JPH09165620A - Production of building use thick fire resistant steel tube low in yield ratio - Google Patents

Production of building use thick fire resistant steel tube low in yield ratio

Info

Publication number
JPH09165620A
JPH09165620A JP32582295A JP32582295A JPH09165620A JP H09165620 A JPH09165620 A JP H09165620A JP 32582295 A JP32582295 A JP 32582295A JP 32582295 A JP32582295 A JP 32582295A JP H09165620 A JPH09165620 A JP H09165620A
Authority
JP
Japan
Prior art keywords
steel
less
temperature
sec
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32582295A
Other languages
Japanese (ja)
Inventor
Hideaki Fukai
英明 深井
Moriyasu Nagae
守康 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32582295A priority Critical patent/JPH09165620A/en
Publication of JPH09165620A publication Critical patent/JPH09165620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an excellent building use thick fire resistant steel tube with high productivity by rolling a steel having a specified compsn. under specified conditions to form a steel plate, executing heating to a two phase region, subjecting the same to bending from the edge parts of the steel plate, forming it into a tubular shape at the center part and thereafter executing cooling. SOLUTION: A slab contg., by weight, 0.05 to 0.25% C, 0.10 to 2.00% Si, 0.5 to 2.0% Mn, 0.10 to 0.60% Mo, 0.01 to 0.1% V, 0.002 to 0.20% sol.Al and 0.001 to 0.02% Ni or furthermore contg. specified small amounts of Nb, Ti, Cr, B, Ca or the like is subjected to hot rolling at >=30% cumulative draft from the Ar3 to the recrystallization temp. region. This hot rolled plate is heated to the two phase region of the Ac1 to Ac3 , working into a tubular shape is started from the edge parts of the steel plate in the temp. range of the Ar1 or above, and the tubular working is finished at the center part of the steel plate. Next, cooling is executed at a cooling rate of P deg.C/sec to 100×P<2> deg.C/sec, where the value of Pcm in the steel shown by the formula 1 is defined as P to form its microstructure into the one essentially consisting of ferrite + bainite and in which insular martensite is present by <=5%, by which the building use thick fire resistant steel tube low in a yield ratio can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高層ビルや海洋構造
物などに用いられる低降伏比でかつ高温において強度低
下の少ない40〜150mm程度の厚肉の建築用耐火鋼
管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thick-walled construction refractory steel pipe of about 40 to 150 mm which has a low yield ratio and is used for high-rise buildings and marine structures, etc.

【0002】[0002]

【従来技術】高層ビルや海洋構造物等に用いられる厚肉
鋼管には、高強度・高靭性・低降伏比・高溶接性等の性
能が要求される。そこで比較的薄肉の鋼管の場合、低成
分系の組成を採用して溶接性を確保するとともに、制御
圧延や制御冷却などの技術を駆使して高強度かつ高靭性
の鋼板を製造し、冷間加工によって管状に成形してい
る。この場合、管状への成形時に加工硬化によって材質
変化が生じるので、所定の特性を達成するために、成形
後に応力除去処理等の熱処理が必要となる。
2. Description of the Related Art Thick-walled steel pipes used for high-rise buildings and marine structures are required to have high strength, high toughness, low yield ratio and high weldability. Therefore, in the case of relatively thin-walled steel pipes, a low-component composition is used to secure weldability, and technologies such as controlled rolling and controlled cooling are used to manufacture high-strength and high-toughness steel plates, It is formed into a tubular shape by processing. In this case, since the material changes due to work hardening during forming into a tubular shape, a heat treatment such as a stress relieving process is required after the forming in order to achieve predetermined characteristics.

【0003】一方、建築物の高層化が進む現在、建築用
鋼管柱には厚肉化の傾向にある。厚肉鋼管の場合には、
加工時のプレス装置の荷重の観点から冷間成形は不可能
であり、温間成形や熱間成形が採用される。
On the other hand, at the present time when the height of the building is increasing, the steel pipe column for construction tends to be thickened. In the case of thick-walled steel pipe,
Cold forming is impossible from the viewpoint of the load of the pressing device during processing, and warm forming or hot forming is adopted.

【0004】しかし製管に熱間成形を採用した場合に
は、制御圧延等によって得られた強度への効果が消失し
てしまうため、高成分系の組成の材料が用いられること
になるが、高成分系では靭性や溶接性の低下が生じ、こ
の点で好ましくない。
However, when hot forming is adopted for the pipe making, the effect on the strength obtained by controlled rolling or the like disappears, so that a material of high component type is used, A high component system causes deterioration in toughness and weldability, which is not preferable in this respect.

【0005】また、温間成形に関して、特開昭62−5
4018号公報には、750〜400℃のAc1 以下の
温度域に再加熱して、直ちにあるいは放冷後750〜2
50℃の温度域にて加工することにより、靭性などを優
れたものにする旨開示されている。
Regarding warm forming, JP-A-62-5
No. 4018 discloses reheating to a temperature range of Ac 1 or less of 750 to 400 ° C. and immediately or after cooling to 750 to 2
It is disclosed that by processing in a temperature range of 50 ° C., toughness and the like are made excellent.

【0006】一方、建築用鋼管柱の重要な特性の一つで
ある低降伏比を得る方法として、以下に示す方法が提案
されている。特開平3−87318号公報には、鋼管を
Ac3 −250℃〜Ac3 −20℃の温度域に加熱しそ
の後水冷するか、あるいはこれらの熱処理後に加工歪み
を付与して焼き戻す方法が提案されている。また、特開
平3−87317号公報では、鋼管をAc3 以上に加熱
した後に空冷し、Ar3 −250℃〜Ar3 −20℃の
温度域から水冷するか、あるいはこれらの熱処理後に加
工歪みを付与して焼き戻す方法が提案されている。さら
に、特開平4−321号公報には、鋼管をAc3 −20
0℃以上の温度に加熱し、Ac3 −200℃以上で歪付
与を開始し、Ac3 −200℃〜Ac3 −20℃の温度
域で歪付与を終了して、水冷した後に焼き戻す方法が提
案されている。しかしながら、これらの方法では鋼管に
複雑な処理を施すことになり、経済性および生産性を著
しく損なうことになる。
On the other hand, as a method for obtaining a low yield ratio, which is one of the important characteristics of steel pipe columns for construction, the following method has been proposed. JP-A-3-87318, proposed a method to temper the steel Ac 3 -250 ℃ ~Ac 3 -20 ℃ if subsequently cooled to a temperature range, or to impart working strain after these heat treatments Has been done. Further, in Japanese Patent Laid-Open No. 3-87317, a steel pipe is heated to Ac 3 or more and then air-cooled, and then water-cooled from a temperature range of Ar 3 −250 ° C. to Ar 3 −20 ° C., or a processing strain is generated after the heat treatment. A method of applying and tempering is proposed. Further, JP-A-4-321, Ac 3 -20 steel tube
A method of heating to a temperature of 0 ° C. or higher, starting strain application at Ac 3 −200 ° C. or higher, ending strain application at a temperature range of Ac 3 −200 ° C. to Ac 3 −20 ° C., and then tempering after water cooling. Is proposed. However, in these methods, the steel pipe is subjected to complicated treatment, and economical efficiency and productivity are significantly impaired.

【0007】さらに、近年建設コスト削減の観点から耐
火被覆の低減が求められており、600℃での降伏応力
が常温の2/3以上を有する耐火特性も要求されてい
る。耐火特性を確保する手段として、特開平4−128
315号、特開平4−168218号、特開平4−16
8219号、特開平4−176821号、特開平4−2
28521号の各公報に開示されているような、Mo、
V、Nb等の成分元素を添加し、所定の温度で歪みを与
えて、所定の速度で冷却を行う方法が提案されている。
Further, in recent years, a reduction in the refractory coating has been demanded from the viewpoint of construction cost reduction, and a refractory property having a yield stress at 600 ° C. of ⅔ or more of room temperature is also required. As means for ensuring the fire resistance, Japanese Patent Laid-Open No. 4-128
315, JP-A-4-168218, and JP-A-4-16.
8219, JP-A-4-176821, and JP-A4-2.
Mo as disclosed in each publication of 28521,
A method has been proposed in which component elements such as V and Nb are added, strain is applied at a predetermined temperature, and cooling is performed at a predetermined rate.

【0008】[0008]

【発明が解決しようとする課題】以上のように、厚肉の
建築用鋼管柱の製造において、冷間加工では成形機の能
力の観点から製造が困難であり、また熱間成形において
は制御圧延の効果が失われるので組成を高強度の高成分
系にしなければならず、そのため靭性や溶接性が損なわ
れるなどの不都合が生じる。
As described above, in the production of thick-walled steel pipe columns for construction, it is difficult to perform the cold working from the viewpoint of the capability of the forming machine, and in the hot forming, the controlled rolling is performed. Since the effect of (1) is lost, the composition must be a high-strength, high-component system, which causes inconveniences such as deterioration of toughness and weldability.

【0009】一方、温間成形の場合でも、Ac1 以下の
温度に加熱後に温間成形する場合には、加工中の温度降
下により変形抵抗が増大する傾向にあり、また温度降下
とともに降伏比が上昇する傾向があり、低降伏比が達成
されない問題が生ずる。また、低降伏比を達成するため
に鋼管に対して種々の熱処理を施すことが試みられてい
るが、これらの方法は全て複雑で、経済性を損ねる不都
合が生じる。
On the other hand, even in the case of warm forming, when warm forming is performed after heating to a temperature of Ac 1 or lower, the deformation resistance tends to increase due to the temperature drop during processing, and the yield ratio increases as the temperature drops. There is a problem that it tends to rise and a low yield ratio is not achieved. Further, various heat treatments have been attempted on a steel pipe in order to achieve a low yield ratio, but all of these methods are complicated and disadvantageous in economical efficiency.

【0010】また、耐火性確保の手段として、特開平4
−128315号、特開平4−168218号、特開平
4−168219号、特開平4−176821号、特開
平4−228521号の各公報に開示されているよう
な、Mo、V、Nb等の成分元素を添加し、所定の温度
で歪みを与えて、所定の速度で冷却を行う方法の場合に
は、Moのような焼き入れ性を高め、また島状マルテン
サイトを形成しやすくする元素の多量添加により、高降
伏比や靭性低下の不都合を生じる。
Further, as a means for ensuring fire resistance, Japanese Patent Laid-Open No. Hei 4 (1999) -4
-128315, JP-A-4-168218, JP-A-4-168219, JP-A-4-176821, and JP-A-4-228521, and other components such as Mo, V, and Nb. In the case of a method in which an element is added, strain is applied at a predetermined temperature, and cooling is performed at a predetermined rate, a large amount of elements such as Mo that enhance hardenability and easily form island martensite. Addition causes disadvantages such as high yield ratio and reduction in toughness.

【0011】さらに、鋼板から鋼管への成形に際して
は、鋼管外面で引張応力が、鋼管内面で圧縮応力が働
き、応力の中立軸となる板厚中心で応力が働かないとい
う現象が生じるので、温間あるいは熱間成形の場合、同
じ加工温度でも板厚中心では内外表面に比較して低降伏
比となるが強度が著しく低く、また逆に内外表では所定
の強度を達成するが低降伏比を達成しない傾向にある。
また、温間成形や熱間成形の場合には、鋼板内の各部に
よって加工を受ける温度が異なり、比較的高温で加工を
受ける部位では低降伏比となるが強度が低く、逆に低温
で加工を受ける部位では所定の強度を達成することが可
能だが低降伏比が達成されない傾向にある。このため、
温間成形や熱間成形による製管において、板厚方向での
機械的特性の分布は加工温度がもっとも低くなる最終加
工部で最大となる。
Further, when forming a steel pipe from a steel plate, a tensile stress acts on the outer surface of the steel pipe and a compressive stress acts on the inner surface of the steel pipe, and the stress does not work at the center of the plate thickness, which is the neutral axis of the stress. In the case of hot or hot forming, even at the same working temperature, the center of thickness has a lower yield ratio than the inner and outer surfaces, but the strength is remarkably low. There is a tendency not to achieve.
Also, in the case of warm forming or hot forming, the temperature to be processed differs depending on each part in the steel sheet, and the part that is processed at relatively high temperature has a low yield ratio but low strength, and conversely it is processed at low temperature. It is possible to achieve a predetermined strength at the site receiving the stress, but a low yield ratio tends not to be achieved. For this reason,
In pipe forming by warm forming or hot forming, the distribution of mechanical properties in the plate thickness direction becomes maximum at the final processing part where the processing temperature is the lowest.

【0012】本発明はかかる事情に鑑みてなされたもの
であって、経済性や生産性を損なうことなく、板厚各部
において高強度および低降伏比を達成することが可能
で、かつ高温においても強度低下の少ない厚肉の建築用
耐火鋼管の製造方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and it is possible to achieve high strength and a low yield ratio in each portion of the plate thickness without impairing the economical efficiency and the productivity, and also at a high temperature. An object of the present invention is to provide a method for manufacturing a thick-walled construction fire-resistant steel pipe with little strength reduction.

【0013】[0013]

【課題を解決するための手段】本願発明者らは、製管に
際して大きい加工能力を有する設備を必要とせず、靭性
の劣化を引き起こすことなく、板厚各部において高強度
および低降伏比を達成し、かつ高温においても強度低下
の少ない鋼管の製造方法について詳細に検討した結果、
特定の成分組成の鋼を特定の圧延条件で圧延し、その鋼
板を二相域に加熱して、その温度域から製管のための曲
げ加工を板端部より開始し、板中央部にて終了させ、そ
の後所定の冷却速度で冷却して、ミクロ組織を制御する
ことにより、上記の課題を解決することが可能であるこ
とを見出した。すなわち、従来から二相域への加熱によ
り低降伏比が得られることは知られていたが、同時に靭
性の低下を招くため、この温度域での加工は行われてい
なかった。しかし、上述のように成分や圧延条件、さら
に温間での製管順序および冷却速度を制御することによ
って、ミクロ組織を調整して靭性劣化を抑制し、板厚各
部において室温および高温における高強度、ならびに低
降伏比を達成することができる。
The inventors of the present application have achieved high strength and low yield ratio in each part of the plate thickness without requiring a facility having a large working capacity for pipe production and causing deterioration of toughness. And, as a result of a detailed examination of the method for manufacturing a steel pipe with little strength reduction even at high temperature,
A steel with a specific composition is rolled under specific rolling conditions, the steel sheet is heated to a two-phase region, and bending processing for pipe manufacturing is started from that temperature region from the plate edge, and at the plate central portion. It was found that the above problems can be solved by controlling the microstructure by terminating and then cooling at a predetermined cooling rate. That is, it has been conventionally known that a low yield ratio can be obtained by heating in the two-phase region, but at the same time, it causes deterioration of toughness, so that processing in this temperature region has not been performed. However, as described above, by controlling the composition and rolling conditions, as well as the pipe forming order and the cooling rate during the warm period, the microstructure is adjusted and toughness deterioration is suppressed, and high strength at room temperature and high temperature is achieved in each part of the plate thickness. , As well as a low yield ratio can be achieved.

【0014】本発明はこのような知見に基づいて完成さ
れたものであり、第1に、重量%で、C:0.05〜
0.25%、Si:0.10〜2.00%、Mn:0.
5〜2.0%、Mo:0.10〜0.60%、V:0.
01〜0.1%、sol.Al:0.002〜0.20
%、N:0.01〜0.02%を含有する鋼に、再結晶
温度以下かつAr3 以上の温度域において累積圧下率が
30%以上の熱間圧延を施して鋼板にし、その鋼板をA
1 以上でかつAc3 以下の二相領域に加熱し、Ar1
以上の温度域から管状への加工を板端部より開始し、板
中央部にて終了して、その後、以下に示す鋼のPcmの
値をPとしたときに、P℃/sec以上かつ100×P
2 ℃/sec以下の速度で冷却して、ミクロ組織を、フ
ェライト+ベイナイトを主体とし、島状マルテンサイト
が5%以下の組織にすることを特徴とする低降伏比の建
築用厚肉耐火鋼管の製造方法を提供するものである。
The present invention has been completed on the basis of such findings. Firstly, C: 0.05-by weight%.
0.25%, Si: 0.10 to 2.00%, Mn: 0.
5 to 2.0%, Mo: 0.10 to 0.60%, V: 0.
01-0.1%, sol. Al: 0.002 to 0.20
%, N: 0.01 to 0.02%, is subjected to hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of recrystallization temperature or lower and Ar 3 or higher to obtain a steel plate. A
Heating to a two-phase region of c 1 or more and Ac 3 or less, Ar 1
From the above temperature range, the processing from the end of the plate to the end of the plate is started, and at the center of the plate, after that, when the value of Pcm of the steel shown below is P, P ° C / sec or more and 100 or more. × P
Cooling at a rate of 2 ° C / sec or less to make the microstructure a structure mainly composed of ferrite + bainite and having an island-like martensite of 5% or less, a thick wall refractory steel pipe for construction with a low yield ratio The present invention provides a method for manufacturing the same.

【0015】第2に、重量%で、C:0.05〜0.2
5%、Si:0.10〜2.00%、Mn:0.5〜
2.0%、Mo:0.10〜0.60%、V:0.01
〜0.1%、sol.Al:0.002〜0.20%、
N:0.01〜0.02%を含有し、さらに(i)Nb
+V+Tiが0.2%以下となる範囲のNbおよびTi
のうち少なくとも1種、(ii)Cu、NiおよびCrの
少なくとも1種を0.01〜1.5%、(iii) B:0.
0005〜0.005%、および(iV)Ca:0.00
05〜0.005%の(i)〜(iV)のうち少なくとも
1種を含有する鋼に、再結晶温度以下かつAr3 以上の
温度域において累積圧下率が30%以上の熱間圧延を施
して鋼板にし、その鋼板をAc1 以上でかつAc3 以下
の二相領域に加熱し、Ar1 以上の温度域から管状への
加工を板端部より開始し、板中央部にて終了して、その
後、以下に示す鋼のPcmの値をPとしたときに、P℃
/sec以上かつ100×P2 ℃/sec以下の速度で
冷却して、ミクロ組織を、フェライト+ベイナイトを主
体とし、島状マルテンサイトが5%以下の組織にするこ
とを特徴とする低降伏比の建築用厚肉耐火鋼管の製造方
法を提供するものである。
Secondly, C: 0.05 to 0.2 by weight%.
5%, Si: 0.10 to 2.00%, Mn: 0.5 to
2.0%, Mo: 0.10 to 0.60%, V: 0.01
~ 0.1%, sol. Al: 0.002 to 0.20%,
N: 0.01 to 0.02%, and (i) Nb
+ V + Ti Nb and Ti in a range of 0.2% or less
At least one of (ii) Cu, Ni and Cr of 0.01 to 1.5%, (iii) B: 0.
0005-0.005%, and (iV) Ca: 0.00
Steel containing at least one of (i) to (iV) of 05 to 0.005% is subjected to hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of recrystallization temperature or lower and Ar 3 or higher. To form a steel plate, heat the steel plate to a two-phase region of Ac 1 or more and Ac 3 or less, and start processing from the temperature region of Ar 1 or more into a tubular shape at the plate end and finish at the plate center. Then, when the value of Pcm of the steel shown below is set to P, P ° C
Yield ratio characterized by making the microstructure mainly ferrite + bainite and island martensite 5% or less by cooling at a rate of not less than / sec and not more than 100 x P 2 ° C / sec. The present invention provides a method for manufacturing a thick wall refractory steel pipe for construction.

【0016】Pcm=[C]+[Si]/30+[M
n]/20+[Cu]/20+[Ni]/60+[C
r]/20+[Mo]/15+[V]/10+5×
[B] (ただし[ ]は各元素の重量%で表した濃度を示
す。)
Pcm = [C] + [Si] / 30 + [M
n] / 20 + [Cu] / 20 + [Ni] / 60 + [C
r] / 20 + [Mo] / 15 + [V] / 10 + 5 ×
[B] (However, [] indicates the concentration expressed by weight% of each element.)

【0017】[0017]

【発明の実施の形態】以下、本発明に係る厚肉耐火鋼管
の製造方法について、組成、圧延条件、成形条件、ミク
ロ組織に分けて作用とともに詳細に説明する。 (組成)本発明では、基本成分元素としてC、Si、M
n、Mo、V、solAl、およびNを含有し、選択成
分として、(i)Nb、Tiの少なくとも1種、(ii)
Cu、NiおよびCrの少なくとも1種、(iii) B、お
よび(iV)Caの(i)〜(iV)のうち少なくとも1種
が添加される。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a thick-walled refractory steel pipe according to the present invention will be described below in detail in terms of composition, rolling conditions, forming conditions, and microstructure together with its action. (Composition) In the present invention, C, Si, and M are used as basic constituent elements.
n, Mo, V, solAl, and N, and (i) at least one of Nb and Ti as a selective component, (ii)
At least one of Cu, Ni and Cr, (iii) B, and at least one of (i) to (iV) of (iV) Ca are added.

【0018】これら成分元素の限定理由を以下に説明す
る。なお、以下の説明において%表示はすべて重量%を
示す。 C: この種の鋼の強度を安価にかつ効果的に確保する
ためにはCは0.05%は必要である。しかし、0.2
5%を超えると低温割れや高温割れ等が発生し、溶接性
や靭性を損なう。このため、C含有量を0.05〜0.
25%の範囲とする。
The reasons for limiting these constituent elements will be described below. In the following description, all percentages are% by weight. C: To secure the strength of this type of steel inexpensively and effectively, C is required to be 0.05%. However, 0.2
If it exceeds 5%, low temperature cracking, high temperature cracking, etc. occur, and the weldability and toughness are impaired. Therefore, the C content is 0.05 to 0.
The range is 25%.

【0019】Si: Siは脱酸剤として添加される
が、0.10%未満では十分な脱酸効果が得られず、一
方2.00%を越えて添加されると靭性や溶接性の劣化
を招く。このため、Si含有量を0.10〜2.00%
の範囲とする。
Si: Si is added as a deoxidizing agent, but if it is less than 0.10%, a sufficient deoxidizing effect cannot be obtained, while if it exceeds 2.00%, toughness and weldability deteriorate. Invite. Therefore, the Si content is 0.10 to 2.00%
Range.

【0020】Mn: Mnは鋼の強度および靭性の向上
に有効な鋼の基本元素として添加されるが、0.5%未
満ではその効果が小さく、また2.0%を超えると溶接
性や靭性が著しく劣化する。このため、Mn含有量を
0.5〜2.0%の範囲とする。
Mn: Mn is added as a basic element of steel effective for improving the strength and toughness of steel, but if it is less than 0.5%, its effect is small, and if it exceeds 2.0%, weldability and toughness are improved. Is significantly deteriorated. Therefore, the Mn content is set to the range of 0.5 to 2.0%.

【0021】Mo: Moは固溶強化による板厚各部に
おいて室温および高温にて高強度化を達成する効果を有
するとともに、微量添加では焼き入れ性の増大による組
織変化により靭性の劣化を抑制する効果がある。しか
し、その含有量が0.10%未満ではこれらの効果が十
分ではなく、高強度化および靭性劣化抑制が不十分とな
る。また、0.60%を越えて多量に添加されると溶接
性や靭性を損なうとともに、経済性をも損なってしま
う。このため、Mo含有量を0.10〜0.60%の範
囲とする。
Mo: Mo has the effect of achieving high strength at room temperature and high temperature in each part of the plate thickness by solid solution strengthening, and when added in a small amount, it suppresses deterioration of toughness due to structural change due to increase in hardenability. There is. However, if the content is less than 0.10%, these effects are not sufficient, and the increase in strength and suppression of deterioration of toughness become insufficient. Further, if it is added in a large amount exceeding 0.60%, not only the weldability and toughness are impaired, but also the economical efficiency is impaired. Therefore, the Mo content is set to the range of 0.10 to 0.60%.

【0022】V: Vは窒化物を形成して高温強度を向
上させるが、0.01%未満ではその効果が小さく、ま
た0.1%を超えると靭性低下につながる。このため、
V含有量を0.01〜0.1%の範囲とする。
V: V forms a nitride to improve the high temperature strength, but if it is less than 0.01%, its effect is small, and if it exceeds 0.1%, toughness is reduced. For this reason,
The V content is set to the range of 0.01 to 0.1%.

【0023】sol.Al: sol.Alは脱酸剤と
して添加されるが、0.002%未満では十分な脱酸効
果が得られず、また0.20%程度の添加でその効果が
飽和し、それより多く添加することは経済的な面から望
ましくない。このため、sol.Al含有量を0.00
2〜0.20%の範囲とする。
Sol. Al: sol. Al is added as a deoxidizing agent, but if it is less than 0.002%, a sufficient deoxidizing effect cannot be obtained, and if it is added at about 0.20%, the effect is saturated, and it is economical to add more than that. It is not desirable from the standpoint of physical aspects. Therefore, sol. Al content 0.00
The range is 2 to 0.20%.

【0024】N: Nは窒化物を形成して高温強度を向
上させるが、0.001%未満ではその効果が小さく、
また0.02%を超えると靭性低下につながる。このた
め、N含有量を0.001〜0.02%の範囲とする。
N: N forms a nitride to improve high temperature strength, but if less than 0.001%, its effect is small,
On the other hand, if it exceeds 0.02%, the toughness decreases. Therefore, the N content is set in the range of 0.001 to 0.02%.

【0025】以上が基本成分であるが、以下に示すN
b、Ti、Cu、Ni、Cr、B、およびCaを選択成
分として添加することによって、高温強度の向上、靭性
改善、介在物の形態制御が可能となり、溶接性も改善さ
れる。
The above are the basic components, but the following N
By adding b, Ti, Cu, Ni, Cr, B, and Ca as selective components, it becomes possible to improve the high temperature strength, improve the toughness, control the morphology of inclusions, and improve the weldability.

【0026】Nb、Ti: NbおよびTiはVと同様
に、析出硬化により高温にて高強度化を達成する効果が
ある。しかし、これらNbおよびTi、ならびに必須成
分として添加されるVの含有量が、Nb+V+Tiで
0.20%を超えるような範囲になると、室温において
極めて高強度となり、また靭性の低下につながる。この
ため、NbおよびTiは、Nb+2V+1.5Tiが
0.20%以下となるような範囲で含有される。
Nb, Ti: Nb and Ti, like V, have the effect of achieving high strength at high temperature by precipitation hardening. However, if the content of Nb and Ti and V added as an essential component exceeds 0.20% in Nb + V + Ti, the strength becomes extremely high at room temperature, and the toughness decreases. Therefore, Nb and Ti are contained in a range such that Nb + 2V + 1.5Ti is 0.20% or less.

【0027】Cu、Ni、Cr: Cu、Ni、Crは
固溶強化や焼き入れ性改善により靭性を大きく損なわず
に高強度化を計ることができるが、溶接性や経済性の観
点から、これらの含有量はCu、NiおよびCrの少な
くとも1種を0.01〜1.5%に範囲とする。
Cu, Ni, Cr: Cu, Ni, and Cr can be strengthened by solid solution strengthening or improving hardenability without significantly impairing toughness, but from the viewpoint of weldability and economical efficiency, The content of at least one of Cu, Ni and Cr is in the range of 0.01 to 1.5%.

【0028】Ca: Caは介在物の形態を球状化さ
せ、これにより水素誘起割れやラメラテアなどを防止す
る効果があるが、0.0005%未満ではその効果が得
られず、0.005%程度の添加で効果は飽和し、それ
より多量に添加することは経済的な面から好ましくな
い。このため、Ca含有量を0.0005〜0.005
%の範囲とする。
Ca: Ca has the effect of spheroidizing the form of inclusions, thereby preventing hydrogen-induced cracking, lamellatea, etc. However, if it is less than 0.0005%, that effect cannot be obtained, and about 0.005%. The effect is saturated by the addition of, and addition of a larger amount is not preferable from the economical point of view. Therefore, the Ca content is 0.0005 to 0.005.
% Range.

【0029】B: Bは焼き入れ性改善により靭性を大
きく損なわずに高強度化を図ることができるが、その含
有量が0.0005%未満ではその効果が十分に得られ
ず、また0.005%程度の添加でその効果は飽和し、
それより多量に添加することは経済的な面から好ましく
ない。このため、B含有量を0.0005〜0.005
%の範囲とする。
B: B can be strengthened by improving the hardenability without significantly impairing the toughness, but if its content is less than 0.0005%, its effect cannot be sufficiently obtained. The effect is saturated with the addition of about 005%,
It is not preferable from the economical viewpoint to add a larger amount than that. Therefore, the B content is 0.0005 to 0.005.
% Range.

