JP3322065B2 - Method of manufacturing low yield ratio thick steel tube column for building - Google Patents

Method of manufacturing low yield ratio thick steel tube column for building

Info

Publication number
JP3322065B2
JP3322065B2 JP08795595A JP8795595A JP3322065B2 JP 3322065 B2 JP3322065 B2 JP 3322065B2 JP 08795595 A JP08795595 A JP 08795595A JP 8795595 A JP8795595 A JP 8795595A JP 3322065 B2 JP3322065 B2 JP 3322065B2
Authority
JP
Japan
Prior art keywords
temperature range
plate
yield ratio
processing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08795595A
Other languages
Japanese (ja)
Other versions
JPH08283851A (en
Inventor
英明 深井
守康 長江
順一郎 川崎
攻 平野
裕 長縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP08795595A priority Critical patent/JP3322065B2/en
Publication of JPH08283851A publication Critical patent/JPH08283851A/en
Application granted granted Critical
Publication of JP3322065B2 publication Critical patent/JP3322065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高層ビルや海洋構造物な
どに用いられる低降伏比の40〜150mm程度の厚肉
の建築用鋼管柱の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel pipe column having a low yield ratio of about 40 to 150 mm and used for high-rise buildings and marine structures.

【0002】[0002]

【従来技術】高層ビルや海洋構造物等に用いられる厚肉
鋼管には、高強度・高靭性・低降伏比・高溶接性等の性
能が要求される。このため比較的薄肉の鋼管の場合、低
成分系の組成を採用して溶接性を確保するとともに、制
御圧延や制御冷却などの技術を駆使して高強度かつ高靭
性の鋼板を製造し、冷間加工によって管状に成形してい
る。この場合、管状への成形時に加工硬化によって材質
変化が生じるので、所定の特性を達成するために、成形
後に応力除去処理等の熱処理が必要となる。
2. Description of the Related Art Thick steel pipes used for high-rise buildings and offshore structures are required to have high strength, high toughness, low yield ratio, high weldability and the like. Therefore, in the case of relatively thin steel pipes, a low-component composition is used to ensure weldability, and high-strength and high-toughness steel sheets are manufactured using technologies such as controlled rolling and controlled cooling, and then cooled. It is formed into a tube by cold working. In this case, since the material changes due to work hardening at the time of forming into a tubular shape, a heat treatment such as a stress removing process is required after the forming to achieve predetermined characteristics.

【0003】一方、建築物の高層化が進む現在、建築用
鋼管柱には厚肉化が要求される傾向にある。厚肉鋼管の
場合には、加工時のプレス装置の荷重の観点から冷間成
形は不可能であり、温間成形や熱間成形が採用される。
[0003] On the other hand, at present, the height of buildings is increasing, and there is a tendency that thicker steel tube columns for buildings are required. In the case of a thick steel pipe, cold forming is not possible from the viewpoint of the load of the press device during working, and warm forming or hot forming is employed.

【0004】しかし製管に熱間成形を採用した場合に
は、制御圧延等によって得られた強度への効果が消失し
てしまうため、高成分系の組成の材料が用いられること
になるが、高成分系では靭性や溶接性が低下してしま
う。
[0004] However, when hot forming is adopted for the pipe making, the effect on the strength obtained by controlled rolling or the like is lost, so that a material having a high component composition is used. In a high-component system, toughness and weldability are reduced.

【0005】また、温間成形に関して、特開昭62−5
4018号公報には、制御圧延または制御圧延と加速冷
却を施した鋼板を、750〜400℃のAc1 温度以下
に再加熱して、直ちにあるいは放冷後750〜250℃
の温度域にて加工することにより、靭性などの優れた材
質特性が得られる旨開示されている。
Further, regarding warm forming, Japanese Patent Application Laid-Open No. 62-5 / 1987
No. 4018 discloses that a steel sheet subjected to controlled rolling or controlled rolling and accelerated cooling is reheated to an Ac 1 temperature of 750 to 400 ° C. or lower, and immediately or after cooling, 750 to 250 ° C.
It is disclosed that by processing in the above temperature range, excellent material properties such as toughness can be obtained.

【0006】しかし、温間成形を採用した場合には、加
工中の温度降下により変形抵抗が増大する傾向にあり、
また温度降下とともに降伏比が上昇する傾向があるため
建築用鋼管の重要な特性の一つである低降伏比の達成が
困難である。
However, when warm forming is employed, the deformation resistance tends to increase due to the temperature drop during processing,
Further, it is difficult to achieve a low yield ratio, which is one of the important characteristics of building steel pipes, because the yield ratio tends to increase with decreasing temperature.

【0007】これに対して、低降伏比を得る方法として
は、鋼管をAc3 −250℃〜Ac3 −20℃の温度域
に加熱し水冷するか、あるいはこれらの熱処理後に加工
歪みを付与して焼き戻す方法(特開平3−87318号
公報)や、Ac3 以上に加熱した後に空冷してAr3
250℃〜Ar3 −20℃の温度域から水冷するか、あ
るいはこれらの熱処理後に加工歪みを付与して焼き戻す
方法(特開平3−87317号公報)、さらには鋼管を
Ac3 −200℃以上の温度に加熱し、Ac3−200
℃以上で歪付与を開始し、Ac3 −200℃〜Ac3
20℃の温度域で歪付与を終了し、水冷した後に焼き戻
す方法(特開平4−321号公報)などが提案されてい
る。しかしながら、これらの方法では鋼管に複雑な処理
を施すことになり、経済性および生産性を著しく損なう
ことになる。
On the other hand, as a method for obtaining a low yield ratio, a steel pipe is heated to a temperature range of Ac 3 −250 ° C. to Ac 3 −20 ° C. and water-cooled, or a processing strain is imparted after these heat treatments. Tempering (Japanese Unexamined Patent Publication No. 3-87318), or air cooling after heating to Ac 3 or higher and Ar 3
250 ° C. to Ar 3 -20 ° C. or water cooling from a temperature range of, or a method (Japanese Unexamined Patent Publication No. 3-87317) to temper to impart working strain after these heat treatments, further the Ac 3 -200 ° C. or more steel heated to a temperature, Ac 3 -200
℃ to start the strain applied in the above, Ac 3 -200 ℃ ~Ac 3 -
A method has been proposed in which the strain application is terminated in a temperature range of 20 ° C., and the material is cooled with water and then tempered (Japanese Patent Laid-Open No. 4-321). However, in these methods, a complicated treatment is applied to the steel pipe, and economic efficiency and productivity are significantly impaired.

【0008】[0008]

【発明が解決しようとする課題】以上のように、厚肉の
建築用鋼管柱の製造において、冷間加工では成形機の能
力の観点から製造が困難であり、また熱間成形において
は制御圧延の効果が失われるので組成を高強度の高成分
系にしなければならず、そのため靭性や溶接性が損なわ
れるなどの不都合が生じる。
As described above, in the production of thick-walled steel pipe columns for construction, it is difficult to produce by cold working from the viewpoint of the capacity of a forming machine. Therefore, the composition must be made into a high-strength, high-component system, which causes inconvenience such as impairment of toughness and weldability.

【0009】一方、温間成形の場合でも、Ac1 以下の
温度に加熱後に温間成形する場合には、加工中の温度降
下により変形抵抗が増大する傾向にあり、また温度降下
とともに降伏比が上昇する傾向があり、低降伏比が達成
されない問題が生ずる。また、低降伏比を達成するため
に鋼管に対して種々の熱処理を施すことが試みられてい
るが、これらの方法は全て複雑で、経済性を損ねてしま
う。
On the other hand, even in the case of warm forming, in the case of warm forming after heating to a temperature of Ac 1 or less, the deformation resistance tends to increase due to the temperature drop during processing, and the yield ratio increases with the temperature drop. This tends to increase, and causes a problem that a low yield ratio is not achieved. In addition, various heat treatments have been attempted on steel pipes in order to achieve a low yield ratio, but all of these methods are complicated and impair economical efficiency.

【0010】さらに、鋼板から鋼管への成形に際して
は、鋼管外面で引張応力が、鋼管内面で圧縮応力が働
き、応力の中立軸となる板厚中心で応力が働かないとい
う現象が生じるので、温間あるいは熱間成形の場合、同
じ加工温度でも板厚中心では内外表面に比較して低降伏
比となるが強度が著しく低く、また逆に内外表では所定
の強度を達成するが低降伏比を達成しない傾向にある。
また、温間成形や熱間成形の場合には、鋼板内の各部に
よって加工を受ける温度が異なり、比較的高温で加工を
受ける部位では低降伏比となるが強度が低く、逆に低温
で加工を受ける部位では所定の強度を達成することが可
能だが低降伏比が達成されない傾向にある。このため、
温間成形や熱間成形による製管において、板厚方向での
機械的特性の分布は加工温度がもっとも低くなる最終加
工部で最大となる。
Furthermore, when forming a steel pipe into a steel pipe from a steel plate, a tensile stress acts on the outer surface of the steel pipe, a compressive stress acts on the inner surface of the steel pipe, and a phenomenon occurs in which the stress does not act on the center of the sheet thickness, which is a neutral axis of the stress. In the case of hot forming or hot forming, even at the same processing temperature, a lower yield ratio is obtained at the center of the sheet thickness compared to the inner and outer surfaces, but the strength is extremely low, and conversely, a predetermined strength is achieved in the inner and outer tables, but a lower yield ratio is obtained. Tend to not achieve.
In the case of warm forming or hot forming, the temperature at which processing is performed differs depending on each part in the steel sheet, and the part subjected to processing at a relatively high temperature has a low yield ratio, but has a low strength, and conversely, processing at a low temperature. Although a given strength can be achieved in a part to be affected, a low yield ratio tends not to be achieved. For this reason,
In pipe forming by warm forming or hot forming, the distribution of mechanical properties in the thickness direction becomes maximum in the final processed portion where the processing temperature is lowest.

【0011】本発明はかかる事情に鑑みてなされたもの
であって、経済性や生産性を損なうことなく、また溶接
性に優れ、かつ板厚各部において高強度および低降伏比
を達成することが可能な、厚肉建築用鋼管柱の製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is intended to achieve excellent weldability, high strength and a low yield ratio in each part of the sheet thickness without impairing economy and productivity. It is an object of the present invention to provide a method for manufacturing a thick-walled steel pipe column for building, which is possible.

【0012】[0012]

【課題を解決するための手段】本願発明者らは、製管に
際して大きい加工能力を有する設備を必要とせず、溶接
性の低下を引き起こすことなく、板厚各部において高強
度および低降伏比を達成することができる方法について
詳細に検討した結果、特定の成分組成の鋼板を二相域に
加熱して、その温度域から製管のための曲げ加工を板端
部より開始し、変態終了温度未満の温度領域で加工を板
中央部にて終了させて空冷することにより、上記の課題
を解決することが可能であることを見出した。すなわ
ち、従来から二相域への加熱により低降伏比が得られる
ことは知られていたが、同時に靭性の低下を招くため、
この温度域での加工は行われていなかった。しかし、上
述のように成分を規定し、さらに温間での製管順序を制
御することによって、靭性劣化を抑制し、かつ優れた溶
接性ならびに板厚各部において高強度および低降伏比を
達成することができるのである。
SUMMARY OF THE INVENTION The present inventors have achieved high strength and a low yield ratio in each part of the sheet thickness without requiring equipment having a large working capacity in pipe production and without causing a decrease in weldability. As a result of examining in detail the method that can be performed, a steel sheet of a specific component composition is heated to a two-phase region, bending processing for pipe making is started from the plate end from that temperature region, and is lower than the transformation end temperature. It has been found that the above-mentioned problem can be solved by completing the processing at the central portion of the plate in the temperature range of and cooling by air. That is, it has been known that a low yield ratio can be obtained by heating to a two-phase region, but at the same time, it causes a decrease in toughness.
No processing was performed in this temperature range. However, by defining the components as described above, and further controlling the pipe production sequence during warming, the deterioration of toughness is suppressed, and excellent weldability and high strength and a low yield ratio are achieved in each part of the plate thickness. You can do it.

【0013】本発明はこのような知見に基づいて完成さ
れたものであり、第1に、重量%で、C:0.05〜
0.25%、Si:0.10〜0.50%、Mn:0.
5〜2.0%、sol.Al:0.005〜0.10
%、Mo:0.05〜0.25%を含有し、残部Fe及
び不可避的不純物よりなる鋼板を、Ac1以上でかつA
c3以下の二相領域の温度範囲に加熱し、Ar1以上の温
度域から管状へのプレスベンド法による加工を板端部よ
り開始し、Ar1未満の温度域で加工を板中央部にて終
了し、その後空冷することを特徴とする高靭性かつ低降
伏比の厚肉建築用鋼管柱の製造方法を提供するものであ
る。
The present invention has been completed on the basis of these findings. First, C: 0.05 to 0.05% by weight.
0.25%, Si: 0.10 to 0.50%, Mn: 0.
5 to 2.0%, sol. Al: 0.005 to 0.10
%, Mo: 0.05 to 0.25%, with the balance being Fe and
A steel sheet consisting of
Heating to the temperature range of the two-phase region of c3 or less, starting the processing by the press bend method into a tube from the temperature range of Ar1 or more from the end of the plate, and ending the processing at the center of the plate in the temperature range of less than Ar1 The present invention also provides a method for producing a high-strength steel pipe column for a thick building having a high toughness and a low yield ratio, which is characterized by air cooling thereafter.

【0014】第2に、 重量%で、C:0.05〜0.
25%、Si:0.10〜0.50%、Mn:0.5〜
2.0%、sol.Al:0.005〜0.10%、M
o:0.05〜0.25%、Ca:0.0005〜0.
005%を含有し、残部Fe及び不可避的不純物よりな
鋼板を、Ac1以上でかつAc3以下の二相領域の温度
範囲に加熱し、Ar1以上の温度域から管状へのプレス
ベンド法による加工を板端部より開始し、Ar1未満の
温度域で加工を板中央部にて終了し、その後空冷するこ
とを特徴とする高靭性かつ低降伏比の厚肉建築用鋼管柱
の製造方法を提供するものである。
Second, C: 0.05 to 0.5% by weight.
25%, Si: 0.10 to 0.50%, Mn: 0.5 to
2.0%, sol. Al: 0.005 to 0.10%, M
o: 0.05-0.25%, Ca: 0.0005-0.
005%, the balance being Fe and inevitable impurities.
The steel sheet is heated to a temperature range of a two-phase region of not less than Ac1 and not more than Ac3, and pressed into a tubular shape from a temperature range of not less than Ar1.
Processing by the bend method starts from the end of the plate, finishes the processing in the center of the plate in a temperature range lower than Ar1, and then air-cools. It is intended to provide a manufacturing method.

【0015】以下、本発明に係る厚肉鋼管の製造方法に
ついて、組成、成形条件に分けて詳細に説明する。 (組成)本発明では、基本成分元素としてC、Si、M
n、solAl、およびMoを含有し、Caは介在物の
形態制御のために必要に応じて添加される。これら成分
元素の限定理由を以下に説明する。なお、以下の説明に
おいて%表示はすべて重量%を示す。
Hereinafter, the method for producing a thick steel pipe according to the present invention will be described in detail with respect to composition and molding conditions. (Composition) In the present invention, C, Si, M
It contains n, solAl, and Mo, and Ca is added as needed to control the morphology of inclusions. The reasons for limiting these component elements will be described below. In the following description, all percentages indicate weight%.

【0016】C: この種の鋼の強度を安価にかつ効果
的に確保するためにはCは0.05%は必要である。し
かし、0.25%を超えると低温割れや高温割れ等が発
生し、溶接性や靭性を損なう。このため、C含有量を
0.05〜0.25%の範囲とする。
C: 0.05% of C is necessary for ensuring the strength of this type of steel at low cost and effectively. However, if it exceeds 0.25%, low-temperature cracking, high-temperature cracking and the like occur, and the weldability and toughness are impaired. For this reason, the C content is in the range of 0.05 to 0.25%.

【0017】Si: Siは脱酸のために添加される
が、0.10%未満では十分な脱酸効果が得られず、一
方0.50%を越えて添加されると靭性や溶接性の劣化
を招く。このため、Si含有量を0.10〜0.50%
の範囲とする。
Si: Si is added for deoxidation, but if it is less than 0.10%, a sufficient deoxidizing effect cannot be obtained. On the other hand, if it exceeds 0.50%, toughness and weldability are not obtained. It causes deterioration. Therefore, the content of Si is set to 0.10 to 0.50%.
Range.

【0018】Mn: Mnは鋼の強度および靭性の向上
に有効な鋼の基本元素として添加されるが、0.5%未
満ではその効果が小さく、また2.0%を超えると溶接
性や靭性が著しく劣化する。このため、Mn含有量を
0.5〜2.0%の範囲とする。
Mn: Mn is added as a basic element of steel which is effective for improving the strength and toughness of the steel. When the content is less than 0.5%, its effect is small, and when it exceeds 2.0%, the weldability and toughness are increased. Significantly deteriorates. Therefore, the Mn content is in the range of 0.5 to 2.0%.

【0019】sol.Al: sol.Alは脱酸剤と
して添加されるが、0.005%未満では十分な脱酸効
果が得られず、また0.10%程度の添加でその効果が
飽和する。このため、sol.Al含有量を0.005
0〜0.10%の範囲とする。
Sol. Al: sol. Al is added as a deoxidizing agent, but if it is less than 0.005%, a sufficient deoxidizing effect cannot be obtained, and if about 0.10% is added, the effect is saturated. Therefore, sol. Al content 0.005
The range is 0 to 0.10%.

【0020】Mo: Moは固溶強化による板厚各部に
おける高強度化を達成する効果を有するとともに、微量
添加では焼き入れ性の増大による組織変化により靭性の
劣化を抑制する効果がある。しかし、その含有量が0.
05%未満ではこれらの効果が十分ではなく、高強度化
および靭性劣化抑制が不十分となる。また、0.25%
を越えて多量に添加されると溶接性や靭性を損なうとと
もに、経済性をも損なってしまう。このため、Mo含有
量を0.05〜0.25%の範囲とする。
Mo: Mo has the effect of increasing the strength in each part of the plate thickness by solid solution strengthening, and has the effect of suppressing the degradation of toughness due to the structural change due to the increase in hardenability when added in a small amount. However, when its content is 0.1.
If the content is less than 0.05%, these effects are not sufficient, and high strength and suppression of toughness deterioration are insufficient. In addition, 0.25%
If a large amount is added beyond that, weldability and toughness are impaired, and economics are impaired. Therefore, the Mo content is in the range of 0.05 to 0.25%.

【0021】Ca: Caは介在物の形態を球状化さ
せ、これにより水素誘起割れやラメラテアなどを防止す
る効果があるが、0.0005%未満ではその効果が得
られず、0.005%程度の添加で効果は飽和し、それ
より多量に添加することは経済的な面から好ましくな
い。このため、Ca含有量を0.0005〜0.005
%の範囲とする。
Ca: Ca has the effect of spheroidizing the form of inclusions, thereby preventing hydrogen-induced cracking and lamellar tearing. However, if it is less than 0.0005%, the effect cannot be obtained, and about 0.005% The effect is saturated by the addition of, and the addition of a larger amount is not preferable from an economical point of view. Therefore, the Ca content is set to 0.0005 to 0.005.
% Range.

【0022】(成形条件) 本発明においては、鋼板をAc1以上でかつAc3以下の
二相領域の温度範囲に加熱し、Ar1以上の温度域から
管状へのプレスベンド法による加工を板端部より開始
し、Ar1未満の温度域で加工を板中央部にて終了し、
その後空冷する。
(Forming Conditions) In the present invention, the steel sheet is heated to a temperature range of a two-phase region of not less than Ac1 and not more than Ac3, and the steel sheet is processed from a temperature range of Ar1 or more to a tubular shape by a press bend method from an end of the plate. Start and finish the processing at the center of the plate in the temperature range less than Ar1,
Then air-cool.

【0023】ここで鋼板をAc1 以上でかつAc3 以下
の二相領域の温度範囲に加熱して、Ar1 以上の温度域
から管状への加工を開始し、Ar1 未満の温度で加工を
終了することとしたのは、変形抵抗を低下させ、大きな
設備能力を必要とせずに管状に成形するためと、高温で
の加工により低降伏比を達成するためである。また、そ
の後空冷することは、再加熱に伴う変態によって形成さ
れたミクロ的な偏析部が冷却過程において変態し、靭性
劣化につながることを抑制する効果がある。
[0023] Here, the steel sheet is heated to a temperature range of Ac 1 or more and Ac 3 following the two-phase region, to start processing into tubular from Ar 1 above temperature range, the processing at a temperature below Ar 1 The reason for the termination is to reduce the deformation resistance and to form the tube into a tube without requiring a large facility capacity, and to achieve a low yield ratio by processing at a high temperature. In addition, air cooling after that has an effect of suppressing that the micro segregated portion formed by the transformation accompanying the reheating is transformed in the cooling process and leads to deterioration in toughness.

【0024】さらに、板端部より加工を開始し、板中央
部にて加工を終了することは、加工中の温度低下の速い
板端部を初期に成形し、温度低下の比較的遅い板中央部
を後から成形することによって、板各部における加工の
際の温度差を縮小する効果がある。
Further, starting the processing from the end of the plate and ending the processing at the center of the plate can be achieved by forming the end of the plate having a high temperature drop during the processing at the beginning and forming the center of the plate at a relatively low temperature drop. Forming the part later has the effect of reducing the temperature difference during processing in each part of the plate.

【0025】なお、管状への成形は、プレスベンド等の
通常の円筒状に加工する方法を用いることができるが、
これに限るものではない。またAr3 はCやMnなどの
添加量によって異なるが、750℃程度が目安となる。
For forming into a tubular shape, an ordinary method of processing into a cylindrical shape such as press bend can be used.
It is not limited to this. Although Ar 3 varies depending on the amount of C, Mn, or the like, it is approximately 750 ° C.

【0026】[0026]

【作用】ここで本発明を用いることにより、靭性および
溶接性を損なうことなく、板厚各部において高強度およ
び低降伏比を達成することができるのは以下の作用によ
る。
The use of the present invention can achieve a high strength and a low yield ratio in each part of the sheet thickness without impairing toughness and weldability due to the following effects.

【0027】C、Si、Mn、sol.Al、およびM
o、あるいはさらにCaを特定の含有量に制御し、さら
に温間での製管の条件および順序を制御することによっ
て、溶接性を損なうことなく板厚各部において高強度を
達成する。つまり、鋼管柱の製造において、管状への成
形時の歪み分布によって材質の変化が生じ、板厚中心部
で低強度化が生じ、内外表で高降伏比化が生じるが、本
発明では、基本成分のうちMo添加による大きな固溶強
化の効果、および温間での製管の順序の制御による鋼板
内での加工温度の分布の縮小化により、板厚方向におけ
る材質の変化が小さい。
C, Si, Mn, sol. Al and M
By controlling the content of o or Ca to a specific content, and further controlling the conditions and order of pipe making in a warm state, high strength is achieved in each part of the plate thickness without impairing weldability. In other words, in the production of steel pipe columns, the material changes due to the strain distribution at the time of forming into a tubular shape, the strength is reduced at the center of the plate thickness, and the high yield ratio is generated in the inside and outside tables. Of the components, the effect of large solid solution strengthening by the addition of Mo, and the reduction in the distribution of the processing temperature in the steel sheet by controlling the order of pipe making during warming, cause a small change in the material in the thickness direction.

【0028】また、鋼板をAc1 以上でかつAc3 以下
の二相領域の温度範囲に加熱して、Ar1 以上の温度域
から管状への加工を開始し、Ar1 未満の温度で加工を
終了することは、変形抵抗を低下させ、大きな設備能力
を必要とせずに管状に成形すること、および高温での加
工により低降伏比を達成する作用がある。また、その後
空冷することは、再加熱に伴う変態によって形成された
ミクロ的な偏析部が冷却過程において変態し、靭性劣化
につながることを抑制する効果がある。
Further, the steel sheet is heated to a temperature range of Ac 1 or more and Ac 3 following the two-phase region, to start processing into tubular from Ar 1 above temperature range, the processing at a temperature below Ar 1 Finishing has the effect of reducing deformation resistance, forming into a tube without requiring large equipment capacity, and achieving a low yield ratio by processing at high temperatures. In addition, air cooling after that has an effect of suppressing that the micro segregated portion formed by the transformation accompanying the reheating is transformed in the cooling process and leads to deterioration in toughness.

【0029】[0029]

【実施例】以下、本発明の具体的な実施例について説明
する。 (実施例1)表1に示す成分・組成を有する板厚70m
mの鋼板を800℃に加熱後、直ちにプレスベンドによ
って管状への成形を板端部より開始し、550℃にて板
中央部にて終了し、その後空冷した。このときの鋼管の
外径Dと板厚tとの比D/tは10とした。このように
して成形した鋼管において、加工温度が最も低く板厚方
向での機械的性質の分布が大きい最終加工部での機械的
性質を表1に併記する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described. (Example 1) A sheet thickness of 70 m having the components and compositions shown in Table 1
Immediately after heating the steel sheet of m to 800 ° C., forming into a tubular shape by press bending was started from the end of the sheet, finished at 550 ° C. in the center of the sheet, and then air-cooled. At this time, the ratio D / t of the outer diameter D of the steel pipe to the plate thickness t was set to 10. Table 1 also shows the mechanical properties of the thus formed steel pipe in the final processed portion where the processing temperature is the lowest and the distribution of the mechanical properties in the thickness direction is large.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示すように、本発明の範囲内の成分
組成のものでは、板厚各部において350MPa以上の
降伏強度(YS)および490MPa以上の引張強度
(TS)といった高強度が得られ、80%以下の低降伏
比が得られた。また、0℃におけるシャルピー吸収エネ
ルギーvEが100J以上と建築用鋼管柱としては十分
な値を示した。
As shown in Table 1, with a composition within the range of the present invention, a high strength such as a yield strength (YS) of 350 MPa or more and a tensile strength (TS) of 490 MPa or more can be obtained at each thickness. A low yield ratio of 80% or less was obtained. In addition, the Charpy absorbed energy vE at 0 ° C. was 100 J or more, which was a sufficient value for a building steel pipe column.

【0032】これに対して、本発明の範囲を外れる成分
組成のものは、板厚表層部あるいは中央部にて300M
Pa未満のYSという低強度、vEが100J未満の低
靭性を示した。
On the other hand, those having a component composition outside the range of the present invention have a thickness of 300 M
It exhibited low strength of YS of less than Pa and low toughness of vE of less than 100J.

【0033】表1に示した組成において、Mo含有量と
YS,TSとの関係を図1に示し、Mo含有量と0℃で
のvEとの関係を図2に示す。これらの図から、Mo含
有量が0.05〜0.25%の範囲で高強度、低降伏比
が得られ、靭性も十分な値となっていることが明らかで
ある。
In the compositions shown in Table 1, the relationship between the Mo content and YS, TS is shown in FIG. 1, and the relationship between the Mo content and vE at 0 ° C. is shown in FIG. From these figures, it is clear that high strength and low yield ratio can be obtained and the toughness is also a sufficient value when the Mo content is in the range of 0.05 to 0.25%.

【0034】(実施例2)表1の符号A03の組成の鋼
板を用いて、表2に示すように、900〜700℃に加
熱後、プレスベンドによって管状への成形を850〜5
00℃にて板端部より開始し、550〜200℃にて板
中央部にて終了し、その後空冷した。このときの鋼管の
外径Dと板厚tとの比D/tは10とした。このように
して成形した鋼管において、最終加工部での機械的性質
を表2に併記する。
(Example 2) As shown in Table 2, a steel sheet having a composition indicated by A03 in Table 1 was heated to 900 to 700 ° C, and then formed into a tubular shape by press bend at 850 to 5 ° C.
It started from the edge of the plate at 00 ° C., ended at the center of the plate at 550 to 200 ° C., and then air-cooled. At this time, the ratio D / t of the outer diameter D of the steel pipe to the plate thickness t was set to 10. Table 2 also shows the mechanical properties of the thus formed steel pipe in the final processed portion.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、本発明の範囲内の製造
条件のものでは、板厚各部において350MPa以上の
YSおよび490MPa以上のTSといった高強度が得
られ、80%以下という低降伏比を示した。また、0℃
におけるシャルピー吸収エネルギーvEが100J以上
と建築用鋼管柱としては十分な値を示した。
As shown in Table 2, under the manufacturing conditions within the range of the present invention, high strength such as YS of 350 MPa or more and TS of 490 MPa or more can be obtained at each thickness, and a low yield ratio of 80% or less is obtained. Indicated. Also, 0 ° C
In Table 1, the Charpy absorbed energy vE was 100 J or more, which was a sufficient value for steel pipe columns for construction.

【0037】これに対して、本発明の範囲を外れる製造
条件のものは、板厚表層部あるいは中央部にて300M
Pa未満のYSという低強度となり、降伏比が80%よ
り大となった。なお、鋼管の外径D、板厚t、これらの
比D/tなどの値は、上記実施例に限るものではない。
On the other hand, under the manufacturing conditions out of the range of the present invention, the thickness of 300M
The strength was as low as YS less than Pa, and the yield ratio was greater than 80%. The values such as the outer diameter D, the plate thickness t, and the ratio D / t of the steel pipe are not limited to those in the above embodiment.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
大きな設備能力を必要としない経済性の高い工程によ
り、靭性および溶接性を損なうことなく、板厚各部にお
いて高強度および低降伏比の板厚40mmを越える肉厚
の建築用鋼管柱を製造することが可能となる。
As described above, according to the present invention,
Producing high-strength and low-yield-ratio thick-walled steel pipe columns with a thickness of more than 40 mm at each part of the thickness without sacrificing toughness and weldability by a highly economical process that does not require large equipment capacity. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mo含有量とYS,TSとの関係を示す図。FIG. 1 is a diagram showing the relationship between Mo content and YS, TS.

【図2】Mo含有量と0℃におけるvEとの関係を示す
図。
FIG. 2 is a graph showing the relationship between the Mo content and vE at 0 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 攻 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 長縄 裕 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor: Attack Hirano 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Hiroshi Nagana 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (58) Investigated field (Int.Cl. 7 , DB name) C21D 8/00-8/10 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.05〜0.25%、
Si:0.10〜0.50%、Mn:0.5〜2.0
%、sol.Al:0.005〜0.10%、Mo:
0.05〜0.25%を含有し、残部Fe及び不可避的
不純物よりなる鋼板を、Ac1以上でかつAc3以下の二
相領域の温度範囲に加熱し、Ar1以上の温度域から管
状へのプレスベンド法による加工を板端部より開始し、
Ar1未満の温度域で加工を板中央部にて終了し、その
後空冷することを特徴とする高靭性かつ低降伏比の厚肉
建築用鋼管柱の製造方法。
(1) C: 0.05 to 0.25% by weight,
Si: 0.10 to 0.50%, Mn: 0.5 to 2.0
%, Sol. Al: 0.005 to 0.10%, Mo:
Contains 0.05 to 0.25%, with the balance being Fe and inevitable
A steel plate made of impurities is heated to a temperature range of a two-phase region of not less than Ac1 and not more than Ac3, and processing by a press bend method into a tubular shape from a temperature range of not less than Ar1 is started from a plate end,
A method for producing a high-strength and low-yield-ratio thick-wall steel tube column for a building, wherein the processing is completed at the center of the plate in a temperature range lower than Ar1 and then air-cooled.
【請求項2】 重量%で、C:0.05〜0.25%、
Si:0.10〜0.50%、Mn:0.5〜2.0
%、sol.Al:0.005〜0.10%、Mo:
0.05〜0.25%、Ca:0.0005〜0.00
5%を含有し、残部Fe及び不可避的不純物よりなる
板を、Ac1以上でかつAc3以下の二相領域の温度範囲
に加熱し、Ar1以上の温度域から管状へのプレスベン
ド法による加工を板端部より開始し、Ar1未満の温度
域で加工を板中央部にて終了し、その後空冷することを
特徴とする高靭性かつ低降伏比の厚肉建築用鋼管柱の製
造方法。
2. C: 0.05 to 0.25% by weight,
Si: 0.10 to 0.50%, Mn: 0.5 to 2.0
%, Sol. Al: 0.005 to 0.10%, Mo:
0.05-0.25%, Ca: 0.0005-0.00
A steel plate containing 5% and consisting of the balance of Fe and unavoidable impurities is heated to a temperature range of a two-phase region of not less than Ac1 and not more than Ac3, and is press-formed into a tubular form from a temperature range of not less than Ar1 and a tube.
Of the high-toughness and low-yield-ratio thick-walled steel pipe columns, starting from the end of the plate, finishing at the center of the plate in a temperature range lower than Ar1, and then air cooling. Production method.
JP08795595A 1995-04-13 1995-04-13 Method of manufacturing low yield ratio thick steel tube column for building Expired - Fee Related JP3322065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08795595A JP3322065B2 (en) 1995-04-13 1995-04-13 Method of manufacturing low yield ratio thick steel tube column for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08795595A JP3322065B2 (en) 1995-04-13 1995-04-13 Method of manufacturing low yield ratio thick steel tube column for building

Publications (2)

Publication Number Publication Date
JPH08283851A JPH08283851A (en) 1996-10-29
JP3322065B2 true JP3322065B2 (en) 2002-09-09

Family

ID=13929304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08795595A Expired - Fee Related JP3322065B2 (en) 1995-04-13 1995-04-13 Method of manufacturing low yield ratio thick steel tube column for building

Country Status (1)

Country Link
JP (1) JP3322065B2 (en)

Also Published As

Publication number Publication date
JPH08283851A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
JPH07268461A (en) Production of ferritic stainless steel strip reduced in inplane anisotropy
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH0823048B2 (en) Method for producing hot rolled steel sheet with excellent bake hardenability and workability
JP3322065B2 (en) Method of manufacturing low yield ratio thick steel tube column for building
JP3322064B2 (en) Method of manufacturing low yield ratio thick steel tube column for building
JP4288441B2 (en) High-strength seamless steel pipe excellent in toughness, ductility, and weldability and method for producing the same
JPH09165620A (en) Production of building use thick fire resistant steel tube low in yield ratio
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JPS6134116A (en) Manufacture of high toughness hot rolled coil
JPH09137222A (en) Production of steel for high strength and low yield ratio reinforcing bar
JPH09165621A (en) Production of building use thick fire resistant steel tube having low yield ratio
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JPH08283848A (en) Production of building thick steel pipe pole having high toughness and low yield ratio
JPH08283849A (en) Production of building thick steel pipe pole having high toughness and low in yield ratio
JP3299287B2 (en) High strength steel sheet for forming and its manufacturing method
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JPH0328351A (en) High ductility pc steel stock and its production
JPH09125143A (en) Production of reinforcing steel product having high strength and low yield ratio
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPH07188748A (en) Production of steel tube having high strength and low yield ratio for construction use
JPH07150246A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees