JP7398970B2 - Thick steel plate and its manufacturing method - Google Patents

Thick steel plate and its manufacturing method Download PDF

Info

Publication number
JP7398970B2
JP7398970B2 JP2020007626A JP2020007626A JP7398970B2 JP 7398970 B2 JP7398970 B2 JP 7398970B2 JP 2020007626 A JP2020007626 A JP 2020007626A JP 2020007626 A JP2020007626 A JP 2020007626A JP 7398970 B2 JP7398970 B2 JP 7398970B2
Authority
JP
Japan
Prior art keywords
mass
less
temperature
rolling
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007626A
Other languages
Japanese (ja)
Other versions
JP2020176329A (en
Inventor
秀徳 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to CN202080029745.4A priority Critical patent/CN113840933B/en
Priority to EP20794425.7A priority patent/EP3940103A4/en
Priority to KR1020217034903A priority patent/KR102684370B1/en
Priority to PCT/JP2020/014612 priority patent/WO2020217873A1/en
Publication of JP2020176329A publication Critical patent/JP2020176329A/en
Application granted granted Critical
Publication of JP7398970B2 publication Critical patent/JP7398970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は厚鋼板およびその製造方法に関する。特には、母材靭性に優れた高強度の厚鋼板と、該厚鋼板の製造方法に関する。 The present invention relates to a thick steel plate and a method for manufacturing the same. In particular, the present invention relates to a high-strength thick steel plate with excellent base material toughness and a method for manufacturing the thick steel plate.

例えばLPGタンク等の大型化に伴い、高強度かつ、母材の低温靭性、HAZの低温靭性を兼備した厚鋼板の需要が高まりつつある。 For example, as LPG tanks and the like become larger, demand is increasing for thick steel plates that have high strength, low-temperature toughness of the base material, and low-temperature toughness of the HAZ.

HAZ靭性に優れた高強度鋼として、例えば特許文献1には、所定の成分を満たし、鋼板の中心偏析部の平均化学分析値のC濃度が、鋼材の平均C濃度の1.2倍以下、JIS規格で測定される介在物の清浄度が0.03%以下、かつ鋼板断面で観察される平均直径10μm以上の酸化物系介在物の個数が1個以下/1mm2、0.05~5μmの酸化物及び窒化物の析出物の個数が100個以上/1mm2を満たす鋼が示されている。 As a high-strength steel with excellent HAZ toughness, for example, Patent Document 1 states that the C concentration in the average chemical analysis value of the central segregation part of the steel sheet is 1.2 times or less the average C concentration of the steel material, The cleanliness of inclusions measured according to JIS standards is 0.03% or less, and the number of oxide inclusions with an average diameter of 10 μm or more observed in the cross section of the steel plate is 1 or less/1 mm 2 , 0.05 to 5 μm A steel in which the number of oxide and nitride precipitates satisfies 100 or more/1 mm 2 is shown.

特許文献2では、所定の化学成分を満たし、アシキュラーフェライト組織分率が50%以上で、さらに平均円相当径で1~5μmの島状マルテンサイト(MA)組織分率が3~10%を満たすようにすることによって、母材低温靭性およびHAZ低温靭性に優れた低降伏比高張力鋼板が得られている。 Patent Document 2 discloses a material that satisfies predetermined chemical components, has an acicular ferrite structure fraction of 50% or more, and further has an island-shaped martensite (MA) structure fraction of 1 to 5 μm in average circular equivalent diameter of 3 to 10%. By meeting the requirements, a low yield ratio, high tensile strength steel plate with excellent base material low temperature toughness and HAZ low temperature toughness can be obtained.

特許文献3では、所定の成分組成を満たし、ミクロ組織がベイナイト組織であり、降伏強度500N/mm以上かつ引張強度610N/mm以上である鋼材が開示されている。また該鋼材は、溶接後の残留応力除去のための焼鈍熱処理を必須とせず、LPG・アンモニア運搬船用タンクの製造に適していることが示されている。 Patent Document 3 discloses a steel material that satisfies a predetermined composition, has a bainitic microstructure, and has a yield strength of 500 N/mm 2 or more and a tensile strength of 610 N/mm 2 or more. Furthermore, this steel material does not require annealing heat treatment to remove residual stress after welding, and has been shown to be suitable for manufacturing tanks for LPG/ammonia carrier ships.

特許文献4では、所定の成分組成を満たし、かつパラメータである、9×Ceq+4×P≧4.8と、[C]/([Mo]+[Ti]+[Nb]+[V])が0.6~1.7の鋼を、1100~1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で400℃未満の温度まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550~700℃まで再加熱を行なうことを特徴とする耐SR(Stress Relief)特性に優れた高強度鋼板の製造方法が示されている。 In Patent Document 4, the parameters 9×Ceq+4×P≧4.8 and [C]/([Mo]+[Ti]+[Nb]+[V]) satisfy a predetermined component composition. 0.6 to 1.7 steel is heated to a temperature of 1100 to 1300°C, hot rolled at a rolling end temperature of 750°C or higher, and then cooled to a temperature of less than 400°C at a cooling rate of 20°C/s or higher. A method for producing high-strength steel sheets with excellent SR (Stress Relief) properties is provided, which is characterized by performing accelerated cooling and then immediately reheating to 550 to 700°C at a temperature increase rate of 0.5°C/s or more. It is shown.

特開平8-158006号公報Japanese Patent Application Publication No. 8-158006 特開2009-127065号公報Japanese Patent Application Publication No. 2009-127065 特開2008-025014号公報Japanese Patent Application Publication No. 2008-025014 特開2007-270194号公報Japanese Patent Application Publication No. 2007-270194

特許文献1では、良好な強度と靭性のバランスが得られているものの、実施例では40mm以下の板厚しか考慮されておらず、より厚めの鋼板を考慮した技術は提案されていない。特許文献2では、母材およびHAZの低温靭性と強度との両立を図っているが、低温靭性は-60℃で評価されており、より低温での優れた靭性を実現するには更なる検討が必要であると考える。特許文献3では、板厚t/4位置でしか機械的特性を評価しておらず、更に鋼板内部の機械的特性までは考慮されていない。特許文献4では、SR後も良好な機械的特性を有する厚鋼板の製造方法が開示されているが、靭性の評価温度は-10℃にすぎず、より低温での靭性までは検討されていない。本発明は、上記事情に鑑みてなされたものであって、その目的は、板厚が厚くとも鋼板の内部にわたって、優れた強度-靭性バランスを発揮、特には、高強度と従来よりも低温での優れた靭性とを示す厚鋼板、および該厚鋼板の製造方法を提供することにある。 Although a good balance between strength and toughness is obtained in Patent Document 1, the examples only consider plate thicknesses of 40 mm or less, and no technology has been proposed that takes thicker steel plates into consideration. Patent Document 2 attempts to achieve both low-temperature toughness and strength of the base material and HAZ, but low-temperature toughness is evaluated at -60°C, and further study is required to achieve excellent toughness at lower temperatures. I think that it is necessary. In Patent Document 3, the mechanical properties are evaluated only at the plate thickness t/4 position, and furthermore, the mechanical properties inside the steel plate are not taken into consideration. Patent Document 4 discloses a method for producing a thick steel plate that has good mechanical properties even after SR, but the toughness evaluation temperature is only -10°C, and toughness at lower temperatures has not been investigated. . The present invention has been made in view of the above circumstances, and its purpose is to exhibit an excellent strength-toughness balance throughout the interior of the steel plate even when the plate thickness is large, and in particular, to achieve high strength and a lower temperature than before. An object of the present invention is to provide a thick steel plate exhibiting excellent toughness, and a method for manufacturing the thick steel plate.

本発明の態様1は、
成分組成が、
C :0.02質量%~0.070質量%、
Si:0質量%超、0.40質量%以下、
Mn:1.30質量%~1.95質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.005質量%以下、
Al:0.005質量%~0.070質量%、
Nb:0.015質量%~0.048質量%、
Ti:0.005質量%~0.024質量%、
N :0.0030質量%~0.0080質量%、および
Ca:0質量%超、0.0040質量%以下
を満たし、残部がFeおよび不可避不純物からなり、
下記式(1)から求められるDi+10Nb:1.20~2.50を満たし、
結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAが、板厚の1/4位置で34%以上、かつ板厚の1/2位置で27%以上である厚鋼板である。
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Aspect 1 of the present invention is
The ingredient composition is
C: 0.02% by mass to 0.070% by mass,
Si: more than 0 mass%, 0.40 mass% or less,
Mn: 1.30% by mass to 1.95% by mass,
P: more than 0 mass%, 0.015 mass% or less,
S: more than 0% by mass, 0.005% by mass or less,
Al: 0.005% by mass to 0.070% by mass,
Nb: 0.015% by mass to 0.048% by mass,
Ti: 0.005% by mass to 0.024% by mass,
N: 0.0030% by mass to 0.0080% by mass, and Ca: more than 0% by mass and 0.0040% by mass or less, the remainder consisting of Fe and inevitable impurities,
Satisfies Di+10Nb: 1.20 to 2.50 obtained from the following formula (1),
Among the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15° or more, the total area fraction SA of crystal grains with an equivalent circle diameter of 7.5 μm or less is 34% or more at the 1/4 position of the plate thickness, and It is a thick steel plate with a thickness of 27% or more at the 1/2 position.
Di=1.16×([C]/10) 0.5 ×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35× [Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200 ×[B]+1)...(1)
In formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are each expressed in mass%. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are shown, and elements not included are set to zero.

本発明の態様2は、更に、
Cu:0質量%超、0.75質量%以下、および
Ni:0質量%超、1.4質量%以下
よりなる群から選択される1種以上の元素を含む態様1に記載の厚鋼板である。
Aspect 2 of the present invention further includes:
The thick steel plate according to aspect 1, containing one or more elements selected from the group consisting of Cu: more than 0 mass% and 0.75 mass% or less, and Ni: more than 0 mass% and 1.4 mass% or less. be.

本発明の態様3は、更に、
Mo:0質量%超、0.50質量%以下、
V :0質量%超、0.060質量%以下、
Cr:0質量%超、0.8質量%以下、および
B :0質量%超、0.0007質量%以下
よりなる群から選択される1種以上の元素を含む態様1または2に記載の厚鋼板である。
Aspect 3 of the present invention further includes:
Mo: more than 0 mass%, 0.50 mass% or less,
V: more than 0 mass%, 0.060 mass% or less,
The thickness according to aspect 1 or 2, containing one or more elements selected from the group consisting of Cr: more than 0 mass% and 0.8 mass% or less, and B: more than 0 mass% and 0.0007 mass% or less. It is a steel plate.

本発明の態様4は、更に、
REM:0質量%超、0.0060質量%以下、および
Zr:0質量%超、0.0050質量%以下
よりなる群から選択される1種以上の元素を含む態様1~3のいずれかに記載の厚鋼板である。
Aspect 4 of the present invention further comprises:
Any one of embodiments 1 to 3 containing one or more elements selected from the group consisting of REM: more than 0 mass% and 0.0060 mass% or less, and Zr: more than 0 mass% and 0.0050 mass% or less. This is the thick steel plate described.

本発明の態様5は、
態様1~4のいずれかに記載の厚鋼板を製造する方法であって、
態様1~4のいずれかに記載の成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、
前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)~(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720~830℃
(d)熱間圧延後、仕上圧延温度~690℃の冷却開始温度から、320~550℃の冷却停止温度までを、平均冷却速度0.5~20℃/sで冷却する。
Aspect 5 of the present invention is
A method for manufacturing a thick steel plate according to any one of aspects 1 to 4, comprising:
A step of heating a steel billet having a composition according to any one of aspects 1 to 4 to a temperature higher than 1020° C. and lower than 1200° C., and a hot rolling step after the heating,
In the hot rolling process, the number of rolling passes is 3 or more, and manufacturing of a thick steel plate is performed by hot rolling and cooling after the hot rolling so as to satisfy all of the following conditions (a) to (d). Method.
(a) Cumulative rolling reduction of 40% or more in the temperature range of 850°C or less (b) Average rolling reduction of 5.5% or more in the final three passes of rolling (c) Finish rolling temperature of 720 to 830°C
(d) After hot rolling, it is cooled from a cooling start temperature of the finish rolling temperature to 690°C to a cooling stop temperature of 320 to 550°C at an average cooling rate of 0.5 to 20°C/s.

本発明によれば、板厚が厚くとも鋼板の内部にわたって、優れた強度-靭性バランスを発揮、特には、高強度と従来よりも低温での優れた靭性とを示す厚鋼板、およびその製造方法を提供することができる。 According to the present invention, a thick steel plate exhibits an excellent strength-toughness balance throughout the interior of the steel plate even if the plate is thick, and in particular, exhibits high strength and superior toughness at lower temperatures than conventional steel plates, and a method for manufacturing the same. can be provided.

図1は、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAと、Y値との関係を示すグラフである。Figure 1 is a graph showing the relationship between the Y value and the total area fraction SA of crystal grains with an equivalent circle diameter of 7.5 μm or less among crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15° or more. be.

本発明では、SR前の状態すなわち熱間圧延ままの状態で、強度と従来よりも低温での靭性とのバランスの改善された厚鋼板を得るべく鋭意研究を行った。特に、板厚が厚くとも板厚の1/4位置および1/2位置において、強度-靭性バランスに優れている、具体的には本発明で定める強度-靭性バランスに関するパラメータY=20×vTrs-7×YPが、十分低い鋼板を得るべく鋭意研究を行った。 In the present invention, intensive research has been conducted to obtain a thick steel plate with an improved balance between strength and toughness at low temperatures than before in the state before SR, that is, in the as-hot-rolled state. In particular, even if the plate thickness is thick, the strength-toughness balance is excellent at the 1/4 position and 1/2 position of the plate thickness. Specifically, the parameter regarding the strength-toughness balance defined by the present invention Y=20×vTrs- We conducted extensive research to obtain a steel plate with a sufficiently low 7×YP.

その結果、成分組成を制御すると共に、板厚の1/4位置および1/2位置において、微細なアシキュラーフェライト組織を所定量確保、より具体的には、後述する方法で測定された円相当直径7.5μm以下のアシキュラーフェライトを所定量確保すれば、上記良好な特性が得られることを見出した。以下では、板厚の1/4位置を「t/4位置」、板厚の1/2位置を「t/2位置」ということがある。 As a result, while controlling the component composition, we ensured a predetermined amount of fine acicular ferrite structure at the 1/4 and 1/2 positions of the plate thickness, and more specifically, the equivalent of a circle measured by the method described below. It has been found that the above-mentioned good characteristics can be obtained by securing a predetermined amount of acicular ferrite having a diameter of 7.5 μm or less. Hereinafter, the 1/4 position of the plate thickness may be referred to as the "t/4 position", and the 1/2 position of the plate thickness may be referred to as the "t/2 position".

また、上記微細なアシキュラーフェライト組織を所定量形成するには、下記(A)~(C)の全てを実施することが有効であることを見出した。上記アシキュラーフェライトは、以下では「AF」ということがある。
(A)オーステナイト相からフェライト相への変態前に、熱間圧延によりオーステナイト相に十分な加工歪を加える。この加工により導入された転位組織や変形帯を核にAF結晶粒が生成することで、微細組織が実現される。
(B)熱間での未再結晶域圧延前に、固溶Nbを確保する。そうすることで、変態に先立つ加工歪が得られやすくなり、上述の通り微細なAF結晶粒が生成しやすい。前記固溶Nbの確保は、後述する通り、圧延前加熱温度を1020℃超とし、かつ850℃以上の圧延での圧下率を下げることが有効である。
(C)フェライト相への変態温度を適切に制御する。フェライト相への変態温度が高いとAF生成に先立ち粒界フェライト組織が形成され、AF量が減少する。逆に、フェライト相への変態温度が低いと、AF組織が形成されないままマルテンサイト組織が生成する。フェライト相への変態温度を適切に制御するには、成分組成におけるC、Mn、CuとNiの少なくともいずれかを含む場合にはこれらの含有量、およびDi+10Nbの各範囲を制御すると共に、後述する通り、熱間圧延後の所定温度域の平均冷却速度を0.5℃/s以上とするのがよい。
Furthermore, we have found that it is effective to carry out all of the following (A) to (C) in order to form a predetermined amount of the above-mentioned fine acicular ferrite structure. The above-mentioned acicular ferrite may be referred to as "AF" below.
(A) Before the transformation from the austenite phase to the ferrite phase, sufficient processing strain is applied to the austenite phase by hot rolling. A microstructure is realized by generating AF crystal grains with the dislocation structures and deformation bands introduced by this processing as nuclei.
(B) Solid solution Nb is secured before hot rolling in the non-recrystallized region. By doing so, it becomes easier to obtain processing strain prior to transformation, and as described above, it becomes easier to generate fine AF crystal grains. As described later, it is effective to ensure the solid solution Nb by setting the pre-rolling heating temperature to over 1020°C and lowering the rolling reduction during rolling at 850°C or higher.
(C) Appropriately control the transformation temperature to ferrite phase. If the transformation temperature to the ferrite phase is high, a grain boundary ferrite structure is formed prior to AF generation, and the amount of AF decreases. On the other hand, if the transformation temperature to the ferrite phase is low, a martensitic structure is generated without forming an AF structure. In order to appropriately control the transformation temperature to the ferrite phase, if the component composition contains at least one of C, Mn, Cu and Ni, the content of these and the range of Di + 10Nb should be controlled, as will be described later. Generally, the average cooling rate in the predetermined temperature range after hot rolling is preferably 0.5° C./s or more.

以下では、本発明の厚鋼板の鋼組織と成分組成、特性および製造方法について順に説明する。 Below, the steel structure, component composition, characteristics, and manufacturing method of the thick steel plate of the present invention will be explained in order.

1.鋼組織
以下に本発明の厚鋼板の鋼組織について詳述する。以下の鋼組織の説明では、そのような組織を有することにより各種の特性を向上できるメカニズムについて説明している場合がある。これらは本発明者らが現時点で得られている知見により考えたメカニズムであるが、本発明の技術的範囲を限定するものではないことに留意されたい。
1. Steel Structure The steel structure of the thick steel plate of the present invention will be explained in detail below. In the description of the steel structure below, the mechanism by which various properties can be improved by having such a structure may be explained. Although these are mechanisms considered by the present inventors based on the knowledge obtained at the present time, it should be noted that they do not limit the technical scope of the present invention.

本発明では、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒を、微細なアシキュラーフェライト(AF)組織と定義する。本発明において「微細なアシキュラーフェライト(AF)組織を所定量形成させる」とは、この結晶方位差15°以上の大角粒界に囲まれる結晶粒であって、円相当直径が7.5μm以下の結晶粒を、下記に示す通り、t/4位置において34%以上、かつt/2位置において27%以上確保することをいう。 In the present invention, among crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 degrees or more, crystal grains with an equivalent circle diameter of 7.5 μm or less are defined as a fine acicular ferrite (AF) structure. In the present invention, "forming a predetermined amount of fine acicular ferrite (AF) structure" refers to crystal grains surrounded by large-angle grain boundaries with a crystal misorientation of 15 degrees or more and an equivalent circle diameter of 7.5 μm or less. This means securing 34% or more of the crystal grains at the t/4 position and 27% or more at the t/2 position, as shown below.

本発明では、板厚が厚くとも優れた強度-靭性バランスを示す厚鋼板を得るべく、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SA、つまり微細なアシキュラーフェライト(AF)組織の面積分率を、t/4位置とt/2位置の両方で規定する。詳細には、上記合計面積分率SAが、t/4位置で34%以上、かつt/2位置で27%以上を満たすようにする。t/4位置の上記合計面積分率SAは、好ましくは35%以上、より好ましくは36%以上である。またt/2位置の上記合計面積分率SAは、好ましくは28%以上、より好ましくは30%以上である。なお、優れた強度-靭性バランスを得る観点から、t/4位置とt/2位置の各位置の上記合計面積分率SAの上限は特に限定されない。本発明の厚鋼板の製造条件を考慮すると、t/4位置の合計面積分率SAの上限は、80%程度、t/2位置の合計面積分率SAの上限は、70%程度となる。 In the present invention, in order to obtain a thick steel plate that exhibits an excellent strength-toughness balance even when the plate thickness is thick, among the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15° or more, those with an equivalent circle diameter of 7.5 μm or less The total area fraction SA of crystal grains, that is, the area fraction of the fine acicular ferrite (AF) structure, is defined at both the t/4 position and the t/2 position. Specifically, the total area fraction SA is made to satisfy 34% or more at the t/4 position and 27% or more at the t/2 position. The total area fraction SA at the t/4 position is preferably 35% or more, more preferably 36% or more. Further, the total area fraction SA at the t/2 position is preferably 28% or more, more preferably 30% or more. Note that, from the viewpoint of obtaining an excellent strength-toughness balance, the upper limit of the above-mentioned total area fraction SA at the t/4 position and the t/2 position is not particularly limited. Considering the manufacturing conditions of the thick steel plate of the present invention, the upper limit of the total area fraction SA at the t/4 position is about 80%, and the upper limit of the total area fraction SA at the t/2 position is about 70%.

上記微細なアシキュラーフェライト以外の組織として、ベイナイト、フェライト、セメンタイト、残留オーステナイト、マルテンサイト等が挙げられる。上記合計面積分率SAが本発明で規定する範囲内にある限り、上記円相当直径が7.5μm超のアシキュラーフェライトが存在していてもよい。 Examples of structures other than the fine acicular ferrite include bainite, ferrite, cementite, retained austenite, and martensite. As long as the total area fraction SA is within the range defined by the present invention, the acicular ferrite having an equivalent circle diameter of more than 7.5 μm may be present.

2.組成
以下に本発明に係る厚鋼板の組成について説明する。
2. Composition The composition of the thick steel plate according to the present invention will be explained below.

C:0.02質量%~0.070質量%
Cは、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度-靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、C量は、0.02質量%以上、好ましくは0.023質量%以上、より好ましくは0.030質量%以上である。一方、C量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度-靭性バランスが劣化する。よって、C量は0.070質量%以下とする。C量は、好ましくは0.065質量%以下、より好ましくは0.060質量%以下である。
C: 0.02% by mass to 0.070% by mass
C has the effect of appropriately controlling the ferrite transformation temperature and suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exhibiting this effect, the amount of C is 0.02% by mass or more, preferably 0.023% by mass or more, and more preferably 0.030% by mass or more. On the other hand, if the amount of C is excessive, a hard martensitic structure is generated and acts as a starting point for brittle fracture, thereby deteriorating the strength-toughness balance. Therefore, the amount of C is set to 0.070% by mass or less. The amount of C is preferably 0.065% by mass or less, more preferably 0.060% by mass or less.

Si:0質量%超、0.40質量%以下
Siは脱酸元素であり、その含有量は0質量%超である。Si量は、0.05質量%以上であってもよく、更に0.10質量%以上であってもよい。一方、Si量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度-靭性バランスが劣化する。よって、Si量は、0.40質量%以下、好ましくは0.38質量%以下、より好ましくは0.35質量%以下である。
Si: More than 0% by mass, 0.40% by mass or less Si is a deoxidizing element, and its content is more than 0% by mass. The amount of Si may be 0.05% by mass or more, and further may be 0.10% by mass or more. On the other hand, if the amount of Si is excessive, a hard martensitic structure is generated and acts as a starting point for brittle fracture, thereby deteriorating the strength-toughness balance. Therefore, the amount of Si is 0.40% by mass or less, preferably 0.38% by mass or less, more preferably 0.35% by mass or less.

Mn:1.30質量%~1.95質量%
Mnは、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度-靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、Mn量は、1.30質量%以上、好ましくは1.40質量%以上、より好ましくは1.45質量%以上である。一方、Mn量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度-靭性バランスが劣化する。よってMn量は、1.95質量%以下、好ましくは1.90質量%以下、より好ましくは1.80質量%以下である。
Mn: 1.30% by mass to 1.95% by mass
Mn has the effect of appropriately controlling the ferrite transformation temperature and suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exhibiting this effect, the amount of Mn is 1.30% by mass or more, preferably 1.40% by mass or more, and more preferably 1.45% by mass or more. On the other hand, if the amount of Mn is excessive, a hard martensitic structure is generated and acts as a brittle fracture starting point, thereby deteriorating the strength-toughness balance. Therefore, the amount of Mn is 1.95% by mass or less, preferably 1.90% by mass or less, more preferably 1.80% by mass or less.

P:0質量%超、0.015質量%以下
Pは、不純物元素であり、過剰に含まれると粒界が脆化して強度-靭性バランスが劣化する。よってP量は、0.015質量%以下とする。P量は、好ましくは0.008質量%以下、より好ましくは0.007質量%以下である。一方、工業上、P量を0質量%にすることは困難であることから、P量の下限は0質量%超である。
P: More than 0% by mass, 0.015% by mass or less P is an impurity element, and if it is included in excess, the grain boundaries will become brittle and the strength-toughness balance will deteriorate. Therefore, the amount of P is set to 0.015% by mass or less. The amount of P is preferably 0.008% by mass or less, more preferably 0.007% by mass or less. On the other hand, since it is industrially difficult to reduce the amount of P to 0% by mass, the lower limit of the amount of P is more than 0% by mass.

S:0質量%超、0.005質量%以下
Sは、不純物元素であり、過剰に含まれると粒界が脆化して強度-靭性バランスが劣化する。よってS量は、0.005質量%以下とする。S量は、好ましくは0.004質量%以下、より好ましくは0.003質量%以下である。一方、工業上、S量を0質量%にすることは困難であることから、S量の下限は0質量%超である。
S: more than 0% by mass and not more than 0.005% by mass S is an impurity element, and if it is included in excess, grain boundaries become brittle and the strength-toughness balance deteriorates. Therefore, the amount of S is set to 0.005% by mass or less. The amount of S is preferably 0.004% by mass or less, more preferably 0.003% by mass or less. On the other hand, since it is industrially difficult to reduce the amount of S to 0% by mass, the lower limit of the amount of S is more than 0% by mass.

Al:0.005質量%~0.070質量%
Alは、脱酸元素である。十分な脱酸を行って鋼中酸素を低減し、酸化物による強度-靭性バランスの劣化を抑制するため、Al量は0.005質量%以上とする。Al量は、好ましくは0.010質量%以上、より好ましくは0.015質量%以上である。一方、Al量が過剰であると、粗大酸化物が形成されて、強度-靭性バランスが劣化する。よって、Al量は0.070質量%以下、好ましくは0.050質量%以下、より好ましくは0.045質量%以下である。
Al: 0.005% by mass to 0.070% by mass
Al is a deoxidizing element. In order to perform sufficient deoxidation to reduce oxygen in the steel and suppress deterioration of the strength-toughness balance due to oxides, the amount of Al is set to 0.005% by mass or more. The amount of Al is preferably 0.010% by mass or more, more preferably 0.015% by mass or more. On the other hand, if the amount of Al is excessive, coarse oxides are formed and the strength-toughness balance deteriorates. Therefore, the amount of Al is 0.070% by mass or less, preferably 0.050% by mass or less, more preferably 0.045% by mass or less.

Nb:0.015質量%~0.048質量%
Nbは、AFの生成を促進させる元素である。微細なAF組織を十分に生成させて良好な強度-靭性バランスを得るため、Nb量は、0.015質量%以上、好ましくは0.016質量%以上、より好ましくは0.018質量%以上とする。一方、Nb量が過剰であると、硬質なマルテンサイト組織が生成し、この組織が脆性破壊起点として作用することで強度-靭性バランスが劣化する。よって、Nb量は0.048質量%以下、好ましくは0.045質量%以下、より好ましくは0.040質量%以下である。
Nb: 0.015% by mass to 0.048% by mass
Nb is an element that promotes the generation of AF. In order to sufficiently generate a fine AF structure and obtain a good strength-toughness balance, the Nb content is set to 0.015% by mass or more, preferably 0.016% by mass or more, and more preferably 0.018% by mass or more. do. On the other hand, if the amount of Nb is excessive, a hard martensitic structure is generated, and this structure acts as a brittle fracture starting point, thereby deteriorating the strength-toughness balance. Therefore, the amount of Nb is 0.048% by mass or less, preferably 0.045% by mass or less, and more preferably 0.040% by mass or less.

Ti:0.005質量%~0.024質量%
Tiは、TiN形成によりHAZ靭性向上に寄与する元素である。該効果を発揮させる観点から、Ti量は、0.005質量%以上、好ましくは0.007質量%以上、より好ましくは0.009質量%以上である。一方、Ti量が過剰であると、粗大な晶出TiNが生成し、強度-靭性バランスが劣化する。よってTi量は、0.024質量%以下、好ましくは0.022質量%以下、より好ましくは0.020質量%以下である。
Ti: 0.005% by mass to 0.024% by mass
Ti is an element that contributes to improving HAZ toughness by forming TiN. From the viewpoint of exhibiting this effect, the amount of Ti is 0.005% by mass or more, preferably 0.007% by mass or more, and more preferably 0.009% by mass or more. On the other hand, if the amount of Ti is excessive, coarse crystallized TiN will be produced and the strength-toughness balance will deteriorate. Therefore, the amount of Ti is 0.024% by mass or less, preferably 0.022% by mass or less, more preferably 0.020% by mass or less.

N:0.0030質量%~0.0080質量%
Nは、TiN形成によりHAZ靭性向上に寄与する元素である。該効果を発揮させる観点から、N量は0.0030質量%以上、好ましくは0.0032質量%以上、より好ましくは0.0035質量%以上である。一方、N量が過剰であると、固溶Nが増加し、強度-靭性バランスが劣化する。よってN量は、0.0080質量%以下、好ましくは0.0075質量%以下、より好ましくは0.0070質量%以下である。
N: 0.0030% by mass to 0.0080% by mass
N is an element that contributes to improving HAZ toughness by forming TiN. From the viewpoint of exhibiting this effect, the amount of N is 0.0030% by mass or more, preferably 0.0032% by mass or more, and more preferably 0.0035% by mass or more. On the other hand, if the amount of N is excessive, solid solution N increases and the strength-toughness balance deteriorates. Therefore, the amount of N is 0.0080% by mass or less, preferably 0.0075% by mass or less, and more preferably 0.0070% by mass or less.

Ca:0質量%超、0.0040質量%以下
Caは脱酸元素であり、その含有量は0質量%超である。また、鋼中Mn量が多い場合、t/2位置では鋳造時のMn濃化により粗大なMnSが生成しやすくなり、t/2位置の靭性が低下しやすいと考えられる。このMnSの形成抑制のために、Ca量を0質量%超とすることが好ましく、0.0008質量%以上とすることがより好ましく、更に好ましくは0.0010質量%以上である。一方、Ca量が過剰であると、粗大酸化物が形成されて、強度-靭性バランスが劣化する。よって、Ca量は0.0040質量%以下、好ましくは0.0028質量%以下、より好ましくは0.0025質量%以下である。
Ca: more than 0% by mass, not more than 0.0040% by mass Ca is a deoxidizing element, and its content is more than 0% by mass. Furthermore, when the amount of Mn in the steel is large, coarse MnS is likely to be generated at the t/2 position due to Mn concentration during casting, and it is considered that the toughness at the t/2 position is likely to decrease. In order to suppress the formation of MnS, the amount of Ca is preferably greater than 0% by mass, more preferably 0.0008% by mass or more, and still more preferably 0.0010% by mass or more. On the other hand, if the amount of Ca is excessive, coarse oxides are formed and the strength-toughness balance deteriorates. Therefore, the amount of Ca is 0.0040% by mass or less, preferably 0.0028% by mass or less, more preferably 0.0025% by mass or less.

残部は、Feおよび不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる例えば、As、Sb、Snなどの微量元素の混入が許容される。なお、例えばPおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」とは、別途その組成範囲が規定されている元素を除いた概念である。 The remainder is Fe and inevitable impurities. As unavoidable impurities, for example, trace elements such as As, Sb, and Sn that are introduced depending on the conditions of raw materials, materials, manufacturing equipment, etc. are allowed. Note that, for example, there are elements such as P and S, which are preferably contained in smaller amounts and are therefore unavoidable impurities, but whose composition ranges are separately specified as described above. Therefore, in this specification, the term "inevitable impurities" constituting the remainder is a concept excluding elements whose composition range is separately defined.

本発明の厚鋼板は、成分組成において、上記元素を含んでいればよい。下記に述べる選択元素は、含まれていなくてもよいが、上記元素と共に必要に応じて含有させることにより、高強度等をより容易に達成させることができる。また、所望の組織をより容易に確保でき、本発明で求める強度-靭性バランスをより容易に達成することができる。以下、選択元素について述べる。 The thick steel plate of the present invention only needs to contain the above elements in its composition. Although the selected elements described below do not need to be included, high strength etc. can be more easily achieved by including them together with the above elements as necessary. Further, the desired structure can be more easily secured, and the strength-toughness balance required by the present invention can be more easily achieved. The selected elements will be described below.

Cu:0質量%超、0.75質量%以下、およびNi:0質量%超、1.4質量%以下よりなる群から選択される1種以上の元素
これらの元素は、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度-靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、Cuを含有させる場合には、0質量%超とすることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上、より更に好ましくは0.15質量%以上である。Niを含有させる場合には、0質量%超とすることが好ましく、より好ましくは0.10質量%以上、更に好ましくは0.15質量%以上、より更に好ましくは0.20質量%以上である。一方、これらの元素が過剰であると、硬質なマルテンサイト組織が生成し、該組織が、脆性破壊起点として作用し、強度-靭性バランスの劣化を招く。よって、Cu量は、0.75質量%以下であることが好ましく、より好ましくは0.70質量%以下、更に好ましくは0.68質量%以下である。Ni量は、1.4質量%以下であることが好ましく、より好ましくは1.2質量%以下、更に好ましくは1.0質量%以下である。
One or more elements selected from the group consisting of Cu: more than 0 mass% and 0.75 mass% or less, and Ni: more than 0 mass% and 1.4 mass% or less. This has the effect of suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exhibiting this effect, when Cu is contained, it is preferably more than 0% by mass, more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more, even more preferably It is 0.15% by mass or more. When Ni is contained, it is preferably more than 0% by mass, more preferably 0.10% by mass or more, still more preferably 0.15% by mass or more, even more preferably 0.20% by mass or more. . On the other hand, if these elements are in excess, a hard martensitic structure is generated, which acts as a brittle fracture starting point, leading to a deterioration of the strength-toughness balance. Therefore, the amount of Cu is preferably 0.75% by mass or less, more preferably 0.70% by mass or less, still more preferably 0.68% by mass or less. The amount of Ni is preferably 1.4% by mass or less, more preferably 1.2% by mass or less, still more preferably 1.0% by mass or less.

Mo:0質量%超、0.50質量%以下、V:0質量%超、0.060質量%以下、Cr:0質量%超、0.8質量%以下、およびB:0質量%超、0.0030質量%以下よりなる群から選択される1種以上の元素
これらの元素は、強度向上に有効な元素である。該効果を発揮させる観点から、Moを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。Vを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.01質量%以上、更に好ましくは0.02質量%以上である。Crを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.10質量%以上、更に好ましくは0.20質量%以上である。Bを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.0003質量%以上である。
Mo: more than 0 mass%, 0.50 mass% or less, V: more than 0 mass%, 0.060 mass% or less, Cr: more than 0 mass%, 0.8 mass% or less, and B: more than 0 mass%, One or more elements selected from the group consisting of 0.0030% by mass or less These elements are effective for improving strength. From the viewpoint of exhibiting this effect, when Mo is contained, it is preferably more than 0% by mass, more preferably 0.05% by mass or more, and still more preferably 0.10% by mass or more. When V is contained, it is preferably more than 0% by mass, more preferably 0.01% by mass or more, still more preferably 0.02% by mass or more. When Cr is contained, it is preferably more than 0% by mass, more preferably 0.10% by mass or more, still more preferably 0.20% by mass or more. When B is contained, it is preferably more than 0% by mass, more preferably 0.0003% by mass or more.

一方、これらの元素の含有量が過剰であると、硬質なマルテンサイト組織が生成し、該組織が脆性破壊起点として作用し、強度-靭性バランスの劣化を招く。よって、Mo量は、0.50質量%以下であることが好ましく、より好ましくは0.45質量%以下、更に好ましくは0.40質量%以下である。V量は、0.060質量%以下であることが好ましく、より好ましくは0.050質量%以下、更に好ましくは0.045質量%以下である。Cr量は、0.8質量%以下であることが好ましく、より好ましくは0.70質量%以下、更に好ましくは0.60質量%以下である。B量は、0.0007質量%以下であることが好ましく、より好ましく0.0006質量%以下である。 On the other hand, if the content of these elements is excessive, a hard martensitic structure is generated, which acts as a brittle fracture starting point, leading to a deterioration of the strength-toughness balance. Therefore, the amount of Mo is preferably 0.50% by mass or less, more preferably 0.45% by mass or less, still more preferably 0.40% by mass or less. The amount of V is preferably 0.060% by mass or less, more preferably 0.050% by mass or less, still more preferably 0.045% by mass or less. The amount of Cr is preferably 0.8% by mass or less, more preferably 0.70% by mass or less, still more preferably 0.60% by mass or less. The amount of B is preferably 0.0007% by mass or less, more preferably 0.0006% by mass or less.

REM:0質量%超、0.0060質量%以下、およびZr:0質量%超、0.0050質量%以下よりなる群から選択される1種以上の元素
これらの元素は脱酸元素である。該効果を発揮させるには、REMを含有させる場合、0質量%超であることが好ましく、より好ましくは0.0010質量%以上、更に好ましくは0.0015質量%以上である。Zrを含有させる場合、0質量%超であることが好ましく、より好ましくは0.0010質量%以上、更に好ましくは0.0012質量%以上である。一方、これらの元素が過剰であると、粗大酸化物が形成され、強度-靭性バランスが劣化する。よってREM量は、0.0060質量%以下であることが好ましく、より好ましくは0.0050質量%以下、更に好ましくは0.0045質量%以下である。Zr量は、0.0050質量%以下であることが好ましく、より好ましくは0.0045質量%以下、更に好ましくは0.0040質量%以下である。前記REMとは、ランタノイド元素(LaからLuまでの15元素)、Sc(スカンジウム)およびY(イットリウム)を含む意味である。
One or more elements selected from the group consisting of REM: more than 0 mass% and 0.0060 mass% or less, and Zr: more than 0 mass% and 0.0050 mass% or less These elements are deoxidizing elements. In order to exhibit this effect, when REM is contained, it is preferably more than 0% by mass, more preferably 0.0010% by mass or more, and still more preferably 0.0015% by mass or more. When Zr is contained, it is preferably more than 0% by mass, more preferably 0.0010% by mass or more, and still more preferably 0.0012% by mass or more. On the other hand, if these elements are in excess, coarse oxides will be formed and the strength-toughness balance will deteriorate. Therefore, the amount of REM is preferably 0.0060% by mass or less, more preferably 0.0050% by mass or less, still more preferably 0.0045% by mass or less. The amount of Zr is preferably 0.0050% by mass or less, more preferably 0.0045% by mass or less, still more preferably 0.0040% by mass or less. The above-mentioned REM includes lanthanide elements (15 elements from La to Lu), Sc (scandium), and Y (yttrium).

Di+10Nb:1.20~2.50(Diは下記式(1)から求められる)
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Di+10Nb: 1.20 to 2.50 (Di is obtained from the following formula (1))
Di=1.16×([C]/10) 0.5 ×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35× [Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200 ×[B]+1)...(1)
In formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are each expressed in mass%. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are shown, and elements not included are set to zero.

Di+10Nbは、フェライト変態温度に影響を及ぼすパラメータである。フェライト変態温度を適切に制御することで、AF生成前の粒界フェライトの生成を抑制し、またAF以外のパーライト組織やマルテンサイト組織の過剰な生成を抑制し、AF生成を促進させることができる。これらの観点から、本発明ではDi+10Nbを1.20~2.50の範囲内とした。Di+10Nbの値が小さすぎると、粒界フェライトとともにパーライト組織が生成し、強度-靭性バランスが劣化する。よってDi+10Nbは、1.20以上とする。Di+10Nbは、好ましくは1.25以上、より好ましくは1.30以上である。一方、Di+10Nbの値が大きすぎると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度-靭性バランス劣化する。よってDi+10Nbは、2.50以下とする。Di+10Nbは、好ましくは2.20以下、より好ましくは2.00以下である。 Di+10Nb is a parameter that affects the ferrite transformation temperature. By appropriately controlling the ferrite transformation temperature, it is possible to suppress the formation of grain boundary ferrite before AF formation, suppress the excessive formation of pearlite structures and martensitic structures other than AF, and promote AF formation. . From these viewpoints, in the present invention, Di+10Nb is set within the range of 1.20 to 2.50. If the value of Di+10Nb is too small, a pearlite structure is generated together with grain boundary ferrite, and the strength-toughness balance deteriorates. Therefore, Di+10Nb is set to 1.20 or more. Di+10Nb is preferably 1.25 or more, more preferably 1.30 or more. On the other hand, if the value of Di+10Nb is too large, a hard martensitic structure is generated and acts as a brittle fracture starting point, thereby degrading the strength-toughness balance. Therefore, Di+10Nb is set to 2.50 or less. Di+10Nb is preferably 2.20 or less, more preferably 2.00 or less.

本発明の厚鋼板の板厚は、16mm以上であることが好ましく、より好ましくは30mm以上、更に好ましくは40mm以上、特に好ましくは40mm超である。なお、板厚の上限は特に限定されず、例えば80mm以下であることが好ましい。 The thickness of the thick steel plate of the present invention is preferably 16 mm or more, more preferably 30 mm or more, still more preferably 40 mm or more, particularly preferably more than 40 mm. Note that the upper limit of the plate thickness is not particularly limited, and is preferably 80 mm or less, for example.

本発明の厚鋼板は、下記の特性を有しており、例えば大型のLPGタンク、船舶等の製造に適している。 The thick steel plate of the present invention has the following characteristics and is suitable for manufacturing large LPG tanks, ships, etc., for example.

3.特性
本発明において、強度と従来よりも低い温度での靭性とのバランスの評価に、下記式(2)で示されるパラメータであるY値を用いる。Y値は、下記式(2)に示される通り、降伏強度YP、脆性延性遷移温度vTrsを含んでいる。なお、下記式(2)における降伏強度YPとして、SSカーブ(「応力-ひずみ線図」ともいう)が、降伏点の明らかでないラウンド型の場合は0.2%耐力(0.2YS)を使用し、降伏点を有する場合はYPを使用する。
3. Characteristics In the present invention, the Y value, which is a parameter expressed by the following formula (2), is used to evaluate the balance between strength and toughness at a temperature lower than conventional ones. The Y value includes the yield strength YP and the brittle-ductile transition temperature vTrs, as shown in the following formula (2). In addition, as the yield strength YP in the following formula (2), if the SS curve (also referred to as "stress-strain diagram") is a round shape with no clear yield point, use 0.2% yield strength (0.2YS). However, if it has a yield point, use YP.

本発明の厚鋼板は、熱間圧延ままであって、圧延方向に対して直角なC方向において、t/4位置のYが-5200未満、かつt/2位置のYが-4700未満を満たす場合を、強度-靭性バランスに優れていると評価する。
Y=20×vTrs-7×YP・・・(2)
The thick steel plate of the present invention is as hot-rolled and satisfies that Y at the t/4 position is less than -5200 and Y at the t/2 position is less than -4700 in the C direction perpendicular to the rolling direction. The case is evaluated as having an excellent strength-toughness balance.
Y=20×vTrs-7×YP...(2)

上記t/4位置におけるY値は、好ましくは-5300以下、より好ましくは-5400以下であり、また、上記t/2位置におけるY値は、好ましくは-4800以下、より好ましくは-5000以下である。これらの値が低いほど、強度-靭性バランスに優れることを意味する。 The Y value at the t/4 position is preferably -5300 or less, more preferably -5400 or less, and the Y value at the t/2 position is preferably -4800 or less, more preferably -5000 or less. be. The lower these values, the better the strength-toughness balance.

本発明は、特性として上記パラメータを達成すればよい。降伏強度YP、脆性延性遷移温度vTrsのそれぞれについては、上記パラメータを達成することを前提に、例えば降伏強度YPが好ましくは350~550MPaの範囲、脆性延性遷移温度vTrsが好ましくは-70℃未満の範囲、より好ましくは-80℃未満の範囲とすることが挙げられる。また測定位置別に、t/4位置では、上記パラメータを達成することを前提に、例えば、降伏強度YPは410MPa以上であることが好ましく、より好ましくは430MPa以上、更に好ましくは460MPa以上、より更に好ましくは480MPa以上、特には500MPa以上であり、脆性延性遷移温度vTrsは、-90℃以下であることが好ましく、-95℃以下であることがより好ましく、-100℃以下であることが更に好ましく、より更に好ましくは-110℃以下である。またt/2位置では、上記パラメータを達成することを前提に、例えば、降伏強度YPは400MPa以上であることが好ましく、より好ましくは430MPa以上、更に好ましくは460MPa以上、より更に好ましくは480MPa以上、特には500MPa以上であり、脆性延性遷移温度vTrsは、-80℃以下であることが好ましく、-90℃以下であることがより好ましく、-95℃以下であることが更に好ましく、-100℃以下であることがより更に好ましい。 The present invention only needs to achieve the above parameters as characteristics. Regarding each of the yield strength YP and the brittle-ductile transition temperature vTrs, on the premise that the above parameters are achieved, for example, the yield strength YP is preferably in the range of 350 to 550 MPa, and the brittle-ductile transition temperature vTrs is preferably in the range of less than -70°C. range, more preferably less than -80°C. Also, depending on the measurement position, at the t/4 position, on the premise that the above parameters are achieved, for example, the yield strength YP is preferably 410 MPa or more, more preferably 430 MPa or more, still more preferably 460 MPa or more, and even more preferably is 480 MPa or higher, particularly 500 MPa or higher, and the brittle-ductile transition temperature vTrs is preferably -90°C or lower, more preferably -95°C or lower, even more preferably -100°C or lower, Even more preferably it is -110°C or lower. Further, at the t/2 position, on the premise that the above parameters are achieved, for example, the yield strength YP is preferably 400 MPa or more, more preferably 430 MPa or more, still more preferably 460 MPa or more, even more preferably 480 MPa or more, In particular, it is 500 MPa or higher, and the brittle-ductile transition temperature vTrs is preferably -80°C or lower, more preferably -90°C or lower, even more preferably -95°C or lower, and even more preferably -100°C or lower. Even more preferably.

4.製造方法
本発明に係る厚鋼板の製造方法は、前記成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)~(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720~830℃
(d)熱間圧延後、仕上圧延温度~690℃の冷却開始温度から、320~550℃の冷却停止温度までを、平均冷却速度0.5~20℃/sで冷却する。
以下、各製造条件について詳述する。
4. Manufacturing method The method for manufacturing a thick steel plate according to the present invention includes a step of heating a steel piece having the above-mentioned composition to a temperature above 1020°C and below 1200°C, and a hot rolling step after the heating. In the rolling process, the number of rolling passes is 3 or more, and a method for producing a thick steel plate in which hot rolling and cooling after the hot rolling are performed so as to satisfy all of the following conditions (a) to (d).
(a) Cumulative rolling reduction of 40% or more in the temperature range of 850°C or less (b) Average rolling reduction of 5.5% or more in the final three passes of rolling (c) Finish rolling temperature of 720 to 830°C
(d) After hot rolling, it is cooled from a cooling start temperature of the finish rolling temperature to 690°C to a cooling stop temperature of 320 to 550°C at an average cooling rate of 0.5 to 20°C/s.
Each manufacturing condition will be explained in detail below.

[前記成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程]
熱間圧延の加熱において、加熱温度が1020℃以下であると、鋳造時に生成したNbCが十分に固溶せず、固溶NbによるAF生成の促進効果が得られなくなる。よって加熱温度は、1020℃超、好ましくは1040℃以上、より好ましくは1050℃以上、更に好ましくは1060℃以上とする。一方、加熱温度が1200℃以上であると、オーステナイト粒が粗大化し、組織が全般的に粗大化する。よって加熱温度は、1200℃未満、好ましくは1180℃以下、より好ましくは1150℃以下とする。
[Step of heating a steel piece having the above-mentioned composition above 1020°C and below 1200°C]
In heating for hot rolling, if the heating temperature is 1020° C. or lower, NbC generated during casting will not be sufficiently dissolved in solid solution, and the effect of promoting AF generation by solid solution Nb will not be obtained. Therefore, the heating temperature is set to higher than 1020°C, preferably higher than 1040°C, more preferably higher than 1050°C, still more preferably higher than 1060°C. On the other hand, if the heating temperature is 1200° C. or higher, the austenite grains become coarse and the overall structure becomes coarse. Therefore, the heating temperature is less than 1200°C, preferably 1180°C or less, more preferably 1150°C or less.

[前記加熱後の熱間圧延工程]
本発明は、後述する通り、最終3パスの圧延の平均圧下率を制御するところに特徴があり、前記加熱後は、圧延パスが3パス以上の熱間圧延を行うが、総パス数(圧延パスの回数)は組織と特性に影響を及ぼすものでなく限定されない。前記圧延パスは、更には7パス以上、より更には10パス以上であって、生産性の観点から60パス以下とすることができる。
[Hot rolling process after heating]
As will be described later, the present invention is characterized in that the average rolling reduction rate of the final three passes is controlled, and after the heating, hot rolling is performed with three or more rolling passes, but the total number of passes (rolling The number of passes) does not affect the organization and characteristics and is not limited. The number of rolling passes may be 7 or more, more preferably 10 or more, and 60 or less from the viewpoint of productivity.

本発明では、下記(a)~(d)の条件を全て満たすように前記熱間圧延を行い、かつ熱間圧延後の冷却を行う。 In the present invention, the hot rolling is performed so as to satisfy all of the following conditions (a) to (d), and cooling is performed after the hot rolling.

(a)850℃以下の温度域での累積圧下率:40%以上
十分なAF組織を得ることを目的に、オーステナイト相に十分な加工歪を導入するには、熱間圧延における850℃以下の温度域での累積圧下率(「総圧下率」ともいう)を40%以上とする必要がある。ところで850℃以上の圧延での圧下率が増加すると、圧延中にNbCが析出し、固溶Nbが減少すると考えられる。この850℃以上の圧延での累積圧下率を抑える観点からも、上記850℃以下の温度域での累積圧下率を40%以上とする。前記累積圧下率は、好ましくは50%以上、より好ましくは55%以上である。前記累積圧下率の上限は生産性の観点から80%程度である。
(a) Cumulative rolling reduction rate at temperatures below 850°C: 40% or more In order to introduce sufficient working strain into the austenite phase with the aim of obtaining a sufficient AF structure, it is necessary to The cumulative reduction rate (also referred to as "total reduction rate") in the temperature range needs to be 40% or more. By the way, it is thought that when the rolling reduction rate during rolling at 850° C. or higher increases, NbC precipitates during rolling and solid solution Nb decreases. Also from the viewpoint of suppressing the cumulative reduction rate in the rolling at 850°C or higher, the cumulative reduction rate in the temperature range of 850°C or lower is set to 40% or more. The cumulative reduction rate is preferably 50% or more, more preferably 55% or more. The upper limit of the cumulative reduction rate is about 80% from the viewpoint of productivity.

(b)最終3パスの圧延の平均圧下率:5.5%以上
最終3パスの圧下で導入された転位組織は、比較的回復が進行しないまま冷却工程に移行するため、AF促進効果が大きい。本発明では、上記転位組織導入のためにオーステナイト相に十分な加工歪を導入すべく、最終3パスの圧延における平均圧下率を5.5%以上とする。本発明では、最終3パスの圧延の平均圧下率を制御することによって、鋼板内部、特にはt/2位置においてもAF組織が一定以上の所望の組織が得られる点で、最終3パスの圧延の平均圧下率を制御していない従来の方法と異なる。前記平均圧下率は、好ましくは5.8%以上、より好ましくは6.0%以上である。一方、圧延機負荷の観点から、上記平均圧下率の上限は20%程度となる。
(b) Average rolling reduction ratio of the final 3 passes: 5.5% or more The dislocation structure introduced during the rolling of the final 3 passes moves to the cooling process with relatively little recovery, so the AF promotion effect is large. . In the present invention, in order to introduce sufficient working strain into the austenite phase to introduce the above-mentioned dislocation structure, the average reduction ratio in the final three passes of rolling is set to 5.5% or more. In the present invention, by controlling the average rolling reduction rate of the final three passes, a desired structure with an AF structure of a certain level or higher can be obtained even inside the steel sheet, especially at the t/2 position. This is different from the conventional method, which does not control the average rolling reduction rate. The average rolling reduction ratio is preferably 5.8% or more, more preferably 6.0% or more. On the other hand, from the viewpoint of rolling mill load, the upper limit of the average rolling reduction is about 20%.

(c)仕上圧延温度(Finishing Rolling Temperature、FRT):720~830℃
鋼材の温度が850℃を上回ると、最終3パスの圧延を上記平均圧下率で行っても、オーステナイト相に十分な加工歪が導入されず、AF組織量が不足する。本発明では、AF組織量を十分に確保するため、仕上圧延温度を830℃以下とする。仕上圧延温度は、好ましくは820℃以下、より好ましくは810℃以下である。一方、仕上圧延温度が720℃を下回ると、圧延中に粗大なフェライトが形成され、靭性が劣化する。よって仕上圧延温度は、720℃以上、好ましくは750℃以上、より好ましくは760℃以上とする。
(c) Finishing Rolling Temperature (FRT): 720-830°C
When the temperature of the steel material exceeds 850° C., even if the final three passes of rolling are performed at the above-mentioned average reduction ratio, sufficient working strain is not introduced into the austenite phase, resulting in an insufficient amount of AF structure. In the present invention, in order to ensure a sufficient amount of AF structure, the finish rolling temperature is set to 830° C. or lower. The finish rolling temperature is preferably 820°C or lower, more preferably 810°C or lower. On the other hand, if the finish rolling temperature is lower than 720° C., coarse ferrite is formed during rolling and the toughness deteriorates. Therefore, the finish rolling temperature is set to 720°C or higher, preferably 750°C or higher, and more preferably 760°C or higher.

(d)熱間圧延後、仕上圧延温度~690℃の冷却開始温度から、320~550℃の冷却停止温度までを、平均冷却速度0.5~20℃/sで冷却する。
一定の温度域を平均冷却速度0.5~20℃/sで冷却することによって、AF組織を十分に確保することができる。平均冷却速度が20℃/sを上回ると、AF組織が十分に形成されないままマルテンサイト変態が起こるための好ましくない。前記平均冷却速度は、好ましくは15℃/s以下、より好ましくは12℃/s以下である。前述の通り、フェライト相への変態温度を適切に制御し、AF組織を十分に確保するには、成分組成におけるC、Mn、CuとNiの少なくともいずれかを含む場合にはこれらの含有量、およびDi+10Nbの各範囲を制御すると共に、上記平均冷却速度を0.5℃/s以上とする。上記平均冷却速度が0.5℃/sを下回ると、冷却時に粗大な粒界フェライトが生成し、AF組織量が不足する。平均冷却速度は、好ましくは2.0℃/s以上、より好ましくは3.0℃/s以上である。上記平均冷却速度の冷却方法として、例えば水冷が挙げられる。
(d) After hot rolling, it is cooled from a cooling start temperature of the finish rolling temperature to 690°C to a cooling stop temperature of 320 to 550°C at an average cooling rate of 0.5 to 20°C/s.
By cooling a certain temperature range at an average cooling rate of 0.5 to 20° C./s, a sufficient AF structure can be secured. If the average cooling rate exceeds 20° C./s, martensitic transformation occurs without sufficient formation of the AF structure, which is not preferable. The average cooling rate is preferably 15°C/s or less, more preferably 12°C/s or less. As mentioned above, in order to appropriately control the transformation temperature to the ferrite phase and sufficiently secure the AF structure, if the component composition contains at least one of C, Mn, Cu and Ni, the content of these, and Di+10Nb, and the average cooling rate is set to 0.5° C./s or more. If the average cooling rate is less than 0.5° C./s, coarse grain boundary ferrite is generated during cooling, resulting in insufficient AF structure. The average cooling rate is preferably 2.0°C/s or more, more preferably 3.0°C/s or more. An example of a cooling method having the above-mentioned average cooling rate is water cooling.

上記冷却の開始温度は、仕上圧延温度~690℃における任意の温度とする。鋼材の温度が710℃を下回ると、冷却開始前に粒界フェライトが生成したり、オーステナイト相に導入された加工歪が回復するといった不具合が生じる。その結果、AF組織量が不足する。本発明では、AF組織量を十分に確保するため、上記平均冷却速度での冷却開始温度(Start Cooling Temperature、SCT)を、690℃以上とする。上記冷却開始温度は、好ましくは710℃以上、より好ましくは720℃以上である。 The starting temperature of the cooling mentioned above is an arbitrary temperature between the finish rolling temperature and 690°C. If the temperature of the steel material falls below 710° C., problems such as grain boundary ferrite being generated before the start of cooling and processing strain introduced into the austenite phase being recovered will occur. As a result, the amount of AF tissue becomes insufficient. In the present invention, in order to ensure a sufficient amount of AF tissue, the cooling start temperature (Start Cooling Temperature, SCT) at the above average cooling rate is set to 690° C. or higher. The cooling start temperature is preferably 710°C or higher, more preferably 720°C or higher.

上記冷却の終了温度(Finish Cooling Temperature、FCT)は、320~550℃における任意の温度とする。上記平均冷却速度での冷却、例えば水冷を、550℃超の温度域で停止すると、水冷停止後の緩冷却時に粒界フェライトが生成し、AF組織を十分に確保することが難しくなる。よって、前記終了温度は550℃以下とする。前記終了温度は、好ましくは500℃以下、より好ましくは480℃以下である。一方、上記平均冷却速度での冷却を、例えば320℃を下回る温度域まで行うと、AF組織が十分に形成されないままマルテンサイト変態が生じる。よって、前記終了温度は320℃以上とする。前記終了温度は、好ましくは340℃以上、より好ましくは360℃以上である。 The finishing temperature of the cooling (Finish Cooling Temperature, FCT) is an arbitrary temperature between 320 and 550°C. If cooling at the above average cooling rate, for example, water cooling, is stopped in a temperature range above 550° C., grain boundary ferrite is generated during slow cooling after water cooling is stopped, making it difficult to secure a sufficient AF structure. Therefore, the end temperature is set to 550°C or less. The finishing temperature is preferably 500°C or lower, more preferably 480°C or lower. On the other hand, if cooling is performed at the above average cooling rate to a temperature range below, for example, 320° C., martensitic transformation occurs without sufficient formation of the AF structure. Therefore, the end temperature is set to 320°C or higher. The end temperature is preferably 340°C or higher, more preferably 360°C or higher.

本発明の製造方法は、上記熱間圧延工程以外は、特に限定されず、通常行われている条件で実施すればよい。 The manufacturing method of the present invention is not particularly limited except for the hot rolling step, and may be carried out under commonly used conditions.

以上に説明した本発明の実施形態に係る高強度鋼板の製造方法に接した当業者であれば、試行錯誤により、上述した製造方法と異なる製造方法により本発明に係る高強度鋼板を得ることができる可能性がある。 Those skilled in the art who have come into contact with the manufacturing method of the high-strength steel sheet according to the embodiment of the present invention described above will be able to obtain the high-strength steel sheet according to the present invention by a manufacturing method different from the above-mentioned manufacturing method through trial and error. There is a possibility that it can be done.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The present invention is not limited by the following examples, and can be implemented with appropriate changes within the scope that can meet the spirit described above and below, and all of these are within the technical scope of the present invention. included in

1.サンプル作製
表1に示す成分組成の鋼を150kgVIF(Vacuum Induction Furnace)または実機転炉にて溶製し、鋳造して得られたスラブを、表2に示す種々の条件で熱間圧延して、表2に示す板厚の鋼板を得た。前記熱間圧延において、総パス数(圧延パスの回数)は20回超とした。表1において「-」は意図的に添加していないことを示す。表2において、FRTは仕上圧延温度、SCTは冷却開始温度、FCTは冷却終了温度を示す。前記冷却停止温度FCTは、鋼板表面を長手方向に1~3点、放射温度計で計測し、その平均値を算出した。またFRT、SCTは、放射温度計で鋼材表面の1点を計測して求めた。
1. Sample Preparation 150 kg of steel with the composition shown in Table 1 was melted in a VIF (Vacuum Induction Furnace) or an actual converter, and the slab obtained by casting was hot rolled under various conditions shown in Table 2. A steel plate having the thickness shown in Table 2 was obtained. In the hot rolling, the total number of passes (number of rolling passes) was more than 20. In Table 1, "-" indicates that it was not added intentionally. In Table 2, FRT indicates finish rolling temperature, SCT indicates cooling start temperature, and FCT indicates cooling end temperature. The cooling stop temperature FCT was measured by a radiation thermometer at 1 to 3 points on the surface of the steel plate in the longitudinal direction, and the average value was calculated. Further, FRT and SCT were determined by measuring one point on the surface of the steel material using a radiation thermometer.

Figure 0007398970000001
Figure 0007398970000001

Figure 0007398970000002
Figure 0007398970000002

2.鋼組織
上記熱間圧延材の圧延幅方向に垂直な断面のt/4(t:板厚)およびt/2位置で、EBSD(Electron Back Scatter Diffraction)測定を実施した。測定条件は下記の通りである。
EBSD測定条件
・装置:日本電子製JEOL-5410またはJSM-IT100
・観察倍率:400倍
・測定面積:200×200μm
・ステップ(ピクセル)サイズ:0.4μm
・考慮する相:フェライト、オーステナイト
2. Steel structure EBSD (Electron Back Scatter Diffraction) was measured at t/4 (t: plate thickness) and t/2 positions of the cross section perpendicular to the rolling width direction of the hot rolled material. The measurement conditions are as follows.
EBSD measurement conditions/equipment: JEOL-5410 or JSM-IT100
・Observation magnification: 400 times ・Measurement area: 200 x 200 μm
・Step (pixel) size: 0.4μm
・Phases to consider: ferrite, austenite

得られたEBSDデータを、株式会社 TSLソリューションズ製解析ソフトOIM Analysisにより解析した。得られたデータにおいて、Confidence Indexが0.100以下の点を除去し、隣接するピクセルとの結晶方位が15°以上の粒界を大角粒界と定義した。この大角粒界で囲まれたユニットのうち、ピクセルサイズが10以上のユニットを大角粒とみなした。また、測定視野の端部にかかる大角粒は解析から除外した。大角粒の平均円相当径を求め、大角粒の合計面積に占める、該平均円相当径が7.5μm以下の大角粒の合計面積分率SAを算出した。 The obtained EBSD data was analyzed using analysis software OIM Analysis manufactured by TSL Solutions Co., Ltd. In the obtained data, points with a Confidence Index of 0.100 or less were removed, and grain boundaries with a crystal orientation of 15° or more with respect to adjacent pixels were defined as large-angle grain boundaries. Among the units surrounded by this large-angle grain boundary, units with a pixel size of 10 or more were regarded as large-angle grains. Furthermore, large square grains located at the edges of the measurement field of view were excluded from the analysis. The average equivalent circular diameter of the large square grains was determined, and the total area fraction SA of the large square grains having an average equivalent circular diameter of 7.5 μm or less in the total area of the large square grains was calculated.

3.機械的特性
(降伏強度YS)
熱間圧延ままの鋼板のt/4位置およびt/2位置において、板幅方向(C方向)に平行に、ASTM丸棒引張り試験片を採取し、ASTMの要領で引張試験を行って、降伏強度YSを測定した。
(母材の低温靭性)
熱間圧延ままの鋼板のt/4位置およびt/2位置において、板幅方向(C方向)に平行に、Vノッチシャルピー試験片を採取し、ASTMの要領でシャルピー衝撃試験を実施した。そして脆性破面率が50%となる温度vTrsを評価した。
3. Mechanical properties (yield strength YS)
ASTM round bar tensile test pieces were taken parallel to the plate width direction (C direction) at the t/4 and t/2 positions of the as-hot rolled steel plate, and a tensile test was performed according to the ASTM procedure to determine yield. The strength YS was measured.
(Low temperature toughness of base material)
V-notch Charpy test pieces were taken parallel to the sheet width direction (C direction) at the t/4 and t/2 positions of the as-hot-rolled steel sheet, and a Charpy impact test was conducted in accordance with ASTM. The temperature vTrs at which the brittle fracture ratio was 50% was then evaluated.

上記測定して得られた降伏強度YP、脆性延性遷移温度vTrsを下記式(2)に代入し、t/4位置、t/2位置それぞれの位置のY値を求めた。その結果を表2に併記する。なお表2において、vTrs>-30℃の場合は、Y値の計算に際しvTrs=-30℃として計算した。またvTrs<-130℃の場合は、Y値の計算に際しvTrs=-130℃として計算した。
Y=20×vTrs-7×YP・・・(2)
The yield strength YP and brittle-ductile transition temperature vTrs obtained by the above measurement were substituted into the following equation (2) to determine the Y value at each of the t/4 position and the t/2 position. The results are also listed in Table 2. In Table 2, when vTrs>-30°C, the Y value was calculated as vTrs=-30°C. In addition, when vTrs<-130°C, the Y value was calculated using vTrs=-130°C.
Y=20×vTrs-7×YP...(2)

表1、2から次のことがわかる。実験No.1~11は、本発明で規定する成分組成を満たし、かつ規定する条件で厚鋼板を製造したため、得られた厚鋼板は、板厚が厚くとも鋼板の内部にわたって、強度-靭性バランスに優れている。特には、高強度を示すと共に従来よりも低温での靭性に優れている。これに対して実験No.12~17は、成分組成、製造条件の少なくともいずれかが本発明で規定する範囲内にないため、得られた厚鋼板は、強度-靭性バランスに劣る結果となった。 The following can be seen from Tables 1 and 2. Experiment No. In Nos. 1 to 11, thick steel plates were produced that satisfied the chemical composition specified in the present invention and under the specified conditions, so that the obtained thick steel plates had an excellent strength-toughness balance throughout the inside of the steel plate, even if the plate thickness was large. There is. In particular, it exhibits high strength and superior toughness at low temperatures than conventional products. On the other hand, experiment no. In Nos. 12 to 17, at least one of the component composition and manufacturing conditions was not within the range specified by the present invention, so the obtained thick steel plates had poor strength-toughness balance.

実験No.12は、成分組成は本発明の範囲内にあるものの、製造条件において、850℃以下の温度域での累積圧下率が不足したため、t/4およびt/2のいずれの位置においてもAF組織が不足し、強度-靭性バランスに劣る結果となった。 Experiment No. Although the composition of No. 12 is within the scope of the present invention, the AF structure was not present at both the t/4 and t/2 positions due to insufficient cumulative rolling reduction in the temperature range of 850°C or lower in the manufacturing conditions. This resulted in an inferior strength-toughness balance.

実験No.13および14は、成分組成は本発明の範囲内にあるものの、製造条件において、仕上圧延温度が高かったため、t/4およびt/2のいずれの位置においてもAF組織が不足し、強度-靭性バランスに劣る結果となった。 Experiment no. Although the component compositions of Nos. 13 and 14 were within the scope of the present invention, the AF structure was insufficient at both t/4 and t/2 positions due to the high finish rolling temperature in the manufacturing conditions, resulting in poor strength-toughness. The result was an imbalance.

実験No.15は、Di+10Nbが規定の範囲を下回ったため、強度-靭性バランスに劣る結果となった。この実験No.15では、上記Di+10Nbが規定の範囲を下回ったことにより、粒界フェライトとともにパーライト組織が生成したと考えられる。その結果、AF組織が不足して強度-靭性バランスが劣ったと考えられる。 Experiment No. In No. 15, Di+10Nb was below the specified range, resulting in poor strength-toughness balance. This experiment no. In No. 15, it is considered that the above Di+10Nb was below the specified range, and thus a pearlite structure was generated together with grain boundary ferrite. As a result, it is thought that the AF structure was insufficient and the strength-toughness balance was poor.

実験No.16および17は、Di+10Nbが規定の範囲を上回ったため、強度-靭性バランスに劣る結果となった。この実験No.16および17では、上記Di+10Nbが規定の範囲を上回ったことにより、硬質なマルテンサイト組織が生成したと考えられる。その結果、この硬質なマルテンサイト組織が脆性破壊起点として作用することで、強度-靭性バランスが劣ったと考えられる。 Experiment No. In Nos. 16 and 17, Di+10Nb exceeded the specified range, resulting in poor strength-toughness balance. This experiment no. In Nos. 16 and 17, it is considered that hard martensitic structures were generated because the above Di+10Nb exceeded the specified range. As a result, it is thought that this hard martensitic structure acted as a brittle fracture origin, resulting in poor strength-toughness balance.

実験No.18は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延前の加熱温度が低く、かつ仕上圧延温度が高いため、十分なAF組織を確保することができず、強度-靭性バランスに劣る結果となった。 Experiment No. Although the composition of No. 18 is within the scope of the present invention, in the manufacturing conditions, the heating temperature before hot rolling is low and the finish rolling temperature is high, so it was not possible to secure a sufficient AF structure, and the strength was - The result was poor toughness balance.

実験No.19は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延前の加熱温度が高いため、微細なAF組織を一定以上確保することができず、強度-靭性バランスに劣る結果となった。 Experiment No. Although the composition of No. 19 is within the scope of the present invention, in the manufacturing conditions, the heating temperature before hot rolling is high, so it is not possible to secure a fine AF structure above a certain level, and the strength-toughness balance is poor. This was the result.

実験No.20は、B量が0.0008%であり、上限の0.0007%を上回っているため、硬質なマルテンサイトが生成して、t/4位置およびt/2位置のSAが不足し、特性が悪くなった。 Experiment No. In No. 20, the amount of B is 0.0008%, which exceeds the upper limit of 0.0007%, so hard martensite is generated and SA at the t/4 position and t/2 position is insufficient, resulting in poor characteristics. became worse.

実験No.21は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延時の最終3パスの圧延の平均圧下率が低すぎたため、微細なAF組織を一定以上確保することができず、強度-靭性バランスに劣る結果となった。 Experiment No. In No. 21, although the component composition was within the scope of the present invention, the average rolling reduction of the final three passes during hot rolling was too low under the manufacturing conditions, making it impossible to secure a certain level of fine AF structure. However, the strength-toughness balance was poor.

実験No.22は、Nb量が不足しており、かつ製造条件において、850℃以下の温度域での累積圧下率と最終3パスの圧延の平均圧下率も低いため、微細なAF組織を一定以上確保することができず、強度-靭性バランスに劣る結果となった。 Experiment No. In No. 22, the amount of Nb is insufficient, and under the manufacturing conditions, the cumulative reduction rate in the temperature range of 850 ° C or less and the average reduction rate of the final three passes of rolling are also low, so a fine AF structure must be secured above a certain level. This resulted in an inferior strength-toughness balance.

図1は、上記実施例をもとに作成した、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAと、Y値の関係を示すグラフである。なお、図1における下向きの矢印は、測定されたvTrsが-130℃よりも低かったため、Y値は、プロットされた値よりも低い値であると推測されることを意味し、上向きの矢印は、測定されたvTrsが-30℃よりも高かったため、Y値は、プロットされた値よりも高い値であると推測されることを意味する。 Figure 1 shows the total area fraction SA of crystal grains with an equivalent circle diameter of 7.5 μm or less among crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15° or more, created based on the above example. , is a graph showing the relationship between Y values. Note that the downward arrow in Figure 1 means that the measured vTrs was lower than -130°C, so the Y value is estimated to be lower than the plotted value, and the upward arrow indicates that the Y value is estimated to be lower than the plotted value. , the measured vTrs was higher than −30° C., meaning that the Y value is assumed to be higher than the plotted value.

この図1から、鋼板におけるt/4位置、t/2位置のいずれにおいても、前記合計面積分率SAとY値との間には相関があり、t/4位置において、Y値を-5200未満とするには、前記合計面積分率SAを34%以上とする必要があり、またt/2位置において、Y値を-4700未満とするには、前記合計面積分率SAを27%以上とする必要があることがわかる。 From FIG. 1, there is a correlation between the total area fraction SA and the Y value at both the t/4 position and the t/2 position on the steel plate, and at the t/4 position, the Y value is -5200. In order to make the Y value less than -4700 at the t/2 position, the total area fraction SA must be 27% or more. It turns out that it is necessary to do this.

Claims (5)

成分組成が、
C :0.02質量%~0.070質量%、
Si:0質量%超、0.40質量%以下、
Mn:1.30質量%~1.80質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.005質量%以下、
Al:0.005質量%~0.070質量%、
Nb:0.015質量%~0.048質量%、
Ti:0.005質量%~0.024質量%、
N :0.0030質量%~0.0080質量%、および
Ca:0.0008質量%以上、0.0040質量%以下
を満たし、
更に、Cu:0質量%超、0.75質量%以下、およびNi:0質量%超、1.4質量%以下よりなる群から選択される1種以上の元素を含み、
残部がFeおよび不可避不純物からなり、
下記式(1)から求められるDi+10Nb:1.20~2.50を満たし、
結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAが、板厚の1/4位置で34%以上、かつ板厚の1/2位置で27%以上である厚鋼板。
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
The ingredient composition is
C: 0.02% by mass to 0.070% by mass,
Si: more than 0 mass%, 0.40 mass% or less,
Mn: 1.30% by mass to 1.80 % by mass,
P: more than 0 mass%, 0.015 mass% or less,
S: more than 0% by mass, 0.005% by mass or less,
Al: 0.005% by mass to 0.070% by mass,
Nb: 0.015% by mass to 0.048% by mass,
Ti: 0.005% by mass to 0.024% by mass,
N: 0.0030% by mass to 0.0080% by mass, and Ca: 0.0008% by mass or more and 0.0040% by mass or less,
Furthermore, it contains one or more elements selected from the group consisting of Cu: more than 0 mass% and 0.75 mass% or less, and Ni: more than 0 mass% and 1.4 mass% or less,
The remainder consists of Fe and unavoidable impurities,
Satisfies Di+10Nb: 1.20 to 2.50 obtained from the following formula (1),
Among the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15° or more, the total area fraction SA of crystal grains with an equivalent circle diameter of 7.5 μm or less is 34% or more at the 1/4 position of the plate thickness, and A thick steel plate with a thickness of 27% or more at the 1/2 position.
Di=1.16×([C]/10) 0.5 ×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35× [Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200 ×[B]+1)...(1)
In formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are each expressed in mass%. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V, and B are shown, and elements not included are set to zero.
更に、
Mo:0質量%超、0.50質量%以下、
V :0質量%超、0.060質量%以下、
Cr:0質量%超、0.8質量%以下、および
B :0質量%超、0.0007質量%以下
よりなる群から選択される1種以上の元素を含む請求項1に記載の厚鋼板。
Furthermore,
Mo: more than 0 mass%, 0.50 mass% or less,
V: more than 0 mass%, 0.060 mass% or less,
The thick steel plate according to claim 1, containing one or more elements selected from the group consisting of Cr: more than 0 mass% and 0.8 mass% or less, and B: more than 0 mass% and 0.0007 mass% or less. .
更に、
REM:0質量%超、0.0060質量%以下、および
Zr:0質量%超、0.0050質量%以下
よりなる群から選択される1種以上の元素を含む請求項1または2に記載の厚鋼板。
Furthermore,
REM: more than 0 mass%, 0.0060 mass% or less, and Zr: more than 0 mass%, 0.0050 mass% or less, containing one or more elements selected from the group consisting of Thick steel plate.
板厚が40mm超である、請求項1~3のいずれかに記載の厚鋼板。 The thick steel plate according to any one of claims 1 to 3, having a plate thickness of more than 40 mm. 請求項1~4のいずれかに記載の厚鋼板を製造する方法であって、
請求項1~4のいずれかに記載の成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、
前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)~(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720~830℃
(d)熱間圧延後、仕上圧延温度~690℃の冷却開始温度から、320~550℃の冷却停止温度までを、平均冷却速度0.5~20℃/sで冷却する。
A method for manufacturing a thick steel plate according to any one of claims 1 to 4, comprising:
A step of heating a steel piece having the composition according to any one of claims 1 to 4 to a temperature higher than 1020°C and lower than 1200°C, and a hot rolling step after the heating,
In the hot rolling process, the number of rolling passes is 3 or more, and manufacturing of a thick steel plate is performed by hot rolling and cooling after the hot rolling so as to satisfy all of the following conditions (a) to (d). Method.
(a) Cumulative rolling reduction of 40% or more in the temperature range of 850°C or less (b) Average rolling reduction of 5.5% or more in the final three passes of rolling (c) Finish rolling temperature of 720 to 830°C
(d) After hot rolling, it is cooled from a cooling start temperature of the finish rolling temperature to 690°C to a cooling stop temperature of 320 to 550°C at an average cooling rate of 0.5 to 20°C/s.
JP2020007626A 2019-04-22 2020-01-21 Thick steel plate and its manufacturing method Active JP7398970B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080029745.4A CN113840933B (en) 2019-04-22 2020-03-30 Thick steel plate and method for producing same
EP20794425.7A EP3940103A4 (en) 2019-04-22 2020-03-30 Thick steel plate
KR1020217034903A KR102684370B1 (en) 2019-04-22 2020-03-30 Heavy steel plate and manufacturing method thereof
PCT/JP2020/014612 WO2020217873A1 (en) 2019-04-22 2020-03-30 Thick steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081271 2019-04-22
JP2019081271 2019-04-22

Publications (2)

Publication Number Publication Date
JP2020176329A JP2020176329A (en) 2020-10-29
JP7398970B2 true JP7398970B2 (en) 2023-12-15

Family

ID=72936617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007626A Active JP7398970B2 (en) 2019-04-22 2020-01-21 Thick steel plate and its manufacturing method

Country Status (5)

Country Link
EP (1) EP3940103A4 (en)
JP (1) JP7398970B2 (en)
KR (1) KR102684370B1 (en)
CN (1) CN113840933B (en)
WO (1) WO2020217873A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116014309A (en) 2021-10-22 2023-04-25 株式会社Lg新能源 Cylindrical battery, collector plate applied to cylindrical battery, battery pack comprising cylindrical battery and automobile

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270194A (en) 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008025014A (en) 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
JP2009127065A (en) 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2011096456A1 (en) 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP2011179042A (en) 2010-02-26 2011-09-15 Jfe Steel Corp Method for manufacturing thick-wall high-tensile-strength hot-rolled steel plate superior in low-temperature toughness
JP2013204145A (en) 2012-03-29 2013-10-07 Kobe Steel Ltd Steel sheet excellent in bendability, impact property and tensile characteristics, and method for manufacturing the same
JP5679091B1 (en) 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5812193B2 (en) 2012-05-21 2015-11-11 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2016148105A (en) 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor
JP2019502018A (en) 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
WO2019058424A1 (en) 2017-09-19 2019-03-28 新日鐵住金株式会社 Steel tube and steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
JP6196929B2 (en) * 2014-04-08 2017-09-13 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness at cryogenic temperatures
JP2019081271A (en) 2017-10-30 2019-05-30 クラレプラスチックス株式会社 Whiteboard and projection screen combined film
JP7100318B2 (en) 2018-07-11 2022-07-13 Tnk水道コンサルタント株式会社 Sulfuric acid corrosion resistant concrete pipes, methods for preventing sulfuric acid corrosion of concrete pipes and methods for preventing corrosion of reinforcing bars

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270194A (en) 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008025014A (en) 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
JP2009127065A (en) 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2011096456A1 (en) 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP2011179042A (en) 2010-02-26 2011-09-15 Jfe Steel Corp Method for manufacturing thick-wall high-tensile-strength hot-rolled steel plate superior in low-temperature toughness
JP2013204145A (en) 2012-03-29 2013-10-07 Kobe Steel Ltd Steel sheet excellent in bendability, impact property and tensile characteristics, and method for manufacturing the same
JP5812193B2 (en) 2012-05-21 2015-11-11 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5679091B1 (en) 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP2016148105A (en) 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor
JP2019502018A (en) 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
WO2019058424A1 (en) 2017-09-19 2019-03-28 新日鐵住金株式会社 Steel tube and steel sheet

Also Published As

Publication number Publication date
CN113840933B (en) 2022-09-16
WO2020217873A1 (en) 2020-10-29
JP2020176329A (en) 2020-10-29
EP3940103A1 (en) 2022-01-19
KR102684370B1 (en) 2024-07-11
EP3940103A4 (en) 2022-11-30
KR20210142184A (en) 2021-11-24
CN113840933A (en) 2021-12-24

Similar Documents

Publication Publication Date Title
CA2851325C (en) High-strength hot rolled steel sheet with excellent bendability and low-temperature toughness, and method for manufacturing the same
CN103108974B (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
US10752968B2 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
US20140144553A1 (en) Cold-rolled steel sheet and process for production thereof
JP5741260B2 (en) Cryogenic steel material excellent in CTOD characteristics after imparting strain and method for producing the same
KR102265252B1 (en) High-strength steel sheet and its manufacturing method
JP6426621B2 (en) High strength steel plate and method of manufacturing the same
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
US10760142B2 (en) High-strength steel sheet and method for manufacturing the same
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP5447292B2 (en) Rolled material steel and method of manufacturing rolled steel using the same
JP5369462B2 (en) Low yield ratio high strength steel sheet and method for producing the same
US20220186335A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
JP7398970B2 (en) Thick steel plate and its manufacturing method
EP3790999A1 (en) Variably rolled steel strip, sheet or blank and production method therefor
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP2008121121A (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same
JP7201136B1 (en) Steel sheet pile and its manufacturing method
JP7323056B2 (en) Steel sheet pile and its manufacturing method
CN114008232B (en) High-strength structural steel having excellent corrosion resistance and method for producing same
KR20240134964A (en) Steel sheet and its manufacturing method
WO2019215132A1 (en) Steel strip, sheet or blank having improved formability and method to produce such strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R151 Written notification of patent or utility model registration

Ref document number: 7398970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151