JP2020176329A - Thick steel plate and method for manufacturing the same - Google Patents

Thick steel plate and method for manufacturing the same Download PDF

Info

Publication number
JP2020176329A
JP2020176329A JP2020007626A JP2020007626A JP2020176329A JP 2020176329 A JP2020176329 A JP 2020176329A JP 2020007626 A JP2020007626 A JP 2020007626A JP 2020007626 A JP2020007626 A JP 2020007626A JP 2020176329 A JP2020176329 A JP 2020176329A
Authority
JP
Japan
Prior art keywords
mass
less
rolling
temperature
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020007626A
Other languages
Japanese (ja)
Other versions
JP7398970B2 (en
Inventor
秀徳 名古
Hidenori Nako
秀徳 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020217034903A priority Critical patent/KR20210142184A/en
Priority to PCT/JP2020/014612 priority patent/WO2020217873A1/en
Priority to CN202080029745.4A priority patent/CN113840933B/en
Priority to EP20794425.7A priority patent/EP3940103A4/en
Publication of JP2020176329A publication Critical patent/JP2020176329A/en
Application granted granted Critical
Publication of JP7398970B2 publication Critical patent/JP7398970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide a thick steel plate exhibiting excellent strength-toughness balance over the inside of the steel plate even when a plate thickness is thick, especially, showing high strength and more excellent toughness at low temperature than before, and a method for manufacturing the same.SOLUTION: The thick steel plate satisfies a predetermined component composition and satisfies Di calculated from the following formula (1)+10 Nb:1.20-2.50. In crystal grains surrounded by a large angle grain boundary having a crystal orientation difference of 15° or more, the total area fraction SA of crystal grains having a circle equivalent diameter of 7.5 μm or less is 34% or more at a t/4 position and is 27% or more at a t/2 position. Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]-1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1) (1).SELECTED DRAWING: Figure 1

Description

本発明は厚鋼板およびその製造方法に関する。特には、母材靭性に優れた高強度の厚鋼板と、該厚鋼板の製造方法に関する。 The present invention relates to a thick steel sheet and a method for producing the same. In particular, the present invention relates to a high-strength thick steel plate having excellent base material toughness and a method for manufacturing the thick steel plate.

例えばLPGタンク等の大型化に伴い、高強度かつ、母材の低温靭性、HAZの低温靭性を兼備した厚鋼板の需要が高まりつつある。 For example, with the increase in size of LPG tanks and the like, there is an increasing demand for thick steel sheets having high strength, low temperature toughness of base material, and low temperature toughness of HAZ.

HAZ靭性に優れた高強度鋼として、例えば特許文献1には、所定の成分を満たし、鋼板の中心偏析部の平均化学分析値のC濃度が、鋼材の平均C濃度の1.2倍以下、JIS規格で測定される介在物の清浄度が0.03%以下、かつ鋼板断面で観察される平均直径10μm以上の酸化物系介在物の個数が1個以下/1mm2、0.05〜5μmの酸化物及び窒化物の析出物の個数が100個以上/1mm2を満たす鋼が示されている。 As a high-strength steel having excellent HAZ toughness, for example, Patent Document 1 states that the C concentration of the average chemical analysis value of the central segregated portion of the steel sheet satisfies a predetermined component and is 1.2 times or less the average C concentration of the steel material. The cleanliness of inclusions measured by JIS standard is 0.03% or less, and the number of oxide-based inclusions with an average diameter of 10 μm or more observed on the cross section of the steel sheet is 1 or less / 1 mm 2 , 0.05 to 5 μm. Steels in which the number of oxide and nitride precipitates is 100 or more / 1 mm 2 are shown.

特許文献2では、所定の化学成分を満たし、アシキュラーフェライト組織分率が50%以上で、さらに平均円相当径で1〜5μmの島状マルテンサイト(MA)組織分率が3〜10%を満たすようにすることによって、母材低温靭性およびHAZ低温靭性に優れた低降伏比高張力鋼板が得られている。 In Patent Document 2, a predetermined chemical component is satisfied, an acicular ferrite structure fraction is 50% or more, and an island-shaped martensite (MA) structure fraction having an average circle equivalent diameter of 1 to 5 μm is 3 to 10%. By satisfying the requirements, a low yield ratio high-strength steel plate having excellent low-temperature toughness of the base material and low-temperature toughness of HAZ is obtained.

特許文献3では、所定の成分組成を満たし、ミクロ組織がベイナイト組織であり、降伏強度500N/mm以上かつ引張強度610N/mm以上である鋼材が開示されている。また該鋼材は、溶接後の残留応力除去のための焼鈍熱処理を必須とせず、LPG・アンモニア運搬船用タンクの製造に適していることが示されている。 In Patent Document 3, satisfies a predetermined component composition, microstructure is bainite, the steel is disclosed is the yield strength 500 N / mm 2 or more and a tensile strength of 610N / mm 2 or more. Further, it has been shown that the steel material does not require annealing heat treatment for removing residual stress after welding and is suitable for manufacturing a tank for an LPG / ammonia carrier.

特許文献4では、所定の成分組成を満たし、かつパラメータである、9×Ceq+4×P≧4.8と、[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.7の鋼を、1100〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、20℃/s以上の冷却速度で400℃未満の温度まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜700℃まで再加熱を行なうことを特徴とする耐SR(Stress Relief)特性に優れた高強度鋼板の製造方法が示されている。 In Patent Document 4, 9 × Ceq + 4 × P ≧ 4.8 and [C] / ([Mo] + [Ti] + [Nb] + [V]), which satisfy a predetermined component composition and are parameters, are Steel of 0.6 to 1.7 is heated to a temperature of 1100 to 1300 ° C., hot-rolled at a rolling end temperature of 750 ° C. or higher, and then to a temperature of less than 400 ° C. at a cooling rate of 20 ° C./s or higher. A method for producing a high-strength steel plate having excellent SR (Stress Relief) characteristics, which comprises accelerating cooling and then immediately reheating to 550 to 700 ° C. at a heating rate of 0.5 ° C./s or higher. It is shown.

特開平8−158006号公報Japanese Unexamined Patent Publication No. 8-158006 特開2009−127065号公報JP-A-2009-127065 特開2008−025014号公報Japanese Unexamined Patent Publication No. 2008-025014 特開2007−270194号公報Japanese Unexamined Patent Publication No. 2007-270194

特許文献1では、良好な強度と靭性のバランスが得られているものの、実施例では40mm以下の板厚しか考慮されておらず、より厚めの鋼板を考慮した技術は提案されていない。特許文献2では、母材およびHAZの低温靭性と強度との両立を図っているが、低温靭性は−60℃で評価されており、より低温での優れた靭性を実現するには更なる検討が必要であると考える。特許文献3では、板厚t/4位置でしか機械的特性を評価しておらず、更に鋼板内部の機械的特性までは考慮されていない。特許文献4では、SR後も良好な機械的特性を有する厚鋼板の製造方法が開示されているが、靭性の評価温度は−10℃にすぎず、より低温での靭性までは検討されていない。本発明は、上記事情に鑑みてなされたものであって、その目的は、板厚が厚くとも鋼板の内部にわたって、優れた強度−靭性バランスを発揮、特には、高強度と従来よりも低温での優れた靭性とを示す厚鋼板、および該厚鋼板の製造方法を提供することにある。 In Patent Document 1, although a good balance between strength and toughness is obtained, only a plate thickness of 40 mm or less is considered in the examples, and a technique considering a thicker steel plate has not been proposed. Patent Document 2 attempts to achieve both low-temperature toughness and strength of the base material and HAZ, but the low-temperature toughness is evaluated at -60 ° C, and further studies are made to realize excellent toughness at lower temperatures. I think it is necessary. In Patent Document 3, the mechanical properties are evaluated only at the plate thickness t / 4 position, and the mechanical properties inside the steel sheet are not taken into consideration. Patent Document 4 discloses a method for producing a thick steel sheet having good mechanical properties even after SR, but the evaluation temperature of toughness is only -10 ° C, and toughness at a lower temperature has not been examined. .. The present invention has been made in view of the above circumstances, and an object of the present invention is to exhibit an excellent strength-toughness balance over the inside of a steel sheet even if the sheet thickness is thick, especially at high strength and lower temperature than before. It is an object of the present invention to provide a thick steel sheet exhibiting excellent toughness, and a method for producing the thick steel sheet.

本発明の態様1は、
成分組成が、
C :0.02質量%〜0.070質量%、
Si:0質量%超、0.40質量%以下、
Mn:1.30質量%〜1.95質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.005質量%以下、
Al:0.005質量%〜0.070質量%、
Nb:0.015質量%〜0.048質量%、
Ti:0.005質量%〜0.024質量%、
N :0.0030質量%〜0.0080質量%、および
Ca:0質量%超、0.0040質量%以下
を満たし、残部がFeおよび不可避不純物からなり、
下記式(1)から求められるDi+10Nb:1.20〜2.50を満たし、
結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAが、板厚の1/4位置で34%以上、かつ板厚の1/2位置で27%以上である厚鋼板である。
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]−1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Aspect 1 of the present invention is
Ingredient composition
C: 0.02% by mass to 0.070% by mass,
Si: More than 0% by mass, 0.40% by mass or less,
Mn: 1.30% by mass to 1.95% by mass,
P: More than 0% by mass, 0.015% by mass or less,
S: More than 0% by mass, 0.005% by mass or less,
Al: 0.005% by mass to 0.070% by mass,
Nb: 0.015% by mass to 0.048% by mass,
Ti: 0.005% by mass to 0.024% by mass,
N: 0.0030% by mass to 0.0080% by mass, and Ca: more than 0% by mass, 0.0040% by mass or less, and the balance is composed of Fe and unavoidable impurities.
Di + 10Nb: 1.20 to 2.50 obtained from the following formula (1) is satisfied.
Among the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more, the total area fraction SA of the crystal grains having a circle-equivalent diameter of 7.5 μm or less is 34% or more at the 1/4 position of the plate thickness and It is a thick steel plate that is 27% or more at the position of 1/2 of the plate thickness.
Di = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] + 1) x (1.75 x [V] +1) x (200 × [B] +1) ・ ・ ・ (1)
In the formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are represented by mass%, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B are shown, and the elements not contained are set to zero.

本発明の態様2は、更に、
Cu:0質量%超、0.75質量%以下、および
Ni:0質量%超、1.4質量%以下
よりなる群から選択される1種以上の元素を含む態様1に記載の厚鋼板である。
Aspect 2 of the present invention further comprises.
The thick steel sheet according to embodiment 1, which contains one or more elements selected from the group consisting of Cu: more than 0% by mass, 0.75% by mass or less, and Ni: more than 0% by mass, 1.4% by mass or less. is there.

本発明の態様3は、更に、
Mo:0質量%超、0.50質量%以下、
V :0質量%超、0.060質量%以下、
Cr:0質量%超、0.8質量%以下、および
B :0質量%超、0.0007質量%以下
よりなる群から選択される1種以上の元素を含む態様1または2に記載の厚鋼板である。
Aspect 3 of the present invention further comprises
Mo: More than 0% by mass, 0.50% by mass or less,
V: More than 0% by mass, 0.060% by mass or less,
The thickness according to aspect 1 or 2, which comprises one or more elements selected from the group consisting of Cr: more than 0% by mass, 0.8% by mass or less, and B: more than 0% by mass, 0.0007% by mass or less. It is a steel plate.

本発明の態様4は、更に、
REM:0質量%超、0.0060質量%以下、および
Zr:0質量%超、0.0050質量%以下
よりなる群から選択される1種以上の元素を含む態様1〜3のいずれかに記載の厚鋼板である。
Aspect 4 of the present invention further comprises
One of aspects 1 to 3 containing one or more elements selected from the group consisting of REM: more than 0% by mass, 0.0060% by mass or less, and Zr: more than 0% by mass, 0.0050% by mass or less. The thick steel plate described.

本発明の態様5は、
態様1〜4のいずれかに記載の厚鋼板を製造する方法であって、
態様1〜4のいずれかに記載の成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、
前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)〜(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720〜830℃
(d)熱間圧延後、仕上圧延温度〜690℃の冷却開始温度から、320〜550℃の冷却停止温度までを、平均冷却速度0.5〜20℃/sで冷却する。
Aspect 5 of the present invention
A method for producing a thick steel sheet according to any one of aspects 1 to 4.
A step of heating a steel piece having the component composition according to any one of aspects 1 to 4 to above 1020 ° C. and below 1200 ° C. and a hot rolling step after the heating are included.
In the hot rolling step, a thick steel sheet is manufactured by hot rolling and cooling after the hot rolling so that the number of rolling passes is 3 or more and all of the following conditions (a) to (d) are satisfied. Method.
(A) Cumulative rolling reduction rate in the temperature range of 850 ° C. or lower is 40% or more (b) Average rolling reduction rate of rolling in the final 3 passes is 5.5% or higher (c) Finishing rolling temperature is 720 to 830 ° C.
(D) After hot rolling, the temperature from the finishing rolling temperature to 690 ° C. to the cooling stop temperature of 320 to 550 ° C. is cooled at an average cooling rate of 0.5 to 20 ° C./s.

本発明によれば、板厚が厚くとも鋼板の内部にわたって、優れた強度−靭性バランスを発揮、特には、高強度と従来よりも低温での優れた靭性とを示す厚鋼板、およびその製造方法を提供することができる。 According to the present invention, a thick steel sheet exhibiting an excellent strength-toughness balance throughout the inside of the steel sheet even if the sheet thickness is thick, particularly a thick steel sheet exhibiting high strength and excellent toughness at a lower temperature than before, and a method for producing the same. Can be provided.

図1は、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAと、Y値との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the total area fraction SA of crystal grains having a circle-equivalent diameter of 7.5 μm or less and the Y value among the crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 15 ° or more. is there.

本発明では、SR前の状態すなわち熱間圧延ままの状態で、強度と従来よりも低温での靭性とのバランスの改善された厚鋼板を得るべく鋭意研究を行った。特に、板厚が厚くとも板厚の1/4位置および1/2位置において、強度−靭性バランスに優れている、具体的には本発明で定める強度−靭性バランスに関するパラメータY=20×vTrs−7×YPが、十分低い鋼板を得るべく鋭意研究を行った。 In the present invention, intensive research has been carried out in order to obtain a thick steel sheet having an improved balance between strength and toughness at a lower temperature than before in the state before SR, that is, in the state of hot rolling. In particular, even if the plate thickness is thick, the strength-toughness balance is excellent at the 1/4 position and the 1/2 position of the plate thickness. Specifically, the parameter Y = 20 × vTrs- regarding the strength-toughness balance defined in the present invention. 7 × YP conducted diligent research to obtain a sufficiently low steel sheet.

その結果、成分組成を制御すると共に、板厚の1/4位置および1/2位置において、微細なアシキュラーフェライト組織を所定量確保、より具体的には、後述する方法で測定された円相当直径7.5μm以下のアシキュラーフェライトを所定量確保すれば、上記良好な特性が得られることを見出した。以下では、板厚の1/4位置を「t/4位置」、板厚の1/2位置を「t/2位置」ということがある。 As a result, the composition of the components is controlled, and a predetermined amount of a fine acicular ferrite structure is secured at the 1/4 and 1/2 positions of the plate thickness. More specifically, the equivalent of a circle measured by the method described later. It has been found that the above-mentioned good characteristics can be obtained by securing a predetermined amount of acicular ferrite having a diameter of 7.5 μm or less. In the following, the 1/4 position of the plate thickness may be referred to as “t / 4 position”, and the 1/2 position of the plate thickness may be referred to as “t / 2 position”.

また、上記微細なアシキュラーフェライト組織を所定量形成するには、下記(A)〜(C)の全てを実施することが有効であることを見出した。上記アシキュラーフェライトは、以下では「AF」ということがある。
(A)オーステナイト相からフェライト相への変態前に、熱間圧延によりオーステナイト相に十分な加工歪を加える。この加工により導入された転位組織や変形帯を核にAF結晶粒が生成することで、微細組織が実現される。
(B)熱間での未再結晶域圧延前に、固溶Nbを確保する。そうすることで、変態に先立つ加工歪が得られやすくなり、上述の通り微細なAF結晶粒が生成しやすい。前記固溶Nbの確保は、後述する通り、圧延前加熱温度を1020℃超とし、かつ850℃以上の圧延での圧下率を下げることが有効である。
(C)フェライト相への変態温度を適切に制御する。フェライト相への変態温度が高いとAF生成に先立ち粒界フェライト組織が形成され、AF量が減少する。逆に、フェライト相への変態温度が低いと、AF組織が形成されないままマルテンサイト組織が生成する。フェライト相への変態温度を適切に制御するには、成分組成におけるC、Mn、CuとNiの少なくともいずれかを含む場合にはこれらの含有量、およびDi+10Nbの各範囲を制御すると共に、後述する通り、熱間圧延後の所定温度域の平均冷却速度を0.5℃/s以上とするのがよい。
Further, it has been found that it is effective to carry out all of the following (A) to (C) in order to form a predetermined amount of the fine acicular ferrite structure. The above-mentioned acicular ferrite may be referred to as "AF" below.
(A) Before the transformation from the austenite phase to the ferrite phase, sufficient processing strain is applied to the austenite phase by hot rolling. A fine structure is realized by forming AF crystal grains around the dislocation structure and deformation zone introduced by this processing.
(B) A solid solution Nb is secured before rolling in the unrecrystallized region while hot. By doing so, it becomes easy to obtain processing strain prior to transformation, and as described above, fine AF crystal grains are likely to be generated. As will be described later, it is effective to set the pre-rolling heating temperature to more than 1020 ° C. and reduce the rolling reduction rate in rolling at 850 ° C. or higher to secure the solid solution Nb.
(C) The transformation temperature to the ferrite phase is appropriately controlled. When the transformation temperature to the ferrite phase is high, a grain boundary ferrite structure is formed prior to AF formation, and the amount of AF decreases. On the contrary, when the transformation temperature to the ferrite phase is low, a martensite structure is formed without forming an AF structure. In order to appropriately control the transformation temperature to the ferrite phase, when at least one of C, Mn, Cu and Ni in the component composition is contained, the content thereof and each range of Di + 10Nb are controlled, and will be described later. As you can see, the average cooling rate in the predetermined temperature range after hot rolling is preferably 0.5 ° C./s or more.

以下では、本発明の厚鋼板の鋼組織と成分組成、特性および製造方法について順に説明する。 Hereinafter, the steel structure, composition, characteristics, and manufacturing method of the thick steel sheet of the present invention will be described in order.

1.鋼組織
以下に本発明の厚鋼板の鋼組織について詳述する。以下の鋼組織の説明では、そのような組織を有することにより各種の特性を向上できるメカニズムについて説明している場合がある。これらは本発明者らが現時点で得られている知見により考えたメカニズムであるが、本発明の技術的範囲を限定するものではないことに留意されたい。
1. 1. Steel structure The steel structure of the thick steel sheet of the present invention will be described in detail below. In the following description of the steel structure, a mechanism capable of improving various properties by having such a structure may be described. It should be noted that these are the mechanisms considered by the present inventors based on the findings obtained at present, but do not limit the technical scope of the present invention.

本発明では、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒を、微細なアシキュラーフェライト(AF)組織と定義する。本発明において「微細なアシキュラーフェライト(AF)組織を所定量形成させる」とは、この結晶方位差15°以上の大角粒界に囲まれる結晶粒であって、円相当直径が7.5μm以下の結晶粒を、下記に示す通り、t/4位置において34%以上、かつt/2位置において27%以上確保することをいう。 In the present invention, among the crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 15 ° or more, the crystal grains having a circle-equivalent diameter of 7.5 μm or less are defined as a fine acrylic ferrite (AF) structure. In the present invention, "forming a predetermined amount of a fine acicular ferrite (AF) structure" means crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 15 ° or more, and having a circle-equivalent diameter of 7.5 μm or less. As shown below, it means to secure 34% or more of the crystal grains at the t / 4 position and 27% or more at the t / 2 position.

本発明では、板厚が厚くとも優れた強度−靭性バランスを示す厚鋼板を得るべく、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SA、つまり微細なアシキュラーフェライト(AF)組織の面積分率を、t/4位置とt/2位置の両方で規定する。詳細には、上記合計面積分率SAが、t/4位置で34%以上、かつt/2位置で27%以上を満たすようにする。t/4位置の上記合計面積分率SAは、好ましくは35%以上、より好ましくは36%以上である。またt/2位置の上記合計面積分率SAは、好ましくは28%以上、より好ましくは30%以上である。なお、優れた強度−靭性バランスを得る観点から、t/4位置とt/2位置の各位置の上記合計面積分率SAの上限は特に限定されない。本発明の厚鋼板の製造条件を考慮すると、t/4位置の合計面積分率SAの上限は、80%程度、t/2位置の合計面積分率SAの上限は、70%程度となる。 In the present invention, in order to obtain a thick steel sheet showing an excellent strength-toughness balance even if the plate thickness is thick, among the crystal grains surrounded by large grain boundaries with a crystal orientation difference of 15 ° or more, the equivalent circle diameter is 7.5 μm or less. The total area division SA of the crystal grains, that is, the area division of the fine acicular ferrite (AF) structure is defined at both the t / 4 position and the t / 2 position. Specifically, the total surface integral SA is set to satisfy 34% or more at the t / 4 position and 27% or more at the t / 2 position. The total surface integral SA at the t / 4 position is preferably 35% or more, more preferably 36% or more. The total surface integral SA at the t / 2 position is preferably 28% or more, more preferably 30% or more. From the viewpoint of obtaining an excellent strength-toughness balance, the upper limit of the total surface integral SA at each of the t / 4 position and the t / 2 position is not particularly limited. Considering the manufacturing conditions of the thick steel sheet of the present invention, the upper limit of the total area fraction SA at the t / 4 position is about 80%, and the upper limit of the total area fraction SA at the t / 2 position is about 70%.

上記微細なアシキュラーフェライト以外の組織として、ベイナイト、フェライト、セメンタイト、残留オーステナイト、マルテンサイト等が挙げられる。上記合計面積分率SAが本発明で規定する範囲内にある限り、上記円相当直径が7.5μm超のアシキュラーフェライトが存在していてもよい。 Examples of the structure other than the fine acicular ferrite include bainite, ferrite, cementite, retained austenite, martensite and the like. As long as the total surface integral SA is within the range specified in the present invention, acicular ferrite having a diameter equivalent to a circle of more than 7.5 μm may be present.

2.組成
以下に本発明に係る厚鋼板の組成について説明する。
2. Composition The composition of the thick steel sheet according to the present invention will be described below.

C:0.02質量%〜0.070質量%
Cは、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度−靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、C量は、0.02質量%以上、好ましくは0.023質量%以上、より好ましくは0.030質量%以上である。一方、C量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度−靭性バランスが劣化する。よって、C量は0.070質量%以下とする。C量は、好ましくは0.065質量%以下、より好ましくは0.060質量%以下である。
C: 0.02% by mass to 0.070% by mass
C has the effect of appropriately controlling the ferrite transformation temperature and suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exerting the effect, the amount of C is 0.02% by mass or more, preferably 0.023% by mass or more, and more preferably 0.030% by mass or more. On the other hand, if the amount of C is excessive, a hard martensite structure is formed and acts as a brittle fracture starting point, so that the strength-toughness balance deteriorates. Therefore, the amount of C is set to 0.070% by mass or less. The amount of C is preferably 0.065% by mass or less, more preferably 0.060% by mass or less.

Si:0質量%超、0.40質量%以下
Siは脱酸元素であり、その含有量は0質量%超である。Si量は、0.05質量%以上であってもよく、更に0.10質量%以上であってもよい。一方、Si量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度−靭性バランスが劣化する。よって、Si量は、0.40質量%以下、好ましくは0.38質量%以下、より好ましくは0.35質量%以下である。
Si: More than 0% by mass, 0.40% by mass or less Si is a deoxidizing element, and its content is more than 0% by mass. The amount of Si may be 0.05% by mass or more, and further may be 0.10% by mass or more. On the other hand, if the amount of Si is excessive, a hard martensite structure is formed and acts as a brittle fracture starting point, so that the strength-toughness balance deteriorates. Therefore, the amount of Si is 0.40% by mass or less, preferably 0.38% by mass or less, and more preferably 0.35% by mass or less.

Mn:1.30質量%〜1.95質量%
Mnは、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度−靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、Mn量は、1.30質量%以上、好ましくは1.40質量%以上、より好ましくは1.45質量%以上である。一方、Mn量が過剰であると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度−靭性バランスが劣化する。よってMn量は、1.95質量%以下、好ましくは1.90質量%以下、より好ましくは1.80質量%以下である。
Mn: 1.30% by mass to 1.95% by mass
Mn has the effect of appropriately controlling the ferrite transformation temperature and suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exerting the effect, the amount of Mn is 1.30% by mass or more, preferably 1.40% by mass or more, and more preferably 1.45% by mass or more. On the other hand, if the amount of Mn is excessive, a hard martensite structure is formed and acts as a brittle fracture starting point, so that the strength-toughness balance deteriorates. Therefore, the amount of Mn is 1.95% by mass or less, preferably 1.90% by mass or less, and more preferably 1.80% by mass or less.

P:0質量%超、0.015質量%以下
Pは、不純物元素であり、過剰に含まれると粒界が脆化して強度−靭性バランスが劣化する。よってP量は、0.015質量%以下とする。P量は、好ましくは0.008質量%以下、より好ましくは0.007質量%以下である。一方、工業上、P量を0質量%にすることは困難であることから、P量の下限は0質量%超である。
P: More than 0% by mass, 0.015% by mass or less P is an impurity element, and if it is contained in excess, the grain boundaries become brittle and the strength-toughness balance deteriorates. Therefore, the amount of P is set to 0.015% by mass or less. The amount of P is preferably 0.008% by mass or less, more preferably 0.007% by mass or less. On the other hand, since it is industrially difficult to set the P amount to 0% by mass, the lower limit of the P amount is more than 0% by mass.

S:0質量%超、0.005質量%以下
Sは、不純物元素であり、過剰に含まれると粒界が脆化して強度−靭性バランスが劣化する。よってS量は、0.005質量%以下とする。S量は、好ましくは0.004質量%以下、より好ましくは0.003質量%以下である。一方、工業上、S量を0質量%にすることは困難であることから、S量の下限は0質量%超である。
S: More than 0% by mass, 0.005% by mass or less S is an impurity element, and if it is contained in excess, the grain boundaries become brittle and the strength-toughness balance deteriorates. Therefore, the amount of S is set to 0.005% by mass or less. The amount of S is preferably 0.004% by mass or less, more preferably 0.003% by mass or less. On the other hand, since it is industrially difficult to set the S amount to 0% by mass, the lower limit of the S amount is more than 0% by mass.

Al:0.005質量%〜0.070質量%
Alは、脱酸元素である。十分な脱酸を行って鋼中酸素を低減し、酸化物による強度−靭性バランスの劣化を抑制するため、Al量は0.005質量%以上とする。Al量は、好ましくは0.010質量%以上、より好ましくは0.015質量%以上である。一方、Al量が過剰であると、粗大酸化物が形成されて、強度−靭性バランスが劣化する。よって、Al量は0.070質量%以下、好ましくは0.050質量%以下、より好ましくは0.045質量%以下である。
Al: 0.005% by mass to 0.070% by mass
Al is a deoxidizing element. The amount of Al is set to 0.005% by mass or more in order to reduce oxygen in the steel by performing sufficient deoxidation and suppress deterioration of the strength-toughness balance due to oxides. The amount of Al is preferably 0.010% by mass or more, more preferably 0.015% by mass or more. On the other hand, if the amount of Al is excessive, a coarse oxide is formed and the strength-toughness balance deteriorates. Therefore, the amount of Al is 0.070% by mass or less, preferably 0.050% by mass or less, and more preferably 0.045% by mass or less.

Nb:0.015質量%〜0.048質量%
Nbは、AFの生成を促進させる元素である。微細なAF組織を十分に生成させて良好な強度−靭性バランスを得るため、Nb量は、0.015質量%以上、好ましくは0.016質量%以上、より好ましくは0.018質量%以上とする。一方、Nb量が過剰であると、硬質なマルテンサイト組織が生成し、この組織が脆性破壊起点として作用することで強度−靭性バランスが劣化する。よって、Nb量は0.048質量%以下、好ましくは0.045質量%以下、より好ましくは0.040質量%以下である。
Nb: 0.015% by mass to 0.048% by mass
Nb is an element that promotes the formation of AF. In order to sufficiently generate a fine AF structure and obtain a good strength-toughness balance, the amount of Nb is 0.015% by mass or more, preferably 0.016% by mass or more, and more preferably 0.018% by mass or more. To do. On the other hand, if the amount of Nb is excessive, a hard martensite structure is formed, and this structure acts as a brittle fracture starting point, so that the strength-toughness balance deteriorates. Therefore, the amount of Nb is 0.048% by mass or less, preferably 0.045% by mass or less, and more preferably 0.040% by mass or less.

Ti:0.005質量%〜0.024質量%
Tiは、TiN形成によりHAZ靭性向上に寄与する元素である。該効果を発揮させる観点から、Ti量は、0.005質量%以上、好ましくは0.007質量%以上、より好ましくは0.009質量%以上である。一方、Ti量が過剰であると、粗大な晶出TiNが生成し、強度−靭性バランスが劣化する。よってTi量は、0.024質量%以下、好ましくは0.022質量%以下、より好ましくは0.020質量%以下である。
Ti: 0.005% by mass to 0.024% by mass
Ti is an element that contributes to the improvement of HAZ toughness by forming TiN. From the viewpoint of exerting the effect, the amount of Ti is 0.005% by mass or more, preferably 0.007% by mass or more, and more preferably 0.009% by mass or more. On the other hand, if the amount of Ti is excessive, coarse crystallized TiN is generated and the strength-toughness balance deteriorates. Therefore, the amount of Ti is 0.024% by mass or less, preferably 0.022% by mass or less, and more preferably 0.020% by mass or less.

N:0.0030質量%〜0.0080質量%
Nは、TiN形成によりHAZ靭性向上に寄与する元素である。該効果を発揮させる観点から、N量は0.0030質量%以上、好ましくは0.0032質量%以上、より好ましくは0.0035質量%以上である。一方、N量が過剰であると、固溶Nが増加し、強度−靭性バランスが劣化する。よってN量は、0.0080質量%以下、好ましくは0.0075質量%以下、より好ましくは0.0070質量%以下である。
N: 0.0030% by mass to 0.0080% by mass
N is an element that contributes to the improvement of HAZ toughness by forming TiN. From the viewpoint of exerting the effect, the amount of N is 0.0030% by mass or more, preferably 0.0032% by mass or more, and more preferably 0.0035% by mass or more. On the other hand, if the amount of N is excessive, the solid solution N increases and the strength-toughness balance deteriorates. Therefore, the amount of N is 0.0080% by mass or less, preferably 0.0075% by mass or less, and more preferably 0.0070% by mass or less.

Ca:0質量%超、0.0040質量%以下
Caは脱酸元素であり、その含有量は0質量%超である。また、鋼中Mn量が多い場合、t/2位置では鋳造時のMn濃化により粗大なMnSが生成しやすくなり、t/2位置の靭性が低下しやすいと考えられる。このMnSの形成抑制のために、Ca量を0質量%超とすることが好ましく、0.0008質量%以上とすることがより好ましく、更に好ましくは0.0010質量%以上である。一方、Ca量が過剰であると、粗大酸化物が形成されて、強度−靭性バランスが劣化する。よって、Ca量は0.0040質量%以下、好ましくは0.0028質量%以下、より好ましくは0.0025質量%以下である。
Ca: More than 0% by mass, 0.0040% by mass or less Ca is a deoxidizing element, and its content is more than 0% by mass. Further, when the amount of Mn in the steel is large, it is considered that coarse MnS is likely to be generated at the t / 2 position due to Mn enrichment during casting, and the toughness at the t / 2 position is likely to decrease. In order to suppress the formation of MnS, the amount of Ca is preferably more than 0% by mass, more preferably 0.0008% by mass or more, and further preferably 0.0010% by mass or more. On the other hand, if the amount of Ca is excessive, coarse oxides are formed and the strength-toughness balance deteriorates. Therefore, the amount of Ca is 0.0040% by mass or less, preferably 0.0028% by mass or less, and more preferably 0.0025% by mass or less.

残部は、Feおよび不可避不純物である。不可避不純物としては、原料、資材、製造設備等の状況によって持ち込まれる例えば、As、Sb、Snなどの微量元素の混入が許容される。なお、例えばPおよびSのように、通常、含有量が少ないほど好ましく、従って不可避不純物であるが、その組成範囲について上記のように別途規定している元素がある。このため、本明細書において、残部を構成する「不可避不純物」とは、別途その組成範囲が規定されている元素を除いた概念である。 The balance is Fe and unavoidable impurities. As unavoidable impurities, for example, trace elements such as As, Sb, and Sn that are brought in depending on the conditions of raw materials, materials, manufacturing equipment, etc. are allowed to be mixed. It should be noted that, for example, there are elements such as P and S, which are usually preferable as the content is smaller, and therefore are unavoidable impurities, but the composition range thereof is separately specified as described above. Therefore, in the present specification, the "unavoidable impurities" constituting the balance is a concept excluding the elements whose composition range is separately defined.

本発明の厚鋼板は、成分組成において、上記元素を含んでいればよい。下記に述べる選択元素は、含まれていなくてもよいが、上記元素と共に必要に応じて含有させることにより、高強度等をより容易に達成させることができる。また、所望の組織をより容易に確保でき、本発明で求める強度−靭性バランスをより容易に達成することができる。以下、選択元素について述べる。 The thick steel sheet of the present invention may contain the above elements in the component composition. The selective elements described below may not be contained, but high strength and the like can be more easily achieved by containing them together with the above elements as needed. In addition, the desired structure can be more easily secured, and the strength-toughness balance required in the present invention can be more easily achieved. The selected elements will be described below.

Cu:0質量%超、0.75質量%以下、およびNi:0質量%超、1.4質量%以下よりなる群から選択される1種以上の元素
これらの元素は、フェライト変態温度を適切に制御し、脆性破壊起点として作用し強度−靭性バランス劣化の原因となる粒界フェライトが、AF生成前に生成するのを抑制する効果を有する。該効果を発揮させる観点から、Cuを含有させる場合には、0質量%超とすることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上、より更に好ましくは0.15質量%以上である。Niを含有させる場合には、0質量%超とすることが好ましく、より好ましくは0.10質量%以上、更に好ましくは0.15質量%以上、より更に好ましくは0.20質量%以上である。一方、これらの元素が過剰であると、硬質なマルテンサイト組織が生成し、該組織が、脆性破壊起点として作用し、強度−靭性バランスの劣化を招く。よって、Cu量は、0.75質量%以下であることが好ましく、より好ましくは0.70質量%以下、更に好ましくは0.68質量%以下である。Ni量は、1.4質量%以下であることが好ましく、より好ましくは1.2質量%以下、更に好ましくは1.0質量%以下である。
One or more elements selected from the group consisting of Cu: more than 0% by mass, 0.75% by mass or less, and Ni: more than 0% by mass, 1.4% by mass or less These elements have appropriate ferrite transformation temperatures. It has the effect of suppressing the formation of grain boundary ferrite, which acts as a brittle fracture starting point and causes deterioration of the strength-toughness balance, before AF formation. From the viewpoint of exerting the effect, when Cu is contained, it is preferably more than 0% by mass, more preferably 0.05% by mass or more, still more preferably 0.10% by mass or more, still more preferably. It is 0.15% by mass or more. When Ni is contained, it is preferably more than 0% by mass, more preferably 0.10% by mass or more, still more preferably 0.15% by mass or more, still more preferably 0.20% by mass or more. .. On the other hand, when these elements are excessive, a hard martensite structure is formed, and the structure acts as a brittle fracture starting point, resulting in deterioration of the strength-toughness balance. Therefore, the amount of Cu is preferably 0.75% by mass or less, more preferably 0.70% by mass or less, and further preferably 0.68% by mass or less. The amount of Ni is preferably 1.4% by mass or less, more preferably 1.2% by mass or less, and further preferably 1.0% by mass or less.

Mo:0質量%超、0.50質量%以下、V:0質量%超、0.060質量%以下、Cr:0質量%超、0.8質量%以下、およびB:0質量%超、0.0030質量%以下よりなる群から選択される1種以上の元素
これらの元素は、強度向上に有効な元素である。該効果を発揮させる観点から、Moを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.05質量%以上、更に好ましくは0.10質量%以上である。Vを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.01質量%以上、更に好ましくは0.02質量%以上である。Crを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.10質量%以上、更に好ましくは0.20質量%以上である。Bを含有させる場合は、0質量%超であることが好ましく、より好ましくは0.0003質量%以上である。
Mo: more than 0% by mass, 0.50% by mass or less, V: more than 0% by mass, 0.060% by mass or less, Cr: more than 0% by mass, 0.8% by mass or less, and B: more than 0% by mass, One or more elements selected from the group consisting of 0.0030% by mass or less These elements are effective elements for improving the strength. From the viewpoint of exerting the effect, when Mo is contained, it is preferably more than 0% by mass, more preferably 0.05% by mass or more, and further preferably 0.10% by mass or more. When V is contained, it is preferably more than 0% by mass, more preferably 0.01% by mass or more, and further preferably 0.02% by mass or more. When Cr is contained, it is preferably more than 0% by mass, more preferably 0.10% by mass or more, and further preferably 0.20% by mass or more. When B is contained, it is preferably more than 0% by mass, more preferably 0.0003% by mass or more.

一方、これらの元素の含有量が過剰であると、硬質なマルテンサイト組織が生成し、該組織が脆性破壊起点として作用し、強度−靭性バランスの劣化を招く。よって、Mo量は、0.50質量%以下であることが好ましく、より好ましくは0.45質量%以下、更に好ましくは0.40質量%以下である。V量は、0.060質量%以下であることが好ましく、より好ましくは0.050質量%以下、更に好ましくは0.045質量%以下である。Cr量は、0.8質量%以下であることが好ましく、より好ましくは0.70質量%以下、更に好ましくは0.60質量%以下である。B量は、0.0007質量%以下であることが好ましく、より好ましく0.0006質量%以下である。 On the other hand, if the content of these elements is excessive, a hard martensite structure is formed, and the structure acts as a brittle fracture starting point, resulting in deterioration of the strength-toughness balance. Therefore, the amount of Mo is preferably 0.50% by mass or less, more preferably 0.45% by mass or less, and further preferably 0.40% by mass or less. The amount of V is preferably 0.060% by mass or less, more preferably 0.050% by mass or less, and further preferably 0.045% by mass or less. The amount of Cr is preferably 0.8% by mass or less, more preferably 0.70% by mass or less, still more preferably 0.60% by mass or less. The amount of B is preferably 0.0007% by mass or less, more preferably 0.0006% by mass or less.

REM:0質量%超、0.0060質量%以下、およびZr:0質量%超、0.0050質量%以下よりなる群から選択される1種以上の元素
これらの元素は脱酸元素である。該効果を発揮させるには、REMを含有させる場合、0質量%超であることが好ましく、より好ましくは0.0010質量%以上、更に好ましくは0.0015質量%以上である。Zrを含有させる場合、0質量%超であることが好ましく、より好ましくは0.0010質量%以上、更に好ましくは0.0012質量%以上である。一方、これらの元素が過剰であると、粗大酸化物が形成され、強度−靭性バランスが劣化する。よってREM量は、0.0060質量%以下であることが好ましく、より好ましくは0.0050質量%以下、更に好ましくは0.0045質量%以下である。Zr量は、0.0050質量%以下であることが好ましく、より好ましくは0.0045質量%以下、更に好ましくは0.0040質量%以下である。前記REMとは、ランタノイド元素(LaからLuまでの15元素)、Sc(スカンジウム)およびY(イットリウム)を含む意味である。
One or more elements selected from the group consisting of REM: more than 0% by mass, 0.0060% by mass or less, and Zr: more than 0% by mass, 0.0050% by mass or less These elements are deoxidizing elements. In order to exert the effect, when REM is contained, it is preferably more than 0% by mass, more preferably 0.0010% by mass or more, and further preferably 0.0015% by mass or more. When Zr is contained, it is preferably more than 0% by mass, more preferably 0.0010% by mass or more, and further preferably 0.0012% by mass or more. On the other hand, if these elements are excessive, coarse oxides are formed and the strength-toughness balance deteriorates. Therefore, the amount of REM is preferably 0.0060% by mass or less, more preferably 0.0050% by mass or less, and further preferably 0.0045% by mass or less. The amount of Zr is preferably 0.0050% by mass or less, more preferably 0.0045% by mass or less, and further preferably 0.0040% by mass or less. The REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium).

Di+10Nb:1.20〜2.50(Diは下記式(1)から求められる)
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]−1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Di + 10Nb: 1.20 to 2.50 (Di is calculated from the following formula (1))
Di = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] + 1) x (1.75 x [V] +1) x (200 × [B] +1) ・ ・ ・ (1)
In the formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are represented by mass%, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B are shown, and the elements not contained are set to zero.

Di+10Nbは、フェライト変態温度に影響を及ぼすパラメータである。フェライト変態温度を適切に制御することで、AF生成前の粒界フェライトの生成を抑制し、またAF以外のパーライト組織やマルテンサイト組織の過剰な生成を抑制し、AF生成を促進させることができる。これらの観点から、本発明ではDi+10Nbを1.20〜2.50の範囲内とした。Di+10Nbの値が小さすぎると、粒界フェライトとともにパーライト組織が生成し、強度−靭性バランスが劣化する。よってDi+10Nbは、1.20以上とする。Di+10Nbは、好ましくは1.25以上、より好ましくは1.30以上である。一方、Di+10Nbの値が大きすぎると、硬質なマルテンサイト組織が生成し、脆性破壊起点として作用することで強度−靭性バランス劣化する。よってDi+10Nbは、2.50以下とする。Di+10Nbは、好ましくは2.20以下、より好ましくは2.00以下である。 Di + 10Nb is a parameter that affects the ferrite transformation temperature. By appropriately controlling the ferrite transformation temperature, it is possible to suppress the formation of grain boundary ferrite before AF formation, suppress the excessive formation of pearlite structure and martensite structure other than AF, and promote AF formation. .. From these viewpoints, in the present invention, Di + 10Nb was set within the range of 1.20 to 2.50. If the value of Di + 10Nb is too small, a pearlite structure is formed together with grain boundary ferrite, and the strength-toughness balance deteriorates. Therefore, Di + 10Nb is set to 1.20 or more. Di + 10Nb is preferably 1.25 or more, more preferably 1.30 or more. On the other hand, if the value of Di + 10Nb is too large, a hard martensite structure is formed and acts as a brittle fracture starting point, so that the strength-toughness balance deteriorates. Therefore, Di + 10Nb is set to 2.50 or less. Di + 10Nb is preferably 2.20 or less, more preferably 2.00 or less.

本発明の厚鋼板の板厚は、16mm以上であることが好ましく、より好ましくは30mm以上、更に好ましくは40mm以上、特に好ましくは40mm超である。なお、板厚の上限は特に限定されず、例えば80mm以下であることが好ましい。 The thickness of the thick steel plate of the present invention is preferably 16 mm or more, more preferably 30 mm or more, still more preferably 40 mm or more, and particularly preferably more than 40 mm. The upper limit of the plate thickness is not particularly limited, and is preferably 80 mm or less, for example.

本発明の厚鋼板は、下記の特性を有しており、例えば大型のLPGタンク、船舶等の製造に適している。 The thick steel plate of the present invention has the following characteristics and is suitable for manufacturing, for example, a large LPG tank, a ship, or the like.

3.特性
本発明において、強度と従来よりも低い温度での靭性とのバランスの評価に、下記式(2)で示されるパラメータであるY値を用いる。Y値は、下記式(2)に示される通り、降伏強度YP、脆性延性遷移温度vTrsを含んでいる。なお、下記式(2)における降伏強度YPとして、SSカーブ(「応力−ひずみ線図」ともいう)が、降伏点の明らかでないラウンド型の場合は0.2%耐力(0.2YS)を使用し、降伏点を有する場合はYPを使用する。
3. 3. Characteristics In the present invention, the Y value, which is a parameter represented by the following equation (2), is used to evaluate the balance between strength and toughness at a lower temperature than before. The Y value includes the yield strength YP and the brittle ductile transition temperature vTrs as shown in the following formula (2). As the yield strength YP in the following formula (2), 0.2% proof stress (0.2YS) is used when the SS curve (also referred to as “stress-strain diagram”) is a round type whose yield point is not clear. However, if it has a yield point, YP is used.

本発明の厚鋼板は、熱間圧延ままであって、圧延方向に対して直角なC方向において、t/4位置のYが−5200未満、かつt/2位置のYが−4700未満を満たす場合を、強度−靭性バランスに優れていると評価する。
Y=20×vTrs−7×YP・・・(2)
The thick steel sheet of the present invention remains hot-rolled and satisfies Y at the t / 4 position of less than -5200 and Y at the t / 2 position of less than -4700 in the C direction perpendicular to the rolling direction. The case is evaluated as having an excellent strength-toughness balance.
Y = 20 × vTrs-7 × YP ... (2)

上記t/4位置におけるY値は、好ましくは−5300以下、より好ましくは−5400以下であり、また、上記t/2位置におけるY値は、好ましくは−4800以下、より好ましくは−5000以下である。これらの値が低いほど、強度−靭性バランスに優れることを意味する。 The Y value at the t / 4 position is preferably -5300 or less, more preferably -5400 or less, and the Y value at the t / 2 position is preferably -4800 or less, more preferably -5000 or less. is there. The lower these values are, the better the strength-toughness balance is.

本発明は、特性として上記パラメータを達成すればよい。降伏強度YP、脆性延性遷移温度vTrsのそれぞれについては、上記パラメータを達成することを前提に、例えば降伏強度YPが好ましくは350〜550MPaの範囲、脆性延性遷移温度vTrsが好ましくは−70℃未満の範囲、より好ましくは−80℃未満の範囲とすることが挙げられる。また測定位置別に、t/4位置では、上記パラメータを達成することを前提に、例えば、降伏強度YPは410MPa以上であることが好ましく、より好ましくは430MPa以上、更に好ましくは460MPa以上、より更に好ましくは480MPa以上、特には500MPa以上であり、脆性延性遷移温度vTrsは、−90℃以下であることが好ましく、−95℃以下であることがより好ましく、−100℃以下であることが更に好ましく、より更に好ましくは−110℃以下である。またt/2位置では、上記パラメータを達成することを前提に、例えば、降伏強度YPは400MPa以上であることが好ましく、より好ましくは430MPa以上、更に好ましくは460MPa以上、より更に好ましくは480MPa以上、特には500MPa以上であり、脆性延性遷移温度vTrsは、−80℃以下であることが好ましく、−90℃以下であることがより好ましく、−95℃以下であることが更に好ましく、−100℃以下であることがより更に好ましい。 The present invention may achieve the above parameters as characteristics. For each of the yield strength YP and the brittle ductility transition temperature vTrs, on the premise that the above parameters are achieved, for example, the yield strength YP is preferably in the range of 350 to 550 MPa, and the brittle ductility transition temperature vTrs is preferably less than −70 ° C. The range, more preferably the range of less than -80 ° C. Further, for each measurement position, on the premise that the above parameters are achieved at the t / 4 position, for example, the yield strength YP is preferably 410 MPa or more, more preferably 430 MPa or more, still more preferably 460 MPa or more, still more preferably. Is 480 MPa or more, particularly 500 MPa or more, and the brittle ductile transition temperature vTrs is preferably −90 ° C. or lower, more preferably −95 ° C. or lower, and further preferably −100 ° C. or lower. Even more preferably, it is −110 ° C. or lower. Further, at the t / 2 position, on the premise that the above parameters are achieved, for example, the yield strength YP is preferably 400 MPa or more, more preferably 430 MPa or more, further preferably 460 MPa or more, still more preferably 480 MPa or more. In particular, it is 500 MPa or more, and the brittle ductile transition temperature vTrs is preferably −80 ° C. or lower, more preferably −90 ° C. or lower, further preferably −95 ° C. or lower, and more preferably −100 ° C. or lower. Is even more preferable.

4.製造方法
本発明に係る厚鋼板の製造方法は、前記成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)〜(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720〜830℃
(d)熱間圧延後、仕上圧延温度〜690℃の冷却開始温度から、320〜550℃の冷却停止温度までを、平均冷却速度0.5〜20℃/sで冷却する。
以下、各製造条件について詳述する。
4. Manufacturing Method The method for manufacturing a thick steel sheet according to the present invention includes a step of heating a steel piece having the above-mentioned composition to a temperature of more than 1020 ° C. and a temperature of less than 1200 ° C., and a hot rolling step after the heating. The rolling step is a method for manufacturing a thick steel sheet in which hot rolling and cooling after the hot rolling are performed so that the number of rolling passes is 3 or more and all of the following conditions (a) to (d) are satisfied.
(A) Cumulative rolling reduction rate in the temperature range of 850 ° C. or lower is 40% or more (b) Average rolling reduction rate of rolling in the final 3 passes is 5.5% or higher (c) Finishing rolling temperature is 720 to 830 ° C.
(D) After hot rolling, the temperature from the finishing rolling temperature to 690 ° C. to the cooling stop temperature of 320 to 550 ° C. is cooled at an average cooling rate of 0.5 to 20 ° C./s.
Hereinafter, each manufacturing condition will be described in detail.

[前記成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程]
熱間圧延の加熱において、加熱温度が1020℃以下であると、鋳造時に生成したNbCが十分に固溶せず、固溶NbによるAF生成の促進効果が得られなくなる。よって加熱温度は、1020℃超、好ましくは1040℃以上、より好ましくは1050℃以上、更に好ましくは1060℃以上とする。一方、加熱温度が1200℃以上であると、オーステナイト粒が粗大化し、組織が全般的に粗大化する。よって加熱温度は、1200℃未満、好ましくは1180℃以下、より好ましくは1150℃以下とする。
[Step of heating a steel piece having the above component composition to more than 1020 ° C and less than 1200 ° C]
In the heating of hot rolling, if the heating temperature is 1020 ° C. or lower, the NbC generated during casting is not sufficiently solid-dissolved, and the effect of promoting AF generation by the solid-dissolved Nb cannot be obtained. Therefore, the heating temperature is more than 1020 ° C., preferably 1040 ° C. or higher, more preferably 1050 ° C. or higher, still more preferably 1060 ° C. or higher. On the other hand, when the heating temperature is 1200 ° C. or higher, the austenite grains are coarsened and the structure is generally coarsened. Therefore, the heating temperature is less than 1200 ° C., preferably 1180 ° C. or lower, and more preferably 1150 ° C. or lower.

[前記加熱後の熱間圧延工程]
本発明は、後述する通り、最終3パスの圧延の平均圧下率を制御するところに特徴があり、前記加熱後は、圧延パスが3パス以上の熱間圧延を行うが、総パス数(圧延パスの回数)は組織と特性に影響を及ぼすものでなく限定されない。前記圧延パスは、更には7パス以上、より更には10パス以上であって、生産性の観点から60パス以下とすることができる。
[Hot rolling process after heating]
As will be described later, the present invention is characterized in that the average rolling reduction rate of rolling in the final three passes is controlled. After the heating, hot rolling with three or more rolling passes is performed, but the total number of passes (rolling). The number of passes) does not affect or limit the organization and characteristics. The rolling pass may be further 7 passes or more, further 10 passes or more, and 60 passes or less from the viewpoint of productivity.

本発明では、下記(a)〜(d)の条件を全て満たすように前記熱間圧延を行い、かつ熱間圧延後の冷却を行う。 In the present invention, the hot rolling is performed so as to satisfy all of the following conditions (a) to (d), and cooling is performed after the hot rolling.

(a)850℃以下の温度域での累積圧下率:40%以上
十分なAF組織を得ることを目的に、オーステナイト相に十分な加工歪を導入するには、熱間圧延における850℃以下の温度域での累積圧下率(「総圧下率」ともいう)を40%以上とする必要がある。ところで850℃以上の圧延での圧下率が増加すると、圧延中にNbCが析出し、固溶Nbが減少すると考えられる。この850℃以上の圧延での累積圧下率を抑える観点からも、上記850℃以下の温度域での累積圧下率を40%以上とする。前記累積圧下率は、好ましくは50%以上、より好ましくは55%以上である。前記累積圧下率の上限は生産性の観点から80%程度である。
(A) Cumulative reduction rate in the temperature range of 850 ° C or lower: 40% or more In order to introduce sufficient machining strain into the austenite phase for the purpose of obtaining a sufficient AF structure, it is 850 ° C or lower in hot rolling. The cumulative rolling reduction rate in the temperature range (also referred to as "total rolling reduction rate") needs to be 40% or more. By the way, when the rolling reduction rate in rolling at 850 ° C. or higher increases, it is considered that NbC is precipitated during rolling and the solid solution Nb decreases. From the viewpoint of suppressing the cumulative rolling reduction rate in rolling at 850 ° C. or higher, the cumulative rolling reduction rate in the temperature range of 850 ° C. or lower is set to 40% or higher. The cumulative reduction rate is preferably 50% or more, more preferably 55% or more. The upper limit of the cumulative reduction rate is about 80% from the viewpoint of productivity.

(b)最終3パスの圧延の平均圧下率:5.5%以上
最終3パスの圧下で導入された転位組織は、比較的回復が進行しないまま冷却工程に移行するため、AF促進効果が大きい。本発明では、上記転位組織導入のためにオーステナイト相に十分な加工歪を導入すべく、最終3パスの圧延における平均圧下率を5.5%以上とする。本発明では、最終3パスの圧延の平均圧下率を制御することによって、鋼板内部、特にはt/2位置においてもAF組織が一定以上の所望の組織が得られる点で、最終3パスの圧延の平均圧下率を制御していない従来の方法と異なる。前記平均圧下率は、好ましくは5.8%以上、より好ましくは6.0%以上である。一方、圧延機負荷の観点から、上記平均圧下率の上限は20%程度となる。
(B) Average reduction rate of rolling in the final 3 passes: 5.5% or more The dislocation structure introduced under the reduction in the final 3 passes shifts to the cooling process with relatively little progress in recovery, and thus has a large AF promoting effect. .. In the present invention, the average rolling reduction in the final 3-pass rolling is set to 5.5% or more in order to introduce sufficient processing strain into the austenite phase for the introduction of the dislocation structure. In the present invention, by controlling the average rolling reduction of rolling in the final 3 passes, a desired structure having an AF structure of a certain level or more can be obtained inside the steel sheet, particularly at the t / 2 position, and rolling in the final 3 passes. It is different from the conventional method in which the average rolling reduction rate of is not controlled. The average reduction rate is preferably 5.8% or more, more preferably 6.0% or more. On the other hand, from the viewpoint of rolling mill load, the upper limit of the average rolling reduction rate is about 20%.

(c)仕上圧延温度(Finishing Rolling Temperature、FRT):720〜830℃
鋼材の温度が850℃を上回ると、最終3パスの圧延を上記平均圧下率で行っても、オーステナイト相に十分な加工歪が導入されず、AF組織量が不足する。本発明では、AF組織量を十分に確保するため、仕上圧延温度を830℃以下とする。仕上圧延温度は、好ましくは820℃以下、より好ましくは810℃以下である。一方、仕上圧延温度が720℃を下回ると、圧延中に粗大なフェライトが形成され、靭性が劣化する。よって仕上圧延温度は、720℃以上、好ましくは750℃以上、より好ましくは760℃以上とする。
(C) Finishing Rolling Temperature (FRT): 720 to 830 ° C.
When the temperature of the steel material exceeds 850 ° C., sufficient processing strain is not introduced into the austenite phase even if the final three-pass rolling is performed at the above average rolling ratio, and the AF structure amount is insufficient. In the present invention, the finish rolling temperature is set to 830 ° C. or lower in order to secure a sufficient amount of AF structure. The finish rolling temperature is preferably 820 ° C. or lower, more preferably 810 ° C. or lower. On the other hand, when the finish rolling temperature is lower than 720 ° C., coarse ferrite is formed during rolling and the toughness deteriorates. Therefore, the finish rolling temperature is 720 ° C. or higher, preferably 750 ° C. or higher, and more preferably 760 ° C. or higher.

(d)熱間圧延後、仕上圧延温度〜690℃の冷却開始温度から、320〜550℃の冷却停止温度までを、平均冷却速度0.5〜20℃/sで冷却する。
一定の温度域を平均冷却速度0.5〜20℃/sで冷却することによって、AF組織を十分に確保することができる。平均冷却速度が20℃/sを上回ると、AF組織が十分に形成されないままマルテンサイト変態が起こるための好ましくない。前記平均冷却速度は、好ましくは15℃/s以下、より好ましくは12℃/s以下である。前述の通り、フェライト相への変態温度を適切に制御し、AF組織を十分に確保するには、成分組成におけるC、Mn、CuとNiの少なくともいずれかを含む場合にはこれらの含有量、およびDi+10Nbの各範囲を制御すると共に、上記平均冷却速度を0.5℃/s以上とする。上記平均冷却速度が0.5℃/sを下回ると、冷却時に粗大な粒界フェライトが生成し、AF組織量が不足する。平均冷却速度は、好ましくは2.0℃/s以上、より好ましくは3.0℃/s以上である。上記平均冷却速度の冷却方法として、例えば水冷が挙げられる。
(D) After hot rolling, the temperature from the finishing rolling temperature to 690 ° C. to the cooling stop temperature of 320 to 550 ° C. is cooled at an average cooling rate of 0.5 to 20 ° C./s.
By cooling a certain temperature range at an average cooling rate of 0.5 to 20 ° C./s, the AF structure can be sufficiently secured. If the average cooling rate exceeds 20 ° C./s, martensitic transformation occurs without sufficient AF structure being formed, which is not preferable. The average cooling rate is preferably 15 ° C./s or less, more preferably 12 ° C./s or less. As described above, in order to appropriately control the transformation temperature to the ferrite phase and sufficiently secure the AF structure, when at least one of C, Mn, Cu and Ni in the component composition is contained, these contents are used. And each range of Di + 10Nb is controlled, and the average cooling rate is set to 0.5 ° C./s or more. When the average cooling rate is less than 0.5 ° C./s, coarse grain boundary ferrite is generated during cooling, and the amount of AF structure is insufficient. The average cooling rate is preferably 2.0 ° C./s or higher, more preferably 3.0 ° C./s or higher. As a cooling method of the average cooling rate, for example, water cooling can be mentioned.

上記冷却の開始温度は、仕上圧延温度〜690℃における任意の温度とする。鋼材の温度が710℃を下回ると、冷却開始前に粒界フェライトが生成したり、オーステナイト相に導入された加工歪が回復するといった不具合が生じる。その結果、AF組織量が不足する。本発明では、AF組織量を十分に確保するため、上記平均冷却速度での冷却開始温度(Start Cooling Temperature、SCT)を、690℃以上とする。上記冷却開始温度は、好ましくは710℃以上、より好ましくは720℃以上である。 The cooling start temperature is an arbitrary temperature in the finishing rolling temperature to 690 ° C. If the temperature of the steel material is lower than 710 ° C., problems such as grain boundary ferrite being generated before the start of cooling and processing strain introduced into the austenite phase are recovered. As a result, the amount of AF tissue is insufficient. In the present invention, in order to secure a sufficient amount of AF structure, the starting cooling temperature (SCT) at the average cooling rate is set to 690 ° C. or higher. The cooling start temperature is preferably 710 ° C. or higher, more preferably 720 ° C. or higher.

上記冷却の終了温度(Finish Cooling Temperature、FCT)は、320〜550℃における任意の温度とする。上記平均冷却速度での冷却、例えば水冷を、550℃超の温度域で停止すると、水冷停止後の緩冷却時に粒界フェライトが生成し、AF組織を十分に確保することが難しくなる。よって、前記終了温度は550℃以下とする。前記終了温度は、好ましくは500℃以下、より好ましくは480℃以下である。一方、上記平均冷却速度での冷却を、例えば320℃を下回る温度域まで行うと、AF組織が十分に形成されないままマルテンサイト変態が生じる。よって、前記終了温度は320℃以上とする。前記終了温度は、好ましくは340℃以上、より好ましくは360℃以上である。 The finish cooling temperature (FCT) is an arbitrary temperature of 320 to 550 ° C. When cooling at the above average cooling rate, for example, water cooling is stopped in a temperature range of more than 550 ° C., grain boundary ferrite is generated during slow cooling after the water cooling is stopped, and it becomes difficult to sufficiently secure the AF structure. Therefore, the end temperature is set to 550 ° C. or lower. The end temperature is preferably 500 ° C. or lower, more preferably 480 ° C. or lower. On the other hand, when cooling at the above average cooling rate is performed up to a temperature range below, for example, 320 ° C., martensitic transformation occurs without sufficiently forming the AF structure. Therefore, the end temperature is set to 320 ° C. or higher. The end temperature is preferably 340 ° C. or higher, more preferably 360 ° C. or higher.

本発明の製造方法は、上記熱間圧延工程以外は、特に限定されず、通常行われている条件で実施すればよい。 The manufacturing method of the present invention is not particularly limited except for the hot rolling step described above, and may be carried out under normally performed conditions.

以上に説明した本発明の実施形態に係る高強度鋼板の製造方法に接した当業者であれば、試行錯誤により、上述した製造方法と異なる製造方法により本発明に係る高強度鋼板を得ることができる可能性がある。 A person skilled in the art who has come into contact with the method for producing a high-strength steel sheet according to the embodiment of the present invention described above can obtain the high-strength steel sheet according to the present invention by a production method different from the above-mentioned production method by trial and error. There is a possibility that it can be done.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by the following examples, and can be carried out with appropriate modifications within a range that can meet the above-mentioned and later-described intent, and all of them are the technical scope of the present invention. Included in.

1.サンプル作製
表1に示す成分組成の鋼を150kgVIF(Vacuum Induction Furnace)または実機転炉にて溶製し、鋳造して得られたスラブを、表2に示す種々の条件で熱間圧延して、表2に示す板厚の鋼板を得た。前記熱間圧延において、総パス数(圧延パスの回数)は20回超とした。表1において「−」は意図的に添加していないことを示す。表2において、FRTは仕上圧延温度、SCTは冷却開始温度、FCTは冷却終了温度を示す。前記冷却停止温度FCTは、鋼板表面を長手方向に1〜3点、放射温度計で計測し、その平均値を算出した。またFRT、SCTは、放射温度計で鋼材表面の1点を計測して求めた。
1. 1. Sample preparation The steel having the composition shown in Table 1 was melted in a 150 kg VIF (Vacuum Induction Furnace) or an actual furnace, and the slab obtained by casting was hot-rolled under various conditions shown in Table 2. A steel plate having the thickness shown in Table 2 was obtained. In the hot rolling, the total number of passes (the number of rolling passes) was set to more than 20 times. In Table 1, "-" indicates that it was not intentionally added. In Table 2, FRT indicates the finishing rolling temperature, SCT indicates the cooling start temperature, and FCT indicates the cooling end temperature. The cooling stop temperature FCT was measured at 1 to 3 points on the surface of the steel sheet in the longitudinal direction with a radiation thermometer, and the average value was calculated. The FRT and SCT were obtained by measuring one point on the surface of the steel material with a radiation thermometer.

Figure 2020176329
Figure 2020176329

Figure 2020176329
Figure 2020176329

2.鋼組織
上記熱間圧延材の圧延幅方向に垂直な断面のt/4(t:板厚)およびt/2位置で、EBSD(Electron Back Scatter Diffraction)測定を実施した。測定条件は下記の通りである。
EBSD測定条件
・装置:日本電子製JEOL−5410またはJSM−IT100
・観察倍率:400倍
・測定面積:200×200μm
・ステップ(ピクセル)サイズ:0.4μm
・考慮する相:フェライト、オーステナイト
2. Steel structure EBSD (Electron Back Scatter Diffraction) measurement was carried out at t / 4 (t: plate thickness) and t / 2 positions of the cross section of the hot rolled material perpendicular to the rolling width direction. The measurement conditions are as follows.
EBSD measurement conditions / equipment: JEOL-5410 or JSM-IT100 manufactured by JEOL Ltd.
・ Observation magnification: 400 times ・ Measurement area: 200 × 200 μm
-Step (pixel) size: 0.4 μm
-Phase to consider: ferrite, austenite

得られたEBSDデータを、株式会社 TSLソリューションズ製解析ソフトOIM Analysisにより解析した。得られたデータにおいて、Confidence Indexが0.100以下の点を除去し、隣接するピクセルとの結晶方位が15°以上の粒界を大角粒界と定義した。この大角粒界で囲まれたユニットのうち、ピクセルサイズが10以上のユニットを大角粒とみなした。また、測定視野の端部にかかる大角粒は解析から除外した。大角粒の平均円相当径を求め、大角粒の合計面積に占める、該平均円相当径が7.5μm以下の大角粒の合計面積分率SAを算出した。 The obtained EBSD data was analyzed by analysis software OIM Analysis manufactured by TSL Solutions Co., Ltd. In the obtained data, points having a Confidence Index of 0.100 or less were removed, and grain boundaries having a crystal orientation of 15 ° or more with adjacent pixels were defined as large-angle grain boundaries. Among the units surrounded by the large-angle grain boundaries, the units having a pixel size of 10 or more were regarded as large-angle grains. In addition, large-angle grains on the edge of the measurement field of view were excluded from the analysis. The average circle equivalent diameter of the large square grains was obtained, and the total surface integral SA of the large square grains having the average circle equivalent diameter of 7.5 μm or less in the total area of the large square grains was calculated.

3.機械的特性
(降伏強度YS)
熱間圧延ままの鋼板のt/4位置およびt/2位置において、板幅方向(C方向)に平行に、ASTM丸棒引張り試験片を採取し、ASTMの要領で引張試験を行って、降伏強度YSを測定した。
(母材の低温靭性)
熱間圧延ままの鋼板のt/4位置およびt/2位置において、板幅方向(C方向)に平行に、Vノッチシャルピー試験片を採取し、ASTMの要領でシャルピー衝撃試験を実施した。そして脆性破面率が50%となる温度vTrsを評価した。
3. 3. Mechanical properties (yield strength YS)
At the t / 4 and t / 2 positions of the hot-rolled steel sheet, an ASTM round bar tensile test piece is taken in parallel with the plate width direction (C direction), and a tensile test is performed in the manner of ASTM to yield. The intensity YS was measured.
(Low temperature toughness of base material)
At the t / 4 and t / 2 positions of the hot-rolled steel sheet, V-notch Charpy test pieces were collected in parallel with the plate width direction (C direction), and a Charpy impact test was carried out in the manner of ASTM. Then, the temperature vTrs at which the brittle fracture surface ratio was 50% was evaluated.

上記測定して得られた降伏強度YP、脆性延性遷移温度vTrsを下記式(2)に代入し、t/4位置、t/2位置それぞれの位置のY値を求めた。その結果を表2に併記する。なお表2において、vTrs>−30℃の場合は、Y値の計算に際しvTrs=−30℃として計算した。またvTrs<−130℃の場合は、Y値の計算に際しvTrs=−130℃として計算した。
Y=20×vTrs−7×YP・・・(2)
The yield strength YP and the brittle ductility transition temperature vTrs obtained by the above measurement were substituted into the following equation (2), and the Y values at the t / 4 position and the t / 2 position were obtained. The results are also shown in Table 2. In Table 2, when vTrs> −30 ° C., vTrs = −30 ° C. was calculated when calculating the Y value. When vTrs <−130 ° C., vTrs = −130 ° C. was calculated when calculating the Y value.
Y = 20 × vTrs-7 × YP ... (2)

表1、2から次のことがわかる。実験No.1〜11は、本発明で規定する成分組成を満たし、かつ規定する条件で厚鋼板を製造したため、得られた厚鋼板は、板厚が厚くとも鋼板の内部にわたって、強度−靭性バランスに優れている。特には、高強度を示すと共に従来よりも低温での靭性に優れている。これに対して実験No.12〜17は、成分組成、製造条件の少なくともいずれかが本発明で規定する範囲内にないため、得られた厚鋼板は、強度−靭性バランスに劣る結果となった。 The following can be seen from Tables 1 and 2. Experiment No. Since 1 to 11 satisfy the component composition specified in the present invention and the thick steel sheet is manufactured under the specified conditions, the obtained thick steel sheet has an excellent strength-toughness balance over the inside of the steel sheet even if the sheet thickness is thick. There is. In particular, it exhibits high strength and is superior in toughness at low temperatures than before. On the other hand, Experiment No. Since at least one of the component composition and the production conditions of 12 to 17 is not within the range specified in the present invention, the obtained thick steel sheet has a poor strength-toughness balance.

実験No.12は、成分組成は本発明の範囲内にあるものの、製造条件において、850℃以下の温度域での累積圧下率が不足したため、t/4およびt/2のいずれの位置においてもAF組織が不足し、強度−靭性バランスに劣る結果となった。 Experiment No. In No. 12, although the component composition was within the range of the present invention, the cumulative reduction rate in the temperature range of 850 ° C. or lower was insufficient under the manufacturing conditions, so that the AF structure was formed at both the t / 4 and t / 2 positions. Insufficient, resulting in poor strength-toughness balance.

実験No.13および14は、成分組成は本発明の範囲内にあるものの、製造条件において、仕上圧延温度が高かったため、t/4およびt/2のいずれの位置においてもAF組織が不足し、強度−靭性バランスに劣る結果となった。 Experiment No. Although the composition of components 13 and 14 was within the range of the present invention, the AF structure was insufficient at both t / 4 and t / 2 positions due to the high finishing rolling temperature under the manufacturing conditions, and the strength-toughness was increased. The result was inferior in balance.

実験No.15は、Di+10Nbが規定の範囲を下回ったため、強度−靭性バランスに劣る結果となった。この実験No.15では、上記Di+10Nbが規定の範囲を下回ったことにより、粒界フェライトとともにパーライト組織が生成したと考えられる。その結果、AF組織が不足して強度−靭性バランスが劣ったと考えられる。 Experiment No. In No. 15, Di + 10Nb was below the specified range, resulting in an inferior strength-toughness balance. This experiment No. In No. 15, it is considered that the pearlite structure was formed together with the grain boundary ferrite because the Di + 10Nb was below the specified range. As a result, it is considered that the AF structure is insufficient and the strength-toughness balance is poor.

実験No.16および17は、Di+10Nbが規定の範囲を上回ったため、強度−靭性バランスに劣る結果となった。この実験No.16および17では、上記Di+10Nbが規定の範囲を上回ったことにより、硬質なマルテンサイト組織が生成したと考えられる。その結果、この硬質なマルテンサイト組織が脆性破壊起点として作用することで、強度−靭性バランスが劣ったと考えられる。 Experiment No. In 16 and 17, Di + 10Nb exceeded the specified range, resulting in poor strength-toughness balance. This experiment No. In 16 and 17, it is considered that a hard martensite structure was formed because the above Di + 10Nb exceeded the specified range. As a result, it is considered that the strength-toughness balance is inferior because this hard martensite structure acts as a brittle fracture starting point.

実験No.18は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延前の加熱温度が低く、かつ仕上圧延温度が高いため、十分なAF組織を確保することができず、強度−靭性バランスに劣る結果となった。 Experiment No. No. 18 has a component composition within the range of the present invention, but under the manufacturing conditions, the heating temperature before hot rolling is low and the finish rolling temperature is high, so that a sufficient AF structure cannot be secured and the strength is increased. -The result was poor toughness balance.

実験No.19は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延前の加熱温度が高いため、微細なAF組織を一定以上確保することができず、強度−靭性バランスに劣る結果となった。 Experiment No. No. 19 has a component composition within the range of the present invention, but under the manufacturing conditions, the heating temperature before hot rolling is high, so that a fine AF structure cannot be secured above a certain level, and the strength-toughness balance is inferior. The result was.

実験No.20は、B量が0.0008%であり、上限の0.0007%を上回っているため、硬質なマルテンサイトが生成して、t/4位置およびt/2位置のSAが不足し、特性が悪くなった。 Experiment No. In No. 20, the amount of B is 0.0008%, which exceeds the upper limit of 0.0007%. Therefore, hard martensite is generated, and SA at the t / 4 position and the t / 2 position is insufficient, which is a characteristic. Has gotten worse.

実験No.21は、成分組成は本発明の範囲内にあるものの、製造条件において、熱間圧延時の最終3パスの圧延の平均圧下率が低すぎたため、微細なAF組織を一定以上確保することができず、強度−靭性バランスに劣る結果となった。 Experiment No. In No. 21, although the component composition was within the range of the present invention, the average rolling reduction of the final three-pass rolling during hot rolling was too low under the manufacturing conditions, so that a fine AF structure could be secured above a certain level. However, the result was that the strength-toughness balance was inferior.

実験No.22は、Nb量が不足しており、かつ製造条件において、850℃以下の温度域での累積圧下率と最終3パスの圧延の平均圧下率も低いため、微細なAF組織を一定以上確保することができず、強度−靭性バランスに劣る結果となった。 Experiment No. In No. 22, the amount of Nb is insufficient, and the cumulative reduction rate in the temperature range of 850 ° C. or lower and the average reduction rate of rolling in the final 3 passes are also low under the manufacturing conditions, so that a fine AF structure is secured above a certain level. The result was that the strength-toughness balance was inferior.

図1は、上記実施例をもとに作成した、結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAと、Y値の関係を示すグラフである。なお、図1における下向きの矢印は、測定されたvTrsが−130℃よりも低かったため、Y値は、プロットされた値よりも低い値であると推測されることを意味し、上向きの矢印は、測定されたvTrsが−30℃よりも高かったため、Y値は、プロットされた値よりも高い値であると推測されることを意味する。 FIG. 1 shows the total area fraction SA of crystal grains having a circle-equivalent diameter of 7.5 μm or less among the crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 15 ° or more, which were created based on the above embodiment. , Is a graph showing the relationship between Y values. The downward arrow in FIG. 1 means that the measured vTrs was lower than −130 ° C., so that the Y value is presumed to be lower than the plotted value, and the upward arrow indicates that the value is lower than the plotted value. , The measured vTrs were higher than -30 ° C, which means that the Y value is presumed to be higher than the plotted values.

この図1から、鋼板におけるt/4位置、t/2位置のいずれにおいても、前記合計面積分率SAとY値との間には相関があり、t/4位置において、Y値を−5200未満とするには、前記合計面積分率SAを34%以上とする必要があり、またt/2位置において、Y値を−4700未満とするには、前記合計面積分率SAを27%以上とする必要があることがわかる。 From FIG. 1, there is a correlation between the total area fraction SA and the Y value at both the t / 4 position and the t / 2 position on the steel sheet, and the Y value is set to −5200 at the t / 4 position. To make it less than, the total area fraction SA must be 34% or more, and to make the Y value less than -4700 at the t / 2 position, the total area fraction SA must be 27% or more. It turns out that it is necessary to.

Claims (5)

成分組成が、
C :0.02質量%〜0.070質量%、
Si:0質量%超、0.40質量%以下、
Mn:1.30質量%〜1.95質量%、
P :0質量%超、0.015質量%以下、
S :0質量%超、0.005質量%以下、
Al:0.005質量%〜0.070質量%、
Nb:0.015質量%〜0.048質量%、
Ti:0.005質量%〜0.024質量%、
N :0.0030質量%〜0.0080質量%、および
Ca:0質量%超、0.0040質量%以下
を満たし、残部がFeおよび不可避不純物からなり、
下記式(1)から求められるDi+10Nb:1.20〜2.50を満たし、
結晶方位差15°以上の大角粒界に囲まれる結晶粒のうち、円相当直径が7.5μm以下の結晶粒の合計面積分率SAが、板厚の1/4位置で34%以上、かつ板厚の1/2位置で27%以上である厚鋼板。
Di=1.16×([C]/10)0.5×(0.7×[Si]+1)×(5.1×([Mn]−1.2)+5)×(0.35×[Cu]+1)×(0.36×[Ni]+1)×(2.16×[Cr]+1)×(3×[Mo]+1)×(1.75×[V]+1)×(200×[B]+1)・・・(1)
式(1)において、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]および[B]は、それぞれ、質量%で示したC、Si、Mn、Cu、Ni、Cr、Mo、VおよびBの含有量を示し、含まない元素はゼロとする。
Ingredient composition
C: 0.02% by mass to 0.070% by mass,
Si: More than 0% by mass, 0.40% by mass or less,
Mn: 1.30% by mass to 1.95% by mass,
P: More than 0% by mass, 0.015% by mass or less,
S: More than 0% by mass, 0.005% by mass or less,
Al: 0.005% by mass to 0.070% by mass,
Nb: 0.015% by mass to 0.048% by mass,
Ti: 0.005% by mass to 0.024% by mass,
N: 0.0030% by mass to 0.0080% by mass, and Ca: more than 0% by mass, 0.0040% by mass or less, and the balance is composed of Fe and unavoidable impurities.
Di + 10Nb: 1.20 to 2.50 obtained from the following formula (1) is satisfied.
Among the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more, the total area fraction SA of the crystal grains having a circle-equivalent diameter of 7.5 μm or less is 34% or more at the 1/4 position of the plate thickness and A thick steel plate that is 27% or more at 1/2 of the plate thickness.
Di = 1.16 x ([C] / 10) 0.5 x (0.7 x [Si] + 1) x (5.1 x ([Mn] -1.2) + 5) x (0.35 x) [Cu] +1) x (0.36 x [Ni] +1) x (2.16 x [Cr] +1) x (3 x [Mo] + 1) x (1.75 x [V] +1) x (200 × [B] +1) ・ ・ ・ (1)
In the formula (1), [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are represented by mass%, respectively. The contents of C, Si, Mn, Cu, Ni, Cr, Mo, V and B are shown, and the elements not contained are set to zero.
更に、
Cu:0質量%超、0.75質量%以下、および
Ni:0質量%超、1.4質量%以下
よりなる群から選択される1種以上の元素を含む請求項1に記載の厚鋼板。
In addition
The thick steel plate according to claim 1, which contains one or more elements selected from the group consisting of Cu: more than 0% by mass and 0.75% by mass or less, and Ni: more than 0% by mass and 1.4% by mass or less. ..
更に、
Mo:0質量%超、0.50質量%以下、
V :0質量%超、0.060質量%以下、
Cr:0質量%超、0.8質量%以下、および
B :0質量%超、0.0007質量%以下
よりなる群から選択される1種以上の元素を含む請求項1または2に記載の厚鋼板。
In addition
Mo: More than 0% by mass, 0.50% by mass or less,
V: More than 0% by mass, 0.060% by mass or less,
The invention according to claim 1 or 2, which comprises one or more elements selected from the group consisting of Cr: more than 0% by mass and 0.8% by mass or less, and B: more than 0% by mass and 0.0007% by mass or less. Thick steel plate.
更に、
REM:0質量%超、0.0060質量%以下、および
Zr:0質量%超、0.0050質量%以下
よりなる群から選択される1種以上の元素を含む請求項1〜3のいずれかに記載の厚鋼板。
In addition
Any of claims 1 to 3 containing one or more elements selected from the group consisting of REM: more than 0% by mass, 0.0060% by mass or less, and Zr: more than 0% by mass, 0.0050% by mass or less. The thick steel plate described in.
請求項1〜4のいずれかに記載の厚鋼板を製造する方法であって、
請求項1〜4のいずれかに記載の成分組成を有する鋼片を、1020℃超、1200℃未満に加熱する工程と、前記加熱後の熱間圧延工程とを含み、
前記熱間圧延工程は、圧延パス数を3パス以上とし、かつ下記(a)〜(d)の条件を全て満たすように、熱間圧延と該熱間圧延後の冷却を行う厚鋼板の製造方法。
(a)850℃以下の温度域での累積圧下率が40%以上
(b)最終3パスの圧延の平均圧下率が5.5%以上
(c)仕上圧延温度が720〜830℃
(d)熱間圧延後、仕上圧延温度〜690℃の冷却開始温度から、320〜550℃の冷却停止温度までを、平均冷却速度0.5〜20℃/sで冷却する。
The method for producing a thick steel sheet according to any one of claims 1 to 4.
A step of heating a steel piece having the component composition according to any one of claims 1 to 4 to more than 1020 ° C. and lower than 1200 ° C. and a hot rolling step after the heating are included.
In the hot rolling step, a thick steel sheet is manufactured by hot rolling and cooling after the hot rolling so that the number of rolling passes is 3 or more and all of the following conditions (a) to (d) are satisfied. Method.
(A) Cumulative rolling reduction rate in the temperature range of 850 ° C. or lower is 40% or more (b) Average rolling reduction rate of rolling in the final 3 passes is 5.5% or higher (c) Finishing rolling temperature is 720 to 830 ° C.
(D) After hot rolling, the temperature from the finishing rolling temperature to 690 ° C. to the cooling stop temperature of 320 to 550 ° C. is cooled at an average cooling rate of 0.5 to 20 ° C./s.
JP2020007626A 2019-04-22 2020-01-21 Thick steel plate and its manufacturing method Active JP7398970B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217034903A KR20210142184A (en) 2019-04-22 2020-03-30 Thick steel plate and manufacturing method thereof
PCT/JP2020/014612 WO2020217873A1 (en) 2019-04-22 2020-03-30 Thick steel plate
CN202080029745.4A CN113840933B (en) 2019-04-22 2020-03-30 Thick steel plate and method for producing same
EP20794425.7A EP3940103A4 (en) 2019-04-22 2020-03-30 Thick steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081271 2019-04-22
JP2019081271 2019-04-22

Publications (2)

Publication Number Publication Date
JP2020176329A true JP2020176329A (en) 2020-10-29
JP7398970B2 JP7398970B2 (en) 2023-12-15

Family

ID=72936617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007626A Active JP7398970B2 (en) 2019-04-22 2020-01-21 Thick steel plate and its manufacturing method

Country Status (5)

Country Link
EP (1) EP3940103A4 (en)
JP (1) JP7398970B2 (en)
KR (1) KR20210142184A (en)
CN (1) CN113840933B (en)
WO (1) WO2020217873A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219350421U (en) 2021-10-22 2023-07-14 株式会社Lg新能源 Cylindrical battery, collector plate applied to cylindrical battery, battery pack comprising cylindrical battery and automobile

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008025014A (en) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
JP2009127065A (en) * 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP2011179042A (en) * 2010-02-26 2011-09-15 Jfe Steel Corp Method for manufacturing thick-wall high-tensile-strength hot-rolled steel plate superior in low-temperature toughness
JP2013204145A (en) * 2012-03-29 2013-10-07 Kobe Steel Ltd Steel sheet excellent in bendability, impact property and tensile characteristics, and method for manufacturing the same
JP5679091B1 (en) * 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5812193B2 (en) * 2012-05-21 2015-11-11 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP2016148105A (en) * 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor
JP2019502018A (en) * 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
WO2019058424A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Steel tube and steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851189B1 (en) * 2006-11-02 2008-08-08 주식회사 포스코 Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
JP6196929B2 (en) * 2014-04-08 2017-09-13 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness at cryogenic temperatures
JP2019081271A (en) 2017-10-30 2019-05-30 クラレプラスチックス株式会社 Whiteboard and projection screen combined film
JP7100318B2 (en) 2018-07-11 2022-07-13 Tnk水道コンサルタント株式会社 Sulfuric acid corrosion resistant concrete pipes, methods for preventing sulfuric acid corrosion of concrete pipes and methods for preventing corrosion of reinforcing bars

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
JP2007270194A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Method for producing high-strength steel sheet excellent in sr resistance property
JP2008025014A (en) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
JP2009127065A (en) * 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2011096456A1 (en) * 2010-02-08 2011-08-11 新日本製鐵株式会社 Production method for thick steel plate
JP2011179042A (en) * 2010-02-26 2011-09-15 Jfe Steel Corp Method for manufacturing thick-wall high-tensile-strength hot-rolled steel plate superior in low-temperature toughness
JP2013204145A (en) * 2012-03-29 2013-10-07 Kobe Steel Ltd Steel sheet excellent in bendability, impact property and tensile characteristics, and method for manufacturing the same
JP5812193B2 (en) * 2012-05-21 2015-11-11 Jfeスチール株式会社 Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5679091B1 (en) * 2013-04-04 2015-03-04 Jfeスチール株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP2016148105A (en) * 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor
JP2019502018A (en) * 2015-12-04 2019-01-24 ポスコPosco High-strength steel material excellent in brittle crack propagation resistance and brittle crack initiation resistance of welds and method for producing the same
WO2019058424A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Steel tube and steel sheet

Also Published As

Publication number Publication date
CN113840933A (en) 2021-12-24
WO2020217873A1 (en) 2020-10-29
EP3940103A4 (en) 2022-11-30
CN113840933B (en) 2022-09-16
EP3940103A1 (en) 2022-01-19
JP7398970B2 (en) 2023-12-15
KR20210142184A (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US11578376B2 (en) Steel for pressure vessels having excellent resistance to hydrogen induced cracking and manufacturing method thereof
US20200087764A1 (en) High-strength steel sheet
US10752968B2 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
US9297052B2 (en) High strength cold rolled steel sheet with excellent deep drawability and material uniformity in coil and method for manufacturing the same
CN105671447A (en) High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same
TWI705143B (en) Hot rolled steel plate and manufacturing method thereof
US10697039B2 (en) High-strength steel sheet and method for manufacturing the same
JP2021509446A (en) Steel materials for pressure vessels and their manufacturing methods
KR102265252B1 (en) High-strength steel sheet and its manufacturing method
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
US10760142B2 (en) High-strength steel sheet and method for manufacturing the same
JPWO2020148948A1 (en) High-strength galvanized steel sheet and its manufacturing method
KR102590522B1 (en) Cold rolled steel sheet and manufacturing method thereof
CN107406939A (en) High strength cold rolled steel plate and its manufacture method
WO2020217873A1 (en) Thick steel plate
CN112930415A (en) Austenitic high manganese steel material for ultra-low temperature use excellent in shape and method for producing same
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
WO2022149365A1 (en) Steel sheet pile and manufacturing method therefor
TWI732658B (en) Steel and its manufacturing method
CN114867883B (en) Steel material for thermoforming, thermoformed part, and method for producing same
TWI726798B (en) Steel and its manufacturing method
CN113412340A (en) Steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R151 Written notification of patent or utility model registration

Ref document number: 7398970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151