倍で60×80(μm2)の視野を4視野観察した後、この画像データを画像解析し、MAの面積率を算出した。
[Measurement of MA area ratio in IR-CGHAZ]
The center portion of each test piece subjected to the thermal cycle test described above is subjected to repeller corrosion, and after observing four fields of view of 60 × 80 (μm 2 ) at a magnification of 1000 × with an optical microscope, this image data is imaged. The area ratio of MA was calculated by analysis.

これらの結果を、焼入れ温度、焼戻し温度と共に、下記表2に示す。   These results are shown in Table 2 below together with the quenching temperature and the tempering temperature.

Figure 2012077340
Figure 2012077340

表1、2から次のように考察できる(尚、下記No.は、表1、2の実験No.を示す)。No.7〜14は、本発明で規定する要件を満足する例であり、化学成分組成およびMP値が本発明で規定する範囲内にあるものであり、IR−CGHAZにおいて粒界セメンタイトの析出が抑制され(面積率で4%未満)、低温靭性が良好であり、母材の引張強度も980MPa以上の高強度を有する鋼板が得られていることが分かる。   It can be considered as follows from Tables 1 and 2 (note that the following No. indicates the experiment No. in Tables 1 and 2). No. 7 to 14 are examples that satisfy the requirements defined in the present invention, the chemical composition and MP value are within the range defined in the present invention, and precipitation of grain boundary cementite is suppressed in IR-CGHAZ. (Area ratio is less than 4%), it can be seen that a low-temperature toughness is good and a steel sheet having a high tensile strength of 980 MPa or more is obtained.

これに対して、No.1〜6は、本発明で規定する要件(化学成分組成、MP値、Ceq値)を満たさないものである。   In contrast, no. 1 to 6 do not satisfy the requirements (chemical component composition, MP value, Ceq value) defined in the present invention.

詳細には、No.1〜4は化学成分組成(Moおよび/またはNb含有量)が本発明の規定範囲を外れると共に、MP値を満たさない例である。No.5は炭素当量(Ceq)が本発明の規定範囲を外れる例である。No.6はMP値が本発明の規定範囲を外れる例である。   Specifically, no. 1-4 are examples in which the chemical composition (Mo and / or Nb content) is outside the specified range of the present invention and does not satisfy the MP value. No. 5 is an example in which the carbon equivalent (Ceq) is outside the specified range of the present invention. No. 6 is an example in which the MP value is outside the specified range of the present invention.

これらのうち、No.1〜4、6は、いずれもIR−CGHAZにおいてMAの析出量が多くなっており(面積率で4%以上)、IR−CGHAZにおける靭性(vE−20min)が劣っている。またNo.5は、MP値を満足してMAの生成は抑制されているものの、炭素当量が悪いため、溶接部分の組織が硬化してIR−CGHAZにおける靭性が劣化した。   Of these, No. As for 1-4, the precipitation amount of MA has increased in IR-CGHAZ (area ratio is 4% or more), and the toughness (vE-20 min) in IR-CGHAZ is inferior. No. No. 5 satisfied the MP value, and the formation of MA was suppressed, but the carbon equivalent was poor, so the structure of the welded portion was hardened and the toughness in IR-CGHAZ deteriorated.

これらの結果に基づき、MP値とMA面積率(%)の関係を図1に、MP値とvE−20minとの関係を図2に夫々示す。この結果から明らかなように、MP値を0.550以上に制御することによって、MAの生成を低減できること、および良好な低温靭性が確保できることが分かる。   Based on these results, the relationship between the MP value and the MA area ratio (%) is shown in FIG. 1, and the relationship between the MP value and vE-20 min is shown in FIG. As is clear from this result, it can be seen that by controlling the MP value to 0.550 or more, the production of MA can be reduced and good low temperature toughness can be ensured.

Claims (3)

C:0.12〜0.16%(質量%の意味。以下同じ)、
Si:0.05〜0.5%、
Mn:0.8〜1.2%、
Al:0.01〜0.07%、
Mo:0.5〜0.8%、
Nb:0.025〜0.08%、
B:0.0004〜0.002%、並びに
Cr:0.8%以下、および/またはV:0.06%以下、
を夫々含有し、残部が鉄及び不可避的不純物からなり、下記(1)式で規定されるMP値が0.550以上であると共に、下記(2)式で規定される炭素当量Ceqが0.63%以下であることを特徴とする引張強度980MPa以上を有し、且つ多層盛継手の低温靭性に優れた高強度鋼板。
MP値=(12/[C])×(([Mo]/96)+([Nb]/93))・・・(1)
但し、[C]、[Mo]、及び[Nb]は、夫々C、Mo、及びNbの含有量(質量%)を示す。
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15・・・(2)
但し、[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]、及び[Ni]は、夫々C、Mn、Cr、Mo、V、Cu、及びNiの含有量(質量%)を示す。
C: 0.12 to 0.16% (meaning mass%, the same shall apply hereinafter)
Si: 0.05 to 0.5%,
Mn: 0.8 to 1.2%
Al: 0.01 to 0.07%,
Mo: 0.5 to 0.8%,
Nb: 0.025 to 0.08%,
B: 0.0004 to 0.002%, and Cr: 0.8% or less, and / or V: 0.06% or less,
The balance is composed of iron and inevitable impurities, the MP value defined by the following formula (1) is 0.550 or more, and the carbon equivalent Ceq defined by the following formula (2) is 0. A high-strength steel sheet having a tensile strength of 980 MPa or more, which is 63% or less, and excellent in low-temperature toughness of a multilayer prime joint.
MP value = (12 / [C]) × (([Mo] / 96) + ([Nb] / 93)) (1)
However, [C], [Mo], and [Nb] indicate the contents (mass%) of C, Mo, and Nb, respectively.
Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Cu] + [Ni]) / 15 (2)
However, [C], [Mn], [Cr], [Mo], [V], [Cu], and [Ni] are the contents of C, Mn, Cr, Mo, V, Cu, and Ni, respectively. (Mass%) is shown.
更に他の元素として、Cu:0.5%以下(0%を含まない)、および/またはNi:2.0%以下(0%を含まない)を含有するものである請求項1に記載の高強度鋼板。   The element according to claim 1, further comprising Cu: 0.5% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%) as other elements. High strength steel plate. 更に他の元素として、Ca:0.006%以下(0%を含まない)、および/またはTi:0.025%以下(0%を含まない)を含有するものである請求項1または2に記載の高強度鋼板。   Further, as another element, Ca: 0.006% or less (not including 0%) and / or Ti: 0.025% or less (not including 0%) are included. High strength steel sheet as described.
JP2010222482A 2010-09-30 2010-09-30 High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints Expired - Fee Related JP5208178B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010222482A JP5208178B2 (en) 2010-09-30 2010-09-30 High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints
CN201110293946.8A CN102443742B (en) 2010-09-30 2011-09-28 High-strength steel plate with 980 mpa or above tensile strength excellent in low temperature toughness of multilayer welding joint portion
KR1020110098810A KR101365351B1 (en) 2010-09-30 2011-09-29 HIGH-STRENGTH STEEL PLATE WITH 980 MPa OR ABOVE TENSILE STRENGTH EXCELLENT IN LOW TEMPERATURE TOUGHNESS OF MULTI-LAYER JOINT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222482A JP5208178B2 (en) 2010-09-30 2010-09-30 High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints

Publications (2)

Publication Number Publication Date
JP2012077340A true JP2012077340A (en) 2012-04-19
JP5208178B2 JP5208178B2 (en) 2013-06-12

Family

ID=46006678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222482A Expired - Fee Related JP5208178B2 (en) 2010-09-30 2010-09-30 High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints

Country Status (3)

Country Link
JP (1) JP5208178B2 (en)
KR (1) KR101365351B1 (en)
CN (1) CN102443742B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156606A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 High-strength steel sheet having excellent low-temperature toughness, stretchability, and weldability, and method for manufacturing same
WO2014185405A1 (en) 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
CN109881086A (en) * 2018-12-03 2019-06-14 南阳汉冶特钢有限公司 A kind of high-strength hardened and tempered steel plate Q550EZ35 of thickness 300mm and its production method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906147B2 (en) * 2012-06-29 2016-04-20 株式会社神戸製鋼所 High-tensile steel plate with excellent base metal toughness and HAZ toughness
CN109112264A (en) * 2018-10-26 2019-01-01 山东钢铁集团日照有限公司 The high tough medium plate of micro alloying element quenching and tempering type and its manufacturing method on a small quantity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021326A (en) * 1983-07-15 1985-02-02 Sumitomo Metal Ind Ltd Production of tempered high tensile steel having exellent toughness
JPH09165620A (en) * 1995-12-14 1997-06-24 Nkk Corp Production of building use thick fire resistant steel tube low in yield ratio
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JP2006045644A (en) * 2004-08-06 2006-02-16 Nippon Steel Corp METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF >=1,150 MPa

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513001B2 (en) * 1998-02-24 2004-03-31 新日本製鐵株式会社 Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
TNSN99233A1 (en) * 1998-12-19 2001-12-31 Exxon Production Research Co HIGH STRENGTH STEELS WITH EXCELLENT CRYOGENIC TEMPERATURE TENACITY
JP4268317B2 (en) 2000-06-09 2009-05-27 新日本製鐵株式会社 Ultra-high-strength steel pipe excellent in low temperature toughness of welded portion and manufacturing method thereof
JP4730102B2 (en) * 2005-03-17 2011-07-20 Jfeスチール株式会社 Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5110989B2 (en) * 2007-07-12 2012-12-26 株式会社神戸製鋼所 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP4914783B2 (en) * 2007-08-07 2012-04-11 株式会社神戸製鋼所 Large steel plate for high heat input welding with excellent shearability
CN101451212B (en) * 2007-12-03 2011-04-06 舞阳钢铁有限责任公司 High intensity steel plate and preparation method thereof
CN101481780B (en) * 2008-12-06 2012-03-14 燕山大学 Easy-to-weld superfine austenite crystal steel with superhigh intensity and high tenacity and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021326A (en) * 1983-07-15 1985-02-02 Sumitomo Metal Ind Ltd Production of tempered high tensile steel having exellent toughness
JPH09165620A (en) * 1995-12-14 1997-06-24 Nkk Corp Production of building use thick fire resistant steel tube low in yield ratio
JPH09225682A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Submerged arc welding for fire resistant steel
JP2006045644A (en) * 2004-08-06 2006-02-16 Nippon Steel Corp METHOD FOR PRODUCING STEEL FOR WELDING HAVING TENSILE STRENGTH OF >=1,150 MPa

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156606A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 High-strength steel sheet having excellent low-temperature toughness, stretchability, and weldability, and method for manufacturing same
JP2014198873A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 High strength steel sheet excellent in low temperature toughness, elongation and weldability, and manufacturing method therefor
KR101754512B1 (en) * 2013-03-29 2017-07-06 가부시키가이샤 고베 세이코쇼 High-strength steel sheet having excellent low-temperature toughness, stretchability, and weldability, and method for manufacturing same
WO2014185405A1 (en) 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
KR20150126683A (en) 2013-05-14 2015-11-12 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet and production method therefor
US10260124B2 (en) 2013-05-14 2019-04-16 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof
US11208702B2 (en) 2013-05-14 2021-12-28 Nippon Steel Corporation Hot-rolled steel sheet and manufacturing method thereof
CN109881086A (en) * 2018-12-03 2019-06-14 南阳汉冶特钢有限公司 A kind of high-strength hardened and tempered steel plate Q550EZ35 of thickness 300mm and its production method

Also Published As

Publication number Publication date
CN102443742B (en) 2015-03-18
JP5208178B2 (en) 2013-06-12
KR101365351B1 (en) 2014-02-19
KR20120034017A (en) 2012-04-09
CN102443742A (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP5076658B2 (en) Steel material for large heat input welding
WO2012002563A1 (en) Wear-resistant steel sheet having excellent welded part toughness and lagging destruction resistance properties
JP5037744B2 (en) High strength steel plate and manufacturing method thereof
JP5509685B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
JP5208178B2 (en) High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
TW201331387A (en) Steel material for high heat input welding
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2014118629A (en) Steel sheet pile and its manufacturing method
JP3698082B2 (en) Wear resistant steel
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP2013019021A (en) Method for producing steel for weld structure, excellent in toughness at weld heat-affected zone in large-heat input welding
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP5318691B2 (en) High strength thick steel plate for containment vessel with excellent low temperature toughness
JP2020204091A (en) High strength steel sheet for high heat input welding
JPWO2016068094A1 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees