JP2014118629A - Steel sheet pile and its manufacturing method - Google Patents

Steel sheet pile and its manufacturing method Download PDF

Info

Publication number
JP2014118629A
JP2014118629A JP2012277380A JP2012277380A JP2014118629A JP 2014118629 A JP2014118629 A JP 2014118629A JP 2012277380 A JP2012277380 A JP 2012277380A JP 2012277380 A JP2012277380 A JP 2012277380A JP 2014118629 A JP2014118629 A JP 2014118629A
Authority
JP
Japan
Prior art keywords
steel sheet
sheet pile
strength
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012277380A
Other languages
Japanese (ja)
Other versions
JP5966909B2 (en
Inventor
Nagatoshi Ito
栄利 伊藤
Kazutoshi Ichikawa
和利 市川
Hirokazu Sugiyama
博一 杉山
Kazuaki MITSUYASU
和章 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012277380A priority Critical patent/JP5966909B2/en
Publication of JP2014118629A publication Critical patent/JP2014118629A/en
Application granted granted Critical
Publication of JP5966909B2 publication Critical patent/JP5966909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet pile having yield stress of 430 MPa or more and to provide its manufacturing method.SOLUTION: There is provided a steel sheet pile containing, by mass%, Nb:0.040 to 0.050%, C, Si and Mn with carbon equivalent Ceof 0.260 to 0.460, Al: limited less than 0.05%, and one or more kind of Cu, Ni, Mo, Cr and V if needed and having a metallographic structure constituted by ferrite-pearlite, the number density of Nb carbonitride of 0.10 to 0.30/μmand yield stress of 430 MPa or more. Ce=[C]+f(C)×{[Mn]/6+[Si]/24+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5}, f(C)=0.75+0.25×tanh{20×([C]-0.12)} There is also provided a manufacturing method of conducting hot rolling on the steel slab of the component with a heating temperature of 1100 to 1300°C, an accumulated rolling reduction rate at 900°C or higher of 90% or more, a finishing temperature of 850°C or higher and cooling.

Description

本発明は、土木建築分野において、土止めや水止めに用いられる鋼矢板及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a steel sheet pile used for earth retaining and water retaining in the field of civil engineering and construction and a method for producing the same.

断面形状が、ハット形、U形、Z形、直線形、H形などであり、両端に連結部(継手)を有する鋼矢板は、土木建築の分野において土止め、止水用の鋼材として広く使用されている。鋼矢板には溶接性及び靱性が要求されるため、炭素当量を制限し、靱性に対する悪影響が小さい合金元素を添加する技術が提案されている(例えば、特許文献1〜3、参照)。   Steel sheet piles with cross-sectional shapes such as hat-shaped, U-shaped, Z-shaped, straight-lined, H-shaped, etc. and having connecting parts (joints) at both ends are widely used as steel materials for earth retaining and water stopping in the field of civil engineering architecture It is used. Since steel sheet piles are required to have weldability and toughness, a technique for limiting the carbon equivalent and adding an alloying element that has a small adverse effect on toughness has been proposed (see, for example, Patent Documents 1 to 3).

また、鋼矢板を大深度港湾での護岸用や軟弱地盤に用いる場合、鋼矢板は、高い応力を受ける。そのため、近年では、降伏応力が430MPaを超える鋼矢板が求められるようになっている。合金コストを削減し、製造工程を省略して鋼板を製造する場合、高強化を図るために制御圧延を採用すると、上反りや下反りが発生することがある。このような問題に対して、圧延条件及び冷却条件によって形状を制御する方法が提案されている(例えば、特許文献4、参照)。   Moreover, when using a steel sheet pile for the revetment in a deep harbor and a soft ground, a steel sheet pile receives high stress. Therefore, in recent years, a steel sheet pile having a yield stress exceeding 430 MPa has been demanded. In the case of manufacturing a steel sheet by reducing the alloy cost and omitting the manufacturing process, if controlled rolling is employed to achieve high strengthening, upper warping or lower warping may occur. In order to solve such a problem, a method of controlling the shape by rolling conditions and cooling conditions has been proposed (for example, see Patent Document 4).

一方、制御圧延のように低温で熱間圧延を行うと圧延ロールへの負荷が大きくなる。特に、鋼矢板のような断面形状を有する鋼材を熱間圧延によって製造する際には、鋼材の変形抵抗が高いと負荷が大きくなり、圧延ロールが割損する場合がある。このような問題に対し、Alの含有量を高めて、高温で鋼の組織の一部をフェライト変態させ、変形抵抗を低下させて熱間圧延する鋼矢板の製造方法が提案されている(例えば、特許文献5、参照)。   On the other hand, when hot rolling is performed at a low temperature as in controlled rolling, the load on the rolling roll increases. In particular, when a steel material having a cross-sectional shape such as a steel sheet pile is manufactured by hot rolling, if the deformation resistance of the steel material is high, the load increases, and the rolling roll may break. For such a problem, a steel sheet pile manufacturing method has been proposed in which the Al content is increased, a part of the steel structure is ferrite transformed at high temperature, and the deformation resistance is reduced to perform hot rolling (for example, , Patent Document 5).

特開平09−287052号公報Japanese Patent Laid-Open No. 09-287052 特開平10−001721号公報Japanese Patent Laid-Open No. 10-001721 特開2003−253379号公報JP 2003-253379 A 特開2006−249513号公報JP 2006-249513 A 特開2007−332414号公報JP 2007-332414 A

鋼矢板には溶接性及び靱性が要求されるため、炭素当量を低下させることが必要である。一方、高強度の鋼矢板を製造するためには、靱性への悪影響が小さい合金元素の添加や制御圧延によって、強度を高めることが必要になる。また、圧延ロールへの負荷を軽減し、生産性を高めるには、高温での圧下率を増加させて熱間圧延を行う必要があるが、ベイナイトなど、硬質相の活用による強度の確保が困難になる。   Since steel sheet piles are required to have weldability and toughness, it is necessary to reduce the carbon equivalent. On the other hand, in order to produce a high-strength steel sheet pile, it is necessary to increase the strength by addition of alloy elements that have a small adverse effect on toughness or controlled rolling. In order to reduce the load on the rolling roll and increase productivity, it is necessary to perform hot rolling by increasing the rolling reduction at high temperatures. However, it is difficult to secure strength by using a hard phase such as bainite. become.

本発明は、このような実情に鑑み、省合金化、易製造性、高性能化という相反する課題を解決し、溶接性及び靱性が要求され、かつ高強度の鋼矢板を、コストや生産性を損なうことなく製造し、降伏応力が430MPa以上である鋼矢板及びその製造方法を提供するものである。   In view of such circumstances, the present invention solves the conflicting problems of alloy saving, easy manufacturability, and high performance, requires weldability and toughness, and produces a high-strength steel sheet pile in terms of cost and productivity. The steel sheet pile with a yield stress of 430 MPa or more and a method for producing the same are provided.

本発明者らは、炭素当量を制限し、合金元素を添加して析出物を制御することによって、鋼材に高温かつ大圧下の熱間圧延を施しても、靱性を低下させることなく、強度を向上させる方法を検討した。その結果、高温での圧下率を高めて熱間圧延を行う場合、Nb量を最適化してNb炭窒化物の析出を制御し、析出粒子による析出強化を活用してフェライト−パーライト組織を強化することで、靱性を著しく損なうことなく降伏強度が430MPa以上の鋼矢板を製造し得ることを見出して本発明を完成した。   The inventors limit the carbon equivalent, add alloying elements, and control precipitates, so that the strength can be reduced without reducing toughness even when hot rolling is performed on steel materials at high temperature and high pressure. The method of improvement was examined. As a result, when performing hot rolling at a high rolling reduction rate, the amount of Nb is optimized to control the precipitation of Nb carbonitride, and the precipitation strengthening by precipitation particles is used to strengthen the ferrite-pearlite structure. Thus, the present invention was completed by finding that a steel sheet pile having a yield strength of 430 MPa or more can be produced without significantly impairing toughness.

本発明の要旨は以下のとおりである。
[1] 質量%で、
C:0.05〜0.18%、
Si:0.10〜0.50%、
Mn:0.50〜1.50%
Nb:0.040〜0.050%
を含有し、
Al:0.05%未満
に制限し、残部はFe及び不可避不純物からなり、金属組織がフェライト−パーライトからなり、Nb炭窒化物の個数密度が0.10〜0.30個/μmであり、下記(式1)及び(式2)で求められる炭素当量Ceが0.260〜0.460であり、降伏強さが430MPa以上であることを特徴とする鋼矢板。
Ce=[C]+f(C)×{[Mn]/6+[Si]/24+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5} ・・・ (式1)
f(C)=0.75+0.25×tanh{20×([C]−0.12)}
・・・ (式2)
ここで、[C]、[Mn]、[Si]、[Ni]、[Cr]、[Mo]、[Nb]、[V]は各元素の含有量(質量%)で、含有されていない元素は0とする。
[2] 質量%で、更に、
Cu:0.05〜0.40%、
Ni:0.10〜1.00%、
Mo:0.10〜1.00%、
Cr:0.10〜1.00%、
V:0.05〜0.20%
の1種又は2種以上を含有することを特徴とする上記[1]に記載の鋼矢板。
[3] 前記金属組織の結晶粒径が10〜80μmであることを特徴とする上記[1]又は[2]に記載の鋼矢板。
[4] 上記[1]又は[2]に記載の成分からなる鋼片を、1100〜1300℃に加熱し、900℃以上の累積圧下率が90%以上、仕上温度が850℃以上である熱間圧延を行い、冷却することを特徴とする鋼矢板の製造方法。
The gist of the present invention is as follows.
[1] By mass%
C: 0.05 to 0.18%,
Si: 0.10 to 0.50%,
Mn: 0.50 to 1.50%
Nb: 0.040 to 0.050%
Containing
Al: limited to less than 0.05%, the balance is made of Fe and inevitable impurities, the metal structure is made of ferrite-pearlite, and the number density of Nb carbonitride is 0.10-0.30 pieces / μm 2 , the following (equation 1) and a carbon equivalent Ce N obtained by equation (2) is 0.260 to 0.460, steel sheet pile, characterized in that the yield strength is not less than 430 MPa.
Ce N = [C] + f (C) × {[Mn] / 6 + [Si] / 24 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5} (Formula 1)
f (C) = 0.75 + 0.25 × tanh {20 × ([C] −0.12)}
... (Formula 2)
Here, [C], [Mn], [Si], [Ni], [Cr], [Mo], [Nb], and [V] are the contents (mass%) of each element and are not contained. The element is 0.
[2] By mass%,
Cu: 0.05 to 0.40%,
Ni: 0.10 to 1.00%,
Mo: 0.10 to 1.00%,
Cr: 0.10 to 1.00%,
V: 0.05-0.20%
The steel sheet pile according to the above [1], comprising one or more of the above.
[3] The steel sheet pile according to [1] or [2], wherein a crystal grain size of the metal structure is 10 to 80 μm.
[4] A steel slab comprising the component described in [1] or [2] above is heated to 1100 to 1300 ° C, the cumulative rolling reduction of 900 ° C or higher is 90% or higher, and the finishing temperature is 850 ° C or higher A method for producing a steel sheet pile, characterized by performing hot rolling and cooling.

本発明によれば、合金を過剰に添加することなく、また、高温での圧下率を高めた熱間圧延によって生産性の向上及び圧延ロールの割損の防止を図ったうえで、降伏応力が430MPa以上である高強度の鋼矢板及びその製造方法を提供することが可能であり、産業上の貢献が極めて顕著である。   According to the present invention, the yield stress is reduced without excessive addition of the alloy, and after improving the productivity and preventing breakage of the rolling roll by hot rolling with an increased reduction rate at a high temperature. It is possible to provide a high-strength steel sheet pile of 430 MPa or more and a manufacturing method thereof, and the industrial contribution is extremely remarkable.

結晶粒径と、強度及び伸びとの関係を説明する図である。It is a figure explaining the relationship between a crystal grain diameter, intensity | strength, and elongation.

鋼矢板の母材の強度及び靱性、並びに、溶接部の靱性を確保するには、焼入れ性の制御、即ち、C、その他、焼入れ性を高める合金成分の含有量の最適化が極めて重要である。焼入れ性は、炭素当量で評価され、合金成分から炭素当量を求める関係式が提案されている。鋼矢板の場合、特に、溶接部の靱性を確保するために焼入れ性が制限されるため、熱間圧延の温度を低下させて母材の強度の向上を図る必要がある。   In order to secure the strength and toughness of the steel sheet pile base metal and the toughness of the welded portion, it is extremely important to control the hardenability, that is, to optimize the content of C and other alloy components that enhance the hardenability. . The hardenability is evaluated by the carbon equivalent, and a relational expression for obtaining the carbon equivalent from the alloy component has been proposed. In the case of steel sheet piles, in particular, since hardenability is limited in order to ensure the toughness of the welded portion, it is necessary to lower the hot rolling temperature to improve the strength of the base material.

一方、生産性の向上や、圧延ロールへの負荷を考慮すると、熱間圧延を高温で行うことが望ましい。そのため、焼入れ性を調整するだけでは、鋼矢板の母材の高強度化及び高靱性化、更には溶接部の高靱性化を両立することが困難である。そこで、本発明者らは、析出強化による強度の確保を検討した。一般に、析出強化は靱性を損なうが、本発明者らの検討の結果、Nbの添加量を制御することにより、900℃以上の圧下率を高めて熱間圧延を行っても、Nb炭窒化物の析出が促進され、粒径の粗大化が抑制されることがわかった。   On the other hand, it is desirable to perform hot rolling at a high temperature in consideration of productivity improvement and load on the rolling roll. Therefore, it is difficult to achieve both high strength and high toughness of the steel sheet pile base material and high toughness of the welded portion only by adjusting the hardenability. Therefore, the present inventors examined securing of strength by precipitation strengthening. In general, precipitation strengthening impairs toughness, but as a result of the study by the present inventors, by controlling the amount of Nb added, even if hot rolling is performed with a reduction rate of 900 ° C. or higher, Nb carbonitride It has been found that the precipitation of is promoted and the coarsening of the particle size is suppressed.

本発明者らは、更に検討を行い、Nbの添加量及び焼入れ性の最適化を図り、Nb炭窒化物の析出を制御することにより、生産性及び圧延負荷の観点から熱間圧延の温度及び圧下率を高めても、母材及び溶接部の靱性を損なうことなく、高強度の鋼矢板を得ることに成功した。   The inventors have further studied, optimized the amount of Nb added and hardenability, and controlled the precipitation of Nb carbonitride to improve the temperature and hot rolling temperature from the viewpoint of productivity and rolling load. Even if the reduction ratio was increased, a high strength steel sheet pile was successfully obtained without impairing the toughness of the base metal and the weld.

なお、本発明では、Nbを添加することから、焼入れ性の指標を下記(式1)及び(式2)で求められる炭素当量Ceとする。炭素当量Ceの式は公知の式である。
Ce=[C]+f(C)×{[Mn]/6+[Si]/24+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5} ・・・ (式1)
f(C)=0.75+0.25×tanh{20×([C]−0.12)}
・・・ (式2)
ここで、[C]、[Mn]、[Si]、[Ni]、[Cr]、[Mo]、[Nb]、[V]は各元素の含有量(質量%)で、含有されていない元素は0とする。
In the present invention, since the addition of Nb, an indication of the hardenability following (Equation 1) and the carbon equivalent Ce N obtained by Equation (2). Wherein the carbon equivalent Ce N is a known equation.
Ce N = [C] + f (C) × {[Mn] / 6 + [Si] / 24 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5} (Formula 1)
f (C) = 0.75 + 0.25 × tanh {20 × ([C] −0.12)}
... (Formula 2)
Here, [C], [Mn], [Si], [Ni], [Cr], [Mo], [Nb], and [V] are the contents (mass%) of each element and are not contained. The element is 0.

以下、本発明について詳細に説明する。まず、本発明の鋼矢板の成分について説明する。ここで、成分についての「%」は質量%を意味する。   Hereinafter, the present invention will be described in detail. First, the components of the steel sheet pile of the present invention will be described. Here, “%” for a component means mass%.

Cは、鋼の強度を高めるのに有効な元素であり、本発明では、強度を確保するために、C量の下限を0.05%以上とする。一方、Cを過剰に含有すると靱性が低下するため、本発明では、C量の上限を0.18%以下とする。強度と靱性とのバランスを向上させるには、C量の下限は0.10%以上が好ましい。   C is an element effective for increasing the strength of steel. In the present invention, in order to ensure the strength, the lower limit of the C content is set to 0.05% or more. On the other hand, when C is contained excessively, the toughness is lowered. Therefore, in the present invention, the upper limit of the C content is 0.18% or less. In order to improve the balance between strength and toughness, the lower limit of the C content is preferably 0.10% or more.

Siは、脱酸元素であり、含有量の下限値を0.10%以上とする。また、Siは強度を向上させる元素でもあり、0.20%以上を含有することが好ましい。一方、Si量が過剰になると靱性が劣化するため、Si量の上限を0.50%以下とする。   Si is a deoxidizing element, and the lower limit of the content is 0.10% or more. Si is also an element that improves strength, and preferably contains 0.20% or more. On the other hand, since the toughness deteriorates when the Si amount becomes excessive, the upper limit of the Si amount is set to 0.50% or less.

Mnは、鋼の焼入れ性を向上させる元素であり、強度及び靱性を確保するために有用である。本発明では、強度を確保するために、Mn量の下限を0.50%以上とする。一方、Mn量が過剰になると焼入れ性が増大して靱性が低下するため、本発明では、Mn量の上限を1.50%以下とする。強度と靱性とのバランスを向上させるには、Mn量の下限を0.80%以上にすることが好ましい。   Mn is an element that improves the hardenability of steel and is useful for ensuring strength and toughness. In the present invention, in order to ensure strength, the lower limit of the amount of Mn is 0.50% or more. On the other hand, when the amount of Mn is excessive, the hardenability is increased and the toughness is lowered. Therefore, in the present invention, the upper limit of the amount of Mn is set to 1.50% or less. In order to improve the balance between strength and toughness, the lower limit of the amount of Mn is preferably 0.80% or more.

Nbは、本発明では極めて重要な元素であり、Nb炭窒化物の析出強化によって強度を確保するため、0.040%以上を添加する。一方、0.050%超のNbを添加すると、Nb炭窒化物によって母材の靱性が低下し、焼入れ性の上昇によって溶接部の靱性を損なうため、Nb量の上限を0.050%以下とする。   Nb is an extremely important element in the present invention, and 0.040% or more is added to ensure strength by precipitation strengthening of Nb carbonitride. On the other hand, when Nb exceeding 0.050% is added, the toughness of the base material is lowered by Nb carbonitride, and the toughness of the welded portion is impaired due to the increase in hardenability, so the upper limit of Nb amount is 0.050% or less. To do.

Alは、脱酸元素であるが、Siを脱酸に使用する場合、必ずしもAlを添加する必要はないため、Al量の下限値は特に限定しない。一方、Al量が過剰になると粗大な酸化物を生じて、靱性が低下するため、Al量の上限を0.05%未満に制限する。Al量の上限は、0.03%以下が好ましく、0.02%以下がより好ましい。   Al is a deoxidizing element, but when Si is used for deoxidation, since it is not always necessary to add Al, the lower limit of the amount of Al is not particularly limited. On the other hand, when the amount of Al is excessive, coarse oxides are formed and the toughness is lowered. Therefore, the upper limit of the amount of Al is limited to less than 0.05%. The upper limit of the amount of Al is preferably 0.03% or less, and more preferably 0.02% or less.

溶接部の靱性を低下させることなく、母材の強度を確保するために、下記(式1)で求められる炭素当量Ceを0.260〜0.460とする。炭素当量Ceは焼入れ性の指標であり、430MPa以上の降伏応力を確保するため、下限を0.260以上にしなければならない。一方、母材及び溶接部の靱性を確保するために、炭素当量Ceを0.460にすることが必要である。
Ce=[C]+f(C)×{[Mn]/6+[Si]/24+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5} ・・・ (式1)
f(C)=0.75+0.25×tanh{20×([C]−0.12)}
・・・ (式2)
ここで、[C]、[Mn]、[Si]、[Ni]、[Cr]、[Mo]、[Nb]、[V]は各元素の含有量(質量%)で、含有されていない元素は0とする。
Without lowering the toughness of the weld, in order to ensure the strength of the base material, the carbon equivalent Ce N calculated by the following (formula 1) is 0.260 to 0.460. Carbon equivalent Ce N is an index of hardenability, in order to ensure a more yield stress 430 MPa, shall the lower limit above 0.260. Meanwhile, in order to ensure the toughness of the base material and welds, it is necessary that the carbon equivalent Ce N to 0.460.
Ce N = [C] + f (C) × {[Mn] / 6 + [Si] / 24 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5} (Formula 1)
f (C) = 0.75 + 0.25 × tanh {20 × ([C] −0.12)}
... (Formula 2)
Here, [C], [Mn], [Si], [Ni], [Cr], [Mo], [Nb], and [V] are the contents (mass%) of each element and are not contained. The element is 0.

更に、必要に応じて、母材中にCu、Ni、Mo、Cr、Vの1種又は2種以上を選択成分として添加してもよい。   Furthermore, you may add 1 type (s) or 2 or more types of Cu, Ni, Mo, Cr, and V as a selection component in a base material as needed.

Cuは、鋼中に固溶して強度を向上させる元素であり、0.05%以上を添加することが好ましい。一方、Cuを過剰に添加するとCuSの析出や表面性状の悪化を招くことがあるため、Cu量の上限を0.40%以下とすることが好ましい。より好ましくは、Cu量の上限を0.30%以下とする。   Cu is an element that improves the strength by solid solution in steel, and it is preferable to add 0.05% or more. On the other hand, since excessive addition of Cu may cause precipitation of CuS and deterioration of surface properties, the upper limit of Cu content is preferably set to 0.40% or less. More preferably, the upper limit of Cu content is 0.30% or less.

Niは、焼入れ性を高め、鋼中に固溶して強度及び靭性を向上させる元素であり、0.10%以上を添加することが好ましい。一方、Niは高価な元素であるため、含有量の上限を1.00%以下にすることが好ましい。より好ましくは、Ni量の上限を0.50%以下とし、更に好ましくは、Ni量の上限を0.30%以下とする。なお、Cuを添加する場合、表面性状の劣化を防止するために、同時にNiを添加することが好ましい。   Ni is an element that improves hardenability and improves the strength and toughness by solid solution in steel, and it is preferable to add 0.10% or more. On the other hand, since Ni is an expensive element, the upper limit of the content is preferably set to 1.00% or less. More preferably, the upper limit of the Ni amount is 0.50% or less, and more preferably, the upper limit of the Ni amount is 0.30% or less. In addition, when adding Cu, in order to prevent deterioration of a surface property, it is preferable to add Ni simultaneously.

Moは、鋼中に固溶して強度を向上させる元素であり、0.10%以上を添加することが好ましい。一方、Moは高温強度を高める元素であり、過剰に添加すると変形抵抗が上昇し、ロールの割損が懸念されるため、Mo量の上限は1.00%以下が好ましい。より好ましくは、Mo量の上限を0.50%以下とし、更に好ましくは、Mo量の上限を0.30%以下とする。   Mo is an element that improves the strength by dissolving in steel, and it is preferable to add 0.10% or more. On the other hand, Mo is an element that increases the high-temperature strength, and when added excessively, deformation resistance increases and there is a concern about roll breakage, so the upper limit of the Mo amount is preferably 1.00% or less. More preferably, the upper limit of the Mo amount is 0.50% or less, and still more preferably, the upper limit of the Mo amount is 0.30% or less.

Crは、鋼の焼入れ性を高め、強度上昇に有効な元素であり、0.10%以上を添加することが好ましい。一方、Crを過剰に添加すると溶接部及び母材の靱性が劣化することがあるため、Cr量の上限を1.00%以下にすることが好ましい。より好ましくは、Cr量の上限を0.50%以下とし、更に好ましくは、Cr量の上限を0.30%以下とする。   Cr is an element that increases the hardenability of the steel and is effective in increasing the strength, and it is preferable to add 0.10% or more. On the other hand, if Cr is added excessively, the toughness of the welded part and the base metal may be deteriorated, so the upper limit of Cr content is preferably made 1.00% or less. More preferably, the upper limit of the Cr amount is 0.50% or less, and still more preferably, the upper limit of the Cr amount is 0.30% or less.

Vは、CやNと化合物を形成し、鋼材の強度を向上させる元素であり、0.05%以上を添加することが好ましい。一方、Vを過剰に添加すると、母材の靱性に悪影響を及ぼすことがあるため、V量の上限を0.20%以下にすることが好ましい。   V is an element that forms a compound with C and N and improves the strength of the steel material, and it is preferable to add 0.05% or more. On the other hand, since excessive addition of V may adversely affect the toughness of the base material, the upper limit of the V content is preferably 0.20% or less.

次に、本発明の鋼矢板の金属組織について説明する。   Next, the metal structure of the steel sheet pile of the present invention will be described.

本発明の鋼矢板の金属組織は、フェライト−パーライトからなり、更に、析出物を含む。析出物は、Nb(C,N)などのNb炭窒化物であり、微細な析出物による析出強化とピン止めによる組織の粗大化抑制により、靱性を確保し、かつ、強度を向上させている。   The metal structure of the steel sheet pile of the present invention is composed of ferrite-pearlite and further contains precipitates. Precipitates are Nb carbonitrides such as Nb (C, N), and ensure toughness and improve strength by precipitation strengthening by fine precipitates and suppression of coarsening of the structure by pinning. .

Nb炭窒化物の単位面積当たりの個数が0.10個/μm未満であると十分な強度が得られず、0.30個/μmを超えると靭性を低下させる。したがって、Nb炭窒化物の個数密度を0.10〜0.30個/μmとする。Nb炭窒化物は、抽出レプリカを試料とし、透過型電子顕微鏡によって測定することができる。 If the number of Nb carbonitrides per unit area is less than 0.10 pieces / μm 2 , sufficient strength cannot be obtained, and if it exceeds 0.30 pieces / μm 2 , the toughness is lowered. Therefore, the number density of Nb carbonitride is set to 0.10 to 0.30 / μm 2 . Nb carbonitride can be measured with a transmission electron microscope using an extracted replica as a sample.

鋼矢板の特性は金属組織の結晶粒径によって影響され、結晶粒径が80μmを超えると、靱性及び強度が低下する傾向がある。一方、結晶粒径が10μm未満になると伸びが低下する傾向がある。したがって、結晶粒径は、特に、10〜80μmとすることが良好な特性を得るうえで好ましいが、本発明はこの結晶粒径範囲に限定されるものではない。本発明の鋼矢板の金属組織は、光学顕微鏡によって観察することができ、JIS G 0551に準拠して、結晶粒径を求めることが可能である。   The properties of the steel sheet pile are affected by the crystal grain size of the metal structure, and when the crystal grain size exceeds 80 μm, the toughness and strength tend to decrease. On the other hand, when the crystal grain size is less than 10 μm, the elongation tends to decrease. Accordingly, the crystal grain size is particularly preferably 10 to 80 μm for obtaining good characteristics, but the present invention is not limited to this crystal grain size range. The metal structure of the steel sheet pile of the present invention can be observed with an optical microscope, and the crystal grain size can be determined according to JIS G 0551.

図1は、一部の試料を用いた試験結果に基づいて、結晶粒径と強度、伸びの関係の一例を示したものである。結晶粒径が80μmを超えて大きくなり、例えば100μmを上回ると降伏強度が430MPa未満になることがあり、結晶粒径が10μmを下回ると伸びが低下することがある。   FIG. 1 shows an example of the relationship between crystal grain size, strength, and elongation based on test results using some samples. When the crystal grain size is larger than 80 μm, for example, when it exceeds 100 μm, the yield strength may be less than 430 MPa, and when the crystal grain size is less than 10 μm, the elongation may be reduced.

次に、本発明の鋼矢板における製造方法について説明する。   Next, the manufacturing method in the steel sheet pile of this invention is demonstrated.

製鋼工程では、常法で、溶鋼の化学成分を調整した後、鋳造し、鋼片を得る。生産性の観点から、鋳造は連続鋳造が好ましい。また、鋼片の厚みは生産性の観点から200mm以上とすることが好ましく、偏析の低減や加熱に要する時間を考慮すると350mm以下が望ましい。   In the steel making process, the chemical composition of the molten steel is adjusted by a conventional method and then cast to obtain a steel piece. From the viewpoint of productivity, the casting is preferably continuous casting. The thickness of the steel slab is preferably 200 mm or more from the viewpoint of productivity, and is preferably 350 mm or less in consideration of reduction of segregation and time required for heating.

本発明の鋼矢板は、鋼片を熱間圧延して製造する。熱間圧延後は、空冷すればよいが、強度及び靱性を高めるために、加速冷却を行ってもよい。   The steel sheet pile of the present invention is manufactured by hot rolling a steel piece. After hot rolling, air cooling may be performed, but accelerated cooling may be performed in order to increase strength and toughness.

鋼片の加熱温度は、低すぎると熱間圧延中に鋼材の温度が低下し、変形抵抗が高くなりすぎるため、1100℃以上とする。一方、鋼片の加熱温度が1300℃を超えると、加熱装置の負荷が増大し、鋼片の表面に生成するスケールが増加するため、上限を1300℃以下とする。   If the heating temperature of the steel slab is too low, the temperature of the steel material is lowered during hot rolling, and the deformation resistance becomes too high. On the other hand, if the heating temperature of the steel slab exceeds 1300 ° C, the load on the heating device increases and the scale generated on the surface of the steel slab increases, so the upper limit is made 1300 ° C or lower.

鋼片を加熱した後、熱間圧延を行う。熱間圧延では、生産性を向上させ、ロールへの負荷を低減して割損を防止するため、900℃以上の範囲の累積圧下率を90%以上とする。本発明では、微細なNb炭窒化物が析出するようにNb量を最適化しているので、このような高温での圧下率を高めた熱間圧延を行っても、析出強化及びピン止めの効果によって、靱性及び強度を確保することができる。900℃以上の範囲で、より低温側での累積歪圧下率を増加させると、フェライト、パーライトの組織が微細化され、強度及び靭性を高めることができる。仕上温度が900℃を超える場合は、仕上温度以上の範囲における累積圧下率を90%以上とする。   After the steel slab is heated, hot rolling is performed. In hot rolling, in order to improve productivity, reduce the load on the roll and prevent breakage, the cumulative rolling reduction in the range of 900 ° C. or higher is set to 90% or higher. In the present invention, the amount of Nb is optimized so that fine Nb carbonitride is precipitated. Therefore, even if hot rolling with such a high rolling reduction is performed, the effect of precipitation strengthening and pinning is achieved. Thus, toughness and strength can be ensured. When the cumulative strain reduction ratio on the lower temperature side is increased in the range of 900 ° C. or higher, the structure of ferrite and pearlite is refined, and the strength and toughness can be increased. When the finishing temperature exceeds 900 ° C., the cumulative rolling reduction in the range above the finishing temperature is 90% or more.

熱間圧延の仕上温度は、850℃以上とする。これは、850℃未満で熱間圧延を行うと、フェライト変態が開始しているので、2相域圧延となるためである。2相域圧延を行った場合、加工フェライトが生じて母材の靱性が劣化し、変形抵抗が大きくなり、ロールへの負荷が高くなる。仕上温度が920℃以上になると粒径が大きくなり、伸びが低下することがある。仕上温度は920℃未満が好ましく、910℃以下がより好ましく、900℃以下が更に好ましい。   The finishing temperature of hot rolling is 850 ° C. or higher. This is because, when hot rolling is performed at a temperature lower than 850 ° C., ferrite transformation has started, and therefore, two-phase rolling is performed. When two-phase rolling is performed, processed ferrite is generated, the toughness of the base material is deteriorated, the deformation resistance is increased, and the load on the roll is increased. When the finishing temperature is 920 ° C. or higher, the particle size may increase and elongation may decrease. The finishing temperature is preferably less than 920 ° C, more preferably 910 ° C or less, and still more preferably 900 ° C or less.

表1に示す成分を有する鋼片を連続鋳造にて製造した。得られた鋼片を加熱炉にて昇温し、熱間圧延を施した。製造条件を表2に示す。得られた鋼矢板のウェブ幅の1/6の位置(1/6W)から試験片を採取し、JIS Z 2241に準拠して引張試験を行い、JIS Z 2242に準拠してシャルピー衝撃試験を行った。なお、機械特性の目標は降伏強度YP及び引張強度TSがそれぞれ430MPa以上、510MPa以上とし、衝撃値は43J以上を目標とした。   Steel pieces having the components shown in Table 1 were produced by continuous casting. The obtained steel slab was heated in a heating furnace and subjected to hot rolling. The manufacturing conditions are shown in Table 2. A test piece is taken from a position (1/6 W) of the web width of the obtained steel sheet pile, a tensile test is performed according to JIS Z 2241, and a Charpy impact test is performed according to JIS Z 2242. It was. The mechanical properties were set such that the yield strength YP and the tensile strength TS were 430 MPa or more and 510 MPa or more, respectively, and the impact value was 43 J or more.

また、1/6Wの部位から試料を採取して、光学顕微鏡により組織観察を行い、金属組織がフェライト−パーライトであることを確認し、粒径を測定した。更に、TEMにより、抽出レプリカ試料の観察を行い、組織中のNb炭窒化物の個数密度を求めた。測定は10μm×10μmの領域で行った。結果を表2に示す。   Further, a sample was taken from a 1/6 W portion, and the structure was observed with an optical microscope to confirm that the metal structure was ferrite-pearlite, and the particle size was measured. Furthermore, the extracted replica sample was observed by TEM to determine the number density of Nb carbonitrides in the structure. The measurement was performed in an area of 10 μm × 10 μm. The results are shown in Table 2.

No.1〜8は実施例であり、いずれも材質を満足している。なお、No.8は、仕上温度が高めであり、粒径がやや大きくなっており、伸びが低めである。   No. Examples 1 to 8 are examples, and all satisfy the materials. In addition, No. No. 8 has a higher finishing temperature, a slightly larger particle size, and a lower elongation.

一方、No.9〜20は比較例であり、強度、シャルピー吸収エネルギーが目標値に到達していない。No9、11、13、15、17は、C、Mn、Si、Nb、Alのいずれかが多く、衝撃値が低下している。一方、No.10、12、14、16は、C、Mn、Si、Nbのいずれかが少なく、降伏強度が低下している。Nb量が多いNo.15はNb炭窒化物の密度が過剰になり、Nb量が少ないNo.16はNb炭窒化物の密度が不足している。No.19はCeが高すぎて靱性が低下し、No.18及びNo.20はCeが低すぎて、降伏強度が低下している。


























On the other hand, no. 9 to 20 are comparative examples, and the strength and Charpy absorbed energy have not reached the target values. In Nos. 9, 11, 13, 15, and 17, any of C, Mn, Si, Nb, and Al is large, and the impact value is low. On the other hand, no. In 10, 12, 14, and 16, any of C, Mn, Si, and Nb is small, and the yield strength is lowered. No. with a large amount of Nb. No. 15 has a density of Nb carbonitride that is excessive and Nb content is small. No. 16 lacks the density of Nb carbonitride. No. In No. 19, Ce N was too high and the toughness was lowered. 18 and no. In No. 20, Ce N is too low, and the yield strength is lowered.


























Figure 2014118629
Figure 2014118629



















Figure 2014118629
Figure 2014118629

Claims (4)

質量%で、
C:0.05〜0.18%、
Si:0.10〜0.50%、
Mn:0.50〜1.50%
Nb:0.040〜0.050%
を含有し、
Al:0.05%未満
に制限し、残部はFe及び不可避不純物からなり、金属組織がフェライト−パーライトからなり、Nb炭窒化物の個数密度が0.10〜0.30個/μmであり、下記(式1)及び(式2)で求められる炭素当量Ceが0.260〜0.460であり、降伏強さが430MPa以上であることを特徴とする鋼矢板。
Ce=[C]+f(C)×{[Mn]/6+[Si]/24+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5} ・・・ (式1)
f(C)=0.75+0.25×tanh{20×([C]−0.12)}
・・・ (式2)
ここで、[C]、[Mn]、[Si]、[Ni]、[Cr]、[Mo]、[Nb]、[V]は各元素の含有量(質量%)で、含有されていない元素は0とする。
% By mass
C: 0.05 to 0.18%,
Si: 0.10 to 0.50%,
Mn: 0.50 to 1.50%
Nb: 0.040 to 0.050%
Containing
Al: limited to less than 0.05%, the balance is made of Fe and inevitable impurities, the metal structure is made of ferrite-pearlite, and the number density of Nb carbonitride is 0.10-0.30 pieces / μm 2 , the following (equation 1) and a carbon equivalent Ce N obtained by equation (2) is 0.260 to 0.460, steel sheet pile, characterized in that the yield strength is not less than 430 MPa.
Ce N = [C] + f (C) × {[Mn] / 6 + [Si] / 24 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5} (Formula 1)
f (C) = 0.75 + 0.25 × tanh {20 × ([C] −0.12)}
... (Formula 2)
Here, [C], [Mn], [Si], [Ni], [Cr], [Mo], [Nb], and [V] are the contents (mass%) of each element and are not contained. The element is 0.
質量%で、更に、
Cu:0.05〜0.40%、
Ni:0.10〜1.00%、
Mo:0.10〜1.00%、
Cr:0.10〜1.00%、
V:0.05〜0.20%
の1種又は2種以上を含有することを特徴とする請求項1に記載の鋼矢板。
In mass%,
Cu: 0.05 to 0.40%,
Ni: 0.10 to 1.00%,
Mo: 0.10 to 1.00%,
Cr: 0.10 to 1.00%,
V: 0.05-0.20%
The steel sheet pile according to claim 1, comprising one or more of the following.
前記金属組織の結晶粒径が10〜80μmであることを特徴とする請求項1又は2に記載の鋼矢板。   The steel sheet pile according to claim 1 or 2, wherein a crystal grain size of the metal structure is 10 to 80 µm. 請求項1又は2に記載の成分からなる鋼片を、1100〜1300℃に加熱し、900℃以上の累積圧下率が90%以上、仕上温度が850℃以上である熱間圧延を行い、冷却することを特徴とする鋼矢板の製造方法。   The steel slab comprising the component according to claim 1 or 2 is heated to 1100 to 1300 ° C, subjected to hot rolling at a cumulative reduction rate of 900 ° C or higher of 90% or higher and a finishing temperature of 850 ° C or higher, and cooled. The manufacturing method of the steel sheet pile characterized by doing.
JP2012277380A 2012-12-19 2012-12-19 Steel sheet pile and manufacturing method thereof Active JP5966909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277380A JP5966909B2 (en) 2012-12-19 2012-12-19 Steel sheet pile and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012277380A JP5966909B2 (en) 2012-12-19 2012-12-19 Steel sheet pile and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014118629A true JP2014118629A (en) 2014-06-30
JP5966909B2 JP5966909B2 (en) 2016-08-10

Family

ID=51173722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277380A Active JP5966909B2 (en) 2012-12-19 2012-12-19 Steel sheet pile and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5966909B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083508A (en) * 2017-04-17 2017-08-22 扬州峰明光电新材料有限公司 A kind of polynary enhanced heat-proof corrosion-resistant magnesium alloy and its manufacture method
CN109576589A (en) * 2019-01-23 2019-04-05 河北津西钢板桩型钢科技有限公司 A kind of low compression ratio hot-rolled steel sheet pile and preparation method thereof
CN114231843A (en) * 2021-12-03 2022-03-25 日照钢铁控股集团有限公司 Manufacturing method of plate-band weathering steel product for container gooseneck tunnel
KR20230098874A (en) 2021-01-07 2023-07-04 제이에프이 스틸 가부시키가이샤 Steel pile and its manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164823A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Production of reinforcing steel bar having excellent low temperature toughness
JPH04165014A (en) * 1990-10-26 1992-06-10 Sumitomo Metal Ind Ltd Manufacture of high-yield strength stainless shape steel
JPH09118952A (en) * 1995-10-20 1997-05-06 Kobe Steel Ltd Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH101721A (en) * 1996-06-11 1998-01-06 Nkk Corp Production of steel sheet pile excellent in weldability in water and toughness
JP2003313641A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk Steel sheet pile having joint with high strength and manufacturing method therefor
JP2011236496A (en) * 2010-04-16 2011-11-24 Jfe Steel Corp Steel excellent in coated film peeling resistance
JP2012122117A (en) * 2010-12-10 2012-06-28 Jfe Steel Corp Steel for coating having excellent coating film durability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164823A (en) * 1986-01-16 1987-07-21 Nippon Steel Corp Production of reinforcing steel bar having excellent low temperature toughness
JPH04165014A (en) * 1990-10-26 1992-06-10 Sumitomo Metal Ind Ltd Manufacture of high-yield strength stainless shape steel
JPH09118952A (en) * 1995-10-20 1997-05-06 Kobe Steel Ltd Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH101721A (en) * 1996-06-11 1998-01-06 Nkk Corp Production of steel sheet pile excellent in weldability in water and toughness
JP2003313641A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk Steel sheet pile having joint with high strength and manufacturing method therefor
JP2011236496A (en) * 2010-04-16 2011-11-24 Jfe Steel Corp Steel excellent in coated film peeling resistance
JP2012122117A (en) * 2010-12-10 2012-06-28 Jfe Steel Corp Steel for coating having excellent coating film durability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083508A (en) * 2017-04-17 2017-08-22 扬州峰明光电新材料有限公司 A kind of polynary enhanced heat-proof corrosion-resistant magnesium alloy and its manufacture method
CN107083508B (en) * 2017-04-17 2019-03-05 扬州峰明光电新材料有限公司 A kind of the heat-proof corrosion-resistant magnesium alloy and its manufacturing method of polynary enhancing
CN109576589A (en) * 2019-01-23 2019-04-05 河北津西钢板桩型钢科技有限公司 A kind of low compression ratio hot-rolled steel sheet pile and preparation method thereof
KR20230098874A (en) 2021-01-07 2023-07-04 제이에프이 스틸 가부시키가이샤 Steel pile and its manufacturing method
CN114231843A (en) * 2021-12-03 2022-03-25 日照钢铁控股集团有限公司 Manufacturing method of plate-band weathering steel product for container gooseneck tunnel

Also Published As

Publication number Publication date
JP5966909B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP5924058B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5076658B2 (en) Steel material for large heat input welding
JP5037744B2 (en) High strength steel plate and manufacturing method thereof
JPWO2018199145A1 (en) High Mn steel and method of manufacturing the same
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP2008255458A (en) Thick steel plate having haz toughness and base metal toughness
JP5966909B2 (en) Steel sheet pile and manufacturing method thereof
JP2020172707A (en) H-shaped steel and its manufacturing method
JP6418418B2 (en) Steel material for large heat input welding
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2019151920A (en) HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
KR20120034017A (en) High-strength steel plate with 980 mpa or above tensile strength excellent in low temperature toughness of multi-layer joint
JP6354571B2 (en) Rolled H-section steel and its manufacturing method
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP5796379B2 (en) Steel for welded structure excellent in CTOD characteristics of high heat input weld heat affected zone
JP5858196B2 (en) Steel sheet pile and manufacturing method thereof
JP4586080B2 (en) High-strength steel sheet with excellent stress-relieving annealing characteristics and low-temperature toughness
JP5434437B2 (en) High heat input welding steel
JP6579135B2 (en) Low yield ratio steel sheet for construction and manufacturing method thereof
JP2008261009A (en) Thick steel plate having reduced material anisotropy and excellent haz toughness and low temperature base metal toughness

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350