【0030】(圧延条件)本発明においては、上述のよ
うな組成を有する鋼に対し、再結晶温度以下かつAr3
以上の温度域において累積圧下率が30%以上の熱間圧
延を施して鋼板とする。
(Rolling conditions) In the present invention, for the steel having the above composition, the recrystallization temperature is not higher than Ar 3
In the above temperature range, hot rolling with a cumulative reduction of 30% or more is performed to obtain a steel sheet.

【0031】ここで、再結晶温度以下で30%以上の累
積圧下率の熱間圧延を施すこととしたのは、未再結晶域
で十分な圧延を行うことにより、制御圧延の効果を十分
に発揮させて微細なオーステナイト粒を得るためであ
る。また、Ar3 以上の温度域で熱間圧延を行うため、
圧延終了温度も当然にAr3 以上となるが、このように
したのは、圧延によって伸展した組織の形成を抑制する
ためである。
Here, the reason why hot rolling with a cumulative reduction of 30% or more at the recrystallization temperature or lower is carried out is that the effect of the controlled rolling is sufficiently achieved by performing sufficient rolling in the unrecrystallized region. This is because the fine austenite grains are obtained by exerting them. Further, since hot rolling is performed in a temperature range of Ar 3 or higher,
The rolling end temperature is naturally Ar 3 or higher, but the reason for doing this is to suppress the formation of a structure elongated by rolling.

【0032】なお、再結晶温度は成分系によって異なる
が、目安としてNb無添加系で900℃程度、Nb添加
系で950℃程度である。また、Ar3 もCやMn含有
量によって変化するが、750℃程度が目安となる。
The recrystallization temperature varies depending on the component system, but as a guide, it is about 900 ° C. in the Nb-free system and about 950 ° C. in the Nb-containing system. Further, Ar 3 also varies depending on the C and Mn contents, but a guideline is about 750 ° C.

【0033】(成形条件)本発明においては、以上のよ
うにして圧延した鋼板をAc1 以上でかつAc3以下の
二相領域の温度範囲に加熱し、Ar1 以上の温度域から
管状への加工を板端部より開始し、板中央部にて終了し
て、その後、鋼のPcmの値をPとしたときに、P℃/
sec以上かつ100×P2 ℃/sec以下の速度で冷
却して、ミクロ組織をフェライト+ベイナイトを主体と
し、島状マルテンサイトが5%以下の組織にする。
(Forming Conditions) In the present invention, the steel sheet rolled as described above is heated to a temperature range of a two-phase region of Ac 1 or more and Ac 3 or less, and a temperature range of Ar 1 or more is converted into a tubular shape. When the processing starts from the edge of the plate and ends at the center of the plate, and then the value of Pcm of steel is P, P ° C /
By cooling at a rate of not less than sec and not more than 100 × P 2 ° C./sec, the microstructure is made mainly of ferrite + bainite and has an island martensite structure of 5% or less.

【0034】なお、ここでPcm=[C]+[Si]/
30+[Mn]/20+[Cu]/20+[Ni]/6
0+[Cr]/20+[Mo]/15+[V]/10+
5×[B] (ただし[ ]は各元素の重量%で表した
濃度を示す。)である。
Here, Pcm = [C] + [Si] /
30+ [Mn] / 20 + [Cu] / 20 + [Ni] / 6
0+ [Cr] / 20 + [Mo] / 15 + [V] / 10 +
5 × [B] (where [] indicates the concentration expressed by weight% of each element).

【0035】ここで鋼板をAc1 以上でかつAc3 以下
の二相領域の温度範囲に加熱して、Ar1 以上の温度域
から管状への加工を開始することとしたのは、変形抵抗
を低下させ、大きな設備能力を必要とせずに管状に成形
するためと、二相域での加工により低降伏比を達成する
ためである。
Here, the steel plate is heated in the temperature range of the two-phase region of Ac 1 or more and Ac 3 or less, and the processing into the tubular form is started from the temperature region of Ar 1 or more. This is because of lowering and forming into a tubular shape without requiring a large facility capacity, and for achieving a low yield ratio by processing in the two-phase region.

【0036】また、その後P℃/sec以上かつ100
×P2 ℃/sec以下の速度で冷却することとしたの
は、この範囲で冷却することにより鋼板のミクロ組織を
調整し、高降伏比化および低靭性化を抑制する効果があ
るからである。冷却速度がP℃/sec未満では組織の
粗大化を招き低靭性となり、100×P2 ℃/secよ
り速いとフルベイナイト組織となって高降伏比化を招
く。
After that, P ° C./sec or more and 100
The reason for cooling at a rate of × P 2 ° C / sec or less is that cooling in this range has the effect of adjusting the microstructure of the steel sheet and suppressing higher yield ratio and lower toughness. . If the cooling rate is less than P ° C./sec, the structure becomes coarse and the toughness becomes low. If the cooling rate is more than 100 × P 2 ° C./sec, a full bainite structure is formed, resulting in a high yield ratio.

【0037】さらに、板端部より加工を開始し、板中央
部にて加工を終了することとしたのは、加工中の温度低
下の速い板端部を初期に成形し、温度低下の比較的遅い
板中央部を後から成形することによって、板各部におけ
る加工の際の温度差を縮小する効果が得られるからであ
る。
Further, the reason why the processing is started from the plate end and finished at the plate central part is that the plate end which has a rapid temperature decrease during processing is initially formed and the temperature decrease is relatively low. This is because the effect of reducing the temperature difference at the time of processing in each part of the plate can be obtained by forming the slow plate center part later.

【0038】(ミクロ組織)ミクロ組織を、フェライト
+ベイナイトを主体とし、島状マルテンサイトを5%以
下にした組織に制御することとしたのは、このようにす
ることにより低降伏比化と靭性を確保する効果が得られ
るためである。フルベイナイト組織では高降伏比とな
り、また島状マルテンサイトが5%より多いと靭性が著
しく低下する。このため、ミクロ組織を、島状マルテン
サイトを5%以下含有するフェライト+ベイナイト組織
に制御する。特に低降伏比化のためには、島状マルテン
サイトを1%以上とすることが好ましい。
(Microstructure) The microstructure is controlled to have a structure mainly composed of ferrite + bainite and an island martensite content of 5% or less. This is because the effect of securing The full bainite structure has a high yield ratio, and if the island martensite content is more than 5%, the toughness is significantly reduced. Therefore, the microstructure is controlled to be a ferrite + bainite structure containing 5% or less of island martensite. In particular, in order to reduce the yield ratio, the island martensite content is preferably 1% or more.

【0039】なお、管状への成形は、プレスベンド等の
円筒に加工する際に通常用いられる方法を用いて行うこ
とが好適であるが、その方法は限定されるものではな
い。 (作用)ここで本発明を用いることにより、板厚各部に
おいて室温および高温における高強度、ならびに室温で
の低降伏比を達成することができるのは以下の作用によ
る。
The tubular molding is preferably carried out by using a method which is usually used for processing into a cylinder such as a press bend, but the method is not limited. (Operation) By using the present invention, it is possible to achieve high strength at room temperature and high temperature and low yield ratio at room temperature in each part of the plate thickness by the following operation.

【0040】基本成分としてC、Si、Mn、Mo、
V、sol.Al、およびNを含有し、または、さらに
(i)Nb、Tiの少なくとも1種、(ii)Cu、Ni
およびCrの少なくとも1種、(iii) B、および(iV)
Caの(i)〜(iV)のうち少なくとも1種を選択成分
として含有し、これらを特定の含有量に制御し、さらに
温間での製管の条件および順序を制御することによっ
て、板厚各部において室温および高温で高強度を達成す
る。つまり、鋼管柱の製造において、管状への成形時の
歪み分布によって材質の変化が生じることにより、板厚
中心部で低強度化が生じ、内外表で高降伏比化が生じる
が、本発明では、基本成分のうちMoおよびVあるいは
選択的に添加される元素による大きな固溶強化の効果、
および温間での製管の順序の制御による鋼板内での加工
温度の分布の縮小化により、板厚方向における材質の変
化が小さく、かつ高強度を達成することができる。
As basic components, C, Si, Mn, Mo,
V, sol. Containing Al and N, or (i) at least one of Nb and Ti, (ii) Cu, Ni
And at least one of Cr, (iii) B, and (iV)
By containing at least one of (i) to (iV) of Ca as a selective component, controlling these to a specific content, and further controlling the conditions and order of pipe making during warm, the plate thickness High strength is achieved at room temperature and high temperature in each part. That is, in the production of the steel pipe column, due to the change in material due to the strain distribution during forming into a tubular shape, lower strength occurs in the central portion of the plate thickness and higher yield ratio occurs in the inner and outer surfaces, but in the present invention, , A large effect of solid solution strengthening by Mo and V among the basic components or elements selectively added,
Also, by reducing the distribution of the working temperature in the steel sheet by controlling the order of pipe making during warming, it is possible to achieve a small change in material in the sheet thickness direction and to achieve high strength.

【0041】また、鋼板をAc1 以上でかつAc3 以下
の二相領域の温度範囲に加熱して、Ar1 以上の温度域
から管状への加工を開始することは、変形抵抗を低下さ
せ、大きな設備能力を必要とせずに管状に成形するこ
と、および二相域での加工により低降伏比を達成する作
用がある。また、その後P℃/sec以上かつ100×
2 ℃/sec以下の速度で冷却して、ミクロ組織を、
フェライト+ベイナイトを主体とし、島状マルテンサイ
トが5%以下とした組織に制御することは、組織の微細
化や島状マルテンサイト+フェライト+ベイナイトとす
ることで低降伏比を達成する効果がある。なお、
Further, heating the steel sheet to a temperature range of a two-phase region of Ac 1 or more and Ac 3 or less and starting the processing into a tubular shape from the temperature region of Ar 1 or more lowers the deformation resistance, It has a function of achieving a low yield ratio by forming into a tubular shape without requiring a large facility capacity and processing in the two-phase region. After that, P ° C / sec or more and 100 ×
The microstructure is cooled at a rate of P 2 ° C / sec or less,
Controlling the structure mainly composed of ferrite + bainite and containing island martensite at 5% or less has the effect of achieving a low yield ratio by refining the structure and using island martensite + ferrite + bainite. . In addition,

【0042】[0042]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)表1に示す組成の鋼を、1150℃に加熱
して粗圧延後、900〜800℃の温度域で累積圧下率
40%の仕上げ圧延を行い、板厚70mmの鋼板を製造
した。これらの鋼板を800℃に加熱後、直ちにプレス
ベンドによって管状への成形を板端部より開始し、板中
央部にて終了し、その後0.5℃/secの速度で冷却
した。このときの鋼管の外径Dと板厚tとの比D/tは
10とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) A steel having a composition shown in Table 1 was heated to 1150 ° C, rough-rolled, and then finish-rolled at a cumulative reduction of 40% in a temperature range of 900 to 800 ° C to produce a steel plate having a thickness of 70 mm. did. After these steel plates were heated to 800 ° C., they were immediately pressed into a tubular shape by press bending from the plate end to the plate center, and then cooled at a rate of 0.5 ° C./sec. The ratio D / t of the outer diameter D of the steel pipe and the plate thickness t at this time was set to 10.

【0043】このようにして成形した鋼管において、加
工温度が最も低く板厚方向での機械的性質の分布が大き
い最終加工部での機械的性質、板厚中央の600℃での
降伏強度(YS)、および表層近傍での島状マルテンサ
イトの体積分率を表2に示す。
In the steel pipe formed as described above, the mechanical properties in the final processed portion having the lowest working temperature and the large distribution of mechanical properties in the plate thickness direction, the yield strength (YS ), And the volume fraction of island martensite near the surface layer are shown in Table 2.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】表2に示すように、本発明の範囲内の成分
組成のものでは、0℃におけるシャルピー吸収エネルギ
ーvEが200J以上の高靭性、および80%以下の低
降伏比が得られた。さらに、板厚中央にて600℃にお
いても降伏強度(YS)が200MPa以上の高強度が
得られた。
As shown in Table 2, with the component compositions within the range of the present invention, high toughness with Charpy absorbed energy vE at 0 ° C. of 200 J or more and low yield ratio of 80% or less were obtained. Further, a high yield strength (YS) of 200 MPa or more was obtained even at 600 ° C. at the center of the plate thickness.

【0047】これに対して、本発明の範囲を外れる成分
組成のものは、板厚表層部あるいは中央部にて0℃にお
けるシャルピー吸収エネルギーvEが100J未満の低
靭性を示し、また板厚中央において600℃で降伏強度
(YS)が100MPa未満の低強度となった。
On the other hand, those having a component composition outside the scope of the present invention show low toughness with Charpy absorbed energy vE at 0 ° C. of less than 100 J at the surface layer portion or central portion of the sheet thickness and at the sheet thickness center. The yield strength (YS) at 600 ° C. was low strength of less than 100 MPa.

【0048】(実施例2)表1の符号A05の組成の鋼
を、1150℃に加熱して粗圧延後、表3に示すよう
に、1000〜650℃の温度域で累積圧下率20〜5
0%の仕上げ圧延を行い、板厚70mmの鋼板を製造し
た。この鋼板を800℃に加熱後、直ちにプレスベンド
によって管状への成形を板端部より開始し、板中央部に
て終了して、その後0.5℃/secの速度で冷却し
た。このときの鋼管の外径Dと板厚tとの比D/tは1
0とした。
Example 2 A steel having a composition of A05 in Table 1 was heated to 1150 ° C. and rough-rolled, and then, as shown in Table 3, in a temperature range of 1000 to 650 ° C., a cumulative reduction rate of 20 to 5 was obtained.
0% finish rolling was performed to manufacture a steel plate having a plate thickness of 70 mm. Immediately after heating the steel plate to 800 ° C., press-bending was started to form a tubular form from the plate end portion to the plate central portion, and then cooled at a rate of 0.5 ° C./sec. At this time, the ratio D / t between the outer diameter D of the steel pipe and the plate thickness t is 1
It was set to 0.

【0049】このようにして成形した鋼管において、最
終加工部での機械的性質、板厚中央の600℃近傍での
降伏強度(YS)、および表層近傍での島状マルテンサ
イトの体積分率を表3に示す。
In the steel pipe thus formed, the mechanical properties at the final working portion, the yield strength (YS) near 600 ° C. at the center of the sheet thickness, and the volume fraction of island martensite near the surface layer were measured. It shows in Table 3.

【0050】[0050]

【表3】 [Table 3]

【0051】表3に示すように、本発明の範囲内の製造
条件でかつ島状マルテンサイト体積分率が5%以下のも
のでは、板厚各部において0℃におけるシャルピー吸収
エネルギーvEが200J以上の高靭性、および80%
以下の低降伏比が得られた。さらに、板厚中央にて60
0℃において降伏強度(YS)が200MPa以上の高
強度が得られた。
As shown in Table 3, under the manufacturing conditions within the range of the present invention and the island-like martensite volume fraction is 5% or less, the Charpy absorbed energy vE at 0 ° C. in each part of the plate thickness is 200 J or more. High toughness, and 80%
The following low yield ratios were obtained. Furthermore, 60 at the center of the plate thickness
A high yield strength (YS) of 200 MPa or more was obtained at 0 ° C.

【0052】これに対して、本発明の範囲を外れる条件
のものは、板厚表層部あるいは中央部にて0℃における
シャルピー吸収エネルギーvEが100J未満の低靭性
を示すか、または80%を超える高降伏比となった。
On the other hand, under the conditions out of the range of the present invention, the Charpy absorbed energy vE at 0 ° C. in the surface layer portion or the central portion of the plate thickness shows low toughness of less than 100 J or exceeds 80%. It has a high yield ratio.

【0053】(実施例3)表1の符号A05の組成の鋼
を、1150℃に加熱して粗圧延後、900〜800℃
の温度域で累積圧下率40%の仕上げ圧延を行い、板厚
70mmの鋼板を製造した。この鋼板を、表4に示すよ
うに、1000〜700℃に加熱後、プレスベンドによ
って管状への成形を850〜500℃で板端部より開始
し、板中央部にて終了して、その後0.01〜100℃
/secの速度で冷却した。このときの鋼管の外径Dと
板厚tとの比D/tは10とした。
(Example 3) Steel having a composition of A05 in Table 1 was heated to 1150 ° C and rough-rolled, and then 900-800 ° C.
Finish rolling with a cumulative rolling reduction of 40% was performed in the temperature range of 1 to produce a steel sheet having a thickness of 70 mm. As shown in Table 4, after heating this steel plate to 1000 to 700 ° C., forming into a tubular shape by press bend starts from the plate end portion at 850 to 500 ° C. and ends at the plate central portion, and then 0 0.01 to 100 ° C
It was cooled at a rate of / sec. The ratio D / t of the outer diameter D of the steel pipe and the plate thickness t at this time was set to 10.

【0054】このようにして成形した鋼管において、最
終加工部での機械的性質、板厚中央の600℃近傍での
降伏強度(YS)、および表層近傍での島状マルテンサ
イトの体積分率を表4に示す。
In the steel pipe thus formed, the mechanical properties at the final processed portion, the yield strength (YS) near the center of the plate thickness of 600 ° C., and the volume fraction of island martensite near the surface layer were measured. It shows in Table 4.

【0055】[0055]

【表4】 [Table 4]

【0056】表4に示すように、本発明の範囲内の製造
条件でかつ島状マルテンサイト体積分率が5%以下のも
のでは、板厚各部において0℃におけるシャルピー吸収
エネルギーvEが200J以上の高靭性、および80%
以下の低降伏比が得られた。さらに、板厚中央にて60
0℃において降伏強度(YS)が200MPa以上の高
強度が得られた。
As shown in Table 4, under the manufacturing conditions within the range of the present invention and the island-like martensite volume fraction is 5% or less, the Charpy absorbed energy vE at 0 ° C. in each part of the plate thickness is 200 J or more. High toughness, and 80%
The following low yield ratios were obtained. Furthermore, 60 at the center of the plate thickness
A high yield strength (YS) of 200 MPa or more was obtained at 0 ° C.

【0057】これに対して、本発明の範囲を外れる条件
のものは、板厚表層部あるいは中央部にて0℃における
シャルピー吸収エネルギーvEが100J未満の低靭性
を示すか、または80%を超える高降伏比となった。な
お、上記実施例では鋼管の外径Dと板厚tとの比D/t
を10としたが、これに限定されるものではないことは
いうまでもない。
On the other hand, under the conditions out of the range of the present invention, the Charpy absorbed energy vE at 0 ° C. in the surface layer portion or the central portion of the plate thickness shows low toughness of less than 100 J or exceeds 80%. It has a high yield ratio. In the above embodiment, the ratio D / t of the outer diameter D of the steel pipe to the plate thickness t
Was set to 10, but it goes without saying that it is not limited to this.

【0058】[0058]

【発明の効果】以上説明したように、本発明によれば、
大きな設備能力を必要としない経済性の高い工程によ
り、靭性を損なうことなく、板厚各部において室温およ
び高温で高強度であり、かつ室温で低降伏比である、板
厚40mmを越える肉厚の建築用耐火鋼管を製造するこ
とが可能となる。
As described above, according to the present invention,
With a highly economical process that does not require large equipment capacity, it has a high strength at room temperature and high temperature in each part of the plate thickness without compromising toughness, and a low yield ratio at room temperature. It becomes possible to manufacture refractory steel pipes for construction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.05〜0.25%、
Si:0.10〜2.00%、Mn:0.5〜2.0
%、Mo:0.10〜0.60%、V:0.01〜0.
1%、sol.Al:0.002〜0.20%、N:
0.001〜0.02%を含有する鋼に、再結晶温度以
下かつAr3 以上の温度域において累積圧下率が30%
以上の熱間圧延を施して鋼板にし、その鋼板をAc1
上でかつAc3 以下の二相領域に加熱し、Ar1 以上の
温度域から管状への加工を板端部より開始し、板中央部
にて終了して、その後、以下に示す鋼のPcmの値をP
としたときに、P℃/sec以上かつ100×P2 ℃/
sec以下の速度で冷却して、ミクロ組織を、フェライ
ト+ベイナイトを主体とし、島状マルテンサイトが5%
以下の組織にすることを特徴とする低降伏比の建築用厚
肉耐火鋼管の製造方法。 Pcm=[C]+[Si]/30+[Mn]/20+
[Cu]/20+[Ni]/60+[Cr]/20+
[Mo]/15+[V]/10+5×[B] (ただし[ ]は各元素の重量%で表した濃度を示
す。)
1. C: 0.05 to 0.25% by weight,
Si: 0.10 to 2.00%, Mn: 0.5 to 2.0
%, Mo: 0.10 to 0.60%, V: 0.01 to 0.
1%, sol. Al: 0.002 to 0.20%, N:
The steel containing 0.001 to 0.02%, the recrystallization temperature or less and Ar 3 or more cumulative rolling reduction in a temperature range of 30%
The above hot rolling is applied to form a steel plate, the steel plate is heated to a two-phase region of Ac 1 or more and Ac 3 or less, and processing from an Ar 1 or more temperature region into a tubular shape is started from the plate end, After finishing at the center, the value of Pcm of steel shown below is set to P
And P × C / sec or more and 100 × P 2 ° C. /
Cooling at a rate of sec or less, the microstructure is mainly composed of ferrite + bainite, and island martensite is 5%.
A method for manufacturing a thick wall refractory steel pipe for construction having a low yield ratio, which has the following structure. Pcm = [C] + [Si] / 30 + [Mn] / 20 +
[Cu] / 20 + [Ni] / 60 + [Cr] / 20 +
[Mo] / 15 + [V] / 10 + 5 × [B] (where [] indicates the concentration expressed by weight% of each element.)
【請求項2】 重量%で、C:0.05〜0.25%、
Si:0.10〜2.00%、Mn:0.5〜2.0
%、Mo:0.10〜0.60%、V:0.01〜0.
1%、sol.Al:0.002〜0.20%、N:
0.001〜0.02%を含有し、さらに(i)Nb+
V+Tiが0.2%以下となる範囲のNbおよびTiの
うち少なくとも1種、(ii)Cu、NiおよびCrの少
なくとも1種を0.01〜1.5%、(iii) B:0.0
005〜0.005%、および(iV)Ca:0.000
5〜0.005%の(i)〜(iV)のうち少なくとも1
種を含有する鋼に、再結晶温度以下かつArc3 以上の
温度域において累積圧下率が30%以上の熱間圧延を施
して鋼板にし、その鋼板をAc1 以上でかつAc3 以下
の二相領域に加熱し、Ar1 以上の温度域から管状への
加工を板端部より開始し、板中央部にて終了して、その
後、鋼のPcmの値をPとしたときに、P℃/sec以
上かつ100×P2 ℃/sec以下の速度で冷却して、
ミクロ組織を、フェライト+ベイナイトを主体とし、島
状マルテンサイトが5%以下の組織にすることを特徴と
する低降伏比の建築用厚肉耐火鋼管の製造方法。 Pcm=[C]+[Si]/30+[Mn]/20+
[Cu]/20+[Ni]/60+[Cr]/20+
[Mo]/15+[V]/10+5×[B] (ただし[ ]は各元素の重量%で表した濃度を示
す。)
2. C: 0.05 to 0.25% by weight,
Si: 0.10 to 2.00%, Mn: 0.5 to 2.0
%, Mo: 0.10 to 0.60%, V: 0.01 to 0.
1%, sol. Al: 0.002 to 0.20%, N:
0.001 to 0.02%, and (i) Nb +
At least one of Nb and Ti in a range where V + Ti is 0.2% or less, (ii) 0.01 to 1.5% of at least one of Cu, Ni and Cr, (iii) B: 0.0
005-0.005%, and (iV) Ca: 0.000
At least 1 out of 5 to 0.005% of (i) to (iV)
A steel containing seeds is subjected to hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of recrystallization temperature or lower and Arc 3 or higher to obtain a steel sheet, and the steel sheet has two phases of Ac 1 or more and Ac 3 or less. When the area is heated, the processing from the temperature range of Ar 1 or higher to the tubular shape is started from the plate end and finished at the plate center, and then when the value of Pcm of the steel is P, P ° C / Cool at a rate of not less than sec and not more than 100 x P 2 ° C / sec,
A method for producing a thick-walled refractory steel pipe for construction with a low yield ratio, characterized in that a microstructure is mainly composed of ferrite + bainite and an island martensite is 5% or less. Pcm = [C] + [Si] / 30 + [Mn] / 20 +
[Cu] / 20 + [Ni] / 60 + [Cr] / 20 +
[Mo] / 15 + [V] / 10 + 5 × [B] (where [] indicates the concentration expressed by weight% of each element.)
JP32582295A 1995-12-14 1995-12-14 Production of building use thick fire resistant steel tube low in yield ratio Pending JPH09165620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32582295A JPH09165620A (en) 1995-12-14 1995-12-14 Production of building use thick fire resistant steel tube low in yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32582295A JPH09165620A (en) 1995-12-14 1995-12-14 Production of building use thick fire resistant steel tube low in yield ratio

Publications (1)

Publication Number Publication Date
JPH09165620A true JPH09165620A (en) 1997-06-24

Family

ID=18180993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32582295A Pending JPH09165620A (en) 1995-12-14 1995-12-14 Production of building use thick fire resistant steel tube low in yield ratio

Country Status (1)

Country Link
JP (1) JPH09165620A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375681A3 (en) * 2002-05-27 2004-02-11 Nippon Steel Corporation High-strength high-toughness steel , method for producing the same and method for producing high-strength high-toughness steel pipe
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
JP2012077340A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion
CN109576568A (en) * 2017-09-28 2019-04-05 宝山钢铁股份有限公司 A kind of high-strength weldable casing and its manufacturing method
CN110284077A (en) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 A kind of manufacturing method of thin gauge high tenacity pipe line steel
CN110284066A (en) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 A kind of thin gauge low-yield ratio pipeline steel and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1375681A3 (en) * 2002-05-27 2004-02-11 Nippon Steel Corporation High-strength high-toughness steel , method for producing the same and method for producing high-strength high-toughness steel pipe
JP2007211278A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Fire-resistant thick steel plate and manufacturing method therefor
JP2012077340A (en) * 2010-09-30 2012-04-19 Kobe Steel Ltd High strength steel sheet having tensile strength of 980 mpa or more and excellent in low temperature toughness at multilayer welding joint portion
CN109576568A (en) * 2017-09-28 2019-04-05 宝山钢铁股份有限公司 A kind of high-strength weldable casing and its manufacturing method
CN110284077A (en) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 A kind of manufacturing method of thin gauge high tenacity pipe line steel
CN110284066A (en) * 2019-07-24 2019-09-27 宝钢湛江钢铁有限公司 A kind of thin gauge low-yield ratio pipeline steel and its manufacturing method
CN110284066B (en) * 2019-07-24 2021-04-16 宝钢湛江钢铁有限公司 Thin-gauge low-yield-ratio pipeline steel and manufacturing method thereof
CN110284077B (en) * 2019-07-24 2021-06-01 宝钢湛江钢铁有限公司 Manufacturing method of thin-gauge high-toughness pipeline steel

Similar Documents

Publication Publication Date Title
KR100799421B1 (en) Cold-formed steel pipe and tube having excellent in weldability with 490MPa-class of low yield ratio, and manufacturing process thereof
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP3022280B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH09165620A (en) Production of building use thick fire resistant steel tube low in yield ratio
JPH09111340A (en) High strength and low yield ratio steel for reinforcing bar and its production
JPH11335735A (en) Manufacture of extra thick shape steel excellent in weldability, strength and toughness
JPH09165621A (en) Production of building use thick fire resistant steel tube having low yield ratio
JPH09137222A (en) Production of steel for high strength and low yield ratio reinforcing bar
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JP3307164B2 (en) Method for producing ultra-high tensile ERW steel pipe with excellent resistance to hydrogen delayed cracking
JP3849625B2 (en) Manufacturing method of ultra-high strength ERW steel pipe
JP3546721B2 (en) Manufacturing method of low yield ratio high tensile strength steel with small material difference in thickness direction
JP2002363642A (en) Method for producing rolled wide flange shape having low yield ratio and excellent toughness
JPH07188748A (en) Production of steel tube having high strength and low yield ratio for construction use
JP3497250B2 (en) Method for producing low-yield ratio 590 N / mm2 class high strength steel with excellent weldability
JP3322065B2 (en) Method of manufacturing low yield ratio thick steel tube column for building
JP3322064B2 (en) Method of manufacturing low yield ratio thick steel tube column for building
JPS6367524B2 (en)
JPH07150246A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JPH08283849A (en) Production of building thick steel pipe pole having high toughness and low in yield ratio