KR100833066B1 - High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same - Google Patents

High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same Download PDF

Info

Publication number
KR100833066B1
KR100833066B1 KR1020060132565A KR20060132565A KR100833066B1 KR 100833066 B1 KR100833066 B1 KR 100833066B1 KR 1020060132565 A KR1020060132565 A KR 1020060132565A KR 20060132565 A KR20060132565 A KR 20060132565A KR 100833066 B1 KR100833066 B1 KR 100833066B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
steel
high strength
linepipe
Prior art date
Application number
KR1020060132565A
Other languages
Korean (ko)
Inventor
서동한
이태영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060132565A priority Critical patent/KR100833066B1/en
Application granted granted Critical
Publication of KR100833066B1 publication Critical patent/KR100833066B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high strength steel sheet for linepipe is provided to obtain excellent physical properties in a welded zone and a yield strength of at least 690 MPa by especially controlling alloy elements and a relational expression and controlling the cooling rate, and a method for manufacturing the high strength steel sheet for linepipe is provided. A high strength steel sheet having excellent welded zone properties for linepipe comprises, by weight percent, 0.04 to 0.1% of C, 0.1 to 0.4% of Si, 1.0 to 2.2% of Mn, 0.01 to 0.05% of soluble Al, 0.005 to 0.02% of Ti, 0.01 to 0.06% of Nb, 0.01 to 0.1% of V, 0.1 to 0.5% of Mo, 0.015% or less of P, and 0.005% or less of S with the balance being Fe and other inevitable impurities, the Ti, N, Nb, and V satisfy 0.005<=(Ti-3.4N)+Nb+V<=0.15, and a matrix of the steel sheet has a tensile strength of 760 to 904 MPa. The steel sheet further comprises at least one of 1.0% or less of Cu, 1.0% or less of Ni, and 1.0% or less of Cr. A method for manufacturing a high strength steel sheet having excellent welded zone properties for linepipe comprises: reheating a steel slab at a temperature of 1050 to 1180 deg.C, the steel slab comprising, by weight percent, 0.04 to 0.1% of C, 0.1 to 0.4% of Si, 1.0 to 2.2% of Mn, 0.01 to 0.05% of soluble Al, 0.005 to 0.02% of Ti, 0.01 to 0.06% of Nb, 0.01 to 0.1% of V, 0.1 to 0.5% of Mo, 0.015% or less of P, and 0.005% or less of S with the balance being Fe and other inevitable impurities, the Ti, N, Nb, and V satisfying 0.005<=(Ti-3.4N)+Nb+V<=0.15; finish rolling the reheated steel slab to a reduction ratio of 70 to 82% at the austenite recrystallization temperature or lower; and cooling the rolled steel sheet at a cooling rate of 15 to 30 deg.C/sec and stopping cooling of the rolled steel sheet at a temperature of 350 deg.C or lower.

Description

용접부 물성이 우수한 고강도 라인파이프용 강판 및 그 제조방법{High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same}High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same}

일본 공개특허공보 평9-41074호Japanese Patent Laid-Open No. 9-41074

본 발명은 건축, 파이프라인 및 해양구조물 등의 용도로 주로 사용되는 항복강도 690MPa 이상의 라인파이프용 강판에 관한 것이다. 보다 상세하게는, 합금원소 및 관계식을 각별히 관리하고 냉각속도를 제어함으로써 용접부 물성이 우수한 항복강도 690MPa 이상의 고강도 라인파이프용 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet for line pipes with a yield strength of 690 MPa or more mainly used for construction, pipelines and offshore structures. More specifically, the present invention relates to a steel sheet for high strength line pipes having a yield strength of 690 MPa or more excellent in welded properties by managing alloy elements and relations and controlling cooling rates.

원유, 천연가스의 장거리 수송에 따른 라인파이프의 수송능력 및 효율을 확대하기 위하여 수송압력 및 수송용량을 늘리기 위한 고강도 강판이 요구되고 있다. 이에 따라, 지금까지 API-X80급까지의 라인파이프가 실용화되고 있지만, API-X100급 이상의 고강도 라인파이프강의 요구가 점점 많아지고 있다.In order to increase the transport capacity and efficiency of the line pipe according to the long-distance transportation of crude oil and natural gas, a high strength steel sheet is required to increase the transport pressure and transport capacity. As a result, although line pipes up to API-X80 grade have been put to practical use, demand for high-strength line pipe steel of API-X100 grade or higher is increasing.

더욱이, 라인파이프용 강판이 저온에서 사용될 경우 용접부 및 모재의 인성이 취약할 경우에는 급격한 취성파괴로 연결되어 대형사고가 발생될 위험이 있으므로 인성에 대한 요구도 점점 증가하고 있는 추세이다.In addition, when the steel sheet for line pipe is used at low temperatures, when the toughness of the welded part and the base metal is weak, there is a risk that a large accident may occur due to rapid brittle fracture, and the demand for toughness is also increasing.

일반적으로 재료의 강도를 증가시키면 반대로 인성이 감소되는 경향을 가진다. 이는, 통상 첨가되는 합금원소가 강도에는 유리한 영향을 미치는 반면 인성을 저해하는 모순된 역할을 하기 때문이다. 이를 해결하기 위해서 성분원소의 조정을 가능한 한 억제하면서 강의 강도와 인성을 향상시키는 방법, 소위 TMCP(Thermo Mechanical Controlling Process)라 불리는 방법으로 내부의 결정립 크기를 작게 하여 인성을 향상시킴과 동시에 냉각 프로세스에 의해 경질 조직을 형성시켜서 고강도, 고인성을 추구하는 방법이 많이 사용되었다.In general, increasing the strength of a material, on the contrary, tends to reduce toughness. This is because the alloying elements added usually have a beneficial effect on strength while playing a contradictory role in inhibiting toughness. In order to solve this problem, the method of improving the strength and toughness of the steel while suppressing the adjustment of the element as much as possible, the so-called TMCP (Thermo Mechanical Controlling Process), reduces the internal grain size and improves toughness, Has been used a lot of methods to form a hard tissue to pursue high strength and high toughness.

따라서, 인장강도를 만족시키기 위하여 합금원소의 첨가량이 많아지고 제조시 냉각조건이 가혹화된다. 또한, 강관 제조시 심(Seam) 용접을 하게 되면 용접열영향부의 강도가 감소하게 되어 연화가 발생하게 되고 고합금에 의한 인성의 확보가 어렵게 된다.Therefore, in order to satisfy the tensile strength, the addition amount of the alloying elements is increased, and the cooling conditions during the manufacturing are severe. In addition, when welding the steel pipe (Seam), the strength of the weld heat affected zone is reduced, softening occurs and it is difficult to secure the toughness by high alloy.

상기와 같은 방법의 일례로서 일본 공개특허공보 평9-41074호에서는 중량%로,C: 0.05~0.1%,Si: 0.6% 이하,Mn: 1.8~2.5%,P: 0.015% 이하,S: 0.003% 이하,Mo: 0.3~0.6%, Nb: 0.01~0.1%, V: 0.03~0.1%, Al: 0.06% 이하,Ti: 0.005~0.03%, N: 0.001~0.006%를 포함하여 나머지 Fe 및 기타 불가피한 불순물로 이루어지고 마르텐나이트, 베이나이트 분율이 20~90%로서 페라이트와 이상 혼합조직을 가지며, 페라이트중에 가공 페라이트를 50~100% 함유하고 페라이트 평균입도 5㎛ 이하인 것을 특징으로 하는 저온 인성이 우수한 초고장력강의 제조방법이 기재되어 있다.As an example of the above method, in Japanese Patent Laid-Open No. 9-41074, in weight%, C: 0.05 to 0.1%, Si: 0.6% or less, Mn: 1.8 to 2.5%, P: 0.015% or less, S: 0.003 % Or less , Mo: 0.3 ~ 0.6%, Nb: 0.01 ~ 0.1%, V: 0.03 ~ 0.1%, Al: 0.06% or less , Ti: 0.005 ~ 0.03%, N: 0.001 ~ 0.006% It is composed of unavoidable impurities and has a martensite and bainite fraction of 20 to 90%, and has an ideal mixed structure with ferrite. A method for producing ultra high tensile steel is described.

하지만, 상기 종래기술은 400℃~Ac1 이하의 온도로 템퍼링처리를 실시하는 프로세스로서 열처리 시행에 따른 과다한 비용의 발생을 초래하는 문제점이 있다.However, the prior art is a process of performing a tempering treatment at a temperature of 400 ℃ ~ Ac 1 or less, there is a problem that causes the occurrence of excessive cost due to the heat treatment.

본 발명은 상기한 종래의 문제점을 개선하기 위한 것으로, 합금원소 및 관계식을 각별히 관리하고 냉각속도를 제어함으로써 용접부 물성이 우수한 항복강도 690MPa 이상의 고강도 라인파이프용 강판 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention is to improve the above problems, and to provide a high-strength line pipe steel sheet having a high yield strength of 690MPa or more and a method of manufacturing the same by specially managing alloy elements and relational expressions and controlling the cooling rate. There is this.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C: 0.04~0.1%, Si: 0.1~0.4%, Mn: 1.0~2.2%, Sol.Al: 0.01~0.05%, Ti: 0.005~0.02%, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1~0.5%, P: 0.015% 이하, S: 0.005% 이하를 포함하여 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ti, N, Nb 및 V은 0.005≤(Ti-3.4N)+Nb+V≤0.15을 만족하여 이루어지는 용접부 물성이 우수한 고강도 라인파이프용 강판에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.04 ~ 0.1%, Si: 0.1 ~ 0.4%, Mn: 1.0 ~ 2.2%, Sol.Al: 0.01 ~ 0.05%, Ti: 0.005 ~ 0.02% , Nb: 0.01% to 0.06%, V: 0.01% to 0.1%, Mo: 0.1% to 0.5%, P: 0.015% or less, and S: 0.005% or less, and are composed of the remaining Fe and other unavoidable impurities, and the Ti, N , Nb and V relates to a steel sheet for high-strength line pipe having excellent welded properties, satisfying 0.005 ≦ (Ti−3.4N) + Nb + V ≦ 0.15.

또한, 본 발명은 중량%로, C: 0.04~0.1%, Si: 0.1~0.4%, Mn: 1.0~2.2%, Sol.Al: 0.01~0.05%, Ti: 0.005~0.02%, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1~0.5%, P: 0.015% 이하, S: 0.005% 이하를 포함하여 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ti, N, Nb 및 V은 0.005≤(Ti-3.4N)+Nb+V≤0.15을 만족하는 강 슬라브를 1050~ 1180℃에서 재가열하고, 오스테나이트 재결정 온도 이하에서 70% 이상의 압하량으로 마무리 압연한 다음 15~30℃/sec의 속도로 냉각하여 350℃ 이하에서 냉각을 정지하는 것을 포함하여 이루어지는 용접부 물성이 우수한 고강도 라인파이프용 강판의 제조방법에 관한 것이다.In addition, the present invention is a weight%, C: 0.04 ~ 0.1%, Si: 0.1 ~ 0.4%, Mn: 1.0 ~ 2.2%, Sol.Al: 0.01 ~ 0.05%, Ti: 0.005 ~ 0.02%, Nb: 0.01 ~ 0.06%, V: 0.01% to 0.1%, Mo: 0.1% to 0.5%, P: 0.015% or less, S: 0.005% or less, and are composed of the remaining Fe and other unavoidable impurities, and the Ti, N, Nb and V are Reheat the steel slab satisfying 0.005≤ (Ti-3.4N) + Nb + V≤0.15 at 1050 ~ 1180 ℃, finish rolling at a reduction rate of 70% or more below the austenite recrystallization temperature, and then 15 ~ 30 ℃ / sec The present invention relates to a method for producing a high strength line pipe steel sheet having excellent welded part physical properties including cooling at a rate of 350 ° C. and stopping cooling at 350 ° C. or lower.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자는 합금원소를 적절히 첨가하고 Ti, N, Nb 및 V의 관계식을 각별히 관리하며 나아가 냉각속도를 제어함으로써 API-X100급 이상의 고강도를 갖는 동시에 용접부 물성이 우수한 라인파이프용 강관을 확보하였으며 이 연구 결과를 기초하여 본 발명을 제안하는 것이다.The present inventors secured line pipes with high strength of API-X100 grade and excellent weld properties by properly adding alloying elements, managing Ti, N, Nb and V relations and controlling the cooling rate. Based on the results, the present invention is proposed.

이하, 본 발명의 강성분의 조성범위를 설명한다.Hereinafter, the composition range of the steel component of the present invention will be described.

C의 함량은 0.04~0.1%가 바람직하다.The content of C is preferably 0.04 to 0.1%.

상기 C는 고용강화를 일으키고 강의 소입성을 향상시켜서 강을 강화시키는데 가장 경제적이며 효과적인 원소이나 다량 첨가에 따라 용접성, 성형성 및 인성이 저하될 수 있다. 그 함량이 0.04% 미만인 경우 동일한 강도를 발휘시키기 위하여 다른 합금원소를 상대적으로 다량 첨가하여야 하기 때문에 경제적이지 못하며 0.1% 를 초과하는 경우에는 용접성, 성형성 및 인성이 저하하기 때문에 바람직하지 않다.The C is the most economical and effective element to strengthen the steel by hardening and improving the hardenability of the steel, the weldability, formability and toughness may be reduced by the addition of a large amount. If the content is less than 0.04%, it is not economical because a relatively large amount of other alloy elements must be added to exert the same strength, and if it is more than 0.1%, it is not preferable because the weldability, formability and toughness are lowered.

Si의 함량은 0.1~0.4%가 바람직하다.The content of Si is preferably 0.1 to 0.4%.

상기 Si은 알루미늄을 보조하여 용강을 탈산하는 역할을 수행하고 고용강화원소로도 효과를 나타낸다. 그 함량이 0.1% 미만일 경우 용강의 탈산역할을 충분히 하지 않기 때문에 청정한 강을 얻기 어려우며, 0.4%를 초과하는 경우에는 압연시 Si에 의한 붉은형 스케일이 형성되어 강판표면 형상이 매우 나쁘게 되고 취성파괴가 일어날 위험성이 현저히 높아지기 때문에 바람직하지 않다.The Si serves to deoxidize molten steel by assisting aluminum and also has an effect as a solid solution strengthening element. If the content is less than 0.1%, it is difficult to obtain clean steel because it does not sufficiently deoxidize the molten steel. If the content exceeds 0.4%, the red scale formed by Si is formed during rolling, and the surface of the steel sheet becomes very bad and brittle fracture occurs. This is undesirable because the risk of occurrence is significantly higher.

Mn의 함량은 1.0~2.2%가 바람직하다.The content of Mn is preferably 1.0 to 2.2%.

상기 Mn은 강을 고용강화시키는데 효과적인 원소로서 1.0% 이상 첨가되어야 소입성 증가효과와 더불어 고강도를 발휘할 수 있다. 그러나, 2.2%를 초과하여 첨가하면 제강공정에서 슬라브를 주조시 두께 중심부에서 편석부가 크게 발달되고 최종제품의 용접성을 해치기 때문에 바람직하지 않다.The Mn should be added 1.0% or more as an effective element to solidify the steel to exhibit high strength with an increase in the hardenability. However, the addition of more than 2.2% is not preferable because the segregation at the center of the thickness during the casting of the slab in the steelmaking process greatly develops and damages the weldability of the final product.

Sol.Al의 함량은 0.01~0.05%가 바람직하다.The content of Sol.Al is preferably 0.01 to 0.05%.

상기 Sol.Al은 강의 주요한 탈산제이므로 0.01% 이상 첨가될 필요가 있다. 그러나 0.05%를 초과하여 첨과될 경우에는 탈산효과가 포화되므로 그 상한을 0.05%로 제한하는 것이 바람직하다.Since Sol.Al is a major deoxidizer of steel, it needs to be added 0.01% or more. However, when it is added in excess of 0.05%, the deoxidation effect is saturated, so it is preferable to limit the upper limit to 0.05%.

Ti의 함량은 0.005~0.02%가 바람직하다.The content of Ti is preferably 0.005 to 0.02%.

상기 Ti은 결정립을 미세화시키는데 아주 유용한 원소로서 강 중에 TiN으로 존재하여 압연을 위한 가열 과정에서 결정립의 성장을 억제하는 효과가 있으며 또한 질소와 반응하고 남은 Ti가 강 중에 고용되어 탄소와 결합하여 TiC의 석출물이 형성되고 TiC의 형성은 매우 미세하여 강의 강도를 대폭적으로 향상시킨다. 따라서, TiN 석출에 의한 오스테나이트 결정립 성장 억제 효과 및 TiC 형성에 의한 강도 증가를 얻기 위해서는 적어도 0.005% 이상의 첨가할 필요가 있다. 반면, 0.02%를 초과하여 첨가되면 효과가 포화되고 강판을 용접하여 강관으로 제조시 용융점까지 급열됨에 따라 TiN이 재고용됨에 의해 용접 열영향부의 인성이 열화되기 때문에 상기 Ti의 상한은 0.02%로 제한하는 것이 바람직하다.Ti is a very useful element for miniaturizing grains and is present in the steel as TiN to inhibit the growth of grains during the heating process for rolling. Also, Ti reacts with nitrogen and solidifies with carbon to form TiC. Precipitates are formed and the formation of TiC is very fine, greatly improving the strength of the steel. Therefore, it is necessary to add at least 0.005% or more in order to obtain the austenite grain growth inhibition effect by TiN precipitation and the strength increase by TiC formation. On the other hand, when the content is added in excess of 0.02%, the effect is saturated and the toughness of the weld heat affected zone is deteriorated by the re-use of TiN as the steel sheet is welded to the melting point to the melting point. It is preferable.

Nb의 함량은 0.01~0.06%가 바람직하다.The content of Nb is preferably 0.01 to 0.06%.

상기 Nb는 오스테나이트 입경을 미세화시키며, 미재결정영역을 넓게 하는 동시에 최종 조직의 미세화 및 강도향상에 기여하는 원소이므로 0.01% 이상 첨가할 필요가 있다. 반면, 0.06%를 초과하여 첨가할 경우에는 더 이상 효과상승을 기대하기 어려울 뿐만 아니라 과도한 Nb 탄질화물의 석출에 기인되어 오스테나이트 미재결정온도를 지나치게 높이기 때문에 재질이방성이 증가하며 고가의 합금원소로서 제조비용을 고려하여 그 상한을 0.06%로 제한하는 것이 바람직하다.The Nb is an element that refines the austenite grain size, widens the unrecrystallized region, and contributes to the refinement and strength of the final structure. On the other hand, when added in excess of 0.06%, the effect is not expected to be increased any longer, and due to excessive precipitation of Nb carbonitrides, the austenite microcrystallization temperature is too high. Considering the cost, it is preferable to limit the upper limit to 0.06%.

V의 함량은 0.01~0.1%가 바람직하다.The content of V is preferably 0.01 to 0.1%.

상기 V는 강의 모재와 용접부 강도향상을 위해 0.01% 이상 첨가할 필요가 있다. 그러나 0.1%를 초과하여 첨가할 경우에는 인성 및 용접성을 저하시키는 문제가 발생할 수 있으므로 그 상한을 0.1%로 제한하는 것이 바람직하다.The V needs to be added at least 0.01% to improve the strength of the base metal and the welded portion of the steel. However, when the content is added in excess of 0.1%, the problem of deterioration of toughness and weldability may occur, so the upper limit is preferably limited to 0.1%.

Mo의 함량은 0.1~0.5%가 바람직하다.The content of Mo is preferably 0.1 to 0.5%.

상기 Mo는 강의 모재와 용접부 강도향상을 위해 0.1% 이상 첨가할 필요가 있다. 그러나 0.5%를 초과하여 첨가할 경우에는 강재 제조 비용상승이 있으므로 그 상한을 0.5%로 제한하는 것이 바람직하다.The Mo needs to be added 0.1% or more in order to improve the strength of the base metal and the welded portion of the steel. However, when the content is added in excess of 0.5%, it is preferable to limit the upper limit to 0.5% because there is an increase in steel manufacturing cost.

P의 함량은 0.015% 이하가 바람직하다.The content of P is preferably 0.015% or less.

상기 P는 Mn 등과 결합하여 비금속개재물을 형성하여 강을 취화시키는 문제를 발생시키므로 적극 저감하여야 할 필요가 있으나, P을 극한까지 저감하기 위해서는 제강 공정부하가 심화되고 0.015% 이하에서는 상기 문제점이 크게 발생하지는 않으므로 그 상한을 0.015%로 제한하는 것이 바람직하다.The P needs to be actively reduced in combination with Mn to form a non-metallic inclusion to cause embrittlement of the steel. However, in order to reduce P to an extreme, the steelmaking process load is intensified and the problem is greatly caused at 0.015% or less. Since it is not, it is preferable to limit the upper limit to 0.015%.

S의 함량은 0.005% 이하가 바람직하다.The content of S is preferably 0.005% or less.

상기 S는 Mn 등과 결합하여 비금속개재물을 형성하여 강을 취화시키고, 적열 취성을 일으키는 원소로서, 상기 P와 마찬가지로 제강 공정 부하를 고려하여 그 상한을 0.005%로 제한하는 것이 바람직하다.S is an element that combines with Mn to form a non-metallic inclusion to embrittle steel, and causes red brittleness. Like S, it is preferable to limit the upper limit to 0.005% in consideration of steelmaking process load.

본 발명은 상기한 성분 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.The present invention is composed of Fe and other unavoidable impurities in addition to the above components.

본 발명에서는 용접부 연화를 방지하기 위하여 Ti, N, Nb 및 V의 성분비를 제어할 수 있다.In the present invention, the component ratios of Ti, N, Nb, and V may be controlled to prevent softening of the weld.

0.005≤(Ti-3.4N)+Nb+V≤0.15가 바람직하다.Preference is given to 0.005 ≦ (Ti−3.4N) + Nb + V ≦ 0.15.

상기 Ti, N, Nb 및 V의 관계식이 0.005~0.15를 만족하는 경우 냉각시에 석출현상에 의한 강화효과로 연화를 방지할 수 있다. 합금원소가 과다하게 첨가된 상기 관계식의 값이 0.15 이상인 경우에는 강제 제조 비용의 상승과 함께 중심편석에 의한 인성열화를 초래할 수 있다.When the relational expressions of Ti, N, Nb, and V satisfy 0.005 to 0.15, softening may be prevented due to the strengthening effect of precipitation during cooling. When the value of the relational expression in which excessive alloying elements are added is 0.15 or more, it may cause the deterioration of toughness due to the central segregation with the increase of the forced manufacturing cost.

상기와 같이 조성되는 강에 본 발명에서는 Cu, Ni, Cr 중의 적어도 1종을 추가로 첨가할 수 있다.In the present invention, at least one of Cu, Ni, and Cr may be further added to the steel formed as described above.

Cu의 함량은 1.0% 이하가 바람직하다.The content of Cu is preferably 1.0% or less.

상기 Cu는 내식성 및 내수소유기균열성에 효과가 있는 반면, 그 함량이 1.0%를 초과하여 첨가하는 경우에는 모재의 인성과 용접열영향부(HAZ)의 인성 열화가 발생할 수 있다.While Cu has an effect on corrosion resistance and hydrogen organic crack resistance, when the content is added in excess of 1.0%, the toughness of the base metal and the toughness of the weld heat affected zone (HAZ) may occur.

Ni의 함량은 1.0% 이하가 바람직하다.The content of Ni is preferably 1.0% or less.

상기 Ni은 중심편석이 심하지 않고 모재의 연성-취성 천이 온도를 낮추는 효과가 있으나, 고가의 원소이고 1.0% 초과하는 경우에는 모재의 인성과 용접열영향부(HAZ)의 인성 열화가 발생할 수 있다.The Ni has an effect of lowering the soft-brittle transition temperature of the base material without severe segregation of the base material. However, when Ni is more than 1.0%, the toughness of the base material and the toughness of the weld heat affected zone (HAZ) may occur.

Cr의 함량은 1.0% 이하가 바람직하다.The content of Cr is preferably 1.0% or less.

상기 Cr은 Mo와 같이 강의 경화능을 증대시키고 내식성, 내수소유기균열성에 효과가 있는 반면, 1.0%를 초과하여 첨가하는 경우에는 모재의 인성과 용접열영향부(HAZ)의 인성 열화가 발생할 수 있다.The Cr increases the hardenability of the steel, such as Mo, and is effective in corrosion resistance and hydrogen organic crack resistance, but when added in excess of 1.0%, the toughness of the base metal and the toughness of the weld heat affected zone (HAZ) may occur. have.

또한, 본 발명의 강판은 모재의 인장강도가 760MPa 이상으로서, API-X100급 이상의 고강도를 확보할 수 있다.In addition, the steel sheet of the present invention has a tensile strength of 760 MPa or more, and can ensure a high strength of API-X100 grade or more.

이하, 상기와 같이 조성되는 강을 갖는 강판의 제조방법에 대하여 상세하게 설명한다.Hereinafter, the manufacturing method of the steel plate which has the steel comprised as mentioned above is demonstrated in detail.

먼저, 상기와 같이 조성되는 강 슬라브를 1050~ 1180℃에서 재가열한다. First, the steel slab formed as described above is reheated at 1050 ~ 1180 ℃.

강의 가열공정은 후속되는 압연공정을 원활히 수행하고 목표하는 강판의 물성을 충분히 얻을 수 있도록 강을 가열하는 공정이므로 목적에 맞게 적절한 온도범 위내에서 가열공정이 수행되어야 한다. 만일, 강의 재가열온도가 상기 1050℃ 미만인 경우에는 Nb나 V가 강중에 재고용되지 못하여 강판의 고강도화를 이루기 어려울뿐 아니라 부분재결정이 발생하여 오스테나이트 결정립이 균일하지 않게 형성되어 고인성화가 어려울 수 있다. 반면, 상기 재가열 온도가 1180℃를 초과할 경우에는 오스테나이트 결정립이 지나치게 조대화되어 결국 강판의 결정립 크기가 증가하는 원인을 제공하게 되며 그 결과 강판의 인성이 극히 열화될 수 있다. 따라서, 상기 재가열 온도는 1050~1180℃로 제한하는 것이 바람직하다.The heating process of the steel is a process of heating the steel so as to smoothly perform the subsequent rolling process and obtain the properties of the target steel sheet, so that the heating process should be performed within an appropriate temperature range according to the purpose. If the reheating temperature of the steel is less than 1050 ° C., Nb or V may not be re-used in the steel, making it difficult to achieve high strength of the steel sheet, and partial recrystallization may occur, resulting in uneven austenite grains. On the other hand, when the reheating temperature exceeds 1180 ° C., the austenite grains are excessively coarse, thereby providing a cause of an increase in grain size of the steel sheet, and as a result, the toughness of the steel sheet may be extremely deteriorated. Therefore, the reheating temperature is preferably limited to 1050 ~ 1180 ℃.

상기 재가열된 슬라브를 오스테나이트 재결정 온도 이하에서 70% 이상의 압하량으로 마무리 압연한다. The reheated slabs are finish rolled to a reduction ratio of at least 70% below the austenite recrystallization temperature.

강판이 저온인성을 갖추기 위해서는 내부 결정립이 미세한 크기로 존재하여야 하는데, 이는 압연온도를 제어함으로써 가능할 수 있다. 상기 압연온도 제어에 의한 결정립 크기 감소효과는 크게 두 가지 온도영역에서 조금씩 상이하게 나타나는데, 우선 재결정 온도 이하 Ar3 이상에서 압연을 실시하면 오스테나이트 내부에는 변형에 의한 전위가 발달하게 되고 이는 후속하는 Ar3 이하 온도의 압연 또는 냉각과정에서 오스테나이트가 베이나이트로 변태하는 핵생성 자리의 역할을 하게 된다.In order for the steel sheet to have low temperature toughness, internal grains must be present in a fine size, which may be possible by controlling the rolling temperature. The grain size reduction effect by the rolling temperature control is slightly different in two temperature ranges. First, when rolling is performed at more than Ar 3 below the recrystallization temperature, a dislocation due to deformation develops in the austenite, which is followed by Ar. In the rolling or cooling process below 3 , austenite becomes a nucleation site that transforms into bainite.

이는 오스테나이트 미재결정 온도 이하에서 압하율을 70%이상 확보하여야 가능하다. 그 이유는 오스테나이트 미재결정온도 이상의 온도범위, 즉 재결정역에서 는 압연을 실시하여도 재결정이 계속 진행되므로 결정립 미세화 효과를 얻을 수 없기 때문에 오스테나이트가 재결정되지 않는 온도범위에서 충분한 압연을 실시할 필요가 있는 것이다. This is possible only by securing a reduction ratio of 70% or more below the austenite recrystallization temperature. The reason is that the recrystallization continues even if rolling is carried out in the recrystallization temperature range above the austenite unrecrystallization temperature, so that the grain refining effect cannot be obtained. There is.

상기 압연을 마무리한 후, 15~30℃/sec의 속도로 냉각하여 350℃ 이하에서 냉각을 정지한다.After finishing the said rolling, it cools at the speed of 15-30 degree-C / sec, and stops cooling at 350 degrees C or less.

냉각속도는 강판의 인성과 강도를 향상시키는 중요한 요소이다. 냉각속도가 빠를수록 강판의 내부조직의 결정립이 미세화되어 인성을 향상시키고, 내부에 경질조직이 발달하여 강도를 향상시킬 수 있기 때문이다. 상기 냉각속도가 15℃/sec 미만인 경우에는 냉각중에 형성된 조대한 페라이트가 혼재하게 되어 강도 및 인성에 불리하게 된다. 따라서, 압연후 상기 강판의 냉각속도는 최소 15℃/sec로 하여야 본 발명에서 목표로 하는 인성과 강도가 향상된 강판을 제조할 수 있다. 그러나, 30℃/sec를 초과하는 경우에는 본 발명에서 대상으로 하고 있는 강판의 특성상 수냉각 설비를 통한 냉각수량 제어 한계에 직면함은 물론 과다한 냉각수량으로 인하여 강판의 뒤틀림 현상이 발생하여 형상제어가 불량하게 된다.Cooling rate is an important factor to improve the toughness and strength of the steel sheet. This is because the faster the cooling rate, the finer the grains of the internal structure of the steel sheet can be to improve the toughness, and the hard structure can be developed therein to improve the strength. If the cooling rate is less than 15 ° C./sec, coarse ferrites formed during cooling are mixed, which is disadvantageous in strength and toughness. Therefore, the cooling rate of the steel sheet after rolling should be at least 15 ° C / sec to produce a steel sheet with improved toughness and strength target in the present invention. However, in the case of exceeding 30 ° C./sec, due to the characteristics of the steel sheet targeted by the present invention, the cooling water amount control limit is confronted with water cooling equipment, and the warpage of the steel sheet occurs due to the excessive amount of cooling water. It becomes bad.

또한, 강판의 내부조직을 제어하기 위해서는 냉각속도의 효과가 충분히 발현되는 온도까지 냉각하여 줄 필요가 있다. 만일 냉각을 정지하는 온도인 냉각정지온도가 350℃를 초과하는 경우에는 강판 내부에 미세한 결정립과 베이나이트 또는 마르텐사이트로 이루어진 경질상이 충분히 형성되기 어렵게 되므로 상기 냉각정지온 도의 상한은 350℃로 제한하는 것이 바람직하다.In addition, in order to control the internal structure of the steel sheet, it is necessary to cool it to a temperature at which the effect of the cooling rate is sufficiently expressed. If the cooling stop temperature, which is the temperature at which the cooling stops, exceeds 350 ° C, it is difficult to form a hard phase composed of fine grains and bainite or martensite sufficiently inside the steel sheet, so the upper limit of the cooling stop temperature is limited to 350 ° C. It is preferable.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1과 같이 조성되는 발명강(A~F) 및 비교강(G~K)을 진공용해(50Kg) 또는 연주 슬라브(240mmt)로 제조한 후, 하기 표 2와 같은 조건으로 압연과 냉각을 실시하였다. 또한, 심(seam) 용접시 발생하는 열영향정도를 입열량 35KJ/cm로 가정하여 모사 후에 모재 및 용접열영향부(HAZ)의 기계적 성질을 평가하였다.Inventive steels (A to F) and comparative steels (G to K), which are formed as shown in Table 1, were manufactured by vacuum dissolution (50 Kg) or slab (240 mmt), and then rolling and cooling were performed under the conditions shown in Table 2 below. Was carried out. In addition, the mechanical properties of the base metal and the welded heat affected zone (HAZ) were evaluated after simulation, assuming that the heat affected by seam welding was 35 KJ / cm.

강종Steel grade CC SiSi MnMn MoMo TiTi NbNb VV NN (Ti-3.4N)+Nb+V(Ti-3.4N) + Nb + V 기타Etc 발명강AInventive Steel A 0.070.07 0.100.10 1.91.9 0.20.2 0.010.01 0.030.03 0.060.06 0.0040.004 0.08640.0864 Ni:0.2Ni: 0.2 발명강BInventive Steel B 0.060.06 0.300.30 1.81.8 0.20.2 0.0090.009 0.060.06 0.010.01 0.0050.005 0.0620.062 Cu:0.3Cu: 0.3 발명강CInvention Steel C 0.050.05 0.400.40 1.91.9 0.30.3 0.0170.017 0.040.04 0.030.03 0.0030.003 0.0770.077 Ni:0.3Ni: 0.3 발명강DInventive Steel D 0.080.08 0.20.2 1.71.7 0.10.1 0.0130.013 0.030.03 0.030.03 0.0040.004 0.080.08 Cr:0.5Cr: 0.5 발명강EInventive Steel E 0.060.06 0.250.25 2.12.1 0.40.4 0.010.01 0.040.04 0.050.05 0.0050.005 0.0770.077 -- 발명강FInventive Steel F 0.060.06 0.300.30 1.81.8 0.150.15 0.0140.014 0.060.06 0.040.04 0.0050.005 0.0970.097 -- 비교강GComparative Steel G 0.120.12 0.250.25 1.51.5 0.10.1 0.010.01 0.030.03 0.030.03 0.0030.003 0.0590.059 -- 비교강HComparative Steel H 0.070.07 0.300.30 2.52.5 0.10.1 0.0070.007 0.050.05 0.040.04 0.0050.005 0.0600.060 -- 비교강IComparative Steel I 0.040.04 0.250.25 2.02.0 -- 0.010.01 0.030.03 0.020.02 0.0040.004 0.0660.066 Cr:0.4Cr: 0.4 비교강JComparative Steel J 0.070.07 0.250.25 1.81.8 0.20.2 0.020.02 0.010.01 0.060.06 0.0050.005 0.0330.033 -- 비교강KComparative Steel K 0.060.06 0.270.27 1.91.9 0.20.2 0.0250.025 0.080.08 0.060.06 0.0030.003 0.1550.155 --

강종Steel grade 구분division 슬라브 재가열온도(℃)Slab reheating temperature (℃) 미재결정역 압하율(%)Undetermined rolling reduction rate (%) 냉각속도 (℃/sec)Cooling rate (℃ / sec) 냉각정지온도 (℃)Cooling stop temperature (℃) 발명강AInventive Steel A 발명재1Invention 1 11361136 7676 2222 315315 발명강BInventive Steel B 발명재2Invention 2 11241124 7474 2525 265265 발명강BInventive Steel B 발명재3Invention 3 11121112 7474 2121 284284 발명강CInvention Steel C 발명재4Invention 4 11501150 7575 1717 270270 발명강CInvention Steel C 발명재5Invention 5 11601160 8282 2828 290290 발명강DInventive Steel D 발명재6Invention 6 11021102 7474 2626 235235 발명강EInventive Steel E 발명재7Invention Material7 10961096 7474 2020 278278 발명강FInventive Steel F 발명재8Invention Material 8 11391139 7575 1919 302302 발명강BInventive Steel B 비교재1Comparative Material 1 12001200 7171 1616 294294 발명강BInventive Steel B 비교재2Comparative Material 2 11451145 6060 2323 246246 발명강DInventive Steel D 비교재3Comparative Material 3 11671167 7979 1010 251251 발명강DInventive Steel D 비교재4Comparative Material 4 11081108 7070 4040 150150 발명강DInventive Steel D 비교재5Comparative Material 5 11171117 7272 2727 453453 비교강GComparative Steel G 비교재6Comparative Material 6 11221122 7575 2020 305305 비교강HComparative Steel H 비교재7Comparative Material7 11401140 7474 2424 289289 비교강IComparative Steel I 비교재8Comparative Material 8 11561156 7878 2626 330330 비교강JComparative Steel J 비교재9Comparative Material 9 11651165 7575 2222 310310 비교강KComparative Steel K 비교재10Comparative Material 10 11341134 7575 1919 288288

구분division 모재의 기계적 성질Mechanical Properties of the Base Material 용접열영향부(HAZ)의 기계적 성질 Mechanical Properties of HAZ 항복강도(MPa)Yield strength (MPa) 인장강도 (MPa)Tensile Strength (MPa) 충격인성 (-20℃,Joule)Impact Toughness (-20 ℃, Joule) DWTT 연성파면율 (-20℃, %)DWTT Ductility Rate (-20 ℃,%) 인장강도 (MPa)Tensile Strength (MPa) 충격인성 (-30℃)Impact Toughness (-30 ℃) 발명재1Invention 1 750 750 882 882 266 266 9999 816 816 121121 발명재2Invention 2 734 734 863 863 267 267 9999 805 805 107107 발명재3Invention 3 732 732 861 861 303 303 9999 788 788 121121 발명재4Invention 4 711 711 836 836 325 325 9999 761 761 130130 발명재5Invention 5 757 757 891 891 251 251 9999 777 777 100100 발명재6Invention 6 745 745 877 877 266 266 9898 812 812 106106 발명재7Invention Material7 768 768 904 904 238 238 9999 847 847 112112 발명재8Invention Material 8 712 712 838 838 328 328 9797 799 799 131131 비교재1Comparative Material 1 722 722 850 850 256 256 5454 765 765 9090 비교재2Comparative Material 2 690 690 812 812 226 226 6868 731 731 131131 비교재3Comparative Material 3 570 570 738 738 328 328 9999 701 701 131131 비교재4Comparative Material 4 808 808 950 950 187 187 6565 808 808 7575 비교재5Comparative Material 5 636 636 748 748 352 352 9999 711 711 141141 비교재6Comparative Material 6 609 609 716 716 328 328 7575 680 680 4646 비교재7Comparative Material7 820 820 965 965 150 150 4343 820 820 3232 비교재8Comparative Material 8 769 769 905 905 220 220 7878 723 723 5353 비교재9Comparative Material 9 746 746 878 878 221 221 9999 691 691 105105 비교재10Comparative Material 10 766 766 902 902 220 220 8787 812 812 2727

상기 표 3에서 나타난 바와 같이, 본 발명의 성분범위를 만족하는 발명강(A~F)를 이용하여 본 발명의 제조방법에 따라 제조된 발명재(1~8)의 경우, 모재의 항복강도 710MPa 이상, 인장강도 835MPa 이상, 충격인성 238~328J, DWTT 연성파면율 97% 이상을 확보하였으며, 또한, HAZ부의 인장강도 761MPa 이상, 충격인성 100J 이상으로 모재 및 용접열영향부에서 우수한 기계적 특성을 확보하였다.As shown in Table 3, in the case of the invention material (1-8) manufactured according to the production method of the present invention using the invention steel (A ~ F) satisfying the component range of the present invention, the yield strength of the base material 710MPa With above 835MPa of tensile strength, 238 ~ 328J impact toughness, 97% of DWTT ductile fracture rate, over 97% of tensile strength of HAZ part, and over 100J impact toughness of HAZ part, it has excellent mechanical properties in the base material and welding heat affected zone. It was.

그러나, 본 발명의 성분범위를 만족하지 않는 비교강(G~K)을 이용하여 제조된 비교재(6~10)의 경우에는, 본 발명이 목표로 하는 모재 및 용접열영향부에서의 강도 및 인성을 확보하지 못하였다. However, in the case of the comparative materials (6 to 10) manufactured by using the comparative steel (G ~ K) that does not satisfy the component range of the present invention, the strength of the base material and the welding heat affected zone to which the present invention is aimed Failed to secure toughness.

또한, 본 발명의 성분범위는 만족하지만 본 발명의 제조조건을 만족하지 않는 비교재(1~5)의 경우에도 열위한 특성을 나타내었다.In addition, even in the case of the comparative materials (1 to 5) that satisfies the component range of the present invention but does not satisfy the manufacturing conditions of the present invention, the poor characteristics were shown.

상술한 바와 같이, 본 발명에 따르면, 항복강도 690MPa 이상이고, 용접부의 강도 및 인성이 우수한 고강도 라인파이프용 강판을 제공할 수 있다.As described above, according to the present invention, a steel sheet for high strength line pipe having a yield strength of 690 MPa or more and excellent in the strength and toughness of the welded portion can be provided.

Claims (5)

중량%로, C: 0.04~0.1%, Si: 0.1~0.4%, Mn: 1.0~2.2%, Sol.Al: 0.01~0.05%, Ti: 0.005~0.02%, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1~0.5%, P: 0.015% 이하, S: 0.005% 이하를 포함하여 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ti, N, Nb 및 V은 0.005≤(Ti-3.4N)+Nb+V≤0.15을 만족하여 이루어지며,By weight%, C: 0.04 to 0.1%, Si: 0.1 to 0.4%, Mn: 1.0 to 2.2%, Sol.Al: 0.01 to 0.05%, Ti: 0.005 to 0.02%, Nb: 0.01 to 0.06%, V: 0.01 to 0.1%, Mo: 0.1 to 0.5%, P: 0.015% or less, S: 0.005% or less, and is composed of the remaining Fe and other unavoidable impurities, and the Ti, N, Nb, and V are 0.005≤ (Ti- 3.4N) + Nb + V≤0.15 모재의 인장강도가 760~904MPa임을 만족하는 것을 특징으로 하는 용접부 물성이 우수한 고강도 라인파이프용 강판.High strength line pipe steel sheet excellent in welded properties, characterized in that the tensile strength of the base material is 760 ~ 904MPa. 제 1항에 있어서, 상기 강판에는 Cu: 1.0% 이하, Ni: 1.0% 이하, Cr: 1.0% 이하 중의 적어도 1종이 추가로 포함되는 것을 특징으로 하는 용접부 물성이 우수한 고강도 라인파이프용 강판.The steel sheet for high-strength line pipe of claim 1, wherein the steel sheet further includes at least one of Cu: 1.0% or less, Ni: 1.0% or less, and Cr: 1.0% or less. 삭제delete 중량%로, C: 0.04~0.1%, Si: 0.1~0.4%, Mn: 1.0~2.2%, Sol.Al: 0.01~0.05%, Ti: 0.005~0.02%, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1~0.5%, P: 0.015% 이하, S: 0.005% 이하를 포함하여 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Ti, N, Nb 및 V은 0.005≤(Ti-3.4N)+Nb+V≤0.15을 만족하는 강 슬라브를 1050~ 1180℃에서 재가열하고, 오스테나이트 재결정 온도 이하에서 70~82%의 압하량으로 마무리 압연한 다음 15~30℃/sec의 속도로 냉각하여 350℃ 이하에서 냉각을 정지하는 것을 포함하여 이루어지는 용접부 물성이 우수한 고강도 라인파이프용 강판의 제조방법.By weight%, C: 0.04 to 0.1%, Si: 0.1 to 0.4%, Mn: 1.0 to 2.2%, Sol.Al: 0.01 to 0.05%, Ti: 0.005 to 0.02%, Nb: 0.01 to 0.06%, V: 0.01 to 0.1%, Mo: 0.1 to 0.5%, P: 0.015% or less, S: 0.005% or less, and is composed of the remaining Fe and other unavoidable impurities, and the Ti, N, Nb, and V are 0.005≤ (Ti- Steel slabs satisfying 3.4N) + Nb + V≤0.15 are reheated at 1050-1180 ° C, finish rolled to 70-82% reduction below the austenite recrystallization temperature, and then at a rate of 15-30 ° C / sec. The manufacturing method of the high strength line pipe steel plate excellent in the weld part physical property which consists of cooling and stopping cooling at 350 degrees C or less. 제 4항에 있어서, 상기 강판에는 Cu: 1.0% 이하, Ni: 1.0% 이하, Cr: 1.0% 이하 중의 적어도 1종이 추가로 포함되는 것을 특징으로 하는 용접부 물성이 우수한 고강도 라인파이프용 강판의 제조방법.The method according to claim 4, wherein the steel sheet further comprises at least one of Cu: 1.0% or less, Ni: 1.0% or less, and Cr: 1.0% or less. .
KR1020060132565A 2006-12-22 2006-12-22 High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same KR100833066B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060132565A KR100833066B1 (en) 2006-12-22 2006-12-22 High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060132565A KR100833066B1 (en) 2006-12-22 2006-12-22 High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR100833066B1 true KR100833066B1 (en) 2008-05-27

Family

ID=39665457

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060132565A KR100833066B1 (en) 2006-12-22 2006-12-22 High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100833066B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724778B (en) * 2008-10-27 2011-09-14 上海梅山钢铁股份有限公司 Steel for automobile beam and with yield strength more than 500 MPa and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000022320A (en) * 1996-06-28 2000-04-25 엔케이케이가부시키가이샤 Steel having excellent outer surface scc resistance for pipeline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000022320A (en) * 1996-06-28 2000-04-25 엔케이케이가부시키가이샤 Steel having excellent outer surface scc resistance for pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724778B (en) * 2008-10-27 2011-09-14 上海梅山钢铁股份有限公司 Steel for automobile beam and with yield strength more than 500 MPa and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA2668069C (en) Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
KR101879082B1 (en) Ultra high strength steel having low yield ratio method for manufacturing the same
KR101304859B1 (en) Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
KR100951296B1 (en) Steel plate for linepipe having high strength and excellent low temperature toughness and manufacturing method of the same
KR101676143B1 (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
KR100843844B1 (en) Steel plate for linepipe having ultra-high strength and excellent crack propagation resistance and manufacturing method of the same
KR100833035B1 (en) High-strength and high-toughness steel plate for linepipe excellent in deformability and method for manufacturing the same
KR102131538B1 (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
KR100979007B1 (en) Ultra-High Strength Steel Sheet For Line Pipe Having Excellent Low Temperature Toughness And Method For Manufacturing The Same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
KR20180074011A (en) Steel plate for welded steel pipe having excellent elogation of the longitudinal direction, method for manufacturing thereof and welded steel pipe using same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR100723203B1 (en) Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet
KR100957961B1 (en) High strength steel plate having excellent welded zone toughness for linepipe and the method for manufacturing the same
KR100584762B1 (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
KR100833066B1 (en) High strength steel sheet having excellent welded zone property for linepipe and the method for manufacturing the same
KR101403062B1 (en) Thick Steel Plate for Offshore Structure Having Ultra-High Strength And Method for Manufacturing the Steel Plate
KR101105128B1 (en) Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR101828704B1 (en) Extremely thick steel sheet for marine structure and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 11