JP2003293039A - Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness - Google Patents

Method for producing high strength steel plate and steel pipe with low content of coarse crystal grin and having excellent low temperature toughness

Info

Publication number
JP2003293039A
JP2003293039A JP2002098897A JP2002098897A JP2003293039A JP 2003293039 A JP2003293039 A JP 2003293039A JP 2002098897 A JP2002098897 A JP 2002098897A JP 2002098897 A JP2002098897 A JP 2002098897A JP 2003293039 A JP2003293039 A JP 2003293039A
Authority
JP
Japan
Prior art keywords
rolling
temperature toughness
austenite
low temperature
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002098897A
Other languages
Japanese (ja)
Other versions
JP3793478B2 (en
Inventor
Takuya Hara
卓也 原
Hitoshi Asahi
均 朝日
Toshihiko Koseki
敏彦 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002098897A priority Critical patent/JP3793478B2/en
Publication of JP2003293039A publication Critical patent/JP2003293039A/en
Application granted granted Critical
Publication of JP3793478B2 publication Critical patent/JP3793478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Metal Rolling (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an ultra-high strength steel plate and steel pipe having excellent low temperature toughness and ≥900 MPa tensile strength by which fine-granulation of crystal grain is performed by further promoting recrystallization in γ-recrystallization zone rolling and the low temperature toughness having ≥200 J shelf-energy (Charpy energy) is obtained. <P>SOLUTION: In the method for producing the ultra-high strength steel plate having ≥900 MPa tensile strength and excellent low temperature toughness, after reheating a continuously cast slab containing a prescribed component and consisting essentially of bainite and martensite in the casting structure, a hot-rolling at ≥900°C rolling temperature in the recrystallization zone, ≥5% average rolling-reduction ratio per one pass of each rolling and ≥3 sec passing time of each rolling, is performed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、引張り強度(T
S)が900MPa以上の低温靱性に優れた超高強度熱
間圧延鋼板及び鋼管の製造方法に関するものである。こ
のような超高強度熱間圧延鋼は、さらに、加工、溶接さ
れて、天然ガス・原油輸送用のラインパイプ、圧力容
器、溶接構造物などの溶接性鋼材として広く用いられ
る。
TECHNICAL FIELD The present invention relates to tensile strength (T
The present invention relates to a method for producing an ultrahigh strength hot-rolled steel sheet and a steel pipe which have excellent low temperature toughness of S) of 900 MPa or more. Such ultra-high strength hot-rolled steel is further processed and welded to be widely used as a weldable steel material such as a line pipe for transporting natural gas / crude oil, a pressure vessel, and a welded structure.

【0002】[0002]

【従来の技術】近年、ラインパイプ用鋼板、揚水用鋼板
(例えばペンストック)または圧力容器用鋼板では、高強
度化および高低温靱性化の需要が増えてきている。ライ
ンパイプ用鋼板では、例えば、引張強度が950MPa
(API規格でX100)以上の超高強度鋼板の製造に
関して、既に多くの研究が行われている(PCT/JP
96/00155、00157)。このようなラインパ
イプ用鋼板などとして使用する超高強度鋼板では、高い
強度のみならず良好な低温靱性が要求されることが多
く、例えば、ラインパイプ用鋼板では、シェルフエネル
ギーで200J以上の低温靱性が求められている。
2. Description of the Related Art In recent years, steel plates for line pipes and steel plates for pumping water
Demand for high strength and high temperature low temperature toughness is increasing for (for example, penstock) or pressure vessel steel plates. For the steel sheet for line pipe, for example, the tensile strength is 950 MPa.
Much research has already been conducted on the production of ultra-high strength steel sheets (X100 in the API standard) and above (PCT / JP
96/00155, 00157). Ultra high strength steel sheets used as such steel sheets for line pipes are often required to have not only high strength but also good low temperature toughness. For example, steel sheets for line pipes have a low temperature toughness of 200 J or more at shelf energy. Is required.

【0003】一般に、引張強度が900MPa以上の超
高強度レベルの鋼では、鋼成分としてMn、Ni、Cu
等の焼き入れ性が高い合金元素量を比較的多く添加する
必要があるため、このような鋼を連続鋳造などで製造す
る場合には、その鋳造組織中のフェライト生成が抑制さ
れ、鋳片の鋳造組織としてベイナイト及びマルテンサイ
トの混合組織が90%以上含有し、それらの結晶粒径が
旧オーステナイト粒径で1mm以上の粗大なベイナイト
及びマルテンサイト単相(ここでのべイナイト組織とマ
ルテンサイト組織は、何れもラス構造の組織であり、光
学顕微鏡では区別が困難な組織であるため「単相」とい
う表現を用いた。以下、同様である。)または主体組織
となる。このような鋳造組織を有する鋳片を用いて熱間
圧延を行うための再加熱を行う場合には、ベイナイトお
よびマルテンサイト組織がオーステナイトに変態した後
も、その結晶粒径は、鋳造組織の結晶粒径(旧オーステ
ナイト粒径)とほぼ同じ程度に粗大となり、その後、通
常の熱間圧延をおこなっても再結晶が十分促進されず、
鋼板にも粗大な結晶粒が残存しやすかった。鋼板中の一
部に粗大結晶粒が存在する場合には、それが破壊の発生
点となり上部シェルフ域でもシャルピーエネルギーが低
下するため、これが引張り強度が900MPa以上の超
高強度熱間圧延鋼の低温靱性を低下させる原因となって
いる。
Generally, in steels having a tensile strength of 900 MPa or more and an ultrahigh strength level, Mn, Ni and Cu are used as steel components.
Since it is necessary to add a relatively large amount of alloying elements with high hardenability such as, when producing such steel by continuous casting, ferrite formation in the cast structure is suppressed, and Coarse bainite and martensite single phase containing mixed composition of bainite and martensite of 90% or more as a casting structure and having a crystal grain size of 1 mm or more in terms of former austenite grain size (the bainite structure and martensite structure here) Is a structure having a lath structure and is difficult to distinguish by an optical microscope, and thus the expression “single phase” is used. The same applies hereinafter) or a main structure. When performing reheating for performing hot rolling using a slab having such a cast structure, even after the bainite and martensite structures are transformed into austenite, the crystal grain size is the crystal of the cast structure. The grain size becomes coarse to the same extent as the grain size (former austenite grain size), and then recrystallization is not sufficiently promoted even if normal hot rolling is performed,
It was easy for coarse crystal grains to remain on the steel sheet. When coarse crystal grains are present in a part of the steel sheet, it becomes a point of fracture and the Charpy energy is lowered even in the upper shelf region. This is because the tensile strength of ultra high strength hot rolled steel at 900 MPa or higher is low. It is a cause of lowering toughness.

【0004】熱間圧延での再加熱時の鋳片結晶粒の粗大
化を抑制することにより引張り強度が900MPa以上
の超高強度鋼板の低温靱性を向上させる方法としては、
例えば、特開平11−140580号公報には、連続鋳
造時の冷却速度を制御して、鋳造組織に粒内変態フェラ
イトを10%以上含有させた鋳片を製造し、この鋳片を
用いて熱間圧延するための再加熱におけるオーステナイ
ト変態によりフェライトの界面からオーステナイトが多
く生成させ、結晶粒を整粒、微細化する方法が開示され
ている。しかしながら、この方法では、鋳造組織中に粒
内フェライトを10%以上生成させるためにAl含有量
を0.004%未満に低減させると共に、連続鋳造時の
冷却速度を制御させる必要があるために、精錬および鋳
造の時間が長くなり、コストが高くなる等の生産性およ
び経済性の点で不利な面があった。
As a method for improving the low temperature toughness of an ultra high strength steel sheet having a tensile strength of 900 MPa or more by suppressing the coarsening of the slab crystal grains during reheating in hot rolling,
For example, in JP-A-11-140580, a cooling rate during continuous casting is controlled to manufacture a slab containing 10% or more of intragranular transformation ferrite in the casting structure, and the slab is used for heat treatment. A method is disclosed in which a large amount of austenite is generated from the interface of ferrite by austenite transformation in reheating for hot rolling, and crystal grains are sized and refined. However, in this method, it is necessary to reduce the Al content to less than 0.004% in order to generate 10% or more of intragranular ferrite in the cast structure, and to control the cooling rate during continuous casting. There are disadvantages in terms of productivity and economy such as refining and casting time being long and cost being high.

【0005】一方、熱間圧延工程におけるオーステナイ
ト再結晶を用いて引張り強度が900MPa以上の超高
強度鋼板の低温靱性を向上させる方法としては、例え
ば、特表2001−511482号公報では、熱間圧延
のオーステナイト再結晶温度域での圧下率およびオース
テナイト未再結晶温度域での圧下率を規定することによ
り鋼板の低温靱性を向上させる方法が知られているが、
オーステナイト再結晶粒域の圧延パス間時間や1パス当
たりの圧下率などの再結晶条件は考慮させていないた
め、ベイナイト・マルテンサイト主体の超高強度鋳片を
用いて加熱−熱間圧延する際にシェルフエネルギーで2
00J以上の低温靱性の優れた鋼板を安定して製造する
ことは困難であった。
On the other hand, as a method for improving the low temperature toughness of an ultra high strength steel sheet having a tensile strength of 900 MPa or more by using austenite recrystallization in the hot rolling step, for example, in Japanese Patent Publication No. 2001-511482, hot rolling is performed. Although a method for improving the low temperature toughness of the steel sheet by defining the reduction ratio in the austenite recrystallization temperature region and the reduction ratio in the austenite non-recrystallization temperature region is known,
Since the recrystallization conditions such as the time between rolling passes in the austenite recrystallized grain region and the rolling reduction per pass are not taken into consideration, when performing hot-hot rolling using ultra-high strength slab mainly composed of bainite and martensite. 2 with shelf energy
It was difficult to stably manufacture a steel sheet having a low temperature toughness of 00 J or more and having excellent low temperature toughness.

【0006】[0006]

【発明が解決しようとする課題】本発明は、再加熱時に
オーステナイト結晶粒の粗大化が発生しやすいベイナイ
ト及びマルテンサイト単相または主体組織の超高強度連
続鋳片を用いて熱間圧延する際の圧延条件、特にγ再結
晶域圧延の各圧延1パス当たりの平均圧下率および各圧
延パス時間を規定してオーステナイト再結晶をより促進
させることにより結晶粒の細粒化をおこない、シェルフ
エネルギーで200J以上の低温靱性が得られる、低温
靱性に優れた引張強度が900MPa以上の超高強度鋼
板及び鋼管の製造方法を提供するものである。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention The present invention is intended for hot rolling using bainite and martensite single-phase or ultra-high-strength continuous cast slabs having a main structure, in which coarsening of austenite grains tends to occur during reheating. The rolling conditions, especially γ recrystallization zone rolling, the average rolling reduction per rolling 1 pass and each rolling pass time are specified to further refine the austenite recrystallization to make the grains finer, and with shelf energy. It is intended to provide a method for producing an ultrahigh-strength steel sheet and a steel pipe having a low temperature toughness of 200 J or more and an excellent low temperature toughness and a tensile strength of 900 MPa or more.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の技術的
課題を解決するものであり、その発明の要旨とするとこ
ろは、以下のとおりである。 (1)質量%で、C:0.03〜0.10%、Si:
0.01〜0.6%、Mn:1.7〜2.5%、P:
0.015%以下、S:0.003%以下、Ni:0.
1〜2.0%、Mo:0.01〜0.60%、Nb:
0.001〜0.10%、Ti:0.001〜0.03
0%、Al:0.001〜0.040%、N:0.00
01〜0.006%を含み、さらに、B:0.0001
〜0.003%、V:0.01〜0.10%、Cu:
0.01〜1.0%、Cr:0.01〜0.6%、C
a:0.0001〜0.01%、REM:0.0001
〜0.02%およびMg:0.0001〜0.006%
のうちの1種または2種以上を含有し、残部が鉄および
不可避的不純物からなり、かつ鋳造組織にベイナイト及
びマルテンサイトを90%以上含有する連続鋳造鋳片を
再加熱後、再結晶域圧延における圧延温度が900℃以
上、かつ各圧延1パス当たりの平均圧下率が5%以上で
熱間圧延を行うことを特徴とする引張り強度が900M
Pa以上の低温靱性に優れた超高強度鋼板の製造方法。 (2)質量%で、C:0.03〜0.10%、Si:
0.01〜0.6%、Mn:1.7〜2.5%、P:
0.015%以下、S:0.003%以下、Ni:0.
1〜2.0%、Mo:0.01〜0.60%、Nb:
0.001〜0.10%、Ti:0.001〜0.03
0%、Al:0.001〜0.040%、N:0.00
01〜0.006%を含み、さらに、B:0.0001
〜0.003%、V:0.01〜0.10%、Cu:
0.01〜1.0%、Cr:0.01〜0.6%、C
a:0.0001〜0.01%、REM:0.0001
〜0.02%およびMg:0.0001〜0.006%
のうちの1種または2種以上を含有し、残部が鉄および
不可避的不純物からなり、かつ鋳造組織にベイナイト及
びマルテンサイトを90%以上含有する連続鋳造鋳片を
再加熱後、再結晶域圧延における圧延温度が900℃以
上、かつ各圧延パス時間が3秒以上で熱間圧延を行うこ
とを特徴とする引張り強度が900MPa以上の低温靱
性に優れた超高強度鋼板の製造方法。 (3)質量%で、C:0.03〜0.10%、Si:
0.01〜0.6%、Mn:1.7〜2.5%、P:
0.015%以下、S:0.003%以下、Ni:0.
1〜2.0%、Mo:0.01〜0.60%、Nb:
0.001〜0.10%、Ti:0.001〜0.03
0%、Al:0.001〜0.040%、N:0.00
01〜0.006%を含み、さらに、B:0.0001
〜0.003%、V:0.01〜0.10%、Cu:
0.01〜1.0%、Cr:0.01〜0.6%、C
a:0.0001〜0.01%、REM:0.0001
〜0.02%およびMg:0.0001〜0.006%
のうちの1種または2種以上を含有し、残部が鉄および
不可避的不純物からなり、かつ鋳造組織にベイナイト及
びマルテンサイトを90%以上含有する連続鋳造鋳片を
再加熱後、再結晶域圧延における圧延温度が900℃以
上、各圧延1パス当たりの平均圧下率が5%以上、かつ
各圧延パス時間が3秒以上で熱間圧延を行うことを特徴
とする引張り強度が900MPa以上の低温靱性に優れ
た超高強度鋼板の製造方法。 (4)前記連続鋳造鋳片の再加熱において、該鋳片を加
熱炉へ挿入する際の温度が400℃以下であることを特
徴とする上記(1)から(3)の何れか1項に記載の引
張り強度が900MPa以上の低温靱性に優れた超高強
度鋼板の製造方法。 (5)前記連続鋳造鋳片の再加熱において、該鋳片の加
熱温度が1100〜1250℃であることを特徴とする
上記(1)から(4)の何れか1項に記載の引張り強度
が900MPa以上の低温靱性に優れた超高強度鋼板の
製造方法。 (6)さらに、未再結晶域圧延における圧延温度がAr
3またはBs〜850℃、かつ、累積圧下率が60%以上
であることを特徴とする上記(1)から(5)の何れか
1項に記載の引張り強度が900MPa以上の低温靱性
に優れた超高強度鋼板の製造方法。 (7)上記(1)から(6)の何れか1項に記載の鋼板
の製造方法により製造した鋼板を管状に冷間成形後、突
き合わせ部にシーム溶接を行うことを特徴とする引張り
強度が900MPa以上の低温靱性に優れた超高強度鋼
管の製造方法。
The present invention is to solve the above technical problems, and the gist of the invention is as follows. (1) In mass%, C: 0.03 to 0.10%, Si:
0.01-0.6%, Mn: 1.7-2.5%, P:
0.015% or less, S: 0.003% or less, Ni: 0.
1 to 2.0%, Mo: 0.01 to 0.60%, Nb:
0.001-0.10%, Ti: 0.001-0.03
0%, Al: 0.001 to 0.040%, N: 0.00
01-0.006%, and further B: 0.0001
~ 0.003%, V: 0.01-0.10%, Cu:
0.01-1.0%, Cr: 0.01-0.6%, C
a: 0.0001 to 0.01%, REM: 0.0001
~ 0.02% and Mg: 0.0001-0.006%
Of one or more of the above, the balance consisting of iron and unavoidable impurities, and the recrystallized zone rolling after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. At a rolling temperature of 900 ° C. or higher, and an average reduction rate of 5% or more per rolling pass, and a tensile strength of 900 M, which is characterized by performing hot rolling.
A method for producing an ultra-high strength steel sheet excellent in low temperature toughness of Pa or more. (2) C: 0.03 to 0.10% by mass%, Si:
0.01-0.6%, Mn: 1.7-2.5%, P:
0.015% or less, S: 0.003% or less, Ni: 0.
1 to 2.0%, Mo: 0.01 to 0.60%, Nb:
0.001-0.10%, Ti: 0.001-0.03
0%, Al: 0.001 to 0.040%, N: 0.00
01-0.006%, and further B: 0.0001
~ 0.003%, V: 0.01-0.10%, Cu:
0.01-1.0%, Cr: 0.01-0.6%, C
a: 0.0001 to 0.01%, REM: 0.0001
~ 0.02% and Mg: 0.0001-0.006%
Of one or more of the above, the balance consisting of iron and unavoidable impurities, and the recrystallized zone rolling after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. The method for producing an ultra-high strength steel sheet having a tensile strength of 900 MPa or more and excellent low-temperature toughness, characterized in that hot rolling is performed at a rolling temperature of 900 ° C. or more and a rolling pass time of 3 seconds or more. (3) C: 0.03 to 0.10% by mass%, Si:
0.01-0.6%, Mn: 1.7-2.5%, P:
0.015% or less, S: 0.003% or less, Ni: 0.
1 to 2.0%, Mo: 0.01 to 0.60%, Nb:
0.001-0.10%, Ti: 0.001-0.03
0%, Al: 0.001 to 0.040%, N: 0.00
01-0.006%, and further B: 0.0001
~ 0.003%, V: 0.01-0.10%, Cu:
0.01-1.0%, Cr: 0.01-0.6%, C
a: 0.0001 to 0.01%, REM: 0.0001
~ 0.02% and Mg: 0.0001-0.006%
Of one or more of the above, the balance consisting of iron and unavoidable impurities, and the recrystallized zone rolling after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. At a rolling temperature of 900 ° C. or higher, an average reduction rate of 5% or more per one pass of each rolling, and a hot rolling at a rolling pass time of 3 seconds or more. A method of manufacturing super high strength steel sheets with excellent heat resistance. (4) In the reheating of the continuously cast slab, the temperature at the time of inserting the slab into a heating furnace is 400 ° C. or lower, according to any one of (1) to (3) above. A method for producing an ultrahigh-strength steel sheet having a tensile strength of 900 MPa or more and excellent low temperature toughness. (5) In the reheating of the continuously cast slab, the heating temperature of the slab is 1100 to 1250 ° C., and the tensile strength according to any one of (1) to (4) above. A method for producing an ultra-high strength steel sheet excellent in low temperature toughness of 900 MPa or more. (6) Furthermore, the rolling temperature in the non-recrystallization region rolling is Ar
3 or Bs to 850 [deg.] C. and a cumulative rolling reduction of 60% or more, excellent tensile strength of 900 MPa or more and low temperature toughness according to any one of (1) to (5) above. Ultra high strength steel sheet manufacturing method. (7) The tensile strength is characterized in that the steel sheet produced by the method for producing a steel sheet according to any one of (1) to (6) above is cold-formed into a tubular shape, and then seam welding is performed at a butt portion. A method for producing an ultra-high strength steel pipe excellent in low temperature toughness of 900 MPa or more.

【0008】[0008]

【発明の実施の形態】以下、本発明の内容について詳細
に説明する。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be described in detail below.

【0009】通常、引張強度が800MPa以下で合金
元素の含有量が比較的少ない連続鋳造鋳片の鋳造組織
は、フェライトとベイナイトあるいはフェライトとパー
ライトの混合組織である。この鋳片を熱間圧延のために
再加熱した場合には、主にフェライト粒界から新たなオ
ーステナイトが多く生成し、加熱温度がAc3点直上の
950℃付近では平均結晶粒径が20μm程度の整粒オ
ーステナイトになる。そして、その後、熱間圧延により
鋼板を製造する場合には、再結晶によって、さらに細粒
化されて平均オーステナイト粒径が5μm程度のほぼ均
一な整粒組織になる。
Usually, the cast structure of a continuously cast slab having a tensile strength of 800 MPa or less and a relatively small content of alloying elements is a mixed structure of ferrite and bainite or ferrite and pearlite. When this slab is reheated for hot rolling, a large amount of new austenite is generated mainly from the ferrite grain boundaries, and the average crystal grain size is about 20 μm at a heating temperature near 950 ° C. just above the Ac 3 point. It becomes sized austenite. Then, when a steel sheet is manufactured by hot rolling thereafter, the grains are further refined by recrystallization to have a substantially uniform grain size control structure having an average austenite grain size of about 5 μm.

【0010】これに対して、Mn、Ni、Cu等の合金
元素量の含有量が比較的多い引張強度が900MPa以
上の超高強度鋼用連続鋳造鋳片のミクロ組織は、ベイナ
イト及びマルテンサイトの混合組織が90%以上でその
結晶粒径が旧オーステナイト粒径で1mm以上の粗大な
ベイナイトおよびマルテンサイト単相または主体組織で
ある。
On the other hand, the microstructure of the continuously cast slab for ultra-high strength steel having a relatively high content of alloying elements such as Mn, Ni and Cu and having a tensile strength of 900 MPa or more has a microstructure of bainite and martensite. It is a coarse bainite and martensite single-phase or main structure having a mixed structure of 90% or more and a crystal grain size of 1 mm or more in terms of prior austenite grain size.

【0011】この鋳片をそのまま熱間圧延のために再加
熱した場合には、オーステナイトは旧オーステナイト粒
界からも一部生成するが、結晶粒(旧オーステナイト
粒)内に多く存在する残留オーステナイトが容易に合体
・成長することにより、結果的に再加熱温度が900〜
1000℃では、鋳片の結晶粒(旧オーステナイト粒)
径とほぼ同じ1mm以上の粗大なオーステナイト粒にな
ることがある。これを異常フェライト・オーステナイト
変態と呼ぶ。
When this slab is reheated for hot rolling as it is, austenite is partially generated also from the former austenite grain boundary, but the retained austenite which is mostly present in the crystal grain (former austenite grain) is present. As a result of easy coalescence and growth, the reheating temperature is 900 ~
At 1000 ° C, the crystal grains of the slab (former austenite grains)
Coarse austenite grains with a diameter of 1 mm or more, which is almost the same as the diameter, may be formed. This is called abnormal ferrite-austenite transformation.

【0012】再加熱時にこのような粗大なオーステナイ
ト粒が鋼中に生成すると、その後の熱間圧延で再結晶し
にくくなり、最終成品の組織中に粒径が50〜100μ
mの粗大な結晶粒が残存し、これが低温靱性を低下させ
る原因となる。
If such coarse austenite grains are generated in the steel during reheating, it becomes difficult to recrystallize in the subsequent hot rolling, and the grain size of the final product is 50-100 μm.
Coarse crystal grains of m remain, which causes a decrease in low temperature toughness.

【0013】本発明者らは、再加熱時に異常フェライト
・オーステナイト変態によって結晶粒の粗大化が発生し
やすいベイナイト及びマルテンサイト単相または主体組
織の連続鋳造鋳片を用いて、再加熱、熱間圧延した場合
でも、熱間圧延におけるオーステナイト再結晶の促進に
より結晶粒を細粒化し低温靱性を向上できる鋼板の製造
方法について鋭意検討した。
The inventors of the present invention used a continuous cast slab of bainite and martensite single phase or a main structure in which coarsening of crystal grains is likely to occur due to abnormal ferrite / austenite transformation during reheating, Even in the case of rolling, the present inventors have earnestly studied a method for producing a steel sheet which can improve the low temperature toughness by refining crystal grains by promoting austenite recrystallization in hot rolling.

【0014】更に、発明者らは、オーステナイト再結晶
の促進のための熱間圧延条件について、種々の実験をお
こなって検討した結果、圧延条件の中で、特に所定温度
のオーステナイト再結晶域圧延における各圧延パスの平
均圧下率または各圧延パス間時間がオーステナイト再結
晶の促進のために重要であることがわかった。
Furthermore, as a result of various experiments conducted by the inventors of the present invention, the hot rolling conditions for promoting the austenite recrystallization were examined. As a result, among the rolling conditions, particularly in the austenite recrystallization zone rolling at a predetermined temperature. It has been found that the average reduction of each rolling pass or the time between rolling passes is important for promoting austenite recrystallization.

【0015】図1に圧延温度が900℃のオーステナイ
ト再結晶粒域圧延における1パス当たりの平均圧下率お
よび圧延パス間時間と、粒径が10μm以上の粗大オー
ステナイト結晶粒の分率との関係を示す。
FIG. 1 shows the relationship between the average rolling reduction per pass and rolling pass time in the austenite recrystallized grain region rolling at a rolling temperature of 900 ° C. and the fraction of coarse austenite crystal grains having a grain size of 10 μm or more. Show.

【0016】オーステナイト再結晶粒域圧延における1
パス当たりの平均圧下率が5%以上、または、オーステ
ナイト再結晶粒域圧延における圧延パス間時間が3秒以
上の何れかの条件で、鋼板組織中で破壊の発生点となる
粒径:10μm以上の粗大オーステナイト結晶粒の割合
が20%以下と少なくなり、再加熱時に異常フェライト
・オーステナイト変態によって粗大化された結晶粒を熱
間圧延のオーステナイト再結晶により微細化することが
できる。また、オーステナイト再結晶粒域圧延における
圧延1パス当たりの平均圧下率が5%以上、かつオース
テナイト再結晶粒域圧延における圧延パス間時間が3秒
以上の条件では、粒径:10μm以上の粗大オーステナ
イト結晶粒の割合が10%以下とさらに少なくなり、熱
間圧延のオーステナイト再結晶の更なる促進により結晶
粒の微細化ができることがわかった。図2に粒径:10
μm以上の粗大オーステナイト結晶粒の分率と−40℃
でのシャルピー吸収エネルギーとの関係を示す。−40
℃でのシャルピー吸収エネルギーが200J以上の優れ
た低温靱性を安定して得るためには、鋼板組織中で破壊
の発生点となる粒径:10μm以上の粗大オーステナイ
ト結晶粒の割合が20%未満とする必要がある。
1 in austenite recrystallization grain area rolling
Under the condition that the average rolling reduction per pass is 5% or more, or the time between rolling passes in austenite recrystallization grain area rolling is 3 seconds or more, the grain size at which fracture occurs in the steel sheet structure: 10 μm or more The ratio of the coarse austenite crystal grains is reduced to 20% or less, and the crystal grains coarsened by the abnormal ferrite-austenite transformation during reheating can be refined by austenite recrystallization in hot rolling. Further, under the condition that the average rolling reduction per rolling in austenite recrystallization grain region rolling is 5% or more and the rolling pass time in austenite recrystallization grain region rolling is 3 seconds or more, coarse austenite with a grain size of 10 μm or more is used. It was found that the proportion of crystal grains was further reduced to 10% or less, and the crystal grains could be refined by further promoting the austenite recrystallization in hot rolling. Particle size: 10
Fraction of coarse austenite crystal grains of μm or more and -40 ° C
Shows the relationship with the Charpy absorbed energy at. -40
In order to stably obtain excellent low temperature toughness with Charpy absorbed energy at 200 ° C. of 200 J or more, the proportion of coarse austenite crystal grains having a grain size of 10 μm or more at which fracture occurs in the steel sheet structure is less than 20%. There is a need to.

【0017】従って、本発明では、上述した検討結果を
基に、再加熱時に異常フェライト・オーステナイト変態
によって粗大化された結晶粒を熱間圧延のオーステナイ
ト再結晶を行うことにより微細化し、鋼板組織中で破壊
の発生点となる粒径:10μm以上の粗大オーステナイ
ト結晶粒の残存量を減少させることによって、−40℃
でのシャルピー吸収エネルギーが200J以上の優れた
低温靱性を安定して得るために、オーステナイト再結晶
粒域圧延における1パス当たりの平均圧下率を5%以
上、または、オーステナイト再結晶粒域圧延における圧
延パス間時間が3秒以上の何れかの条件で行う。また、
本発明では、−40℃でのシャルピー吸収エネルギーが
230J以上のより優れた低温靱性を安定して得るため
にはオーステナイト再結晶粒域圧延における1パス当た
りの平均圧下率を5%以上、かつ、オーステナイト再結
晶粒域圧延における圧延パス間時間が3秒以上とする。
Therefore, in the present invention, based on the above-mentioned examination results, the crystal grains coarsened by the abnormal ferrite-austenite transformation at the time of reheating are refined by performing austenite recrystallization of hot rolling, and the steel sheet structure -40 ° C. by decreasing the residual amount of coarse austenite crystal grains having a particle size of 10 μm or more at which fracture occurs at
In order to stably obtain excellent low temperature toughness with a Charpy absorbed energy of 200 J or more, the average rolling reduction per pass in austenite recrystallized grain region rolling is 5% or more, or rolling in austenite recrystallized grain region rolling is performed. It is performed under any condition that the time between passes is 3 seconds or more. Also,
In the present invention, in order to stably obtain a superior low temperature toughness of Charpy absorbed energy at −40 ° C. of 230 J or more, the average rolling reduction per pass in austenite recrystallization grain area rolling is 5% or more, and The time between rolling passes in austenite recrystallized grain region rolling is set to 3 seconds or more.

【0018】また、本発明では、上記再結晶域圧延の圧
延温度が900℃未満になると、オーステナイトの十分
な再結晶化が図れず、圧延1パス当たりの平均圧下率お
よび圧延パス間時間を不当増大しなければ、−40℃で
のシャルピー吸収エネルギーが200J以上の十分高い
低温靱性を得ることができず、設備・操業制約および生
産性低下の原因となるため、上記再結晶域圧延の圧延温
度を900℃以上とする。
Further, in the present invention, when the rolling temperature in the recrystallization zone rolling is lower than 900 ° C., sufficient recrystallization of austenite cannot be achieved, and the average rolling reduction per rolling pass and the time between rolling passes are not appropriate. If it does not increase, the Charpy absorbed energy at −40 ° C. cannot obtain a sufficiently high low temperature toughness of 200 J or more, which causes equipment / operation restrictions and productivity deterioration, so the rolling temperature of the above recrystallization zone rolling Is 900 ° C. or higher.

【0019】本発明では、鋼板の低温靱性を向上させる
ための製造条件として、特に、上記のように再結晶域圧
延における圧延温度、各圧延1パス当たりの平均圧下
率、および、各圧延パス時間を上記範囲に規定すること
が重要であるが、さらに、鋼板組織を整粒化し組織中の
粗大結晶粒の残留を抑制してさらに安定して低温靱性を
向上するために、以下のように加熱炉への鋳片の挿入温
度、加熱温度、未再結晶域圧延における圧延温度を規定
する。
In the present invention, as the manufacturing conditions for improving the low temperature toughness of the steel sheet, in particular, as described above, the rolling temperature in the recrystallization zone rolling, the average rolling reduction per one rolling pass, and each rolling pass time are set. It is important to specify the above in the above range, and in order to further stabilize the low temperature toughness by further controlling the grain size of the steel sheet and suppressing the retention of coarse crystal grains in the structure, heating as follows is performed. The insert temperature of the slab into the furnace, the heating temperature, and the rolling temperature in the non-recrystallization zone rolling are specified.

【0020】まず、鋳片の再加熱条件について説明す
る。
First, the reheating conditions of the cast piece will be described.

【0021】本発明では、圧延素材として、連続鋳造に
よって製造される連続鋳造鋳片を対象とするが、この鋳
片を加熱炉で再加熱する場合、この鋳片を加熱炉へ挿入
する際の温度、つまり、鋳片の加熱炉挿入温度によっ
て、再加熱時のオーステナイト変態挙動が変化する。
In the present invention, a continuously cast slab produced by continuous casting is targeted as a rolling material. When the slab is reheated in a heating furnace, the slab is inserted into the heating furnace. The austenite transformation behavior during reheating changes depending on the temperature, that is, the temperature at which the slab is inserted into the heating furnace.

【0022】鋳片の加熱炉挿入温度が400℃を越えた
状態での鋳造組織はまだベイナイトまたはマルテンサイ
ト変態が十分に進んでなく、旧オーステナイト粒界内に
同一結晶方位の残留オーステナイトが多く存在してい
る。同一結晶方位の残留オーステナイトは、Ac3直上
の温度で容易に合体・成長しやすい性質を有するため、
再加熱過程では粒界内に多く存在する残留オーステナイ
トが合体・成長する結果、旧オーステナイトの粒径とほ
ぼ同等程度まで粗大化したオーステナイトとなりやすい
(これを異常フェライト・オーステナイト変態と呼
ぶ)。したがって、本発明では、再加熱過程での異常フ
ェライト・オーステナイト変態による粗大オーステナイ
トの生成を抑制するために鋳片の加熱炉挿入温度を40
0℃以下とし、鋳片を加熱炉に挿入するまでに鋳片を冷
却してその鋳造組織を残留オーステナイトが少なくベイ
ナイト及びマルテンサイトが90%以上含有するベイナ
イト・マルテンサイト主体組織とする。
Bainite or martensite transformation has not yet proceeded sufficiently in the cast structure of the slab with the heating furnace insertion temperature exceeding 400 ° C., and a large amount of retained austenite with the same crystal orientation exists in the former austenite grain boundaries. is doing. Retained austenite with the same crystal orientation has the property of easily coalescing and growing at a temperature directly above Ac 3 ,
During the reheating process, a large amount of retained austenite existing in grain boundaries coalesces and grows, and as a result, austenite coarsened to almost the same size as the grain size of old austenite is likely to be formed (this is called abnormal ferrite-austenite transformation). Therefore, in the present invention, in order to suppress the formation of coarse austenite due to the abnormal ferrite-austenite transformation in the reheating process, the temperature for inserting the slab into the furnace is set to 40.
The slab is cooled to 0 ° C. or lower and cooled by the time the slab is inserted into a heating furnace, and the cast structure is made to have a bainite-martensite-based structure containing less than 90% of retained austenite and bainite and martensite.

【0023】また、再加熱時の加熱温度は、Ac3直上
よりも高い1100℃以上とすることにより、再加熱時
での異常フェライト・オーステナイト変態によって生じ
た粗大オーステナイトの生成が抑制され、オーステナイ
ト結晶粒がほぼ整粒化することができる。これは、再加
熱過程で鋳造組織中のマルテンサイトがAc1点以下の
温度でセメンタイトに分解され、旧オーステナイト粒界
内のラス界面に多くの塊状セメンタイトを形成し、さら
に、Ac3点以下の高温においてこの塊状セメンタイト
からオーステナイトが核生成する。粒界内の塊状セメン
タイトから生成したオーステナイトは、残留オーステナ
イトよりもC含有量が高く、かつ結晶方位と異なるた
め、残留オーステナイトに吸収合体されず、単独で成長
しようとする。さらに、2次再結晶の作用も加わってオ
ーステナイトが整粒化されると考えられる。このオース
テナイトの整粒化は、加熱温度がある程度高くなるほど
その効果も大きくなるが、加熱温度が1250℃を越え
ると、オストワルド成長によるオーステナイトの吸収合
体、粒成長が急激に起きてオーステナイトは粗大化され
る。
By setting the heating temperature during reheating to 1100 ° C. or higher, which is higher than just above Ac 3 , the generation of coarse austenite caused by abnormal ferrite-austenite transformation during reheating is suppressed, and austenite crystals are formed. Grains can be almost sized. This is because martensite in the cast structure is decomposed into cementite at a temperature of Ac 1 point or lower in the reheating process to form a large amount of massive cementite at the lath interface in the former austenite grain boundary, and further, Ac 3 point or lower. Austenite nucleates from this massive cementite at high temperatures. Austenite generated from massive cementite in grain boundaries has a higher C content than retained austenite and has a different crystal orientation, so that it is not absorbed and coalesced with retained austenite and tends to grow alone. Furthermore, it is considered that austenite is sized by the action of secondary recrystallization. This effect of sizing the austenite increases as the heating temperature rises to a certain degree, but when the heating temperature exceeds 1250 ° C., austenite absorption coalescence due to Ostwald growth and grain growth occur rapidly and the austenite becomes coarse. It

【0024】従って、本発明では、2次再結晶の作用に
よりオーステナイトが整粒化を促進し、かつ、オストワ
ルド成長によるオーステナイトの粗大化を抑制させるた
めに、再加熱時の加熱温度を1100〜1250℃に規
定する。
Therefore, in the present invention, in order to promote grain size control of austenite by the action of secondary recrystallization and suppress coarsening of austenite due to Ostwald growth, the heating temperature during reheating is 1100 to 1250. Specified in ° C.

【0025】次に、未再結晶域圧延の条件について説明
する。
Next, the conditions for rolling in the non-recrystallized region will be described.

【0026】本発明の未再結晶圧延条件は、旧オーステ
ナイト粒界以外に変形帯も多く導入し結晶粒径をさらに
微細化するために、圧下温度を850℃以下とし、か
つ、累積圧下率を60%以上とする。なお、未再結晶域
圧延の圧延温度が、Ar3点またはBs点未満と過度に
低い温度で累積圧下率を60%以上の高圧下圧延をした
場合には、加工組織が生成し低温靱性を劣化させるた
め、未再結晶域圧延の圧延温度の下限値をAr3点また
はBs点温度とする。
In the non-recrystallization rolling condition of the present invention, the rolling temperature is set to 850 ° C. or less and the cumulative rolling reduction ratio is set in order to introduce more deformation zones in addition to the old austenite grain boundaries to further refine the crystal grain size. 60% or more. When the rolling temperature of the unrecrystallized region rolling is too low such that it is less than the Ar 3 point or the Bs point and the rolling reduction is performed under high pressure with a cumulative reduction ratio of 60% or more, a worked structure is formed and low temperature toughness is improved. In order to cause deterioration, the lower limit of the rolling temperature in the non-recrystallization region rolling is set to the Ar 3 point or Bs point temperature.

【0027】本発明において引張強度:900MPa以
上、低温靱性:シェルフエネルギーで200J以上など
の目的とする特性を得るためには、上述した製造条件と
ともに熱間圧延に用いる鋳片の成分を規定する必要があ
る。
In the present invention, in order to obtain desired properties such as tensile strength: 900 MPa or more, low temperature toughness: shelf energy of 200 J or more, it is necessary to specify the components of the slab used for hot rolling together with the above-mentioned manufacturing conditions. There is.

【0028】上述のように、再加熱過程において粒界内
の塊状セメンタイトから核生成したオーステナイトを2
次再結晶によって粒成長を促進させ、異常フェライト・
オーステナイト変態を抑制させるためには、加熱温度を
より高くする必要があるが、温度が高くなるに伴いオス
トワルド成長によるオーステナイトの吸収合体、粒成長
が起きるため、加熱温度の高温化は好ましくない。本発
明では、2次再結晶によるオーステナイトの整粒化をよ
り低温域の加熱温度で行わせるためには、炭化物あるい
は窒下物等の介材物を減少させ、それによるピニング作
用を抑制させることが有効であるとの知見に基づき、炭
化物あるいは窒下物を形成するNb、V、Ti等の元素
をできる限り低減することを特徴とする。
As described above, the austenite nucleated from the lumpy cementite in the grain boundary during the reheating process is removed.
Secondary recrystallization promotes grain growth,
In order to suppress the austenite transformation, it is necessary to raise the heating temperature. However, as the temperature rises, austenite absorption coalescence and grain growth occur due to Ostwald growth, so raising the heating temperature is not preferable. In the present invention, in order to carry out sizing of austenite by secondary recrystallization at a heating temperature in a lower temperature range, it is necessary to reduce an intervening material such as a carbide or a nitrite and suppress a pinning action due to it. Based on the finding that is effective, elements such as Nb, V, and Ti that form carbides or nitriding substances are reduced as much as possible.

【0029】以下に本発明の鋼板成分の限定理由を説明
する。
The reasons for limiting the components of the steel sheet of the present invention will be described below.

【0030】Cは、鋼中で固溶または炭窒化物の析出に
より鋼の強度向上および焼き入れ性を向上させるために
極めて有効であり、本発明のベイナイトおよびマルテン
サイト主体組織および目標強度を得るために、その含有
量の下限を0.03%とした。一方、C含有量が多すぎ
ると、鋼材および溶接HAZ部の低温靱性が低下した
り、溶接後の低温割れの発生などの現地溶接性が著しく
劣化するため、その含有量の上限を0.10%とした。
更に低温靱性向上のためには、C含有量の上限を0.0
7%とするのが好ましい。
C is extremely effective in improving the strength and hardenability of the steel by forming a solid solution or carbonitride in the steel, and obtains the bainite and martensite-based microstructure and the target strength of the present invention. Therefore, the lower limit of the content is set to 0.03%. On the other hand, if the C content is too large, the low-temperature toughness of the steel material and the welded HAZ part deteriorates, or the on-site weldability such as the occurrence of cold cracking after welding remarkably deteriorates, so the upper limit of the content is 0.10. %.
Further, in order to improve the low temperature toughness, the upper limit of the C content is 0.0
It is preferably 7%.

【0031】Siは、脱酸や強度向上の作用効果を有
し、その効果を得るために0.01%以上添加する。一
方、多く添加し過ぎると、溶接HAZ靱性や現地溶接性
を著しく劣化させるので、その含有量の上限を0.6%
とした。なお、本発明鋼におけるAlおよびTiもSi
と同様に脱酸作用を有するため、Si含有量は、Alお
よびTiの含有量により調整するのが好ましい。
Si has the effect of deoxidizing and improving the strength, and is added in an amount of 0.01% or more to obtain the effect. On the other hand, if too much is added, the weld HAZ toughness and field weldability are significantly deteriorated, so the upper limit of its content is 0.6%.
And In addition, Al and Ti in the steel of the present invention are also Si
Since it has a deoxidizing effect similarly to the above, the Si content is preferably adjusted by the contents of Al and Ti.

【0032】Mnは、本発明鋼のミクロ組織をベイナイ
トおよびマルテンサイト主体の組織とし、強度および低
温靱性の良好なバランスを確保するために不可欠な元素
であり、その含有量の下限を1.7%とする。一方、M
nを多く添加し過ぎると、焼き入れ性が増加して溶接H
AZ靱性や現地溶接性を劣化させるだけでなく、連続鋳
造鋼片中の中心偏析を助長して鋼材の低温靱性を劣化さ
せるためその含有量の上限を2.5%とした。
Mn is an indispensable element for ensuring a good balance of strength and low temperature toughness by making the microstructure of the steel of the present invention mainly of bainite and martensite, and the lower limit of its content is 1.7. %. On the other hand, M
If too much n is added, the hardenability increases and welding H
In addition to deteriorating the AZ toughness and on-site weldability, the upper limit of the content is set to 2.5% in order to promote center segregation in the continuously cast steel piece and deteriorate the low temperature toughness of the steel material.

【0033】P、Sは、不可避的不純物元素であり、P
は連続鋳造鋼片の中心偏析を助長するとともに、粒界破
壊により低温靱性を向上させ、Sは熱間圧延で延伸化す
る鋼中のMnSにより延性および靱性を低下させる。従
って、本発明では、母材およびHAZの低温靱性をより
一層向上させるために、P、Sのそれぞれの含有量の上
限を0.015%、0.003%として制限する。
P and S are unavoidable impurity elements, and P
Promotes center segregation of continuously cast steel, and improves low temperature toughness by intergranular fracture, and S reduces ductility and toughness due to MnS in steel drawn by hot rolling. Therefore, in the present invention, in order to further improve the low temperature toughness of the base material and HAZ, the upper limits of the respective contents of P and S are limited to 0.015% and 0.003%.

【0034】Niは、低温靱性や現地溶接性を劣化させ
ることなく本発明の低炭素鋼の特性を向上させるために
添加する。つまり、Niは、MnやCr、Moと比較し
て熱間圧延の組織(特に連続鋳造鋼片の中心偏析帯)中に
低温靱性に有害な硬化組織の形成を比較的少なくできる
とともに、0.1%以上の微量添加により溶接HAZ靱
性の向上に有効であるため、Ni含有量の下限を0.1
%とした。さらに、溶接HAZ靱性の向上のためには、
Ni含有量の下限を0.3%以上とするのが好ましい。
一方、Ni含有量が多すぎると、Niが高価であること
による経済性の悪化だけでなく、溶接HAZ靱性や現地
溶接性を劣化させるため、その含有量の上限を2.0%
とした。
Ni is added to improve the properties of the low carbon steel of the present invention without deteriorating the low temperature toughness and the field weldability. That is, Ni can relatively reduce the formation of a hardened structure detrimental to the low temperature toughness in the structure of hot rolling (particularly the central segregation zone of the continuously cast steel slab) as compared with Mn, Cr, and Mo. Since the addition of a trace amount of 1% or more is effective in improving the weld HAZ toughness, the lower limit of the Ni content is set to 0.1.
%. Furthermore, in order to improve the weld HAZ toughness,
The lower limit of the Ni content is preferably 0.3% or more.
On the other hand, if the Ni content is too large, not only the economic efficiency is deteriorated due to the expensive Ni, but also the weld HAZ toughness and field weldability are deteriorated, so the upper limit of the content is 2.0%.
And

【0035】なお、Niの添加は、連続鋳造および熱間
圧延におけるCu起因の表面割れの防止にも有効であ
る。この目的に添加する場合は、Ni含有量をCu含有
量の1/3以上添加するのが好ましい。
The addition of Ni is also effective in preventing surface cracks caused by Cu in continuous casting and hot rolling. When added for this purpose, the Ni content is preferably added at 1/3 or more of the Cu content.

【0036】Moは、鋼の焼き入れ性を向上させ、目的
とするベイナイトおよびマルテンサイト主体の組織を得
るために添加する。特に、B添加鋼の場合には、Mo添
加による焼き入れ性向上の効果は顕著となる。また、M
oがNbと共存することにより、制御圧延時にオーステ
ナイトの再結晶化を抑制し、オーステナイト組織を微細
化する効果がある。これらのMo添加による効果を得る
ために、その含有量の下限を0.01%とした。一方、
その含有量が0.60%を超えて過剰に添加すると、製
造コストが高くなるとともに、溶接HAZ靱性や現地溶
接性が劣化するためにその含有量の上限を0.60%と
した。
Mo is added to improve the hardenability of steel and to obtain the desired microstructure mainly composed of bainite and martensite. In particular, in the case of B-added steel, the effect of improving the hardenability by adding Mo becomes remarkable. Also, M
The coexistence of o with Nb has the effect of suppressing recrystallization of austenite during controlled rolling and refining the austenite structure. In order to obtain the effect of adding Mo, the lower limit of the content is set to 0.01%. on the other hand,
If the content exceeds 0.60% and is excessively added, the manufacturing cost becomes high, and the weld HAZ toughness and field weldability deteriorate. Therefore, the upper limit of the content is set to 0.60%.

【0037】Nbは、Moと共存して制御圧延時にオー
ステナイトの再結晶化を抑制するとともに、炭窒化物の
析出によりオーステナイト組織を微細化し、また、焼入
れ性向上にも寄与するため、鋼を強靱化するために添加
する。特に、Nb添加による焼入れ性向上効果は、Bと
共存する場合に相乗的に高まる。これらのNi添加によ
る効果は、その含有量が0.001%未満では得られな
いため、その含有量の下限を0.001%とした。一
方、その添加量が多過ぎると、溶接HAZ靱性や現地溶
接性が劣化するとともに再加熱時に異常フェライト・オ
ーステナイト変態を高温域側まで引きずるためにその含
有量の上限を0.10%とした。なお、これらの効果向
上の点からその含有量の上限を0.04%とするのが好
ましい。
Nb coexists with Mo to suppress recrystallization of austenite during controlled rolling, refines the austenite structure due to the precipitation of carbonitrides, and contributes to the improvement of hardenability. Add to convert In particular, the effect of improving the hardenability by adding Nb is synergistically enhanced when it coexists with B. Since the effect due to the addition of Ni cannot be obtained when the content is less than 0.001%, the lower limit of the content is set to 0.001%. On the other hand, if the addition amount is too large, the weld HAZ toughness and field weldability deteriorate and the upper limit of the content is set to 0.10% in order to drag the abnormal ferrite-austenite transformation to the high temperature side during reheating. From the viewpoint of improving these effects, the upper limit of the content is preferably 0.04%.

【0038】Tiは、鋼中で微細な窒化物を形成し、再
加熱時にオーステナイトの粗大化を抑制するとともに、
B添加鋼の場合の焼入れ性向上に対して有害な固溶Nを
低減し焼入れ性をより向上させる。また、Al含有量が
0.005%以下と少ない場合には、Tiは鋼中で酸化
物を形成し、溶接HAZにおいて粒内変態生成核として
作用し、溶接HAZの組織を微細化する効果も有する。
これらのTi添加による効果は、その含有量が0.00
1%未満では得られないため、Ti含有量の下限を0.
001%とした。なお、窒化物の形成および固溶Nの固
定による効果を安定して得るためには、Ti含有量の下
限を、N含有量との関係から3.4Nとすることが好ま
しい。一方、Tiの添加が多過ぎると、窒化物の粗大化
や炭化物の析出硬化により、低温靱性が劣化するのに加
えて、再加熱時に異常フェライト・オーステナイト変態
を高温域側まで引きずるためにその含有量の上限を0.
030%とした。
Ti forms fine nitrides in steel and suppresses coarsening of austenite during reheating, and
In the case of B-added steel, it reduces harmful solute N which is harmful to the improvement of hardenability, and further improves hardenability. Further, when the Al content is as small as 0.005% or less, Ti forms an oxide in the steel, acts as an intragranular transformation generation nucleus in the weld HAZ, and also has the effect of refining the structure of the weld HAZ. Have.
The effect of adding Ti is that the content is 0.00
If it is less than 1%, it cannot be obtained. Therefore, the lower limit of the Ti content is 0.
It was 001%. In order to stably obtain the effect of forming the nitride and fixing the solid solution N, it is preferable that the lower limit of the Ti content is 3.4N in view of the relationship with the N content. On the other hand, if too much Ti is added, the low temperature toughness deteriorates due to the coarsening of the nitride and the precipitation hardening of the carbide, and in addition, the abnormal ferrite / austenite transformation is dragged to the high temperature side during reheating, so that its content is increased. The upper limit of the amount is 0.
It was set to 030%.

【0039】Alは、脱酸材として添加するとともに、
組織の微細化の作用も有するため、その効果を得るため
に、Al含有量の下限を0.001%とする。一方、A
l含有量が0.040%を越えると、酸化Al系の非金
属介在物が増加して鋼の清浄度を害し鋼材および溶接H
AZ靱性を劣化するため、その含有量の上限を0.06
%とした。なお、本発明鋼におけるSiおよびTiもA
lと同様に脱酸作用を有するため、Al含有量は、Si
およびTiの含有量により調整するのが好ましい。
Al is added as a deoxidizer, and
Since it also has a function of refining the structure, the lower limit of the Al content is made 0.001% in order to obtain the effect. On the other hand, A
When the content of l exceeds 0.040%, the amount of non-metallic inclusions of Al oxide type increases and the cleanliness of steel is impaired, and steel and weld H
In order to deteriorate the AZ toughness, the upper limit of its content is 0.06.
%. In addition, Si and Ti in the steel of the present invention are also A
Since it has a deoxidizing effect like l, the Al content is Si
It is preferable to adjust the content depending on the contents of Ti and Ti.

【0040】Nは、本発明鋼においてTiNの窒化物を
形成し、再加熱時の鋼材または溶接HAZにおいて粒内
変態核となりオーステナイトの粗大化を抑制し低温靱性
を向上する作用があるため、この作用効果を得るために
その含有量の下限を0.0001%とした。一方、鋼中
に多く添加し過ぎると、鋼片の表面疵の発生や固溶Nに
よる溶接HAZ靱性の劣化させ、B添加鋼の場合にはB
の焼入れ性向上効果を阻害するため、その含有量の上限
を0.006%とした。
Since N forms a nitride of TiN in the steel of the present invention and acts as an intragranular transformation nucleus in the steel material or the weld HAZ during reheating, it has the effect of suppressing coarsening of austenite and improving low temperature toughness. In order to obtain the action and effect, the lower limit of the content is set to 0.0001%. On the other hand, if too much is added to the steel, the surface flaws of the steel slab will be generated and the weld HAZ toughness will be deteriorated due to the solid solution N.
In order to impede the effect of improving the hardenability, the upper limit of the content is set to 0.006%.

【0041】本発明鋼は、以上説明した成分を基本成分
として含有するが、本発明鋼の優れた特徴を損なうこと
なく、さらに、強度および靱性の一層の向上や製造可能
な鋼材サイズの拡大を図るために、B、V、Cu、C
r、Ca、REMおよびMgのうちの1種または2種以
上を以下の含有量で添加する。
The steel of the present invention contains the above-described components as basic components. However, the strength and toughness of the steel of the present invention can be further improved and the size of steel that can be manufactured can be increased without impairing the excellent characteristics of the steel of the present invention. B, V, Cu, C
One or more of r, Ca, REM and Mg are added with the following contents.

【0042】Bは、極微量の添加により鋼の焼入れ性を
飛躍的に高めるため、本発明鋼の目的とするベイナイト
およびマルテンサイト主体の組織を得るために、有効な
元素である。また、Bは、本発明鋼のMoの焼入れ性の
向上効果を顕著にすると共に、Nbとの共存によって相
乗的に焼入れ性の向上効果を促進する。これらの効果は
その含有量が0.0001%未満では得られないため、
B含有量の下限を0.0001%とした。一方、Bを過
剰に添加すると、Fe23(C,B)6等の脆性粒子の形
成を促進し、低温靱性を劣化させるだけでなく、かえっ
てBの焼入れ性向上効果を消失せしめることもあるの
で、その含有量の上限を0.0030%とした。
B is an effective element for obtaining the target structure of bainite and martensite, which is the object of the steel of the present invention, because the hardenability of steel is dramatically enhanced by the addition of an extremely small amount. Further, B remarkably enhances the effect of improving the hardenability of Mo of the steel of the present invention and synergistically promotes the effect of improving the hardenability by coexisting with Nb. Since these effects cannot be obtained when the content is less than 0.0001%,
The lower limit of the B content was 0.0001%. On the other hand, excessive addition of B promotes the formation of brittle particles such as Fe 23 (C, B) 6 and deteriorates the low temperature toughness, and may rather extinguish the hardenability improving effect of B. The upper limit of the content was 0.0030%.

【0043】Vは、Nbとほぼ同様の作用を有し、その
効果はNbと比較して弱いが、本発明鋼におけるNbと
の共存により、鋼の強靱化効果をさらに顕著なものとす
る。その効果は、V含有量が0.001%未満では得ら
れないため、その含有量の上限を0.001%とした。
一方、その添加量が多過ぎると、溶接HAZ靱性や現地
溶接性が劣化するとともに再加熱時に異常フェライト・
オーステナイト変態を高温域側まで引きずるためにその
含有量の上限を0.10%とした。これらV添加による
効果を安定して得るためには、その含有量を0.03〜
0.08%にするのが好ましい。
V has almost the same action as Nb, and its effect is weaker than that of Nb, but the coexistence with Nb in the steel of the present invention makes the toughening effect of the steel more remarkable. Since the effect cannot be obtained when the V content is less than 0.001%, the upper limit of the content is set to 0.001%.
On the other hand, if the added amount is too large, the weld HAZ toughness and field weldability deteriorate and abnormal ferrite during reheating.
In order to drag the austenite transformation to the high temperature side, the upper limit of its content is set to 0.10%. In order to stably obtain the effect of the addition of V, the content thereof is 0.03 to
It is preferably 0.08%.

【0044】CuおよびCrは、母材および溶接HAZ
の強度を向上させる効果を得るために、それぞれ0.0
1%以上含有させる。一方、その含有量が多すぎると、
溶接HAZ靱性や現地溶接性を著しく劣化させるため、
CuおよびCrの含有量のそれぞれの上限を1.0%、
0.6%とした。
Cu and Cr are base metal and weld HAZ
In order to obtain the effect of improving the strength of
Include at least 1%. On the other hand, if the content is too large,
Weld HAZ To significantly deteriorate toughness and field weldability,
The upper limit of each of the Cu and Cr contents is 1.0%,
It was set to 0.6%.

【0045】CaおよびREMは、鋼中の硫化物(Mn
S)の形態を制御し、鋼の低温靱性(シャルピー試験の
吸収エネルギー等)を向上させる作用を有し、その作用
効果を得るためにCaおよびREMの含有量の下限を
0.0001%とした。一方、Ca量が0.006%、
REMが0.02%を越えて添加するとCaO−CaS
またはREM−CaSが大量に生成して大型クラスタ
ー、大型介在物となり、鋼の清浄度を害し、現地溶接性
を劣化させるため、CaおよびREMのそれぞれの含有
量の上限を0.006%、0.02%とした。なお、超
高強度ラインパイプとする場合には、鋼中のS、O含有
量をそれぞれ0.001%、0.002%以下にさらに
制限し、かつ、硫化系混在物の形状制御に関するインデ
ックスであるESSP(関係式:ESSP=(Ca)
〔1−124(O)〕/1.25S)を0.5〜10.
0の範囲内とするのが好ましい。
Ca and REM are sulfides (Mn
S) has the effect of controlling the morphology and improving the low temperature toughness of steel (such as absorbed energy in the Charpy test). In order to obtain the effect, the lower limit of the Ca and REM contents is set to 0.0001%. . On the other hand, the amount of Ca is 0.006%,
CaO-CaS when REM is added over 0.02%
Alternatively, since a large amount of REM-CaS is generated and becomes large clusters and large inclusions, which impairs the cleanliness of steel and deteriorates the field weldability, the upper limits of the respective contents of Ca and REM are 0.006%, 0. It was set to 0.02%. In the case of an ultra-high-strength line pipe, the S and O contents in steel are further limited to 0.001% and 0.002% or less, respectively, and an index relating to the shape control of sulfide-based inclusions is used. A certain ESSP (relational expression: ESSP = (Ca)
[1-124 (O)] / 1.25S) from 0.5 to 10.
It is preferably within the range of 0.

【0046】Mgは、微細分散した酸化物を形成し、溶
接HAZのオーステナイト粒の粗大化を抑制して低温靭
性を向上させる作用を有し、その作用効果を得るために
その含有量の下限を0.0001%とする。一方、その
含有量が0.006%を超えて添加すると、粗大酸化物
を生成し逆に靭性を劣化させるため、その含有量の上限
を0.006%とした。
Mg has a function of forming a finely dispersed oxide, suppressing coarsening of austenite grains of the welded HAZ and improving low temperature toughness, and the lower limit of its content is set to obtain the effect. The amount is 0.0001%. On the other hand, if its content exceeds 0.006%, coarse oxides are formed, and conversely the toughness is deteriorated. Therefore, the upper limit of the content is made 0.006%.

【0047】本発明では、以上説明した鋼成分、再加熱
および圧延条件で熱間圧延をすることにより低温靱性に
優れた超高強度鋼板を得ることができるが、この熱延鋼
板を、さらに管状に冷間成形後、突き合わせ部をシーム
溶接を行うことにより熱延鋼板と同様に低温靱性に優れ
た超高強度鋼管を製造することが可能となる。
In the present invention, an ultra-high strength steel sheet excellent in low temperature toughness can be obtained by hot rolling under the steel components, reheating and rolling conditions described above. After cold forming, seam welding of the butt portions makes it possible to manufacture an ultra-high-strength steel pipe excellent in low-temperature toughness like hot-rolled steel sheets.

【0048】本発明の低温靱性に優れた超高強度は、鋼
板を管状に冷間成形後、突き合わせ部をシーム溶接する
ことで製造でき、製造条件は特に規定する必要はなく、
通常の条件で良い。
The ultrahigh strength excellent in low temperature toughness of the present invention can be manufactured by cold forming a steel sheet into a tube and then seam welding the butt portions, and the manufacturing conditions need not be specified in particular.
Normal conditions are fine.

【0049】[0049]

【実施例】次に、本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.

【0050】表1、表2(表1のつづき)の化学成分を
含有する鋼を連続鋳造した後、冷却によりそのミクロ組
織をベイナイトおよぶマルテンサイトに変態させて、厚
みが240mmの鋼片とし、この鋼片をさらに表3、表
4、表5(表4、表5は表3のつづき)に示す条件で再
加熱後、再結晶温度域圧延、さらに未再結晶域圧延を行
った後、水冷により450℃以下の温度まで冷却し鋼板
を製造した。
Steels containing the chemical components shown in Tables 1 and 2 (continued from Table 1) were continuously cast, and then the microstructure thereof was transformed into bainite and martensite by cooling to obtain steel pieces having a thickness of 240 mm. This steel slab was further reheated under the conditions shown in Table 3, Table 4, and Table 5 (Table 4 and Table 5 are continued from Table 3), then recrystallized in the temperature range, and then unrecrystallized in the range. A steel plate was manufactured by cooling with water to a temperature of 450 ° C. or lower.

【0051】その後、鋼板から機械的性質を調査するた
めの試験片を採取し、引っ張り試験およびシャルピー試
験を行った。鋼材の低温靱性は、シャルピー試験結果に
よりC方向でかつ、ノッチ位置が板厚方向における−4
0℃の吸収エネルギーを求めて評価した。
After that, a test piece for investigating the mechanical properties was taken from the steel sheet and subjected to a tensile test and a Charpy test. The low temperature toughness of the steel material is -4 in the C direction and the notch position in the plate thickness direction according to the Charpy test result.
The absorbed energy at 0 ° C. was obtained and evaluated.

【0052】表1において、鋼A〜Dおよび鋼Qは、成
分含有量が本発明の範囲を満たした鋼であり、鋼E〜P
は、いずれかの成分の含有量が本発明の範囲からはずれ
ている。また、表2において試験No.1〜60は、鋼
成分および製造条件がともに本発明の範囲を満たした発
明例であり、試験No.61〜72は、製造条件が本発
明の範囲から外れた比較例であり、試験No.73〜7
5は、鋼成分が本発明の範囲から外れた比較例である。
In Table 1, steels A to D and steels Q are steels whose component contents satisfy the range of the present invention, and steels E to P
The content of any of the components is out of the range of the present invention. In Table 2, the test No. Nos. 1 to 60 are invention examples in which the steel components and the manufacturing conditions both satisfy the scope of the present invention, and the test No. Nos. 61 to 72 are comparative examples in which the manufacturing conditions are out of the range of the present invention. 73-7
No. 5 is a comparative example in which the steel composition is out of the range of the present invention.

【0053】表2の試験結果から明らかなように、試験
No.1〜60の発明例は、いずれも母材の引っ張り強
度が900MPa以上で、かつ−40℃でのシャルピー
吸収エネルギーが200J以上の低温靱性に優れた超高
強度鋼板が得られている。
As is clear from the test results of Table 2, the test No. In each of the invention examples 1 to 60, an ultrahigh strength steel sheet having a base material having a tensile strength of 900 MPa or more and a Charpy absorbed energy at −40 ° C. of 200 J or more and excellent in low temperature toughness was obtained.

【0054】それに対し、試験No.61〜72の比較
例は、少なくとも鋼成分の含有量が本発明範囲から外れ
ているために母材の引っ張り強度(TS)または−40
℃でのシャルピー吸収エネルギー(vE−40)が低下
した。また、試験No.73〜75は鋼成分の含有量は
本発明範囲内であるが、再結晶圧延条件が本発明の範囲
から外れているために、母材の−40℃でのシャルピー
吸収エネルギー(vE−40)が200J未満となり低
温靱性が低下した。
On the other hand, the test No. In Comparative Examples 61 to 72, the tensile strength (TS) or -40 of the base material is at least because the content of the steel component is out of the range of the present invention.
Charpy absorbed energy (vE-40) at 0 ° C decreased. In addition, the test No. 73 to 75, the content of the steel component is within the range of the present invention, but since the recrystallization rolling conditions are out of the range of the present invention, the Charpy absorbed energy (vE-40) of the base material at −40 ° C. Was less than 200 J and the low temperature toughness was deteriorated.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】[0060]

【発明の効果】本発明は再加熱時に異常フェライト・オ
ーステナイト変態によりオーステナイト結晶粒の粗大化
が起きやすいベイナイト及びマルテンサイト単相または
主体組織の超高強度連続鋳片を用いて熱間圧延する際に
も、γ再結晶域圧延における各圧延1パス当たりの平均
圧下率および各圧延パス時間を適正に制御することによ
って結晶粒を微細化及び整粒化し、破壊の起点となる粗
大オーステナイト粒の鋼板組織中の残存量を極力低減
し、引張強度が900MPa以上で、かつ−40℃での
シャルピーエネルギーが200J以上の低温靱性に優れ
た超高強度鋼板および鋼管を製造することが可能とな
る。よって、天然ガス・原油輸送用のラインパイプ、揚
水用鋼板、圧力容器、溶接構造物などで使用される鋼構
造物の安全性を大幅に向上できる。
INDUSTRIAL APPLICABILITY The present invention is applied to hot rolling using bainite and martensite single-phase or ultra-high-strength continuous cast slabs having a main structure, in which coarsening of austenite crystal grains easily occurs due to abnormal ferrite-austenite transformation during reheating. In addition, a steel sheet of coarse austenite grains that becomes a starting point of fracture by finely sizing and sizing crystal grains by appropriately controlling the average reduction rate per each rolling pass and each rolling pass time in the γ recrystallization zone rolling It is possible to reduce the residual amount in the structure as much as possible, to produce an ultrahigh-strength steel sheet and a steel pipe having a tensile strength of 900 MPa or more and a Charpy energy at −40 ° C. of 200 J or more and excellent low temperature toughness. Therefore, the safety of steel structures used in line pipes for transporting natural gas and crude oil, steel plates for pumping water, pressure vessels, welded structures, etc. can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】オーステナイト再結晶粒域圧延における1パス
当たりの平均圧下率および圧延パス間時間と粒径が10
μm以上の粗大オーステナイト結晶粒の分率との関係を
示す図である。
FIG. 1 shows the average rolling reduction per pass, the time between rolling passes and the grain size of 10 in the austenite recrystallized grain region rolling.
It is a figure which shows the relationship with the fraction of the coarse austenite crystal grain of (micrometer) or more.

【図2】粒径:10μm以上の粗大オーステナイト結晶
粒の分率と−40℃でのシャルピー吸収エネルギーとの
関係を示す図である。
FIG. 2 is a diagram showing the relationship between the fraction of coarse austenite crystal grains having a grain size of 10 μm or more and the Charpy absorbed energy at −40 ° C.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 301 C22C 38/00 301A 301Z 38/58 38/58 // B23K 101:06 B23K 101:06 (72)発明者 小関 敏彦 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E001 AA03 CA02 CC03 4E002 AA07 AD04 BC01 BC05 BC07 CB01 4E081 AA08 BA19 FA03 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CB02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/00 301 C22C 38/00 301A 301Z 38/58 38/58 // B23K 101: 06 B23K 101: 06 (72) Inventor Toshihiko Ozeki 20-1 Shintomi, Futtsu-shi, Chiba Shin-Nippon Steel Co., Ltd. F-term in the Technical Development Division (Reference) 4E001 AA03 CA02 CC03 4E002 AA07 AD04 BC01 BC05 BC07 CB01 4E081 AA08 BA19 FA03 4K032 AA01 AA02 AA04 AA08 AA11 AA14 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 CA02 CA03 CB02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.03〜0.10%、
Si:0.01〜0.6%、Mn:1.7〜2.5%、
P:0.015%以下、S:0.003%以下、Ni:
0.1〜2.0%、Mo:0.01〜0.60%、N
b:0.001〜0.10%、Ti:0.001〜0.
030%、Al:0.001〜0.040%、N:0.
0001〜0.006%を含み、さらに、B:0.00
01〜0.003%、V:0.01〜0.10%、C
u:0.01〜1.0%、Cr:0.01〜0.6%、
Ca:0.0001〜0.01%、REM:0.000
1〜0.02%およびMg:0.0001〜0.006
%のうちの1種または2種以上を含有し、残部が鉄およ
び不可避的不純物からなり、かつ鋳造組織にベイナイト
及びマルテンサイトを90%以上含有する連続鋳造鋳片
を再加熱後、再結晶域圧延における圧延温度が900℃
以上、かつ各圧延1パス当たりの平均圧下率が5%以上
で熱間圧延を行うことを特徴とする引張り強度が900
MPa以上の低温靱性に優れた超高強度鋼板の製造方
法。
1. C: 0.03 to 0.10% by mass%,
Si: 0.01-0.6%, Mn: 1.7-2.5%,
P: 0.015% or less, S: 0.003% or less, Ni:
0.1 to 2.0%, Mo: 0.01 to 0.60%, N
b: 0.001 to 0.10%, Ti: 0.001 to 0.
030%, Al: 0.001-0.040%, N: 0.
0001 to 0.006%, and further B: 0.00
01-0.003%, V: 0.01-0.10%, C
u: 0.01 to 1.0%, Cr: 0.01 to 0.6%,
Ca: 0.0001 to 0.01%, REM: 0.000
1-0.02% and Mg: 0.0001-0.006
%, One or two or more of which are contained, the balance being iron and unavoidable impurities, and the recrystallized region after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. Rolling temperature in rolling is 900 ℃
Above, and the average rolling reduction per pass of each rolling is 5% or more, hot rolling is carried out at a tensile strength of 900
A method for producing an ultra-high strength steel sheet excellent in low temperature toughness of at least MPa.
【請求項2】 質量%で、C:0.03〜0.10%、
Si:0.01〜0.6%、Mn:1.7〜2.5%、
P:0.015%以下、S:0.003%以下、Ni:
0.1〜2.0%、Mo:0.01〜0.60%、N
b:0.001〜0.10%、Ti:0.001〜0.
030%、Al:0.001〜0.040%、N:0.
0001〜0.006%を含み、さらに、B:0.00
01〜0.003%、V:0.01〜0.10%、C
u:0.01〜1.0%、Cr:0.01〜0.6%、
Ca:0.0001〜0.01%、REM:0.000
1〜0.02%およびMg:0.0001〜0.006
%のうちの1種または2種以上を含有し、残部が鉄およ
び不可避的不純物からなり、かつ鋳造組織にベイナイト
及びマルテンサイトを90%以上含有する連続鋳造鋳片
を再加熱後、再結晶域圧延における圧延温度が900℃
以上、かつ各圧延パス時間が3秒以上で熱間圧延を行う
ことを特徴とする引張り強度が900MPa以上の低温
靱性に優れた超高強度鋼板の製造方法。
2. C: 0.03 to 0.10% by mass%,
Si: 0.01-0.6%, Mn: 1.7-2.5%,
P: 0.015% or less, S: 0.003% or less, Ni:
0.1 to 2.0%, Mo: 0.01 to 0.60%, N
b: 0.001 to 0.10%, Ti: 0.001 to 0.
030%, Al: 0.001-0.040%, N: 0.
0001 to 0.006%, and further B: 0.00
01-0.003%, V: 0.01-0.10%, C
u: 0.01 to 1.0%, Cr: 0.01 to 0.6%,
Ca: 0.0001 to 0.01%, REM: 0.000
1-0.02% and Mg: 0.0001-0.006
%, One or two or more of which are contained, the balance being iron and unavoidable impurities, and the recrystallized region after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. Rolling temperature in rolling is 900 ℃
A method for producing an ultra-high strength steel sheet excellent in low-temperature toughness with a tensile strength of 900 MPa or more, characterized in that hot rolling is performed for each rolling pass time of 3 seconds or more.
【請求項3】 質量%で、C:0.03〜0.10%、
Si:0.01〜0.6%、Mn:1.7〜2.5%、
P:0.015%以下、S:0.003%以下、Ni:
0.1〜2.0%、Mo:0.01〜0.60%、N
b:0.001〜0.10%、Ti:0.001〜0.
030%、Al:0.001〜0.040%、N:0.
0001〜0.006%を含み、さらに、B:0.00
01〜0.003%、V:0.01〜0.10%、C
u:0.01〜1.0%、Cr:0.01〜0.6%、
Ca:0.0001〜0.01%、REM:0.000
1〜0.02%およびMg:0.0001〜0.006
%のうちの1種または2種以上を含有し、残部が鉄およ
び不可避的不純物からなり、かつ鋳造組織にベイナイト
及びマルテンサイトを90%以上含有する連続鋳造鋳片
を再加熱後、再結晶域圧延における圧延温度が900℃
以上、各圧延1パス当たりの平均圧下率が5%以上、か
つ各圧延パス時間が3秒以上で熱間圧延を行うことを特
徴とする引張り強度が900MPa以上の低温靱性に優
れた超高強度鋼板の製造方法。
3. C: 0.03 to 0.10% by mass%,
Si: 0.01-0.6%, Mn: 1.7-2.5%,
P: 0.015% or less, S: 0.003% or less, Ni:
0.1 to 2.0%, Mo: 0.01 to 0.60%, N
b: 0.001 to 0.10%, Ti: 0.001 to 0.
030%, Al: 0.001-0.040%, N: 0.
0001 to 0.006%, and further B: 0.00
01-0.003%, V: 0.01-0.10%, C
u: 0.01 to 1.0%, Cr: 0.01 to 0.6%,
Ca: 0.0001 to 0.01%, REM: 0.000
1-0.02% and Mg: 0.0001-0.006
%, One or two or more of which are contained, the balance being iron and unavoidable impurities, and the recrystallized region after reheating a continuously cast slab containing 90% or more of bainite and martensite in the casting structure. Rolling temperature in rolling is 900 ℃
Above, ultra-high strength excellent in low-temperature toughness with a tensile strength of 900 MPa or more, characterized by performing hot rolling with an average rolling reduction of 5% or more per each rolling pass and each rolling pass time of 3 seconds or more. Steel plate manufacturing method.
【請求項4】 前記連続鋳造鋳片の再加熱において、該
鋳片を加熱炉へ挿入する際の温度が400℃以下である
ことを特徴とする請求項1から3の何れか1項に記載の
引張り強度が900MPa以上の低温靱性に優れた超高
強度鋼板の製造方法。
4. The reheating of the continuously cast slab, wherein the temperature at which the slab is inserted into the heating furnace is 400 ° C. or lower, wherein the temperature is 400 ° C. or lower. A method for producing an ultra-high strength steel sheet excellent in low temperature toughness having a tensile strength of 900 MPa or more.
【請求項5】 前記連続鋳造鋳片の再加熱において、該
鋳片の加熱温度が1100〜1250℃であることを特
徴とする請求項1から4の何れか1項に記載の引張り強
度が900MPa以上の低温靱性に優れた超高強度鋼板
の製造方法。
5. The reheating of the continuously cast slab, wherein the heating temperature of the slab is 1100 to 1250 ° C., and the tensile strength according to any one of claims 1 to 4 is 900 MPa. The above-mentioned method for producing an ultra-high strength steel sheet having excellent low temperature toughness.
【請求項6】 さらに、未再結晶域圧延における圧延温
度がAr3またはBs〜850℃、かつ、累積圧下率が6
0%以上であることを特徴とする請求項1から5の何れ
か1項に記載の引張り強度が900MPa以上の低温靱
性に優れた超高強度鋼板の製造方法。
6. The rolling temperature in the non-recrystallization region rolling is Ar 3 or Bs to 850 ° C., and the cumulative rolling reduction is 6.
It is 0% or more, The manufacturing method of the ultra high strength steel plate excellent in the low temperature toughness of the tensile strength of 900 MPa or more of any one of Claim 1 to 5 characterized by the above-mentioned.
【請求項7】 請求項1から6の何れか1項に記載の鋼
板の製造方法により製造した鋼板を管状に冷間成形後、
突き合わせ部にシーム溶接を行うことを特徴とする引張
り強度が900MPa以上の低温靱性に優れた超高強度
鋼管の製造方法。
7. A steel sheet produced by the method for producing a steel sheet according to claim 1, after cold-forming into a tubular shape,
A method for producing an ultra-high strength steel pipe having a tensile strength of 900 MPa or more and excellent low-temperature toughness, characterized by performing seam welding at a butt portion.
JP2002098897A 2002-04-01 2002-04-01 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness Expired - Lifetime JP3793478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098897A JP3793478B2 (en) 2002-04-01 2002-04-01 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098897A JP3793478B2 (en) 2002-04-01 2002-04-01 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JP2003293039A true JP2003293039A (en) 2003-10-15
JP3793478B2 JP3793478B2 (en) 2006-07-05

Family

ID=29240670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098897A Expired - Lifetime JP3793478B2 (en) 2002-04-01 2002-04-01 Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JP3793478B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343407C (en) * 2004-11-05 2007-10-17 株式会社神户制钢所 Strength-ductility balanced plate steel with excellent weldability and manufacturing methods thereof
JP2010509494A (en) * 2006-11-02 2010-03-25 ポスコ Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
JP2010222681A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Thick high toughness steel pipe stock and method for producing the same
JP2011105963A (en) * 2009-11-12 2011-06-02 Nippon Steel Corp Method for manufacturing low yield ratio high tensile strength steel plate excellent in low temperature toughness
WO2012141220A1 (en) * 2011-04-12 2012-10-18 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP2022510199A (en) * 2018-11-29 2022-01-26 ポスコ Steel materials for thick high-strength line pipes with excellent low-temperature toughness and draw ratio and low yield ratio and their manufacturing methods
CN115109992A (en) * 2021-03-22 2022-09-27 宝山钢铁股份有限公司 Steel plate with good thermal formability for pressure vessel and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140580A (en) * 1997-11-04 1999-05-25 Nippon Steel Corp Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JPH11181519A (en) * 1997-12-19 1999-07-06 Nkk Corp Production of high strength thick steel plate having high toughness
JP2000104115A (en) * 1998-09-28 2000-04-11 Nippon Steel Corp Production of high tension steel having fine crystal grain
JP2001329315A (en) * 2000-05-17 2001-11-27 Nkk Corp Method for producing steel plate excellent in toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140580A (en) * 1997-11-04 1999-05-25 Nippon Steel Corp Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JPH11181519A (en) * 1997-12-19 1999-07-06 Nkk Corp Production of high strength thick steel plate having high toughness
JP2000104115A (en) * 1998-09-28 2000-04-11 Nippon Steel Corp Production of high tension steel having fine crystal grain
JP2001329315A (en) * 2000-05-17 2001-11-27 Nkk Corp Method for producing steel plate excellent in toughness

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343407C (en) * 2004-11-05 2007-10-17 株式会社神户制钢所 Strength-ductility balanced plate steel with excellent weldability and manufacturing methods thereof
JP2010509494A (en) * 2006-11-02 2010-03-25 ポスコ Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP2010100903A (en) * 2008-10-24 2010-05-06 Jfe Steel Corp Thick high tensile strength steel plate having low yield ratio and brittle crack generation resistance, and method of producing the same
JP2010222681A (en) * 2009-03-25 2010-10-07 Jfe Steel Corp Thick high toughness steel pipe stock and method for producing the same
JP2011105963A (en) * 2009-11-12 2011-06-02 Nippon Steel Corp Method for manufacturing low yield ratio high tensile strength steel plate excellent in low temperature toughness
WO2012141220A1 (en) * 2011-04-12 2012-10-18 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
CN103328669A (en) * 2011-04-12 2013-09-25 新日铁住金株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP5413537B2 (en) * 2011-04-12 2014-02-12 新日鐵住金株式会社 High strength steel plate and high strength steel pipe excellent in deformation performance and low temperature toughness, and methods for producing them
JP2022510199A (en) * 2018-11-29 2022-01-26 ポスコ Steel materials for thick high-strength line pipes with excellent low-temperature toughness and draw ratio and low yield ratio and their manufacturing methods
JP7244718B2 (en) 2018-11-29 2023-03-23 ポスコ カンパニー リミテッド Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
CN115109992A (en) * 2021-03-22 2022-09-27 宝山钢铁股份有限公司 Steel plate with good thermal formability for pressure vessel and manufacturing method thereof
CN115109992B (en) * 2021-03-22 2023-09-12 宝山钢铁股份有限公司 Steel plate for pressure vessel with good thermoforming property and manufacturing method thereof

Also Published As

Publication number Publication date
JP3793478B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
KR101603461B1 (en) High strength steel pipe having excellent ductility and low temperature toughness, high strength steel sheet, and method for producing steel sheet
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
KR101331976B1 (en) Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness
JP2010509494A (en) Steel sheet for ultra-high-strength line pipe excellent in low-temperature toughness and method for producing the same
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP5157072B2 (en) Manufacturing method of high strength and high toughness thick steel plate with excellent tensile strength of 900 MPa and excellent in cutting crack resistance
JP2009057629A (en) High strength steel pipe for low temperature use having excellent buckling resistance and weld heat-affected zone toughness, and method for producing the same
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP7244718B2 (en) Steel material for thick high-strength line pipe with excellent low-temperature toughness, elongation and small yield ratio, and method for producing the same
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
RU2749855C1 (en) Steel material for high-strength steel pipe with low ratio of yield to strength, having excellent low temperature impact viscosity, and method for its production
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2004084068A (en) Non-haettreated low yield ratio high tensile strength steel having excellent high temperature strength and production method therefor
JP3793478B2 (en) Method for producing high-strength steel sheets and steel pipes that suppress the inclusion of coarse crystal grains and have excellent low-temperature toughness
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
CN111542621A (en) High-strength high-toughness hot-rolled steel sheet and method for producing same
JP5472423B2 (en) High-strength, high-toughness steel plate with excellent cutting crack resistance
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2001342538A (en) High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same
JP4094312B2 (en) Manufacturing method of ultra high strength steel with excellent low temperature toughness
JP2003089844A (en) Thick steel plate for welded structure having excellent fatigue strength of welded joint, and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060407

R151 Written notification of patent or utility model registration

Ref document number: 3793478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350