JPS6367524B2 - - Google Patents

Info

Publication number
JPS6367524B2
JPS6367524B2 JP8340583A JP8340583A JPS6367524B2 JP S6367524 B2 JPS6367524 B2 JP S6367524B2 JP 8340583 A JP8340583 A JP 8340583A JP 8340583 A JP8340583 A JP 8340583A JP S6367524 B2 JPS6367524 B2 JP S6367524B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
hot
less
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8340583A
Other languages
Japanese (ja)
Other versions
JPS59208019A (en
Inventor
Noriaki Nagao
Kazutoshi Kunishige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8340583A priority Critical patent/JPS59208019A/en
Publication of JPS59208019A publication Critical patent/JPS59208019A/en
Publication of JPS6367524B2 publication Critical patent/JPS6367524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、伸びが30%程度、衝撃破面遷移温
度が−40℃程度で、かつ、引張強さが50Kgf/mm2
以上という、加工性、靭性、そして強度がともに
優れた熱延高張力鋼板は、連続鋳造で得られる熱
スラブの保有熱を有効に利用して、エネルギー消
費量少なく製造する方法に関するものである。 従来、引張強さが50Kgf/mm2以上の非調質熱延
鋼板として、Ti、Nb及びV等の元素を添加して
熱延し、550〜600℃で巻取つたものが主として知
られ、使用に供されてきたが、この鋼板には、高
価な添加元素を必要とするのでコスト高となる
上、加工性の面からも汎用性を欠けるという問題
があり、幅広い要望に応えられないでいるのが現
状であつた。 そのほか、非調質熱延高張力鋼板として、通常
炭素鋼を熱延後、Ms点以下の温度まで急冷して
巻取り、2相鋼としたものも知られているが、こ
の鋼板にも、製造コストが高くなることに加えて
降伏比が低いという問題点があり、やはりその用
途が制限されるものであつた。 ところで、近年、省エネルギーの観点から、連
続鋳造後の熱スラブを一旦冷却することなくその
まま、或いは軽加熱や保温工程を経ただけで熱間
圧延するという直接圧延法が注目され、多くの研
究報告がなされるようになつてきた。そこで、コ
スト低減のために前記直接圧延法を非調質熱延鋼
板の製造に適用しようとの試みもなされたが、熱
スラブをAr3点以下にまで降温せずに熱間圧延す
ると、圧延前のオーステナイト粒が超粗粒となつ
ているので圧延後の組織も粗粒となり、加工性や
靭性が著しく劣化するという不都合を生じたこと
から、結局は、従来のように連続鋳造スラブを
Ar3点以下に一旦降温してから再加熱し、圧延せ
ざるを得ないという状態が続いていたのである。 本発明者等は、上述のような観点から、十分な
強度と優れた加工性とを備えた高張力鋼板を、直
接圧延法によつてエネルギー消費少なく製造する
方法を見出すべく、鋼材成分組成、並びに圧延処
理手段の両面から各種試験・調査を繰り返しなが
ら研究を重ねた結果、特定成分割合の炭素鋼を熱
間圧延する際、その仕上げ温度、圧延後の冷却速
度、及び巻取温度をそれぞれ特定の値に制御すれ
ば、鋼の成分として特殊な元素を添加することな
く、また連続鋳造によつて得られた熱延スラブを
一旦Ar3点以下にまで降温しなくても、良好な加
工性と高強度を備え、かつ高靭性を示す熱延鋼板
が得られることを知見するに至つたのである。 この発明は、上記知見に基づいてなされたもの
であり、 C:0.12〜0.25%、Si:0.50%以下、 Mn:0.50〜1.2%、S:0.015%以下、 Al:0.005〜0.080%、 を含有するか、或いは更に、 P:0.10%以下、N:0.0300%以下、 Ca:0.010%以下、 のうちの1種以上をも含み、 Fe及び不可避的不純物:残り、 から成る成分組成(以下、成分割合を表わす%は
重量%とする)の鋼を連続鋳造してスラブとした
後、該スラブの温度をAr3点以下に下げることな
く引き続いて熱間圧延を行い、(Ar3点+50℃)
〜Ar3点の温度で圧延を終了後、500℃〜Ms点の
温度域まで60℃/sec以上の冷却速度で加速冷却
し、巻取ることにより、加工性、靭性、並びに強
度がともに優れた加工用熱延高張力鋼板を実現し
た点に特徴を有するものである。 次いで、この発明の加工用熱延高張力鋼板の製
造法において、素材鋼の成分たるC、Si、Mn、
S、Al、P、N、及びCaの成分組成、更には圧
延条件並びに冷却条件を上記の如くに限定した理
由を説明する。 A 鋼の成分組成 (a) C C成分には、鋼を強化する作用があり、50
Kgf/mm2以上の引張り強さを有する高張力鋼
板を得るためには0.12%以上の含有量が必要
であるが、0.25%を超えて含有させると、例
えば自動車用高張力鋼板として必須の点溶接
性が劣化するようになることから、C含有量
を0.12〜0.25%と定めた。 (b) Si Si成分には固溶強化によつて鋼を強化する
作用があり、延性の優れた高張力鋼を得るた
めに好ましい元素であるが、その含有量が
0.50%を超えると、鋼板の表面性状が、いわ
ゆる島状スケールの発生により劣化するよう
になることから、Si含有量を0.50%以下と定
めた。 (c) Mn Mn成分には、固溶強化によつて鋼を強化
するとともに鋼の焼入れ性を向上し、パーラ
イト粒の分散化による局部延性をも向上する
作用があり必要な強度を得るためには0.50%
以上の含有量が必要であるが、その含有量が
1.2%を超えると低温変態組織が混ざつた2
相となり、低降伏比となる上、コストも上昇
することから、Mn含有量を0.50〜1.2%と定
めた。 (d) S Sは、硫化物を生成し、加工性を劣化させ
るので可及的に少ない方が望ましいが、その
含有量が0.015%以下であれば所望の加工性
を確保できることから、S含有量の上限を
0.015%と定めた。 (e) Al Al(sol.Al)は鋼の脱酸剤として有効なも
のであるが、その含有量が0.005%未満では
脱酸の効果が期待できなくなり、他方0.080
%を超えて含有させても脱酸の効果が飽和し
てそれ以上の効果が期待できなくなることか
ら、Al含有量を0.005〜0.080%と限定した。 (f) P P成分は、廉価に鋼を固溶強化させる作用
を有しており、鋼の強度をより一層向上する
必要がある場合に積極的に添加するものであ
るが、その含有量が0.10%を超えると結晶粒
界の脆化を生ずるようになることから、P含
有量は0.10%以下と定めた。 (g) N N成分にも、Pと同様に、廉価に鋼を固溶
強化させる作用が存するものであるが、
0.0300%を越えて含有させると鋳造時にフク
レを生じ、かつ加工性を劣化させるようにな
ることから、N含有量は0.0300%以下と定め
た。 (h) Ca Ca成分には、介在物の形状調整作用によ
り鋼の加工性を向上させる作用があるので、
加工性をより一層向上せしめる必要がある場
合に添加含有せしめられるものであるが、
0.010%を越えて含有させると鋼中の介在物
量が多くなり、添加目的とは逆に加工性を劣
下することとなるので、Ca含有量は0.010%
以下と定めた。 B 熱スラブの温度をAr3点以下に下げない理由 連続鋳造によつて得られた熱スラブの温度を
Ar3点以下に下げることなく引き続いて熱間圧
延に付すのは、再加熱に必要な加熱炉の燃料原
単位をなくする意味と、Ar3点以下に降温する
とNがAlNとして析出してしまつて、固溶N
による強化作用が損われるためである。 C 圧延終了温度(圧延仕上げ温度) 第1図は、鋼板の伸び、靭性及び降伏点に与
える最終仕上げ温度の影響を示す図であり、こ
れは、 C:0.16〜0.20%、Si:0.1〜0.2%、 Mn:0.8〜1.0%、S:0.002〜0.010%、 Al:0.01〜0.05%、 N:0.0060〜0.0150%、 P:0.020〜0.080%、 Ca:0〜0.005% を含有し、残部が実質的にFeである鋼を、連
続鋳造にて200mm厚のスラブとした後、Ar3
以下に降温することなく直接圧延して得た2.6
mm厚の熱延板について行つた調査結果である。 第1図からは、最終仕上げ温度(圧延終了温
度)がAr3点より低くなると、フエライト域で
の圧延を含むこととなつて初析フエライトが加
工されるために降伏点が著しく高くなり、また
加工性(伸び)も劣化することがわかる。一
方、最終仕上げ温度が(Ar3点+50℃)よりも
高い温度になると、圧延によるオーステナイト
の細粒化効果が不十分なために組織の粗粒化が
顕著となり、延性並びに靭性の劣化を生ずるこ
ととなることが明らかである。従つて、圧延終
了温度を(Ar3点+50℃)〜Ar3点の温度と定
めた。 D 圧延終了後の冷却速度 圧延終了後の冷却速度が60℃/sec下回ると
フエライト粒が粗粒となり、加工性並びに靭性
の劣化を招くことから、上記冷却速度を60℃/
sec以上と定めた。 第2図は、鋼板のフエライト粒度No.、伸び及
び靭性に与える圧延後の冷却速度の影響を示す
図であり、最終仕上げ温度の影響を調べたとき
と同じ条件で熱スラブを直接圧延し、それぞれ
の最終仕上温度を(Ar3点+50℃)〜Ar3点と
した2.6mm厚の鋼板について調べたものである。
第2図からも、圧延終了後の冷却速度が60℃/
secを下回ると前記諸特性が劣化することが明
らかである。 冷却速度の上限については格別な制限を必要
とするものではないが、冷却速度が極端に速く
なるとベイナイトが混入することとなるので、
60〜150℃/secの冷却速度を好ましい範囲とし
て推奨できる。 つまり、圧延後の冷却速度が遅い場合には、
上述したように、圧延後の粗大γ粒から初折フ
エライトが析出・成長することとなつて粗大な
フエライト粒を形成し、極端な靭性劣化を招く
上、第二相であるパーライト部も大きくなつて
加工性をも劣化することから、特に下限値の60
℃/secを下回らないように冷却速度の制御を
十分実施する必要がある。 E 加速冷却終了温度(巻取り温度) 巻取り温度を500〜Ms点としたのは、その温
度が500℃を越えるとAlNが析出して固溶Nに
よる強化が期待できなくなり、一方、Ms点未
満の温度で巻取ると、いわゆる二相鋼となつて
しまつて降伏点が低くなりすぎ、その用途が限
定されてしまうからである。 更に、巻取り温度を500℃以下とすることに
より、Pの粒界偏析による脆化を防止すること
ができ、従つてPの多量添加が可能になること
からも、巻取り温度を500℃以下にすることが
有利である。 なお、この発明の方法において対象となる鋼
は、通常の溶解炉にて溶製、脱酸、成分調整をな
され(必要に応じて脱ガス処理を行つても良いこ
とはもちろんである)、連続鋳造された後、熱間
圧延されるが、圧延開始温度には特に制限がない
けれども、連続鋳造で得られた熱スラブをAr3
以下に降温することなく直接圧延することが肝要
であることは前述の通りである。ここで、「直接
圧延」とは、直接熱間圧延設備に熱スラブを送つ
て圧延するか、或いは熱スラブを一旦加熱炉に装
入して軽加熱又は軽保熱後圧延するという意味で
ある。 次いで、この発明を実施例により比較例を対比
しながら説明する。 実施例 1 まず、常法にて、C:0.15%、Si:0.1%、
Mn:0.82%、P:0.015%、S:0.005%、Al:
0.04%、N:0.0062%を含有する鋼を溶製し、連
続鋳造にて250mm厚のスラブとした後、第1表に
示される如き条件にて圧延し、3.5mm厚の熱延板
を製造した。なお、この鋼のAr3
This invention has an elongation of about 30%, an impact fracture transition temperature of about -40℃, and a tensile strength of 50Kgf/mm 2
The above-mentioned hot-rolled high-strength steel sheet with excellent workability, toughness, and strength is related to a method of manufacturing with low energy consumption by effectively utilizing the heat retained in a hot slab obtained by continuous casting. Conventionally, non-heat-treated hot-rolled steel sheets with a tensile strength of 50 Kgf/ mm2 or higher are mainly known as those that are hot-rolled by adding elements such as Ti, Nb, and V, and then coiled at 550 to 600°C. Although this steel sheet has been put into use, it requires expensive additive elements, making it expensive, and it also lacks versatility in terms of workability, making it unable to meet a wide range of requests. It was the current situation. In addition, it is also known that non-tempered hot-rolled high-strength steel sheets are produced by hot-rolling ordinary carbon steel, then rapidly cooling it to a temperature below the Ms point, and then coiling it to create a duplex steel. In addition to high manufacturing costs, there were problems in that the yield ratio was low, which also limited its use. By the way, in recent years, from the viewpoint of energy saving, the direct rolling method, in which hot rolling of hot slabs after continuous casting is directly rolled without cooling or after passing through a light heating or heat retention process, has attracted attention, and many research reports have been published. It has become common practice to do so. Therefore, attempts have been made to apply the above-mentioned direct rolling method to the production of non-thermal hot rolled steel sheets in order to reduce costs, but if the hot slab is hot rolled without lowering the temperature to Ar 3 or less, the rolling Because the previous austenite grains were ultra-coarse grains, the structure after rolling also became coarse grains, resulting in a significant deterioration of workability and toughness.
The situation continued in which the steel had no choice but to cool down to below the Ar 3 point, then reheat and roll. From the above-mentioned viewpoints, the present inventors have developed a method for producing high-strength steel sheets with sufficient strength and excellent workability using a direct rolling method with low energy consumption. As a result of repeated research and repeated various tests and investigations on both sides of rolling processing methods, we have determined the finishing temperature, cooling rate after rolling, and coiling temperature when hot rolling carbon steel with a specific component ratio. By controlling the value of They discovered that it is possible to obtain a hot-rolled steel sheet that has high strength and toughness. This invention was made based on the above findings, and contains C: 0.12 to 0.25%, Si: 0.50% or less, Mn: 0.50 to 1.2%, S: 0.015% or less, Al: 0.005 to 0.080%. or, in addition, contains one or more of the following: P: 0.10% or less, N: 0.0300% or less, Ca: 0.010% or less, Fe and unavoidable impurities: the remainder; After continuous casting of steel into a slab (% representing the ratio is weight %), hot rolling is performed without lowering the temperature of the slab below Ar 3 points (Ar 3 points + 50 ° C).
After finishing rolling at the temperature of ~Ar 3 points, accelerated cooling at a cooling rate of 60°C/sec or more to the temperature range of 500°C to Ms point, and coiling, it has excellent workability, toughness, and strength. It is characterized by the realization of a hot-rolled high-strength steel plate for processing. Next, in the method for manufacturing a hot-rolled high-strength steel sheet for processing according to the present invention, C, Si, Mn, which are components of the raw steel,
The reason why the component compositions of S, Al, P, N, and Ca, as well as the rolling conditions and cooling conditions are limited as described above will be explained. A Composition of steel (a) C C component has the effect of strengthening steel, and 50
In order to obtain a high tensile strength steel sheet with a tensile strength of Kgf/mm 2 or more, a content of 0.12% or more is required, but if the content exceeds 0.25%, it will become indispensable as a high tensile strength steel sheet for automobiles, for example. Since weldability deteriorates, the C content was set at 0.12 to 0.25%. (b) Si The Si component has the effect of strengthening steel through solid solution strengthening, and is a desirable element for obtaining high-strength steel with excellent ductility.
If it exceeds 0.50%, the surface quality of the steel sheet will deteriorate due to the formation of so-called island scales, so the Si content was set at 0.50% or less. (c) Mn The Mn component has the effect of strengthening the steel through solid solution strengthening, improving the hardenability of the steel, and improving local ductility through the dispersion of pearlite grains. is 0.50%
or more content is required, but the content is
When it exceeds 1.2%, low temperature transformed structure is mixed2.
The Mn content was set at 0.50 to 1.2% because this would result in a low yield ratio and increase cost. (d) S S produces sulfides and deteriorates workability, so it is desirable to have as little as possible, but if the content is 0.015% or less, the desired workability can be ensured, so S content upper limit of amount
It was set at 0.015%. (e) Al Al (sol.Al) is effective as a deoxidizing agent for steel, but if its content is less than 0.005%, the deoxidizing effect cannot be expected;
The Al content was limited to 0.005 to 0.080% because the deoxidizing effect would be saturated and no further effect could be expected if the Al content exceeded 0.005% to 0.080%. (f) P The P component has the effect of solid solution strengthening of steel at low cost, and is actively added when it is necessary to further improve the strength of steel. Since P content exceeding 0.10% causes embrittlement of grain boundaries, the P content was set at 0.10% or less. (g) N Similar to P, the N component also has the effect of solid solution strengthening of steel at low cost.
Since N content exceeding 0.0300% causes blistering during casting and deteriorates workability, the N content was determined to be 0.0300% or less. (h) Ca Ca component has the effect of improving the workability of steel by adjusting the shape of inclusions.
It can be added when it is necessary to further improve processability, but
If Ca content exceeds 0.010%, the amount of inclusions in the steel will increase, which is contrary to the purpose of addition, and will deteriorate workability, so the Ca content should be 0.010%.
It was determined as follows. B Reasons for not lowering the temperature of the hot slab below Ar 3 points The temperature of the hot slab obtained by continuous casting
The reason for continuing hot rolling without lowering the Ar level to below 3 points is to eliminate the fuel consumption of the heating furnace required for reheating, and also because if the temperature falls below the Ar level of 3 points, N will precipitate as AlN. Therefore, solid solution N
This is because the reinforcing effect of C Rolling Finish Temperature (Rolling Finishing Temperature) Figure 1 is a diagram showing the influence of final finishing temperature on the elongation, toughness, and yield point of a steel plate, which is as follows: C: 0.16 to 0.20%, Si: 0.1 to 0.2 %, Mn: 0.8 to 1.0%, S: 0.002 to 0.010%, Al: 0.01 to 0.05%, N: 0.0060 to 0.0150%, P: 0.020 to 0.080%, Ca: 0 to 0.005%, and the remainder is real. 2.6, which was obtained by continuous casting of Fe steel into a 200 mm thick slab, and then directly rolling it without lowering the temperature below the Ar 3 point.
These are the results of an investigation conducted on a mm-thick hot-rolled sheet. From Figure 1, when the final finishing temperature (rolling end temperature) is lower than the Ar 3 point, the yield point becomes significantly higher because rolling is included in the ferrite region and pro-eutectoid ferrite is processed. It can be seen that workability (elongation) also deteriorates. On the other hand, when the final finishing temperature is higher than (Ar 3 points + 50℃), the grain refinement effect of austenite by rolling is insufficient, and the structure becomes coarser, resulting in deterioration of ductility and toughness. It is clear that this is the case. Therefore, the rolling end temperature was determined to be between (Ar 3 points + 50°C) and Ar 3 points. D Cooling rate after completion of rolling If the cooling rate after completion of rolling is less than 60℃/sec, the ferrite grains will become coarse, resulting in deterioration of workability and toughness.
sec or more. Figure 2 is a diagram showing the influence of the cooling rate after rolling on the ferrite grain size number, elongation, and toughness of the steel plate. This study was conducted on a 2.6 mm thick steel plate with the final finishing temperature ranging from (Ar 3 points + 50°C) to Ar 3 points.
From Figure 2, the cooling rate after rolling is 60℃/
It is clear that below sec, the above-mentioned characteristics deteriorate. There is no need to impose any particular upper limit on the cooling rate, but if the cooling rate becomes extremely fast, bainite will be mixed in.
A cooling rate of 60 to 150°C/sec can be recommended as a preferred range. In other words, if the cooling rate after rolling is slow,
As mentioned above, primary ferrite precipitates and grows from the coarse γ grains after rolling, forming coarse ferrite grains, leading to extreme toughness deterioration, and the pearlite part, which is the second phase, also becomes larger. In particular, the lower limit of 60
It is necessary to sufficiently control the cooling rate so that it does not fall below ℃/sec. E. Accelerated cooling end temperature (winding temperature) The reason why the winding temperature was set at 500 to Ms point is that if the temperature exceeds 500℃, AlN will precipitate and strengthening by solid solution N cannot be expected. This is because if the steel is wound at a temperature lower than that, the steel becomes a so-called two-phase steel, the yield point of which becomes too low, and its uses are limited. Furthermore, by setting the winding temperature to 500°C or less, embrittlement due to grain boundary segregation of P can be prevented, and therefore a large amount of P can be added. It is advantageous to do so. The steel to be used in the method of this invention is melted, deoxidized, and compositionally adjusted in a normal melting furnace (of course degassing treatment may be performed as necessary), and the steel is continuously melted and deoxidized in a normal melting furnace. After being cast, it is hot rolled, and although there is no particular restriction on the rolling start temperature, it is important to directly roll the hot slab obtained by continuous casting without lowering the temperature below Ar 3 points. is as described above. Here, "direct rolling" means that the hot slab is directly sent to a hot rolling facility and rolled, or the hot slab is once charged into a heating furnace and then rolled after being lightly heated or lightly heat-retained. . Next, the present invention will be explained using examples and comparing comparative examples. Example 1 First, C: 0.15%, Si: 0.1%,
Mn: 0.82%, P: 0.015%, S: 0.005%, Al:
Steel containing 0.04% and N: 0.0062% is made into a 250mm thick slab by continuous casting, and then rolled under the conditions shown in Table 1 to produce a 3.5mm thick hot rolled plate. did. In addition, this steel has 3 Ar points.

【表】 (注) ※印は、本発明の条件から外れていることを
示すものである。
は780℃で、Ms点は405℃であつた。 また、第1表における「通常加熱法」とは、連
続鋳造スラブを一旦室温まで冷却し、熱間圧延の
ために再び高温(1200℃)に加熱する方法であ
り、「再加熱法」とは、連続鋳造スラブをAr3
以下(600℃)にまで冷却後、熱間圧延のために
再び高温に加熱する方法であり、「直接圧延」と
は、連続鋳造熱スラブをAr3点以下に降温するこ
となくそのまま直接熱間圧延する方法を指すもの
である。 そして、このようにして得られた鋼板の特性、
並びに加熱炉の燃料原単位を測定し、その結果も
第1表に併せて示した。 第1表に示される結果からも明らかなように、
本発明の方法によれば、大幅な省エネルギーが図
れると共に、優れた加工性と靭性とを有する高強
度鋼板が得られるのに対して、通常加熱法である
比較法1では、狙いとする50Kgf/mm2以上の引張
強さを実現できないばかりでなく、多量の加熱炉
燃料を必要としており、再加熱法である比較法2
では、若干の省エネルギーとはなるけれども、得
られる鋼板の特性は比較法1と同レベルでしかな
い。そして、比較法3は連続鋳造スラブを直接圧
延したもので、大幅な省エネルギーを図れるが、
圧延仕上温度、冷却速度、及び巻取温度共に本発
明の範囲から外れているために得られる鋼板の特
性は比較法1及び2よりも劣つた結果となつてい
る。また、比較法6〜10は、仕上温度、冷却速度
及び巻取温度のいずれかが本発明の範囲から外れ
ていることであり、得られる鋼板は、やはり本発
明方法で得られるものに比して特性が明らかに劣
化したものとなつている。 実施例 2 それぞれ第2表に示される如き成分組成の鋼を
常法通りに溶製し、連続鋳造にて200mm厚のスラ
ブとした後、引き続いてAr3点以下に降温するこ
となく直接圧延した。その際の圧延条件は、圧延
開始温度:1000℃、仕上温度:800℃、冷却速
度:80℃/sec、巻取温度:450℃であり、得られ
た鋼板の板厚は4.5mmであつた。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
The temperature was 780℃, and the Ms point was 405℃. In addition, the "normal heating method" in Table 1 is a method in which the continuously cast slab is once cooled to room temperature and then heated again to a high temperature (1200°C) for hot rolling. , is a method in which a continuously cast slab is cooled to an Ar of 3 points or less (600℃) and then heated again to a high temperature for hot rolling. "Direct rolling" refers to a method in which a continuously cast hot slab is cooled to an Ar of 3 or less (600℃), and then heated to a high temperature again for hot rolling. This refers to a method of directly hot rolling without lowering the temperature. And the properties of the steel sheet obtained in this way,
In addition, the fuel consumption of the heating furnace was measured, and the results are also shown in Table 1. As is clear from the results shown in Table 1,
According to the method of the present invention, a high-strength steel plate with excellent workability and toughness can be obtained as well as achieving significant energy savings, whereas Comparative Method 1, which is a normal heating method, achieves the target of 50Kgf/ Comparative method 2, which is a reheating method, not only cannot achieve a tensile strength of mm 2 or more, but also requires a large amount of heating furnace fuel.
Although this method results in some energy savings, the properties of the obtained steel sheet are only on the same level as Comparative Method 1. Comparative method 3 is a method in which continuously cast slabs are directly rolled, which can achieve significant energy savings, but
Since the finishing rolling temperature, cooling rate, and coiling temperature are all out of the range of the present invention, the properties of the obtained steel sheet are inferior to Comparative Methods 1 and 2. In addition, in Comparative Methods 6 to 10, any of the finishing temperature, cooling rate, and coiling temperature is outside the range of the present invention, and the steel sheets obtained are still compared to those obtained by the method of the present invention. The characteristics have clearly deteriorated. Example 2 Steels having the respective compositions shown in Table 2 were melted in a conventional manner, continuously cast into slabs with a thickness of 200 mm, and then directly rolled without decreasing the temperature below Ar 3 points. . The rolling conditions at that time were rolling start temperature: 1000°C, finishing temperature: 800°C, cooling rate: 80°C/sec, and coiling temperature: 450°C, and the thickness of the obtained steel plate was 4.5 mm. .

【表】【table】

【表】 (注) ※印は、本発明の範囲から外れていることを
示す。
このようにして得られた熱延鋼板の諸特性を測
定した結果も、第2表に併せて示した。 第2表に示される結果からも明らかなように、
本発明方法11〜18によれば優れた加工性と靭性と
を有する高強度鋼板が得られるのに対して、鋼の
化学成分組成が本発明の範囲から外れているもの
を使用した比較法19〜23では、加工性或いは靭性
に劣る鋼板しか得られないことがわかる。 上述のように、この発明によれば、加工性、靭
性、及び強度がともに優れた熱延高張力鋼板を、
エネルギー消費量少なく低コストで製造すること
が可能となるなど、工業上有用な効果が得られる
のである。
[Table] (Note) * indicates that it is outside the scope of the present invention.
The results of measuring various properties of the hot rolled steel sheet thus obtained are also shown in Table 2. As is clear from the results shown in Table 2,
According to methods 11 to 18 of the present invention, high-strength steel sheets with excellent workability and toughness are obtained, whereas comparative method 19 uses steel whose chemical composition is outside the scope of the present invention. It can be seen that only steel sheets with poor workability or toughness can be obtained with steel sheets of 23 to 23. As described above, according to the present invention, a hot-rolled high-strength steel sheet with excellent workability, toughness, and strength is
Industrially useful effects such as low energy consumption and low cost production can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板の伸び、靭性及び降伏点に与える
最終仕上げ温度の影響を示す図、第2図は鋼板の
フエライト粒度No.、伸び及び靭性に与える圧延後
の冷却速度の影響を示す図である。
Figure 1 is a diagram showing the influence of final finishing temperature on the elongation, toughness, and yield point of a steel plate. Figure 2 is a diagram showing the influence of cooling rate after rolling on the ferrite grain size number, elongation, and toughness of a steel plate. be.

Claims (1)

【特許請求の範囲】 1 C:0.12〜0.25%、 Si:0.50%以下、 Mn:0.50〜1.2%、 S:0.015%以下、 Al:0.005〜0.080%、 Fe及び不可避的不純物:残り、 から成る成分組成(以上重量%)の鋼を連続鋳造
してスラブとした後、該スラブの温度をAr3点以
下に下げることなく引き続いて熱間圧延を行い、
(Ar3点+50℃)〜Ar3点の温度で圧延を終了後、
500℃〜Ms点の温度域まで60℃/sec以上の冷却
速度で加速冷却し、巻取ることを特徴とする、加
工用熱延高張力鋼板の製造方法。 2 C:0.12〜0.25%、 Si:0.50%以下、 Mn:0.50〜1.2%、 S:0.015%以下、 Al:0.005〜0.080%、 を含有するとともに、更に、 P:0.10%以下、 N:0.0300%以下、 Ca:0.010%以下、 のうちの1種以上をも含み、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)の鋼を連続鋳造
してスラブとした後、該スラブの温度をAr3点以
下に下げることなく引き続いて熱間圧延を行い、
(Ar3点+50℃)〜Ar3点の温度で圧延を終了後、
500℃〜Ms点の温度域まで60℃/sec以上の冷却
速度で加速冷却し、巻取ることを特徴とする、加
工用熱延高張力鋼板の製造方法。
[Scope of Claims] 1 C: 0.12 to 0.25%, Si: 0.50% or less, Mn: 0.50 to 1.2%, S: 0.015% or less, Al: 0.005 to 0.080%, Fe and inevitable impurities: the remainder. After continuously casting steel with the chemical composition (more than % by weight) to form a slab, hot rolling is performed continuously without lowering the temperature of the slab to below Ar 3 points,
(Ar 3 points + 50℃) ~ After finishing rolling at the temperature of Ar 3 points,
A method for producing a hot-rolled high-strength steel sheet for processing, characterized by accelerated cooling at a cooling rate of 60°C/sec or more to a temperature range of 500°C to Ms point, and winding. 2 Contains C: 0.12 to 0.25%, Si: 0.50% or less, Mn: 0.50 to 1.2%, S: 0.015% or less, Al: 0.005 to 0.080%, and further contains: P: 0.10% or less, N: 0.0300 % or less, Ca: 0.010% or less, containing one or more of the following, Fe and unavoidable impurities: the remainder, after continuous casting steel into a slab (weight %), the slab is Continue hot rolling without lowering the temperature below Ar 3 points,
(Ar 3 points + 50℃) ~ After finishing rolling at the temperature of Ar 3 points,
A method for producing a hot-rolled high-strength steel sheet for processing, characterized by accelerated cooling at a cooling rate of 60°C/sec or more to a temperature range of 500°C to Ms point, and winding.
JP8340583A 1983-05-12 1983-05-12 Manufacture of hot-rolled high-tension steel sheet for working Granted JPS59208019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8340583A JPS59208019A (en) 1983-05-12 1983-05-12 Manufacture of hot-rolled high-tension steel sheet for working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8340583A JPS59208019A (en) 1983-05-12 1983-05-12 Manufacture of hot-rolled high-tension steel sheet for working

Publications (2)

Publication Number Publication Date
JPS59208019A JPS59208019A (en) 1984-11-26
JPS6367524B2 true JPS6367524B2 (en) 1988-12-26

Family

ID=13801512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8340583A Granted JPS59208019A (en) 1983-05-12 1983-05-12 Manufacture of hot-rolled high-tension steel sheet for working

Country Status (1)

Country Link
JP (1) JPS59208019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123014A (en) * 1988-10-28 1990-05-10 Nippon Spindle Mfg Co Ltd Screw feeder
US6818079B2 (en) 1999-09-19 2004-11-16 Nkk Corporation Method for manufacturing a steel sheet
EP2166121A1 (en) 1999-09-16 2010-03-24 JFE Steel Corporation High strength steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194112A (en) * 1985-02-21 1986-08-28 Nippon Steel Corp Manufacture of hot rolled steel sheet having superior adhesion to scale

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123014A (en) * 1988-10-28 1990-05-10 Nippon Spindle Mfg Co Ltd Screw feeder
EP2166121A1 (en) 1999-09-16 2010-03-24 JFE Steel Corporation High strength steel sheet and method for manufacturing the same
EP2166122A1 (en) 1999-09-16 2010-03-24 JFE Steel Corporation Method of manufacturing high strength steel
US6818079B2 (en) 1999-09-19 2004-11-16 Nkk Corporation Method for manufacturing a steel sheet

Also Published As

Publication number Publication date
JPS59208019A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
CN106319387B (en) A kind of X80 large-deformation-resistance pipeline steels and manufacturing method
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JPS6367524B2 (en)
JPS60149719A (en) Manufacture of hot-rolled high-tension steel sheet
JP2003034825A (en) Method for manufacturing high strength cold-rolled steel sheet
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH10280050A (en) Production of high strength hot rolled steel sheet excellent in press formability
JPS63143225A (en) Manufacture of hot rolled steel sheet having superior workability
KR970007203B1 (en) Method for making hot rolled steel sheet having excellent treatment
JPS58733B2 (en) Method for manufacturing non-temperature high tensile strength hot rolled steel strip for processing
JPH05345917A (en) Production of high strength hot rolled steel plate
JPH05345919A (en) Production of high strength hot rolled steel plate
KR20060074050A (en) Manufacturing method of hot rolled steel plate for linepipe having excellent low temperature toughness and corrosion resistance
KR20240045835A (en) Ultra high-strength steel sheet and method of manufacturing the same
JPH08283844A (en) Production of thick four resistant steel plate excellent in toughness
KR100276295B1 (en) The manufacturing method for high work used cold rolling steel sheet with excellent resirtance weldability
JPS586936A (en) Production of hot-rolled high-tensile steel plate for working
KR970009505B1 (en) MAKING METHOD OF TENSILE STRENGTH 100KG/º HOT ROLLED STEEL PLATE WITH EXCELLENT DUCTILITY
JPH05345918A (en) Production of high strength hot rolled steel plate
JPH09263879A (en) Cold rolled steel sheet excellent in workability and aging resistance and its production
JPS63128117A (en) Production of unnormalized high tensile steel
JPS6350423A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature