JP2010509494A - Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same - Google Patents

Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same Download PDF

Info

Publication number
JP2010509494A
JP2010509494A JP2009535212A JP2009535212A JP2010509494A JP 2010509494 A JP2010509494 A JP 2010509494A JP 2009535212 A JP2009535212 A JP 2009535212A JP 2009535212 A JP2009535212 A JP 2009535212A JP 2010509494 A JP2010509494 A JP 2010509494A
Authority
JP
Japan
Prior art keywords
steel sheet
less
temperature
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009535212A
Other languages
Japanese (ja)
Other versions
JP5439184B2 (en
Inventor
ソン ソー アーン、
ジャン ヨン ヨー、
サン ヒュン チョウ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2010509494A publication Critical patent/JP2010509494A/en
Application granted granted Critical
Publication of JP5439184B2 publication Critical patent/JP5439184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

低温靭性に優れた超高強度ラインパイプ用鋼板とその製造方法に関する。従来の鋼板に比べ、より少量の合金元素を添加しても930MPa以上の強度を有し、かつ、靭性に優れた鋼板及びその製造方法に関する。この鋼板は、重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含み、微細組織としてベイニティックフェライトとアシキュラーフェライトとの合計が面積分率を基準に75%以上含まれる。  The present invention relates to a steel sheet for ultra-high strength line pipe excellent in low-temperature toughness and a manufacturing method thereof. The present invention relates to a steel plate having a strength of 930 MPa or more and excellent in toughness even when a smaller amount of alloying elements is added, and a method for producing the same. The steel sheet is, by weight, C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1%, Cu: 0-1.0%, Ni: 0 to 1.0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr: 0 to 1.0%, Ti: 0 0.005 to 0.03%, Al: 0.01 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 to 0.006%, Ca: 0 to 0.006%, P: 0.02% or less, S: 0.005% or less, balance Fe and other inevitable impurities are included, and the total of bainitic ferrite and acicular ferrite is 75% based on the area fraction as a microstructure. Included.

Description

本発明は、低温靭性に優れた超高強度ラインパイプ用鋼板及びその製造方法に関し、より詳しくは、従来の鋼板に比べてより少量の合金元素を添加しても930MPa以上の強度を有し、かつ靭性に優れたラインパイプ用鋼板及びそれを製造する方法に関する。   The present invention relates to a steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and a method for producing the same, and more specifically, it has a strength of 930 MPa or more even if a smaller amount of alloying element is added compared to a conventional steel sheet, The present invention also relates to a steel plate for line pipes excellent in toughness and a method for producing the same.

ラインパイプは、主に原油または天然ガスの長距離輸送などのために地中に埋設される鋼管に関し、上記ラインパイプ内には高圧のガスまたは原油が流れるので、通常はラインパイプに高圧力が作用する。   Line pipes are mainly steel pipes buried underground for long-distance transportation of crude oil or natural gas. Since high-pressure gas or crude oil flows in the line pipes, high pressure is usually applied to the line pipes. Works.

また、ラインパイプの輸送効率を高めるためには、単位時間当たりに輸送可能な原油またはガス(以下、簡単に「原油など」と称する)の量を増加させる必要があり、このため、必然的にラインパイプの外径を大きく増加させる必要がある。   In order to increase the transportation efficiency of the line pipe, it is necessary to increase the amount of crude oil or gas (hereinafter simply referred to as “crude oil”) that can be transported per unit time. It is necessary to greatly increase the outer diameter of the line pipe.

ラインパイプの外径を増加させる場合には、その内部を流れる原油などの量を増加させることができ、これによって原油などによりラインパイプに作用する圧力も同様に増加される。その場合、ラインパイプ用材料は、さらに高強度のものとして開発される必要があるが、ラインパイプの強度規格の観点において、未だX70等級の鋼板を主に使用している現実である。上記X70等級の鋼板は、70ksi、即ち、約480MPaの強度のもので、このような強度等級の鋼板を用いてラインパイプを大口径化させることは、必然的に鋼板の厚さの増加が要求されるので非経済的である。   When the outer diameter of the line pipe is increased, the amount of crude oil and the like flowing through the inside of the line pipe can be increased, whereby the pressure acting on the line pipe by the crude oil and the like is similarly increased. In that case, the material for the line pipe needs to be developed as a material having higher strength, but from the viewpoint of the strength standard of the line pipe, it is a reality that still uses mainly steel of X70 grade. The X70 grade steel plate has a strength of 70 ksi, that is, about 480 MPa, and increasing the diameter of the line pipe using such a strength grade steel plate inevitably requires an increase in the thickness of the steel plate. It is uneconomical.

従って、現在まで通常に用いられているラインパイプ用鋼板に比べて、その強度が画期的に向上した鋼板への開発要求が次第に増大されているが、このような要求をすべて満たす鋼板の開発は、まだ完了していない現実である。   Therefore, the demand for development of steel sheets with dramatically improved strength is gradually increasing compared to steel sheets for line pipes that have been used normally until now, but the development of steel sheets that satisfy all these requirements. Is a reality that has not yet been completed.

その理由としては、鋼板の強度を増加させる技術自体に対する障壁のみならず、鋼板の強度を増加させるに従って発生する他の問題により、適用し難くなることが挙げられる。   The reason is that it becomes difficult to apply due to not only a barrier to the technology itself for increasing the strength of the steel sheet but also other problems that occur as the strength of the steel sheet is increased.

即ち、鋼板の強度を増加させるためには、強度増加に有効な合金元素を添加すべきであるが、このような合金元素の添加によって、充分に高い強度を得ることが難しくなり、かつ、合金元素の添加量を高めると、それに従って溶接部の低温靭性及び母材の低温靭性が過度に劣るようになるという問題も共に発生するので、鋼板の高強度化には低温靭性の向上も同時に必要となる。   That is, in order to increase the strength of the steel sheet, an alloy element effective for increasing the strength should be added. However, by adding such an alloy element, it becomes difficult to obtain a sufficiently high strength, and the alloy Increasing the amount of element added causes the problem that the low-temperature toughness of the weld and the low-temperature toughness of the base metal will be excessively inferior accordingly, so it is necessary to improve the low-temperature toughness at the same time to increase the strength of the steel sheet. It becomes.

なお、鋼板の強度向上のために、従来には、主に鋼板を焼入れして鋼板内部に低温微細組織、特に下部ベイナイトやマルテンサイトのような組織を形成して、鋼板の硬度を高めるとともに強度も向上しようとする技術が提案されているが、上記マルテンサイトなどのような微細組織が鋼板内部に形成されると、鋼板の強度が足りないか、または、鋼板内部の残留応力により鋼板の靭性が極めて劣るようになるという問題がある。   In order to improve the strength of the steel sheet, conventionally, the steel sheet is mainly quenched to form a low-temperature microstructure, particularly a structure such as lower bainite and martensite, thereby increasing the hardness and strength of the steel sheet. However, if a microstructure such as martensite is formed inside the steel sheet, the strength of the steel sheet is insufficient, or the toughness of the steel sheet due to residual stress inside the steel sheet. There is a problem that becomes extremely inferior.

上記したように、鋼板の強度と靭性は、従来、両立し難い2種の物性であって、鋼板の強度が増加すると靭性が減少するという認識が一般である。   As described above, the strength and toughness of a steel sheet are conventionally two types of physical properties that are difficult to achieve, and it is generally recognized that as the strength of a steel sheet increases, the toughness decreases.

以後にも鋼板の強度と靭性を同時に確保して高強度−高靭性の鋼材を提供しようとする努力は続けられたが、そのうち1つの方法として、TMCP(Thermo Mechanical Controlling Process)という方法が提案されるようになった。上記TMCP法は、鋼板に対する圧延及び冷却時に、機械的加工とともに熱履歴を付与して鋼板の物性を所望の物性に変化させる加工法を総称し、非常に多くの形態に変更されて使用されているが、主に、決められた温度での厳しい条件下で圧延する制御圧延工程と、適切な範囲の冷却速度で鋼板を冷却する加速冷却工程とからなる。   Since then, efforts have been made to provide both high strength and high toughness steel materials while ensuring the strength and toughness of the steel sheet at the same time, but as one of them, a method called TMCP (Thermo Mechanical Controlling Process) has been proposed. It became so. The TMCP method is a generic term for a processing method that changes the physical properties of a steel sheet to a desired physical property by imparting a thermal history together with mechanical processing during rolling and cooling of the steel sheet, and is used after being changed to a very large number of forms. However, it mainly comprises a controlled rolling process in which rolling is performed under severe conditions at a predetermined temperature, and an accelerated cooling process in which the steel sheet is cooled at an appropriate range of cooling rate.

このようなTMCP法を用いる場合、鋼板内部に微細な結晶粒を形成させ、組織を適切に所望の形態に制御することによって、理論上では所望の物性をある程度まで円滑に制御できるという長所がある。   In the case of using such a TMCP method, there is an advantage that desired physical properties can be controlled smoothly to a certain degree by forming fine crystal grains inside a steel plate and appropriately controlling the structure to a desired form. .

しかしながら、上記のようなTMCPの加速冷却工程を通じて所望の強度を有する鋼板を製造するためには、従来技術と同様に硬質組織を形成させる必要がある。従って、TMCP法によって製造された鋼板であっても、強度が増加すると靭性が減少する傾向にあることは、不可避な実情である。   However, in order to produce a steel sheet having a desired strength through the TMCP accelerated cooling process as described above, it is necessary to form a hard structure as in the prior art. Accordingly, it is an unavoidable fact that even a steel plate manufactured by the TMCP method tends to decrease toughness as the strength increases.

従って、高強度鋼材の分野においては、鋼材の強度水準を高めるために持続的に研究開発を実施するとともに、低温靭性を向上させる手段を確保するための努力が持続的に実施されてきた。   Therefore, in the field of high-strength steel materials, research and development have been continuously carried out in order to increase the strength level of steel materials, and efforts have been made continuously to secure means for improving low-temperature toughness.

このような問題を解決するため、焼戻し処理が最も幅広く使用される。   In order to solve such problems, tempering is most widely used.

例えば、特許文献1〜特許文献8には、図1に図示したように圧延及び冷却をするTMCP処理を行った後、Ac1変態温度(加熱時、フェライトがオーステナイトに変態する温度)未満で焼戻しを追加的に行う工程が含まれている製造方法が記載されている。しかし、鋼板の冷却後に焼戻しを行うために再加熱をしなければならないので、エネルギーの消費量が大きく、かつ焼戻し工程を別途に追加しなければならないので、コストアップとなる問題がある。 For example, in Patent Document 1 to Patent Document 8, after performing TMCP treatment to perform rolling and cooling as illustrated in FIG. 1, tempering is performed at a temperature lower than Ac1 transformation temperature (temperature at which ferrite transforms to austenite during heating). A manufacturing method including a step of additionally performing is described. However, since reheating is required to perform tempering after cooling the steel sheet, the energy consumption is large and a tempering process must be added separately, resulting in an increase in cost.

また、鋼材の強度を上昇させるため多くの種類の合金元素が鋼材に添加されるが、そのうち最も効果的に使用される元素の1つとしてはMoが挙げられる。例えば、特許文献9〜12は、多量のMo、特に0.2重量%以上のMoを含むことによって鋼材の微細組織に下部ベイナイトとラスマルテンサイトを含む技術が記載されている。特に、類似した技術として、特許文献13を参考すると、0.35重量%以上のMoを含む鋼を主要な発明例として採用しており、かつ、0.14重量%のMo含量を示す比較例では、930MPaよりも低い引張強度を示しているのが分かる。   In addition, many kinds of alloying elements are added to the steel material in order to increase the strength of the steel material, and one of the most effectively used elements is Mo. For example, Patent Documents 9 to 12 describe a technique in which lower bainite and lath martensite are included in the microstructure of a steel material by containing a large amount of Mo, particularly 0.2 wt% or more of Mo. In particular, as a similar technique, referring to Patent Document 13, a steel containing 0.35% by weight or more of Mo is adopted as a main invention example, and a comparative example showing a Mo content of 0.14% by weight. It can be seen that the tensile strength is lower than 930 MPa.

しかし、Moは、それ自体が高価な元素であるため、Moを、上述したように、0.15重量%または0.2重量%以上使用すると、鋼材の製造コストを上昇させる原因となる。さらに、図3に示した下部ベイナイト組織は、図2から明らかなように、相変態が発生する温度範囲が非常に狭く、鋼を製造する冷却条件が厳しく、過度に高い冷却速度を必要とするため、製造設備の能力条件が非常に厳しく、かつ、高い冷却速度により板の変形という問題などが発生する可能性があるので、鋼板の製造後、追加的に、形状を制御するための処理などが必要になり、製造条件が複雑で難しいという問題がある。   However, since Mo itself is an expensive element, if Mo is used in an amount of 0.15% by weight or 0.2% by weight or more as described above, it causes an increase in the manufacturing cost of the steel material. Further, as is apparent from FIG. 2, the lower bainite structure shown in FIG. 3 has a very narrow temperature range in which phase transformation occurs, severe cooling conditions for producing steel, and an excessively high cooling rate. Therefore, the capacity requirements of the manufacturing equipment are very strict, and there is a possibility that the deformation of the plate may occur due to the high cooling rate. Therefore, after manufacturing the steel plate, additional processing to control the shape, etc. There is a problem that manufacturing conditions are complicated and difficult.

米国特許5545269号明細書US Pat. No. 5,545,269 米国特許5755895号明細書US Pat. No. 5,755,895 米国特許5798004号明細書US Pat. No. 5,798,004 米国特許5900075号明細書US Patent No. 5900075 米国特許6045630号明細書US Pat. No. 6,045,630 米国特許6183573号明細書US Pat. No. 6,183,573 米国特許6245290号明細書US Pat. No. 6,245,290 米国特許6532995号明細書US Pat. No. 6,532,995 米国特許6224689号明細書US Pat. No. 6,224,689 米国特許6228183号明細書US Pat. No. 6,228,183 米国特許6248191号明細書US Pat. No. 6,248,191 米国特許6264760号明細書US Pat. No. 6,264,760 大韓民国特許特2000−00533890号公報Korean Patent Patent No. 2000-00533890

本発明は、上記の問題点を解決するためのものであって、Moの含量を多量に使用しなくても、引張強度が高く低温靭性に優れた鋼板及びその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and to provide a steel sheet having high tensile strength and excellent low-temperature toughness without using a large amount of Mo, and a method for producing the same. And

本発明の一側面によれば、本発明の鋼板は、重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含み、微細組織としてベイニティックフェライト(Bainitic Ferrite)とアシキュラーフェライト(Acicular Ferrite、「針状フェライト」ともいう)の合計が面積分率を基準に75%以上含まれることを特徴とする。   According to one aspect of the present invention, the steel sheet of the present invention is, by weight, C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1%, Cu: 0 to 1.0%, Ni: 0 to 1.0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr : 0 to 1.0%, Ti: 0.005 to 0.03%, Al: 0.01 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 to 0.006 %, Ca: 0 to 0.006%, P: 0.02% or less, S: 0.005% or less, balance Fe and other inevitable impurities, and as a microstructure, bainitic ferrite (Bainitic Ferrite) and The total of acicular ferrite (also called “Acicular Ferrite”) is 7 based on the area fraction. It is characterized by containing 5% or more.

本発明の他の側面によれば、本発明の鋼板は、重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含み、微細組織としてベイニティックフェライトとアシキュラーフェライトとの合計が面積分率を基準に75%以上含まれ、降伏強度が930MPa以上、−40℃のシャルピ衝撃吸収エネルギーが230ジュール以上であることを特徴とする。   According to another aspect of the present invention, the steel sheet of the present invention is, by weight, C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1% Cu: 0 to 1.0%, Ni: 0 to 1.0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr: 0-1.0%, Ti: 0.005-0.03%, Al: 0.01-0.06%, B: 0.0005-0.0025%, N: 0.001-0. 006%, Ca: 0 to 0.006%, P: 0.02% or less, S: 0.005% or less, balance Fe and other unavoidable impurities, bainitic ferrite and acicular ferrite as microstructure Is 75% or more based on the area fraction, yield strength is 930 MPa or more, and Charpy impact absorption energy at −40 ° C. is 230 joules. Characterized in that at least.

このとき、上記鋼板に、上記のMoは、0.015%以下添加されることがさらに好ましい。   At this time, it is more preferable that the Mo is added to the steel sheet in an amount of 0.015% or less.

また、上記鋼板の上記微細組織は、グラニュラベイナイト(Granular Bainite)の含量が面積分率を基準に5%以下であることが好ましい。   The fine structure of the steel sheet preferably has a granular bainite content of 5% or less based on the area fraction.

なお、オーステナイト結晶粒度の厚さ方向の大きさが15μm以下であることが特に好ましい。   The austenite grain size in the thickness direction is particularly preferably 15 μm or less.

本発明のさらに他の側面によれば、主にベイニティックフェライトとアシキュラーフェライトまたはこれらの混合組織を含む微細組織を有する超高強度・高靭性の鋼材を製造するための好ましい方法は、実質的に全てのバナジウムとニオブの炭化物と炭窒化物が溶解するのに十分な温度で鋼スラブを加熱するステップと、オーステナイトの再結晶温度の範囲で1回熱間圧延またはそれ以上の熱間圧延段階で上記スラブを圧下するステップと、Tnr温度(オーステナイトが再結晶しない温度より低い温度)未満であり、Ar変態点(即ち、冷却時に、オーステナイトからフェライトへの変態が始まる温度)超過の温度範囲で1回熱間圧延またはそれ以上の熱間圧延段階で上記鋼板を圧下するステップと、圧延された鋼板を20〜50℃/秒の冷却速度で冷却するステップと、200〜400℃の温度で上記鋼板の冷却を停止するステップと、上記鋼板を大気温度で空冷するステップと、を含む。 According to still another aspect of the present invention, a preferable method for producing an ultra-high strength and high toughness steel material having a microstructure mainly including bainitic ferrite and acicular ferrite or a mixed structure thereof is substantially Heating the steel slab at a temperature sufficient to dissolve all vanadium and niobium carbides and carbonitrides, and one hot rolling or more in the range of austenite recrystallization temperatures a step of rolling the slab in step, is less than T nr temperature (austenite temperature lower than the temperature at which no recrystallization), Ar 3 transformation point (i.e., at the time of cooling, the transformation begins temperature from austenite to ferrite) exceeded A step of rolling the steel sheet in a hot rolling stage once or more in a temperature range, and the rolled steel sheet at 20 to 50 ° C. / Comprising the steps of cooling at a cooling rate, a step of stopping the cooling of the steel sheet at a temperature of 200 to 400 ° C., a step of cooling the steel sheet at ambient temperature, the.

このとき、上記鋼板に、上記のMoは、0.015%以下添加されることがより好ましい。   At this time, it is more preferable to add 0.015% or less of the Mo to the steel sheet.

また、上記鋼板の20〜50℃/秒の冷却速度での冷却を停止した後には、上記鋼板を大気温度まで空冷させることが効果的である。   Moreover, after stopping the cooling of the steel sheet at a cooling rate of 20 to 50 ° C./sec, it is effective to air-cool the steel sheet to the atmospheric temperature.

本発明によれば、Moを多量に添加しなくても、高強度を確保することができ、かつ、低温靭性にも優れた鋼板を提供することができる。   According to the present invention, it is possible to provide a steel sheet that can ensure high strength and is excellent in low-temperature toughness without adding a large amount of Mo.

圧延と冷却を経て生産された鋼板に対して、物性を確保するために焼戻し(tempeting)を行う製造方法と、焼戻しを行うことなく物性を確保する製造方法とを比較したグラフである。図中、その他の表記は、Lower Bainite:下部ベイナイトである。It is the graph which compared the manufacturing method which temperes in order to ensure a physical property with respect to the steel plate produced through rolling and cooling, and the manufacturing method which ensures a physical property, without performing tempering. Other notations in the figure are Lower Bainite: lower bainite. 下部ベイナイト(Lower Bainite)とラスマルテンサイト(Lath Martensite)を主な微細組織として構成する鋼材の冷却条件と、ベイニティックフェライト(Bainitic Ferrite)とアシキュラーフェライトを主な微細組織として構成する鋼材の冷却条件とを比較するために示したTTTダイヤグラムである。図中、その他の表記は、Granular Bainite:グラニュラベイナイト、Ferrite:フェライトである。Cooling conditions for steel materials that have lower bainite and lath martensite as main microstructures, and steel materials that have bainitic ferrite and acicular ferrite as main microstructures It is a TTT diagram shown in order to compare with cooling conditions. Other notations in the figure are Granular Bainite: Granular bainite and Ferrite: Ferrite. 下部ベイナイトを透過電子顕微鏡で観察した写真である。It is the photograph which observed the lower bainite with the transmission electron microscope. ベイニティックフェライトを透過電子顕微鏡で観察した写真である。It is the photograph which observed bainitic ferrite with the transmission electron microscope. アシキュラーフェライトを透過電子顕微鏡で観察した写真である。It is the photograph which observed the acicular ferrite with the transmission electron microscope. グラニュラベイナイトを透過電子顕微鏡で観察した写真である。It is the photograph which observed the granular bainite with the transmission electron microscope.

本発明の上記及びその他の側面、特徴、及びその他の効果は、添付の図面とともに以下の詳細な説明からより明確に理解される。   These and other aspects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.

本発明の実施の形態を添付の図面を参照して説明する。   Embodiments of the present invention will be described with reference to the accompanying drawings.

上記した従来の技術の問題点を解決するために鋭意研究を行ったところ、本発明の発明者らは以下の事実を見い出すことができた。即ち、鋼板の強度を増加させるために鋼材に添加されるMoを、従来の発明より少なく添加することによって、鋼板は、超高強度鋼を製造するための従来の発明から形成された下部ベイナイトまたはラスマルテンサイトを形成しなくても、十分な強度が得られる。それとともに、鋼板は、圧延条件を制御してオーステナイト結晶粒の大きさを微細に調整し、下部ベイナイトまたはラスマルテンサイトのような超硬質組織でない種類の組織を形成することにより、良好な靭性も得えられる。本発明はこのような発見に基づいたものである。   As a result of diligent research to solve the above-mentioned problems of the prior art, the inventors of the present invention have found the following facts. That is, by adding less Mo than the conventional invention to increase the strength of the steel sheet, the steel sheet is a lower bainite formed from the conventional invention for producing ultra-high-strength steel or Sufficient strength can be obtained without forming lath martensite. At the same time, the steel sheet has good toughness by controlling the rolling conditions to finely adjust the size of austenite grains and forming a type of structure that is not an ultra-hard structure such as lower bainite or lath martensite. Can be obtained. The present invention is based on such a discovery.

即ち、本発明は、Moの含量は減少させ、かつ他の合金元素の添加量を調節する一方、微細な結晶粒を有するベイニティックフェライトとアシキュラーフェライトで制御して、従来の硬質組織を有する鋼板に対比して同等以上の強度を有し、また、上記組織の結晶粒の大きさを微細にすることによって従来の下部ベイナイトやラスマルテンサイトよりも優れた低温靭性を有するようにした鋼板と、上記鋼板を製造する方法を提供することをその特徴とする。   That is, the present invention reduces the Mo content and adjusts the addition amount of other alloy elements, while controlling with the bainitic ferrite and the acicular ferrite having fine crystal grains, the conventional hard structure. Compared to the steel sheet, the steel sheet has the same or higher strength, and has a low temperature toughness superior to that of conventional lower bainite and lath martensite by making the grain size of the above structure fine. And a method for producing the steel sheet.

以下、本発明の鋼板の組成、微細組織及び製造方法の順に詳しく説明する。   Hereinafter, it explains in detail in order of a composition of a steel plate of the present invention, a fine structure, and a manufacturing method.

(鋼板の組成)
本発明では、その対象としている鋼板の組成を十分な強度と溶接部の靭性を含む靭性を有するように、下記のように選定した。
(Composition of steel sheet)
In the present invention, the composition of the target steel sheet is selected as follows so as to have sufficient strength and toughness including the toughness of the welded portion.

炭素(C):0.03〜0.10重量%
Cは、固溶強化を通じて溶接部及びその母材を強化する最も効果的な元素であり、小さな大きさのセメンタイト、V及びNb炭窒化物[Nb(C,N)]及びMo炭化物[MoC]を鋼材に形成することによる析出硬化によって強化効果が得られる。さらに、Nb炭窒化物は、熱間圧延時にオーステナイトの再結晶を抑制して結晶粒の成長を防ぐことによって、結晶粒の微細化により強度及び低温靭性を同時に向上させることができる。Cは、冷却中、鋼板内部に強い微細組織を形成させる能力である硬化能を向上させる役割もする。通常、0.03重量%未満になると、このような強化効果を得ることができず、0.1重量%を超過して添加すると、現場溶接後に、鋼板が低温割れに敏感になり、鋼板及び溶接熱影響部における靭性が低下される可能性もある。
Carbon (C): 0.03 to 0.10% by weight
C is the most effective element for strengthening the weld and its base material through solid solution strengthening, and is small in size cementite, V and Nb carbonitride [Nb (C, N)] and Mo carbide [Mo 2 ]. The strengthening effect is obtained by precipitation hardening by forming C] on the steel material. Furthermore, Nb carbonitride can simultaneously improve strength and low-temperature toughness by refining crystal grains by suppressing recrystallization of austenite during hot rolling to prevent crystal grain growth. C also plays the role of improving the hardenability, which is the ability to form a strong microstructure inside the steel plate during cooling. Usually, when the amount is less than 0.03% by weight, such a strengthening effect cannot be obtained. When the amount exceeds 0.1% by weight, the steel sheet becomes sensitive to cold cracking after on-site welding. There is also a possibility that the toughness in the weld heat affected zone is lowered.

Si:0〜0.6重量%
ケイ素(Si)は、Alを補助して溶鋼を脱酸する役割を行い、固溶強化元素としても効果を示す。Siを0.6重量%超過と過多に添加すると、現場溶接性及び溶接熱影響部の靭性を大きく低下させる。AlあるいはTiが脱酸する役割を行うので、脱酸のためSiを必ず添加しなければならないわけではない。
Si: 0 to 0.6% by weight
Silicon (Si) plays the role of deoxidizing molten steel with the aid of Al, and is also effective as a solid solution strengthening element. If Si is excessively added in excess of 0.6% by weight, the on-site weldability and the toughness of the heat affected zone are greatly reduced. Since Al or Ti plays a role of deoxidation, it is not always necessary to add Si for deoxidation.

Mn:1.6〜2.1重量%
マンガン(Mn)は、鋼材を固溶強化させるのに効果的な元素であり、硬化能の増加効果とともに高強度を発揮するためには、1.6重量%以上が必要である。しかし、2.1重量%超過して添加すると、製鋼工程でスラブを連続鋳造時に中心偏析を助長し、靭性を低下させる傾向がある。さらに、Mnを過多に添加すると、硬化能を過度に向上させて現場溶接性を悪化させ、溶接熱影響部の靭性を低下させるようになる。
Mn: 1.6 to 2.1% by weight
Manganese (Mn) is an effective element for solid solution strengthening of steel materials, and 1.6% by weight or more is necessary for exhibiting high strength as well as an effect of increasing hardenability. However, if added in excess of 2.1% by weight, center segregation is promoted during continuous casting of the slab in the steel making process, and the toughness tends to be reduced. Furthermore, when Mn is added excessively, the hardenability is excessively improved, the on-site weldability is deteriorated, and the toughness of the weld heat affected zone is lowered.

Cu:0〜1.0重量%
銅(Cu)は、母材金属及び溶接熱影響部を強化させる元素である。しかし、Cuを過多に添加すると、溶接熱影響部の靭性及び現場溶接性を低下させる傾向がある。
Cu: 0 to 1.0% by weight
Copper (Cu) is an element that strengthens the base metal and the weld heat affected zone. However, when Cu is excessively added, the toughness of the heat affected zone and the field weldability tend to be lowered.

Ni:0〜1.0重量%
ニッケル(Ni)は、低炭素鋼において現場溶接性及び低温靭性を損なうことなく物性を向上させる元素である。Mn及びMoに比べて、Niは低温靭性を低下させる島状マルテンサイト(martensite−austenite constituents)を少なく形成させ、溶接熱影響部の靭性を向上させるとともに、連続鋳造及び熱間圧延時にCu添加の鋼で発生する表面割れの発生を抑制させる。しかし、Niは高価な元素であり、過多なNi添加は溶接熱影響部の靭性をかえって低下させる。
Ni: 0 to 1.0% by weight
Nickel (Ni) is an element that improves physical properties of low carbon steel without impairing on-site weldability and low temperature toughness. Compared to Mn and Mo, Ni forms less martensite-austentite constituents that lower the low-temperature toughness, improves the toughness of the heat affected zone, and adds Cu during continuous casting and hot rolling. Suppresses the occurrence of surface cracks in steel. However, Ni is an expensive element, and excessive addition of Ni lowers the toughness of the weld heat affected zone.

Nb:0.02〜0.06重量%
ニオブ(Nb)は、鋼板の圧延微細構造の結晶粒の微細化を通じて強度と靭性を同時に向上させる役割をする。熱間圧延中に生成されるNb炭窒化物[Nb(C,N)]は、オーステナイトの再結晶を抑制して結晶粒の成長を阻害してオーステナイト結晶粒を微細化する。また、Moとともに添加されると、オーステナイトの再結晶を抑制して結晶粒の微細化の効果が増大され、析出の強化及び硬化能の向上による強化効果がさらに大きくなる。Bが存在すると、硬化能をさらに増加させる効果が得られる。このような効果を得るためには0.02重量%以上含有することが好ましい。しかし、0.06重量%を超過して添加すると、更なる効果上昇は期待することが難しく、かつ溶接性及び溶接熱影響部の靭性に悪影響を与えるようになる。
Nb: 0.02-0.06% by weight
Niobium (Nb) plays a role of simultaneously improving strength and toughness through refinement of the crystal grains of the rolled microstructure of the steel sheet. Nb carbonitride [Nb (C, N)] produced during hot rolling suppresses recrystallization of austenite, inhibits crystal grain growth, and refines austenite crystal grains. Further, when added together with Mo, recrystallization of austenite is suppressed, the effect of refining crystal grains is increased, and the strengthening effect by strengthening precipitation and improving hardening ability is further increased. When B is present, an effect of further increasing the curability is obtained. In order to acquire such an effect, it is preferable to contain 0.02 weight% or more. However, if it is added in excess of 0.06% by weight, it is difficult to expect a further increase in the effect, and the weldability and the toughness of the weld heat affected zone will be adversely affected.

V:0〜0.1重量%
バナジウム(V)は、Nbと類似した役割をするが、その効果はNbよりは多少小さい。しかし、NbとVがともに添加されると、その効果が大きく拡大する。しかし、溶接熱影響部の靭性及び溶接性を考慮し、その上限を0.1重量%とする。
V: 0 to 0.1% by weight
Vanadium (V) plays a role similar to Nb, but its effect is somewhat smaller than Nb. However, when both Nb and V are added, the effect is greatly expanded. However, considering the toughness and weldability of the weld heat affected zone, the upper limit is set to 0.1% by weight.

Mo:0.1〜0.5重量%
モリブデン(Mo)は、硬化能を向上させ、特に、Bとともに添加すると硬化能の向上効果は非常に大きく現われる。また、Nbとともに添加するとオーステナイトの再結晶を抑制して結晶粒の微細化に寄与する。しかし、Moを過度に添加すると、現場溶接時に溶接熱影響部の靭性を低下させるため、0.5%以下を維持することが好ましく、0.01〜0.15%に維持することがさらに好ましい。
Mo: 0.1 to 0.5% by weight
Molybdenum (Mo) improves the hardenability, and particularly when added together with B, the effect of improving the hardenability appears very greatly. Further, when added together with Nb, recrystallization of austenite is suppressed, contributing to refinement of crystal grains. However, if Mo is added excessively, the toughness of the weld heat-affected zone is reduced during field welding, so it is preferable to maintain 0.5% or less, and more preferably 0.01 to 0.15%. .

Cr:0〜1.0重量%
クロム(Cr)は、硬化能を向上させる役割をする。しかし、Crを過度に添加すると、現場溶接後に低温割れを発生させ、母材及び溶接部熱影響部の靭性を低下させるため、1.0重量%を上限にする。
Cr: 0 to 1.0% by weight
Chromium (Cr) plays a role of improving the hardenability. However, if Cr is added excessively, low temperature cracks are generated after on-site welding, and the toughness of the base material and the heat affected zone of the weld is reduced, so 1.0 wt% is made the upper limit.

Ti:0.005〜0.03重量%
Tiは、微細なTi窒化物(TiN)を形成し、スラブ加熱時にオーステナイト結晶粒の粗大化を抑制することによって結晶粒の微細化に寄与する。さらに、TiNは、溶接熱影響部の結晶粒の粗大化を防ぐとともに、溶鋼中のフリーNを固定することによって靭性を向上させる。フリーNを充分に固定するためには、TiがN添加量の3.4倍(重量基準)以上になることが好ましい。従って、Tiは基地金属及び溶接熱影響部の高強度化及び結晶粒を微細化させるのに有用な元素であり、鋼中にTiNとして存在して、圧延のための加熱過程で結晶粒の成長を抑制する効果があり、また、窒素と反応して残ったTiが鋼中に固溶され、炭素と結合してTiCの析出物が形成され、TiCの形成は非常に微細で鋼の強度を大幅に向上させる。Alの添加量が少なすぎる(0.005重量%未満)と、Ti酸化物を形成させ、溶接熱影響部に粒内アシキュラーフェライトの核生成サイトとして作用することになる。従って、TiN析出によるオーステナイト結晶粒の成長抑制の効果及びTiC形成による強度増加を得るためには、Tiを少なくとも0.005重量%以上を添加する必要がある。一方、Tiが0.03重量%超過で添加されると、Ti窒化物の粗大化及びTi炭化物による硬化が過度になって、低温靭性を非常に低下させ、鋼板を溶接して鋼管を製造するとき、溶融点まで急熱され、TiNが再固溶されることによって、溶接熱影響部の靭性が低下されるので、Ti添加の上限は0.03重量%とする。
Ti: 0.005 to 0.03% by weight
Ti forms fine Ti nitride (TiN) and contributes to refinement of crystal grains by suppressing coarsening of austenite crystal grains during slab heating. Furthermore, TiN prevents toughening of crystal grains in the weld heat affected zone and improves toughness by fixing free N in the molten steel. In order to sufficiently fix the free N, Ti is preferably 3.4 times (weight basis) or more of the N addition amount. Therefore, Ti is an element useful for increasing the strength of the base metal and the heat-affected zone of the weld and for making the crystal grains finer. Ti exists in steel as TiN and grows during the heating process for rolling. In addition, Ti remaining after reacting with nitrogen is dissolved in the steel, and is combined with carbon to form TiC precipitates. TiC formation is very fine and increases the strength of the steel. Greatly improve. If the amount of Al added is too small (less than 0.005% by weight), Ti oxide is formed and acts as a nucleation site for intragranular acicular ferrite in the weld heat affected zone. Accordingly, in order to obtain the effect of suppressing the growth of austenite crystal grains due to TiN precipitation and the increase in strength due to TiC formation, it is necessary to add at least 0.005% by weight of Ti. On the other hand, if Ti is added in excess of 0.03% by weight, Ti nitride coarsening and hardening by Ti carbide become excessive, the low temperature toughness is greatly reduced, and the steel plate is welded to produce a steel pipe. Since the toughness of the weld heat affected zone is lowered by rapid heating to the melting point and TiN being re-dissolved, the upper limit of Ti addition is 0.03% by weight.

Al:0.01〜0.06重量%
アルミニウム(Al)は、通常、鋼の脱酸を目的として添加する。また、微細組織の微細化だけでなく、溶接熱によりTiNが部分的に溶解され、それよって窒素が溶解されるようにする溶接熱影響部の粗大結晶粒の領域でフリーNを除去することによって熱影響部の靭性を向上させる。しかし、0.06重量%を超過して含有されると、Al酸化物(Al)を形成して基地金属及び熱影響部の靭性を低下させる。Ti及びSiの添加で脱酸することができるので、Alは重要な元素ではない。
Al: 0.01 to 0.06% by weight
Aluminum (Al) is usually added for the purpose of deoxidizing steel. Also, not only by refining the microstructure, but also by removing free N in the coarse grain region of the weld heat affected zone, where TiN is partially dissolved by welding heat and thereby nitrogen is dissolved. Improves the toughness of the heat affected zone. However, if it exceeds 0.06% by weight, Al oxide (Al 2 O 3 ) is formed, and the toughness of the base metal and the heat affected zone is lowered. Al is not an important element since it can be deoxidized by the addition of Ti and Si.

B:0.0005〜0.0025重量%
ボロン(B)は、低炭素鋼での硬化能を大きく向上させ、溶接性及び低温割れの抵抗性を増加させる。特に、Mo及びNbの硬化能の向上効果を増大させる役割をするとともに、結晶粒界の強度を増加させ、水素によって発生される粒内割れを抑制する。しかし、Bを過度に添加すると、Fe23(C,B)の脆化粒子の析出による脆化の原因となる。従って、Bの含量は、他の硬化能元素の含量を考慮して決めなければならなく、本発明ではBの含量として上述したように0.0005〜0.0025重量%の範囲が好ましい。
B: 0.0005 to 0.0025% by weight
Boron (B) greatly improves the hardenability of the low carbon steel and increases the weldability and the resistance to cold cracking. In particular, it plays a role of increasing the effect of improving the hardenability of Mo and Nb, increases the strength of the crystal grain boundary, and suppresses intragranular cracking generated by hydrogen. However, excessive addition of B causes embrittlement due to precipitation of Fe 23 (C, B) 6 embrittled particles. Therefore, the content of B must be determined in consideration of the content of other curable elements. In the present invention, the B content is preferably in the range of 0.0005 to 0.0025% by weight as described above.

N:0.001〜0.006重量%
チッ素(N)は、スラブ加熱中にオーステナイト結晶粒の成長を抑制し、TiN析出物を形成し、溶接熱影響部のオーステナイト結晶粒の成長を抑制する。しかし、Nを過度に添加すると、スラブの表面欠陥を助長してBの硬化能の効果を減少させ、溶質窒素がある場合は母材及び溶接熱影響部の靭性を低下させる。
N: 0.001 to 0.006% by weight
Nitrogen (N) suppresses the growth of austenite crystal grains during slab heating, forms TiN precipitates, and suppresses the growth of austenite crystal grains in the weld heat affected zone. However, when N is added excessively, the surface defects of the slab are promoted to reduce the effect of the hardening ability of B, and when there is solute nitrogen, the toughness of the base material and the weld heat affected zone is lowered.

Ca:0〜0.006重量%
Caは、MnS介在物の形状を制御し、低温靭性を向上させる元素として使われる。しかし、Caを過度に添加すると、多量のCaO−CaSが形成及び結合して大きなクラスターと粗大な介在物を形成するので、鋼の清浄度低下は勿論、現場溶接性を損なう。
Ca: 0 to 0.006% by weight
Ca is used as an element that controls the shape of MnS inclusions and improves low-temperature toughness. However, when Ca is added excessively, a large amount of CaO—CaS is formed and bonded to form large clusters and coarse inclusions, so that the weldability of the steel is deteriorated as well as the cleanliness of the steel is lowered.

P:0.02%以下
リン(P)は、Mnなどと結合し非金属介在物を形成して鋼を脆化させる問題を発生させるので、積極低減する必要があるが、Pを極限まで低減するためには製鋼の工程負荷が深化され、0〜0.02%では上記の問題点が大きく発生しないので、その上限を0.02重量%とする。
P: 0.02% or less Phosphorus (P) forms a non-metallic inclusion by bonding with Mn and the like to cause a problem of embrittlement of steel. Therefore, it is necessary to actively reduce it, but P is reduced to the limit. In order to do this, the process load of steelmaking is deepened, and since the above problem does not occur greatly at 0 to 0.02%, the upper limit is made 0.02% by weight.

S:0.005%以下
硫黄(S)は、Mnなどと結合し、鋼を脆化させ、赤熱脆性を起こす元素であり、上記Pと同様に製鋼の工程負荷を考慮し、その上限を0.005重量%と限定する。
S: 0.005% or less Sulfur (S) is an element that binds with Mn or the like, embrittles the steel, and causes red heat embrittlement. Limited to 0.005% by weight.

(微細組織)
上述した成分系を有することに加え、強度と靭性に優れた鋼板を製造するために、鋼板は以下の微細組織を有することが好ましい。
(Fine structure)
In addition to having the above-described component system, in order to produce a steel sheet excellent in strength and toughness, the steel sheet preferably has the following microstructure.

即ち、本発明で提供する鋼板内部の微細組織は、図4に図示した形状のベイニティックフェライトと、図5に図示した形状のアシキュラーフェライトとの合計として75%以上を含む。ここで、上記組織の割合は面積分率を意味する。   That is, the microstructure inside the steel sheet provided by the present invention includes 75% or more in total of the bainitic ferrite having the shape shown in FIG. 4 and the acicular ferrite having the shape shown in FIG. Here, the ratio of the structure means an area fraction.

上記のような形態の微細組織相の外、一部はグラニュラベイナイトが形成されることができる。上記グラニュラベイナイトは低温靭性を阻害する原因になるので、その含量を面積分率を基準に5%以下に制限しなければならない。   In addition to the fine textured phase as described above, granular bainite can be formed in part. Since the granular bainite becomes a cause of inhibiting low temperature toughness, the content thereof must be limited to 5% or less based on the area fraction.

なお、本発明の鋼板は、その微細組織が非常に微細である。これは、微細組織の微細化が大きいほど割れの伝播を沮止して脆性の破壊を防止することができるためであり、本発明の発明者らによると、好ましい結晶粒の大きさは、オーステナイト結晶粒の大きさの基準で15μm以下である。   The steel sheet of the present invention has a very fine microstructure. This is because the smaller the microstructure, the more the crack propagation can be prevented and the brittle fracture can be prevented. According to the inventors of the present invention, the preferred crystal grain size is austenite. It is 15 μm or less on the basis of crystal grain size.

上述したように、成分系を有し、微細組織の条件を満たす鋼板は、降伏強度が930MPa以上、−40℃の衝撃靭性が230ジュール以上のものであって、本発明で目的とする性質を満たす鋼板である。   As described above, a steel sheet having a component system and satisfying the conditions of the microstructure has a yield strength of 930 MPa or more and an impact toughness of −40 ° C. of 230 joules or more. It is a steel plate that fills.

(製造方法)
上述したような本発明の目的を満たす鋼材を製造するため、本発明者らによって導出された、最も好ましい方法について以下に説明する。
(Production method)
In order to produce a steel material that satisfies the object of the present invention as described above, the most preferable method derived by the present inventors will be described below.

本発明の製造方法は、概略的に、鋼スラブを加熱し、該鋼スラブをオーステナイトの再結晶温度領域で1回熱間圧延または2回以上の多段階熱間圧延し、Tnr温度未満でありAr変態点超過の温度領域で1回熱間圧延または2回以上の多段階熱間圧延でさらに圧延を行い、該圧延鋼板を20〜50℃/秒の冷却速度で冷却し、200〜400℃で該鋼板の冷却を停止する過程を含む。上記冷却された鋼板を空冷または室温で冷却させるのが好ましい。 In the production method of the present invention, generally, a steel slab is heated, and the steel slab is hot-rolled once in the austenite recrystallization temperature region or two or more multi-stage hot-rolled, and is below the T nr temperature. Yes, further rolling is performed by one hot rolling or two or more multi-stage hot rolling in a temperature range exceeding the Ar 3 transformation point, and the rolled steel sheet is cooled at a cooling rate of 20 to 50 ° C./second, Including the step of stopping cooling of the steel sheet at 400 ° C. It is preferable that the cooled steel sheet is cooled at room temperature or at room temperature.

以下、各方法の詳細について説明する。   Hereinafter, details of each method will be described.

スラブ加熱:1050〜1150℃
スラブの加熱工程は、後続される圧延工程を円滑に行い、目標とする鋼板の物性を充分に得られるように鋼を加熱する工程であるため、目的に合うように適した温度の範囲内で加熱工程が行わなければならない。上記加熱工程で重要なことは、スラブ内部で析出型元素が充分に固溶できる程度の均一な加熱だけでなく、加熱温度により結晶粒が過度に成長することを最大限に防止しなければならないということである。もし、スラブの加熱温度が上記1050℃未満になるとNbやVがスラブ中に再固溶されず、鋼板の高強度化が難しく、かつ、部分再結晶の発生でオーステナイト結晶粒が不均一に形成されるので高靭性化が難しい。上記1150℃を超過するとオーステナイト結晶粒が過多に粗大化され、鋼板の結晶粒の大きさが増加する原因を提供するようになり、その結果、鋼板の靭性が極めて低下される。従って、加熱温度の範囲は1050〜1150℃が好ましい。
Slab heating: 1050-1150 ° C
The heating process of the slab is a process of heating the steel so that the subsequent rolling process can be performed smoothly and sufficient physical properties of the target steel sheet can be obtained, and therefore within a temperature range suitable for the purpose. A heating step must be performed. What is important in the above heating process is not only uniform heating to the extent that precipitation elements can be sufficiently dissolved in the slab, but also to prevent the crystal grains from excessively growing due to the heating temperature. That's what it means. If the heating temperature of the slab is less than 1050 ° C., Nb and V are not re-dissolved in the slab, it is difficult to increase the strength of the steel sheet, and austenite crystal grains are formed unevenly due to partial recrystallization. Therefore, it is difficult to increase toughness. When the temperature exceeds 1150 ° C., the austenite crystal grains are excessively coarsened to provide a cause for increasing the crystal grain size of the steel sheet, and as a result, the toughness of the steel sheet is extremely lowered. Therefore, the range of the heating temperature is preferably 1050 to 1150 ° C.

圧延条件
鋼板が低温靭性を備えるためには、オーステナイト結晶粒が微細な大きさで存在すべきであり、これは圧延温度及び圧下率を制御することによって可能となる。本発明における圧延は2つの温度領域で実施するのが好ましいが、上記2つの温度領域で再結晶の挙動が異なるので、圧延条件をそれぞれの圧延温度で設定することが好ましい。先ず、オーステナイトの再結晶温度領域では初期スラブの厚さに対し、20〜80%の総圧下率で1回熱間圧延または2回以上の多段階熱間圧延を行う。上記のようなオーステナイトの再結晶温度領域での圧延は、オーステナイトの再結晶を通じて結晶粒を小さくする効果を有するが、多段階圧延を行う場合、オーステナイトの再結晶後に結晶粒が成長しないように各段階の圧下率及び時間を適切に制御しなければならない。上述した工程によって形成された微細なオーステナイト結晶粒は、最終鋼板材の低温靭性を向上させる役割をするようになる。その後、Tnr(オーステナイトの再結晶が起きない温度)とAr温度(オーステナイトからフェライトに変態する温度)との間であるオーステナイトの未再結晶領域で1回圧延または2回以上の多段階圧延を再び行って、鋼板を製造する。このとき、オーステナイト再結晶温度領域で圧延を終えたスラブの厚さに対して40〜80%の総圧下率で圧延を行う。このようなTnr(オーステナイトの再結晶が起きない温度)とAr(オーステナイトからフェライトに変態する温度)との間の温度領域での圧延は、結晶粒を潰し、結晶粒内部に変形による転位を発達させて、圧延後の冷却時に低温変態相を形成する核生成サイトとして作用するようになる。
Rolling conditions In order for the steel sheet to have low temperature toughness, the austenite crystal grains should be present in a fine size, which is made possible by controlling the rolling temperature and the rolling reduction. The rolling in the present invention is preferably carried out in two temperature regions, but since the recrystallization behavior differs in the two temperature regions, it is preferable to set the rolling conditions at the respective rolling temperatures. First, in the recrystallization temperature region of austenite, one hot rolling or two or more multi-stage hot rolling is performed at a total rolling reduction of 20 to 80% with respect to the thickness of the initial slab. Rolling in the recrystallization temperature region of austenite as described above has the effect of reducing crystal grains through recrystallization of austenite. However, when performing multi-stage rolling, each rolling is performed so that the crystal grains do not grow after recrystallization of austenite. The stage reduction rate and time must be properly controlled. The fine austenite crystal grains formed by the above-described process serve to improve the low temperature toughness of the final steel plate material. Thereafter, rolling is performed once in the non-recrystallization region of austenite between T nr (temperature at which austenite does not recrystallize) and Ar 3 temperature (temperature at which austenite is transformed into ferrite), or two or more multi-stage rolling Is performed again to produce a steel plate. At this time, rolling is performed at a total rolling reduction of 40 to 80% with respect to the thickness of the slab that has been rolled in the austenite recrystallization temperature region. Such rolling in the temperature region between T nr (temperature at which austenite does not recrystallize) and Ar 3 (temperature at which austenite transforms to ferrite) crushes the grains and dislocations due to deformation inside the grains. It develops to act as a nucleation site that forms a low-temperature transformation phase during cooling after rolling.

冷却速度:20〜50℃/秒
冷却速度は鋼板の靭性と強度を向上させる重要要素の1つである。上記冷却速度は、鋼板の組織を、上述したように、ベイニティックフェライトまたはアシキュラーフェライトで制御するためのものであり、冷却速度の遅い場合には、多角形フェライト(Polygonal Ferrite)や図6に図示した形態のグラニュラベイナイトなどの好ましくない組織が粗大な結晶粒の大きさを有して形成され、強度及び靭性が大きく低下される恐れがある。しかし、それに対し、50℃/秒超過の高い冷却速度で冷却する場合には、過多な冷却水量によりマルテンサイトのような硬質相が形成されるか、または、鋼板の歪み現象が発生することによって鋼板の形状が不良となる。
Cooling rate: 20 to 50 ° C./second The cooling rate is one of the important factors for improving the toughness and strength of the steel sheet. The cooling rate is for controlling the structure of the steel sheet with bainitic ferrite or acicular ferrite, as described above. When the cooling rate is slow, polygonal ferrite (Polygonal Ferrite) or FIG. An unfavorable structure such as granular bainite in the form shown in FIG. 5 is formed with a coarse crystal grain size, and the strength and toughness may be greatly reduced. However, in the case of cooling at a high cooling rate exceeding 50 ° C./second, a hard phase such as martensite is formed due to an excessive amount of cooling water, or a distortion phenomenon of the steel sheet occurs. The shape of the steel sheet becomes defective.

冷却停止温度:200〜400℃
鋼板の微細組織を制御するためには冷却速度の効果が充分に発現される温度まで冷却する必要がある。若し、冷却を停止する温度である冷却停止温度が400℃超過であると、鋼板内部に微細な結晶粒を有するベイニティックフェライト及びアシキュラーフェライトを充分に形成し難いため、降伏強度を向上させる効果が不充分となる。従って、上記冷却停止温度の上限を400℃と限定する。しかし、冷却停止温度が200℃未満であると、その効果が飽和されるだけでなく、過度な冷却による板の歪みという問題が発生する可能性もある。
Cooling stop temperature: 200-400 ° C
In order to control the microstructure of the steel sheet, it is necessary to cool to a temperature at which the effect of the cooling rate is sufficiently exhibited. If the cooling stop temperature, which is the temperature at which cooling stops, exceeds 400 ° C, it is difficult to sufficiently form bainitic ferrite and acicular ferrite with fine crystal grains inside the steel plate, thus improving yield strength. The effect to make becomes insufficient. Therefore, the upper limit of the cooling stop temperature is limited to 400 ° C. However, if the cooling stop temperature is less than 200 ° C., not only the effect is saturated, but also a problem of distortion of the plate due to excessive cooling may occur.

下記表1に記載の組成のスラブを加熱−圧延−冷却して厚さ16mmの鋼板を製造した。各鋼板の製造条件は同一に設定した。即ち、鋼材の種類に関わらず上記スラブに対する加熱温度は1120℃であり、その後、1050〜1100℃(オーステナイトの再結晶温度)で総圧下率73%で9〜11段階の多段階圧延を行い、その後、750〜950℃(オーステナイトの未再結晶温度)で総圧下率76%で9〜11段階の第2の多段階圧延を行って、鋼板を製造した。圧延直後に25〜35℃/秒の冷却速度で冷却を行って、250〜350℃で冷却を停止し、その後、大気に放置して空冷されるようにした。   A slab having the composition shown in Table 1 below was heated, rolled, and cooled to produce a steel plate having a thickness of 16 mm. The manufacturing conditions for each steel plate were set to be the same. That is, regardless of the type of steel material, the heating temperature for the slab is 1120 ° C, and thereafter, multistage rolling of 9 to 11 stages is performed at a total reduction of 73% at 1050 to 1100 ° C (recrystallization temperature of austenite), Then, the second multi-stage rolling of 9 to 11 stages was performed at 750 to 950 ° C. (non-recrystallization temperature of austenite) at a total rolling reduction of 76%, and steel sheets were manufactured. Immediately after rolling, cooling was performed at a cooling rate of 25 to 35 ° C./second, the cooling was stopped at 250 to 350 ° C., and then left in the atmosphere to be air cooled.

Figure 2010509494
Figure 2010509494

但し、上記表1において*表示された元素の含量単位はppmであり、残りの元素の含量単位は重量%である。   However, the content unit of the element indicated by * in Table 1 is ppm, and the content unit of the remaining element is wt%.

上記表1から明らかなように、発明鋼1ないし発明鋼4は本発明の条件を満たす。しかし、比較鋼1はCが過度に低い場合に該当され、比較鋼2はCが過度に高い場合に該当される。また、比較鋼3はMnが過度に高い場合であり、比較鋼4はTiが過度に高い場合である。比較鋼5と6は、Bが過度に高い場合に該当する。   As apparent from Table 1 above, Invention Steel 1 to Invention Steel 4 satisfy the conditions of the present invention. However, the comparative steel 1 is applicable when C is excessively low, and the comparative steel 2 is applicable when C is excessively high. Moreover, the comparative steel 3 is a case where Mn is excessively high, and the comparative steel 4 is a case where Ti is excessively high. Comparative steels 5 and 6 correspond to the case where B is excessively high.

上記表1の組成を有するスラブを利用した鋼板の試料を製造し、引張試験、衝撃試験及び延性−脆性遷移温度を測定し、結果を表2に示した。   A steel plate sample using a slab having the composition shown in Table 1 was manufactured, and a tensile test, an impact test and a ductile-brittle transition temperature were measured. The results are shown in Table 2.

Figure 2010509494
Figure 2010509494

但し、表2においてvE−40は−40℃での衝撃靭性、vTrsは延性−脆性遷移温度、BFはベイニティックフェライト、AFはアシキュラーフェライトである。   In Table 2, vE-40 is impact toughness at -40 ° C, vTrs is ductile-brittle transition temperature, BF is bainitic ferrite, and AF is acicular ferrite.

上記表2の結果から明らかなように、本発明の組成を有する発明鋼の場合は、すべて引張強度が930MPa以上、−40℃での衝撃靭性が230ジュール以上、延性−脆性遷移温度もまた−70℃以下であり、良好な物性を示している。一方、C含量が低い比較鋼1の場合、衝撃靭性は良好であるが、引張強度は本発明における発明鋼のおよそ1/2水準で非常に低い値を示し、C含量が過度に高い比較鋼2の場合、引張強度は1000MPa以上と超高強度を示したが、−40℃の衝撃靭性が102ジュール、延性−脆性遷移温度が−48℃であり、強度と靭性が両立されない従来の鋼の問題点をそのまま示していた。なお、Mnが過多に添加された比較鋼3の場合においても、比較鋼2と類似した挙動を示すことが確認できた。比較鋼4はTiが過多に添加された場合であるが、−40℃の衝撃靭性と延性−脆性遷移温度が充分でないことが確認できた。また、B含量が過度に高い比較鋼5及び比較鋼6の場合においても強度には優れているが、衝撃靭性と延性−脆性遷移温度を満たしていないことが確認できた。   As is apparent from the results in Table 2 above, all the inventive steels having the composition of the present invention have a tensile strength of 930 MPa or more, an impact toughness at −40 ° C. of 230 Joules or more, and a ductile-brittle transition temperature also. It is 70 degrees C or less, and has shown the favorable physical property. On the other hand, in the case of the comparative steel 1 with a low C content, the impact toughness is good, but the tensile strength shows a very low value at about 1/2 level of the inventive steel in the present invention, and the comparative steel with an excessively high C content. In the case of No. 2, the tensile strength was 1000 MPa or more, which was very high, but the impact toughness at −40 ° C. was 102 joules, the ductile-brittle transition temperature was −48 ° C., and the strength and toughness were not compatible. The problem was shown as it was. In addition, even in the case of the comparative steel 3 to which Mn was excessively added, it was confirmed that the behavior similar to that of the comparative steel 2 was exhibited. In Comparative Steel 4, when Ti was added excessively, it was confirmed that the impact toughness at −40 ° C. and the ductile-brittle transition temperature were not sufficient. Moreover, although it was excellent in the intensity | strength also in the case of the comparative steel 5 and the comparative steel 6 with excessively high B content, it has confirmed that it did not satisfy | fill impact toughness and a ductile-brittle transition temperature.

従って、本発明で対象とする鋼板の組成の影響を確認することができた。   Therefore, it was possible to confirm the influence of the composition of the steel sheet targeted in the present invention.

発明鋼1の組成を有するスラブを選択して下記表3の条件で圧延した。   A slab having the composition of Invention Steel 1 was selected and rolled under the conditions shown in Table 3 below.

Figure 2010509494
Figure 2010509494

上記表3から明らかなように、発明例1ないし発明例4は本発明の条件をすべて満たす場合であり、比較例1は冷却速度が過度に高い場合である。比較例2と比較例3はスラブの再加熱温度が過度に高い場合であり、特に、比較例3はスラブ加熱温度が高いだけでなく、冷却停止温度も過度に高い場合である。比較例4と比較例5は冷却速度が過度に低い場合であり、特に、比較例5は冷却速度が過度に低く、かつ冷却停止温度も過度に高い場合である。比較例6は未再結晶領域の圧下率が過度に低い場合である。   As apparent from Table 3 above, Invention Examples 1 to 4 are cases where all the conditions of the present invention are satisfied, and Comparative Example 1 is a case where the cooling rate is excessively high. Comparative Example 2 and Comparative Example 3 are cases where the reheating temperature of the slab is excessively high, and in particular, Comparative Example 3 is a case where not only the slab heating temperature is high but also the cooling stop temperature is excessively high. Comparative Example 4 and Comparative Example 5 are cases where the cooling rate is excessively low, and in particular, Comparative Example 5 is a case where the cooling rate is excessively low and the cooling stop temperature is excessively high. Comparative Example 6 is a case where the rolling reduction of the non-recrystallized region is excessively low.

上記表3に記載の条件にて鋼板を製造し、引張試験、衝撃試験及び延性−脆性遷移温度を測定し、結果を下記の表4に示した。   Steel sheets were produced under the conditions described in Table 3 above, tensile tests, impact tests, and ductile-brittle transition temperatures were measured. The results are shown in Table 4 below.

Figure 2010509494
Figure 2010509494

但し、表4においてvE−40は−40℃での衝撃靭性、vTrsは延性−脆性遷移温度、BFはベイニティックフェライト、AFはアシキュラーフェライトである。   In Table 4, vE-40 is impact toughness at -40 ° C, vTrs is ductile-brittle transition temperature, BF is bainitic ferrite, and AF is acicular ferrite.

上記表4から明らかなように、本発明の条件を満たす発明例1ないし発明例4の場合はすべて引張強度が930MPa以上、衝撃靭性(−40℃)が230ジュール以上であり、優れた物性を有することが確認できた。しかし、比較例1は冷却停止温度が過度に高い場合で、微細な低温相が適切に形成されず、引張強度が低い結果を示した。比較例2はスラブの再加熱温度が過度に高くて粗大なオーステナイト結晶粒によって低温靭性が低い結果となった。また、比較例3はスラブの再加熱温度と冷却停止温度が過度に高い場合で、比較例2の場合と同様な理由により低温靭性が低く、比較例1の場合と同様な理由により引張強度が低い結果を示した。比較例4は冷却速度が過度に低い場合で、意図する微細組織を適切に形成せず、多角形フェライトあるいはグラニュラベイナイトの混合物が形成され、引張強度と低温靭性のいずれも低い結果を示した。比較例5は冷却速度が過度に低く、冷却停止温度が過度に高いため、上記した理由により引張強度と低温靭性のいずれも低い結果を示した。比較例6は未再結晶領域の圧下率が過度に低い場合で、オーステナイト結晶粒が適切に延伸できず、かつ、結晶粒の内部に転位を蓄積させることができず、低温変態相が適切に形成されず、低温靭性が過度に低い結果を示した。   As is apparent from Table 4 above, in all of Invention Examples 1 to 4 that satisfy the conditions of the present invention, the tensile strength is 930 MPa or more and the impact toughness (−40 ° C.) is 230 joules or more. It was confirmed that it had. However, Comparative Example 1 was a case where the cooling stop temperature was excessively high, a fine low-temperature phase was not properly formed, and the tensile strength was low. Comparative Example 2 resulted in low low temperature toughness due to excessively high slab reheating temperature and coarse austenite grains. Comparative Example 3 is a case where the reheating temperature and cooling stop temperature of the slab are excessively high, and low temperature toughness is low for the same reason as in Comparative Example 2, and tensile strength is the same as in Comparative Example 1. Showed low results. In Comparative Example 4, when the cooling rate was excessively low, the intended microstructure was not properly formed, a mixture of polygonal ferrite or granular bainite was formed, and both the tensile strength and the low temperature toughness were low. Since Comparative Example 5 has an excessively low cooling rate and an excessively high cooling stop temperature, both the tensile strength and the low temperature toughness were low for the reasons described above. Comparative Example 6 is a case where the reduction rate of the non-recrystallized region is excessively low, the austenite crystal grains cannot be properly stretched, dislocations cannot be accumulated inside the crystal grains, and the low-temperature transformation phase is appropriately It was not formed, and the low temperature toughness was too low.

これによって、本発明による製造方法の効果を確認することができた。   Thereby, the effect of the manufacturing method by this invention was able to be confirmed.

Claims (8)

重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含み、微細組織としてベイニティックフェライトとアシキュラーフェライトとの合計が面積分率を基準に75%以上含まれる、低温靭性に優れた超高強度鋼板。   C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1%, Cu: 0-1.0%, Ni: 0-1. 0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr: 0 to 1.0%, Ti: 0.005 to 0 0.03%, Al: 0.01 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 to 0.006%, Ca: 0 to 0.006%, P: 0.00. 02% or less, S: 0.005% or less, balance Fe and other inevitable impurities are included, and the sum of bainitic ferrite and acicular ferrite as a fine structure is contained by 75% or more based on the area fraction, Super high strength steel plate with excellent low temperature toughness. 重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含み、微細組織としてベイニティックフェライトとアシキュラーフェライトとの合計が面積分率を基準に75%以上含まれ、降伏強度が930MPa以上、−40℃のシャルピ衝撃吸収エネルギーが230ジュール以上である、低温靭性に優れた超高強度鋼板。   C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1%, Cu: 0-1.0%, Ni: 0-1. 0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr: 0 to 1.0%, Ti: 0.005 to 0 0.03%, Al: 0.01 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 to 0.006%, Ca: 0 to 0.006%, P: 0.00. 02% or less, S: 0.005% or less, balance Fe and other inevitable impurities, the total of bainitic ferrite and acicular ferrite as a microstructure is 75% or more based on the area fraction, Super high strength steel plate with excellent low temperature toughness with yield strength of 930 MPa or more and Charpy impact absorption energy at −40 ° C. of 230 joules or more. 前記鋼板に前記Moは0.015%以下添加される、請求項1または請求項2に記載の低温靭性に優れた超高強度鋼板。   The ultra high strength steel plate excellent in low temperature toughness according to claim 1 or 2, wherein the Mo is added to the steel plate in an amount of 0.015% or less. 前記鋼板の前記微細組織はグラニュラベイナイトの含量が面積分率を基準に5%以下である、請求項1または請求項2に記載の低温靭性に優れた超高強度鋼板。   The ultra-high-strength steel sheet with excellent low-temperature toughness according to claim 1 or 2, wherein the fine structure of the steel sheet has a granular bainite content of 5% or less based on the area fraction. オーステナイト結晶粒の厚さ方向の大きさが15μm以下である、請求項1または請求項2に記載の低温靭性に優れた超高強度鋼板。   The ultra high strength steel sheet excellent in low temperature toughness according to claim 1 or 2, wherein the size of the austenite crystal grains in the thickness direction is 15 µm or less. 重量%で、C:0.03〜0.10%、Si:0〜0.6%、Mn:1.6〜2.1%、Cu:0〜1.0%、Ni:0〜1.0%、Nb:0.02〜0.06%、V:0〜0.1%、Mo:0.1〜0.5%、Cr:0〜1.0%、Ti:0.005〜0.03%、Al:0.01〜0.06%、B:0.0005〜0.0025%、N:0.001〜0.006%、Ca:0〜0.006%、P:0.02%以下、S:0.005%以下、残部Fe及びその他の不可避な不純物を含む鋼スラブを1050〜1150℃で加熱するステップと、
前記加熱された鋼スラブをオーステナイトの再結晶温度以上の温度範囲で20〜80%の圧下率で1回熱間圧延または2回以上の多段階熱間圧延するステップと、
前記圧延された鋼スラブをオーステナイトの再結晶温度以下からAr以上までの温度範囲で40〜80%の圧下率で1回熱間圧延または2回以上の多段階熱間圧延して鋼板として製造するステップと、
前記圧延された鋼板を20〜50℃/秒の冷却速度で冷却するステップと、
前記鋼板の冷却を200〜400℃の温度で停止するステップと、を含む、低温靭性に優れた超高強度鋼板の製造方法。
C: 0.03-0.10%, Si: 0-0.6%, Mn: 1.6-2.1%, Cu: 0-1.0%, Ni: 0-1. 0%, Nb: 0.02 to 0.06%, V: 0 to 0.1%, Mo: 0.1 to 0.5%, Cr: 0 to 1.0%, Ti: 0.005 to 0 0.03%, Al: 0.01 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 to 0.006%, Ca: 0 to 0.006%, P: 0.00. Heating a steel slab containing 02% or less, S: 0.005% or less, the balance Fe and other inevitable impurities at 1050 to 1150 ° C .;
Rolling the heated steel slab once in a temperature range of 20-80% in a temperature range above the austenite recrystallization temperature or two or more multi-stage hot rolling;
The rolled steel slab is manufactured as a steel sheet by hot rolling once or twice or more multi-stage hot rolling at a rolling reduction of 40 to 80% in a temperature range from below the austenite recrystallization temperature to Ar 3 or more. And steps to
Cooling the rolled steel sheet at a cooling rate of 20 to 50 ° C./second;
And a step of stopping cooling of the steel sheet at a temperature of 200 to 400 ° C., and a method for producing an ultra-high strength steel sheet having excellent low-temperature toughness.
前記鋼スラブに前記のMoは0.015%以下添加される、請求項6に記載の低温靭性に優れた超高強度鋼板の製造方法。   The said Mo is added to the said steel slab 0.015% or less, The manufacturing method of the ultra high strength steel plate excellent in the low temperature toughness of Claim 6. 前記鋼板の冷却停止後には前記鋼板を空冷または室温で冷却させる、請求項6または請求項7に記載の低温靭性に優れた超高強度鋼板の製造方法。   The manufacturing method of the ultra high strength steel plate excellent in the low temperature toughness of Claim 6 or Claim 7 which cools the said steel plate by air cooling or room temperature after the cooling of the said steel plate is stopped.
JP2009535212A 2006-11-02 2007-11-02 Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same Expired - Fee Related JP5439184B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0107917 2006-11-02
KR1020060107917A KR100851189B1 (en) 2006-11-02 2006-11-02 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
PCT/KR2007/005510 WO2008054166A1 (en) 2006-11-02 2007-11-02 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same

Publications (2)

Publication Number Publication Date
JP2010509494A true JP2010509494A (en) 2010-03-25
JP5439184B2 JP5439184B2 (en) 2014-03-12

Family

ID=39344465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009535212A Expired - Fee Related JP5439184B2 (en) 2006-11-02 2007-11-02 Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same

Country Status (6)

Country Link
US (2) US20100074794A1 (en)
JP (1) JP5439184B2 (en)
KR (1) KR100851189B1 (en)
CN (1) CN101535518B (en)
CA (1) CA2668069C (en)
WO (1) WO2008054166A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185741A1 (en) * 2015-05-20 2016-11-24 新日鐵住金株式会社 High-strength electric-resistance-welded steel pipe, method for producing steel sheet for high-strength electric-resistance-welded steel pipe, and method for producing high-strength electric-resistance-welded steel pipe
JP2017504722A (en) * 2013-12-24 2017-02-09 ポスコPosco Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
JP2019504199A (en) * 2015-12-24 2019-02-14 ポスコPosco Low yield ratio type high strength steel and its manufacturing method
JP2022550795A (en) * 2019-10-01 2022-12-05 ポスコ High-strength heavy-gauge steel material with excellent cryogenic deformation aging impact toughness in the central part and its manufacturing method

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071416B2 (en) * 2005-10-20 2018-09-11 Nucor Corporation High strength thin cast strip product and method for making the same
KR100979007B1 (en) * 2007-12-27 2010-08-30 주식회사 포스코 Ultra-High Strength Steel Sheet For Line Pipe Having Excellent Low Temperature Toughness And Method For Manufacturing The Same
US20100215981A1 (en) * 2009-02-20 2010-08-26 Nucor Corporation Hot rolled thin cast strip product and method for making the same
US20110277886A1 (en) 2010-02-20 2011-11-17 Nucor Corporation Nitriding of niobium steel and product made thereby
KR101143029B1 (en) * 2009-12-02 2012-05-08 주식회사 포스코 High strength, toughness and deformability steel plate for pipeline and manufacturing metod of the same
KR101304859B1 (en) * 2009-12-04 2013-09-05 주식회사 포스코 Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
KR101304824B1 (en) 2009-12-28 2013-09-05 주식회사 포스코 API Steel Plate for Line Pipe and Method for Manufacturing the API Steel Plate
KR101271974B1 (en) 2010-11-19 2013-06-07 주식회사 포스코 High-strength steel having excellent cryogenic toughness and method for production thereof
KR20120075274A (en) * 2010-12-28 2012-07-06 주식회사 포스코 High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
KR101246272B1 (en) 2011-01-28 2013-03-21 포항공과대학교 산학협력단 High strength steel sheet with low-temperature toughness and manufacturing method for the same
KR101360493B1 (en) * 2011-10-04 2014-02-10 주식회사 포스코 Steel sheet having excellent low yield ratio property and method for producing the same
WO2013065346A1 (en) * 2011-11-01 2013-05-10 Jfeスチール株式会社 High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
CN102699031B (en) * 2012-05-14 2014-03-26 莱芜钢铁集团有限公司 900 MPa grade ultrahigh-toughness low alloy steel and manufacture method thereof
KR101412427B1 (en) * 2012-06-28 2014-06-27 현대제철 주식회사 High strength steel plate and method for manufacturing the steel plate
KR101465088B1 (en) * 2012-08-17 2014-11-26 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
KR101467049B1 (en) * 2012-10-31 2014-12-01 현대제철 주식회사 Steel sheet for line pipe and method of manufacturing the same
US20160068937A1 (en) * 2013-04-15 2016-03-10 Jfe Steel Corporation High-strength hot-rolled steel sheet and method for producing the same (as amended)
CN103484764B (en) * 2013-09-11 2015-09-30 首钢总公司 Ti precipitation strength type superhigh-strength hot rolls thin plate and production method thereof
KR101846759B1 (en) * 2013-12-12 2018-04-06 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
HUE054213T2 (en) * 2014-01-24 2021-08-30 Rautaruukki Oyj Hot-rolled ultrahigh strength steel strip product
WO2015151519A1 (en) 2014-03-31 2015-10-08 Jfeスチール株式会社 High-tensile-strength steel plate and process for producing same
CN104328357B (en) * 2014-10-28 2016-03-16 江阴兴澄特种钢铁有限公司 A kind of Ni-Mo low-temperature high-toughness X100 steel for pipe fittings plate and manufacture method thereof
DE102014017273A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
DE102014017274A1 (en) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel
DE102015111177A1 (en) * 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh High strength multi-phase steel and method of making a cold rolled steel strip therefrom
KR101777974B1 (en) * 2016-08-23 2017-09-12 현대제철 주식회사 High strength steel reinforcement and method of manufacturing the same
KR101908819B1 (en) * 2016-12-23 2018-10-16 주식회사 포스코 High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
KR101899694B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 Thick steel plate having excellent low-temperature impact toughness and ctod properties, and method for manufacturing the same
KR101949036B1 (en) * 2017-10-11 2019-05-08 주식회사 포스코 Thick steel sheet having excellent low temperature strain aging impact properties and method of manufacturing the same
KR101977489B1 (en) * 2017-11-03 2019-05-10 주식회사 포스코 Steel plate for welded steel pipe having excellent low-temperature toughness, post weld heat treated steel plate and manufacturing method thereof
KR102045641B1 (en) * 2017-12-22 2019-11-15 주식회사 포스코 High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
KR102031451B1 (en) 2017-12-24 2019-10-11 주식회사 포스코 High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
PL3666911T3 (en) 2018-12-11 2022-02-07 Ssab Technology Ab High-strength steel product and method of manufacturing the same
JP7398970B2 (en) * 2019-04-22 2023-12-15 株式会社神戸製鋼所 Thick steel plate and its manufacturing method
JP7330862B2 (en) * 2019-11-01 2023-08-22 株式会社神戸製鋼所 High-strength steel sheet with excellent low-temperature toughness of base material and joint, and manufacturing method thereof
CN112917093B (en) * 2019-12-05 2023-02-07 中国石油天然气集团有限公司 Manufacturing method of large-thickness-diameter ratio high-strain marine pipeline
CN114080466A (en) * 2020-06-19 2022-02-22 现代制铁株式会社 Reinforcing bar and method for manufacturing same
CN115449698B (en) * 2022-09-30 2024-01-23 马鞍山钢铁股份有限公司 Microbial corrosion resistant pipeline steel with yield strength of 480MPa and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217417A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JP2003293039A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness
JP2004232056A (en) * 2003-01-31 2004-08-19 Jfe Steel Kk OVER 700 MPa CLASS NON-TEMPERED THICK STEEL PLATE, AND PRODUCTION METHOD THEREFOR
WO2005061749A2 (en) * 2003-12-19 2005-07-07 Nippon Steel Corporation Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
JP2007231312A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk High-tensile-strength steel and manufacturing method therefor
JP2007277623A (en) * 2006-04-05 2007-10-25 Nippon Steel Corp Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability and low-temperature toughness

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5634988A (en) * 1993-03-25 1997-06-03 Nippon Steel Corporation High tensile steel having excellent fatigue strength at its weld and weldability and process for producing the same
US5545269A (en) * 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
US5900075A (en) * 1994-12-06 1999-05-04 Exxon Research And Engineering Co. Ultra high strength, secondary hardening steels with superior toughness and weldability
KR100206151B1 (en) * 1995-01-26 1999-07-01 다나카 미노루 Weldable high tensile steel excellent in low-temperatur toughness
AU677540B2 (en) * 1995-02-03 1997-04-24 Nippon Steel Corporation High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
JP3244984B2 (en) * 1995-02-03 2002-01-07 新日本製鐵株式会社 High strength linepipe steel with low yield ratio and excellent low temperature toughness
JPH1017986A (en) * 1996-06-28 1998-01-20 Nippon Steel Corp Steel excellent in external stress corrosion cracking resistance of pipe line
US6045630A (en) * 1997-02-25 2000-04-04 Sumitomo Metal Industries, Ltd. High-toughness, high-tensile-strength steel and method of manufacturing the same
JPH10237583A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
AU736037B2 (en) * 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
CA2294740C (en) * 1997-07-28 2007-03-13 Nippon Steel Corporation Ultra-high strength, weldable, boron-containing steels with superior toughness
CA2295582C (en) * 1997-07-28 2007-11-20 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
KR100375085B1 (en) * 1997-07-28 2003-03-07 닛폰 스틸 가부시키가이샤 Ultra-high strength, weldable, essentially boron-free steels with superior toughness
JP3466450B2 (en) * 1997-12-12 2003-11-10 新日本製鐵株式会社 High strength and high toughness bend pipe and its manufacturing method
JP3519966B2 (en) * 1999-01-07 2004-04-19 新日本製鐵株式会社 Ultra-high-strength linepipe excellent in low-temperature toughness and its manufacturing method
US6669789B1 (en) * 2001-08-31 2003-12-30 Nucor Corporation Method for producing titanium-bearing microalloyed high-strength low-alloy steel
KR100627429B1 (en) * 2001-10-04 2006-09-25 신닛뽄세이테쯔 카부시키카이샤 High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
KR101019791B1 (en) * 2002-12-24 2011-03-04 신닛뽄세이테쯔 카부시키카이샤 High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone
CN100432261C (en) * 2003-06-12 2008-11-12 杰富意钢铁株式会社 Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for producing thereof
JP3934604B2 (en) * 2003-12-25 2007-06-20 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent coating adhesion
JP4476863B2 (en) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent corrosion resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217417A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
JP2003293039A (en) * 2002-04-01 2003-10-15 Nippon Steel Corp Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness
JP2004232056A (en) * 2003-01-31 2004-08-19 Jfe Steel Kk OVER 700 MPa CLASS NON-TEMPERED THICK STEEL PLATE, AND PRODUCTION METHOD THEREFOR
WO2005061749A2 (en) * 2003-12-19 2005-07-07 Nippon Steel Corporation Steel plates for ultra-high-strength linepipes and ultra-high-strength linepipes having excellent low-temperature toughness and manufacturing methods thereof
JP2007231312A (en) * 2006-02-28 2007-09-13 Jfe Steel Kk High-tensile-strength steel and manufacturing method therefor
JP2007277623A (en) * 2006-04-05 2007-10-25 Nippon Steel Corp Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability and low-temperature toughness

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504722A (en) * 2013-12-24 2017-02-09 ポスコPosco Steel material for super high strength welded structure excellent in toughness of weld heat affected zone and its manufacturing method
WO2016185741A1 (en) * 2015-05-20 2016-11-24 新日鐵住金株式会社 High-strength electric-resistance-welded steel pipe, method for producing steel sheet for high-strength electric-resistance-welded steel pipe, and method for producing high-strength electric-resistance-welded steel pipe
JP6048621B1 (en) * 2015-05-20 2016-12-21 新日鐵住金株式会社 High strength ERW steel pipe, method for manufacturing steel sheet for high strength ERW steel pipe, and method for manufacturing high strength ERW steel pipe
KR20170102335A (en) * 2015-05-20 2017-09-08 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL SHEET FOR HIGH STRENGTH < RTI ID = 0.0 >
KR101954558B1 (en) 2015-05-20 2019-03-05 신닛테츠스미킨 카부시키카이샤 METHOD FOR MANUFACTURING STEEL SHEET FOR HIGH STRENGTH < RTI ID = 0.0 >
US10640843B2 (en) 2015-05-20 2020-05-05 Nippon Steel Corporation High strength electric resistance welded steel pipe and method for producing high strength electric resistance welded steel pipe
JP2019504199A (en) * 2015-12-24 2019-02-14 ポスコPosco Low yield ratio type high strength steel and its manufacturing method
JP2022550795A (en) * 2019-10-01 2022-12-05 ポスコ High-strength heavy-gauge steel material with excellent cryogenic deformation aging impact toughness in the central part and its manufacturing method
JP7404520B2 (en) 2019-10-01 2023-12-25 ポスコホールディングス インコーポレーティッド High-strength, extra-thick steel material with excellent cryogenic deformation aging impact toughness in the center and its manufacturing method

Also Published As

Publication number Publication date
US20100074794A1 (en) 2010-03-25
WO2008054166A1 (en) 2008-05-08
CA2668069C (en) 2012-06-12
KR20080040233A (en) 2008-05-08
CN101535518A (en) 2009-09-16
US20140158259A1 (en) 2014-06-12
CN101535518B (en) 2011-08-03
JP5439184B2 (en) 2014-03-12
CA2668069A1 (en) 2008-05-08
KR100851189B1 (en) 2008-08-08

Similar Documents

Publication Publication Date Title
JP5439184B2 (en) Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP6616006B2 (en) High-strength steel material excellent in low-temperature strain aging impact characteristics and impact characteristics of weld heat-affected zone and its manufacturing method
KR101304859B1 (en) Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
KR100951296B1 (en) Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
JP5217385B2 (en) Steel sheet for high toughness line pipe and method for producing the same
JPWO2013100106A1 (en) High strength steel pipe excellent in deformation performance and low temperature toughness, high strength steel plate, and method for producing said steel plate
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
KR100843844B1 (en) Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
RU2768842C1 (en) High-strength thick steel sheet for pipeline, having excellent low-temperature impact strength and ductility, as well as low ratio of yield strength to ultimate strength, and method of its production
JP6616002B2 (en) High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same
KR100979007B1 (en) Ultra-High Strength Steel Sheet For Line Pipe Having Excellent Low Temperature Toughness And Method For Manufacturing The Same
KR100833035B1 (en) High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
KR100833033B1 (en) Ultra-high strength linepipe steel plate excellent in deformability and method for producing the same
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP6237681B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP4105990B2 (en) High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same
KR101289192B1 (en) Steel plate for pipeline with excellent fracture arrestability and inhibitory activity of dwtt inverse fracture and manufacturing metod of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees