JP2003129133A - Method for manufacturing thick steel plate with high strength and high toughness - Google Patents

Method for manufacturing thick steel plate with high strength and high toughness

Info

Publication number
JP2003129133A
JP2003129133A JP2001326678A JP2001326678A JP2003129133A JP 2003129133 A JP2003129133 A JP 2003129133A JP 2001326678 A JP2001326678 A JP 2001326678A JP 2001326678 A JP2001326678 A JP 2001326678A JP 2003129133 A JP2003129133 A JP 2003129133A
Authority
JP
Japan
Prior art keywords
temperature
less
plate thickness
point
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001326678A
Other languages
Japanese (ja)
Inventor
Minoru Ito
実 伊藤
Toshihiko Koseki
敏彦 小関
Ryuji Uemori
龍治 植森
Akihiko Kojima
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001326678A priority Critical patent/JP2003129133A/en
Publication of JP2003129133A publication Critical patent/JP2003129133A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a thick steel plate with high strength and high toughness. SOLUTION: This method for manufacturing the thick steel plate comprises heating a slab having a composition of, by mass%, 0.01-0.18% C, 0.01-0.5% Si, 0.6-3% Mn, 0.02% or less P, 0.02% or less S, 0.005-0.05% Ti, 0.01-0.05% Nb, 0.001-0.01% N, two or more of Mg, Al and Ca, and the balance Fe with unavoidable impurities, to a temperature of Ac3 or higher; omitting reduction, or stopping reduction after reducing it; cooling it to make an average temperature in a plate thickness direction to be Ar3 point +100 deg.C or lower but Ar3 point or higher, with a cooling rate of 2 deg.C/s or more but 50 deg.C/s or less at the surface of the steel plate; leaving it untill the temperature of the central part of the plate thickness falls to Ar3 point +100 deg.C or lower but Ar3 point or higher, and the surface layer recuperates heat at Ac1 point or higher after end of cooling; rolling it at a final temperature of Ar3 -200 deg.C or higher and with a cumulative rolling reduction of 30% or higher but 99% or lower, to make grain sizes of ferrite at the central part of the plate thickness to be 20 μm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、厚鋼板、特に50
mm以上の板厚を有する高強度高靭性厚板鋼板の製造方法
に関するものであり、主に鉄鋼業において適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for manufacturing a high-strength and high-toughness steel plate having a plate thickness of mm or more, and is mainly applied in the steel industry.

【0002】[0002]

【従来の技術】海洋構造物や橋梁等の構造部材として使
用される厚鋼板は、要求される強度が高強度化する場合
のみならず、使用される環境が厳しくなる場合にも必要
な板厚は増す傾向にある。従来、強度、靭性の優れた厚
鋼板を製造する方法として、TMCP(Thermo―
Mechanical Controlled Pro
cess)技術が発達し、加熱、圧延、冷却における組
織制御によって最終組織の微細化が図られてきた。しか
しながら、板厚が大きくなるほど、また厚板中心部に近
づくほど、圧延、冷却による組織微細化の効果は小さく
なり、板厚中心部の強度、靭性が低下する。そこで高強
度鋼の場合では、強度をあげるために合金の添加がしば
しば行われるが、合金の添加量を多くすると靭性がさら
に低下するという問題がある。
2. Description of the Related Art Thick steel plates used as structural members for offshore structures and bridges are required not only when the required strength is high but also when the environment in which they are used becomes severe. Is on the rise. Conventionally, as a method of manufacturing a thick steel plate excellent in strength and toughness, TMCP (Thermo-
Mechanical Controlled Pro
process technology has been developed, and the final structure has been refined by controlling the structure in heating, rolling and cooling. However, as the plate thickness increases and as it approaches the central part of the thick plate, the effect of microstructure refinement due to rolling and cooling decreases, and the strength and toughness of the central part of the plate thickness decrease. Therefore, in the case of high-strength steel, alloys are often added to increase the strength, but if the amount of alloy added is increased, the toughness further decreases.

【0003】一方、靭性を向上させる方法としては、未
再結晶温度域において圧下を加えることが有効である。
しかし、圧下の効果は、板厚が厚い場合では板厚中心部
まで十分にいきわたらず、圧下による靭性の向上効果は
飽和してしまう。そこで、板厚方向に故意に温度差をつ
け板厚表層部を板厚中心部より硬化させ、板厚方向の変
形抵抗差を増大させた状態で圧下を加えることにより板
厚中心部を強圧下する手法がとられてきた。もちろんこ
の場合も、板厚中心部の温度をオーステナイトの未再結
晶温度域にまで低下させることが必要であることに変わ
りはないが、あまり温度が下がりすぎると板厚表層部で
変態が開始しフェライトが出現する。このフェライトは
引続いて行われる圧下により加工を受け、いわゆる加工
フェライトとなって靭性を損なうという問題がある。
On the other hand, as a method for improving the toughness, it is effective to apply a reduction in the non-recrystallization temperature range.
However, the reduction effect does not reach the center of the plate thickness sufficiently when the plate thickness is large, and the toughness improving effect due to the reduction is saturated. Therefore, a temperature difference is intentionally applied in the plate thickness direction to harden the surface part of the plate thickness from the center part of the plate thickness, and a reduction is applied while increasing the difference in deformation resistance in the plate thickness direction. The method of doing has been taken. Of course, in this case as well, it is still necessary to lower the temperature of the central part of the plate thickness to the unrecrystallized temperature range of austenite, but if the temperature drops too much, transformation starts at the surface part of the plate thickness. Ferrite appears. This ferrite has a problem that it is subjected to processing by subsequent rolling and becomes so-called processed ferrite, which impairs toughness.

【0004】そこで特開昭63−307216号公報で
は、加工段階で一度板厚表層部を冷却して板厚中心部か
らの復熱を利用して板厚方向での温度差を調整させてい
る。すなわち、圧延の途中の段階で一度圧延を止め、板
厚の平均温度がAr3 点〜Ar3 +50℃になるまで冷
却し、復熱により板厚表層部と板厚表面部の温度差が小
さくなり、板厚中心部の温度がAr3 点〜Ar3 +50
℃になるまで放置したのちに再び圧下を加えることで靭
性向上を図っている。しかし、この方法でも板厚が大き
くなると、板厚中心部がAr3 点〜Ar3 +50℃に下
がるまでに時間がかかり、板厚中心部のオーステナイト
粒が粗大化するため靭性は低値となる。また、高強度鋼
においても、合金添加によりAr3 点が低下するため、
板厚中心部がAr3 点〜Ar3 +50℃に下がるまでに
時間がかかり靭性は低値となる。このことから高強度厚
手材においては板厚中心部で十分な靭性を確保すること
は困難であった。
In view of this, in Japanese Patent Laid-Open No. 63-307216, the surface layer portion of the sheet thickness is once cooled at the processing stage, and the temperature difference in the sheet thickness direction is adjusted by utilizing the heat recovery from the center portion of the sheet thickness. . That is, the rolling is stopped once in the middle of rolling, and the plate is cooled until the average temperature of the plate thickness reaches Ar 3 point to Ar 3 + 50 ° C., and the temperature difference between the surface layer part of the plate thickness and the surface part of the plate thickness is reduced by reheating. The temperature at the center of the plate thickness is Ar 3 point to Ar 3 +50.
The toughness is improved by allowing it to stand until it reaches ℃ and then applying reduction again. However, even with this method, when the plate thickness becomes large, it takes time for the plate thickness center to drop from Ar 3 point to Ar 3 + 50 ° C., and the austenite grains in the plate thickness center become coarse, so the toughness becomes a low value. . In addition, even in high strength steel, the Ar3 point decreases due to the addition of alloy,
It takes time for the central part of the plate thickness to drop from Ar 3 point to Ar 3 + 50 ° C., and the toughness becomes low. For this reason, it was difficult to secure sufficient toughness in the central part of the plate thickness in high strength thick materials.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な現状に鑑み、板厚の大きな高強度鋼においても、板厚
表層部の靭性を低下させずに板厚中心部の靭性を向上さ
せることができる高強度高靭性厚板鋼板の製造方法を提
供することをその課題としている。
In view of the above situation, the present invention improves the toughness of the central part of the plate thickness without reducing the toughness of the surface layer part of the plate thickness even in high strength steel having a large plate thickness. It is an object of the present invention to provide a method for producing a high-strength and high-toughness thick steel plate that can be made.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、50mm厚以上の厚鋼板においても中心部のフェラ
イト粒径が20μmにできるような圧延途中冷却の条件
と鋼成分の組み合わせを見出した。本発明は、かかる知
見に基づき完成されたもので、その要旨とするところは
以下の通りである。 (1)質量%で、C:0.01〜0.18%、Si:
0.01〜0.5%、Mn:0.6〜3%、P:0.0
2%以下、S:0.02%以下、Ti:0.005〜
0.05%、Nb:0.01〜0.05%、N:0.0
01〜0.01%を含有し、さらに、Mg:0.000
1〜0.004%、Al:0.0001〜0.1%、C
a:0.0005〜0.003%の2種以上を含有し、
残部はFeおよび不可避不純物からなる鋼成分とし、鋳
片をAc3 以上の温度に加熱後圧下せずに、もしくは圧
下を加えた後圧下を中断し、板厚平均温度がAr3 点+
100℃以下Ar3 点以上の温度になるまで、鋼板表面
の冷速が2℃/s以上50℃/s以下となるよう冷却
し、冷却終了後、板厚中心部の温度がAr3 点+100
℃以下Ar3 点以上の温度に低下し、かつ、表層がAc
1 点以上の温度に復熱するまで放置し、その後、累積圧
下率が30%以上99%以下でAr3 −200℃以上の
温度で終了する圧延を行ない、板厚中心のフェライト粒
径を20μm以下とすることを特徴とする高強度高靭性
厚鋼板の製造方法。 (2)鋼が、質量%で、Cu:0.01〜1%、Ni:
0.2〜5%、Cr:0.01〜1%、Mo:0.01
〜1%、V:0.001〜0.5%、Zr:0.01〜
1%、Ta:0.01〜1%、B:0.0001〜0.
005%、REM:0.0005〜0.05%の1種ま
たは2種以上を、さらに含有することを特徴とする前記
(1)に記載の高強度高靭性厚鋼板の製造方法。
Means for Solving the Problems As a result of intensive studies by the present inventors, a combination of conditions of cooling during rolling and steel components such that the ferrite grain size in the central portion can be 20 μm even in a steel plate having a thickness of 50 mm or more. I found it. The present invention has been completed based on such findings, and the gist thereof is as follows. (1)% by mass, C: 0.01 to 0.18%, Si:
0.01-0.5%, Mn: 0.6-3%, P: 0.0
2% or less, S: 0.02% or less, Ti: 0.005-
0.05%, Nb: 0.01 to 0.05%, N: 0.0
01-0.01%, and further Mg: 0.000
1 to 0.004%, Al: 0.0001 to 0.1%, C
a: contains 0.0005 to 0.003% of two or more kinds,
The balance is a steel composition consisting of Fe and unavoidable impurities, and the slab is heated to a temperature of Ac 3 or higher and not reduced, or the reduction is stopped after the reduction is applied, and the average sheet temperature is Ar 3 points +
100 ° C. until the following Ar 3 point or higher, and cooled to cooling rate of the steel sheet surface becomes less 2 ° C. / s or higher 50 ° C. / s, after the end of cooling, the temperature is Ar 3 point of the thickness center portion +100
℃ or less Ar to a temperature of 3 points or more, and the surface layer is Ac
It is left standing until it is reheated to a temperature of 1 point or more, and then rolling is performed at a cumulative rolling reduction of 30% or more and 99% or less at a temperature of Ar 3 -200 ° C. or more, and the ferrite grain size at the center of the plate thickness is 20 μm. A method for manufacturing a high-strength, high-toughness thick steel sheet characterized by the following. (2) Steel, in mass%, Cu: 0.01 to 1%, Ni:
0.2-5%, Cr: 0.01-1%, Mo: 0.01
~ 1%, V: 0.001-0.5%, Zr: 0.01 ~
1%, Ta: 0.01 to 1%, B: 0.0001 to 0.
005%, REM: 0.0005-0.05% 1 type or 2 types or more are contained further, The manufacturing method of the high strength high toughness thick steel plate as described in said (1) characterized by the above-mentioned.

【0007】[0007]

【発明の実施の形態】以下に本発明について詳細に説明
する。従来の製造法で問題であるのは、板厚の増加や高
強度化のための合金添加によるAr3 点の低下のため圧
延途中で行う冷却後の復熱に要する時間(放置時間)が
長時間化し、板厚中心部をはじめとする組織が粗大化す
ることである。そこで本発明者らは、復熱時の組織粗大
化抑制およびAr3 点を上昇させる手段について鋭意研
究した。その結果、復熱時の組織の粗大化は、微細酸化
物、窒化物、硫化物を多く分散することにより抑制する
ことができ、特に、Ti添加鋼において、Mg、Ca、
Alのうち2種類以上を添加させ、複合酸化物を生成さ
せることにより格段に組織の粗大化が抑制させることを
見出した。さらに本発明者らは、これらの添加が同時に
Ar3 点を無添加の場合に比べ10〜50℃上昇するこ
とを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The problem with the conventional manufacturing method is that the time required for recuperation after cooling (dwelling time) that occurs during rolling is long due to the decrease in the Ar 3 point due to the increase in plate thickness and the addition of alloys for higher strength. It means that the time becomes longer and the structure including the plate thickness center portion becomes coarser. Therefore, the present inventors diligently studied means for suppressing the coarsening of the structure at the time of recuperation and increasing the Ar 3 point. As a result, coarsening of the structure during recuperation can be suppressed by dispersing a large amount of fine oxides, nitrides, and sulfides, and particularly in Ti-added steel, Mg, Ca,
It has been found that by adding two or more kinds of Al to form a composite oxide, the coarsening of the structure is significantly suppressed. Furthermore, the present inventors have found that these additions simultaneously raise the Ar 3 point by 10 to 50 ° C. as compared with the case without addition.

【0008】そして、このような成分系を有する鋳片を
Ac3 以上の温度に加熱後、速やかに圧下を加えた後圧
下を中断し、引き続き板厚平均温度がAr3 点+100
℃以下Ar3 点以上の温度になるまで2℃/s以上50
℃/s以下の鋼板表面冷速で冷却し、冷却終了後、板厚
中心部の温度がAr3 点以上Ar3 +100℃以下の温
度に低下し、かつ、表層がAc1 点以上の温度に復熱す
るまで放置し、その後、累積圧下率30%以上99%以
下で圧延することにより、板厚中心部のフェライト粒径
を20μm以下に抑えることができ、このことにより板
厚中心部の靭性が飛躍的に向上することを見出した。な
お、板厚中心部のフェライト粒径は20μm以下小さい
方が好ましいが、圧延コストなどを度外視して1μm未
満の細粒を得る必要はない。
After heating the slab having such a component system to a temperature of Ac 3 or higher, a reduction is immediately applied and then the reduction is interrupted, and subsequently, the average sheet thickness temperature is Ar 3 +100.
2 ° C / s or more 50 ° C or less until reaching a temperature of Ar 3 points or more
After cooling the steel plate surface at a cooling rate of ℃ / s or less, the temperature at the center of the plate thickness decreases to a temperature of Ar 3 points or more and Ar 3 + 100 ° C. or less, and the surface layer has a temperature of Ac 1 point or more. The ferrite grain size in the central part of the plate thickness can be suppressed to 20 μm or less by leaving it to reheat and then rolling at a cumulative reduction of 30% or more and 99% or less. Has been found to improve dramatically. The ferrite grain size at the center of the plate thickness is preferably 20 μm or less, but it is not necessary to obtain fine grains having a grain size of less than 1 μm, excluding rolling costs.

【0009】板厚平均温度は、熱伝導方程式から計算さ
れるが、簡便には水冷開始時の表面温度T0 、水冷後の
表面温度Ts とから、(3T0 +Ts )/4で算出して
もよい。本発明では、Nbを添加することにより、冷却
を停止する条件である平均板厚温度の上限、および復熱
後の圧延を開始する条件である板厚中心部の温度の上限
をともに、従来のAr3 +50℃からAr3 +100℃
にまで緩和できた。
The sheet thickness average temperature is calculated from the heat conduction equation, but is simply (3T 0 + T s ) / 4 from the surface temperature T 0 at the start of water cooling and the surface temperature T s after water cooling. You may. In the present invention, by adding Nb, both the upper limit of the average plate thickness temperature that is the condition for stopping cooling and the upper limit of the temperature of the center part of the plate thickness that is the condition for starting rolling after recuperation are set to the conventional values. Ar 3 + 50 ° C to Ar 3 + 100 ° C
I was able to relax to.

【0010】次に、製造法条件の詳細について説明をす
る。圧延前の加熱に関しては、圧延前の鋼板がγ組織で
あること、すなわちAc3以上の温度になっていること
が必要である。しかし、Ac3 以上であれば鋳造後にこ
れを冷片にし再加熱する必要は特になく、鋳造後冷却途
中であってもよい。また、冷却後に板厚中心部靭性の向
上をはかるための圧下として、累積圧下率で30%以上
の圧下が必要なため、冷却前にある程度の厚みを残して
圧下を中断する必要がある。この場合冷却前に特に圧下
を加えなくても差し支えがない。水冷は、冷却前に圧下
をしない場合は鋳片加熱温度以下で開始できる。水冷開
始温度の下限はAc3 −100℃が好ましく、冷却前に
圧下する場合でもAc3 −100℃以上で開始した方が
よい。
Next, the details of the manufacturing method conditions will be described. Regarding heating before rolling, it is necessary that the steel sheet before rolling has a γ structure, that is, a temperature of Ac 3 or higher. However, if it is Ac 3 or more, it is not particularly necessary to turn it into a cold piece after casting and reheat it, and it may be during cooling after casting. Further, as a reduction for improving the toughness in the central portion of the plate thickness after cooling, a reduction of 30% or more in cumulative reduction is required, so it is necessary to interrupt the reduction with a certain thickness left before cooling. In this case, no particular reduction is required before cooling. Water cooling can be started below the slab heating temperature if no reduction is performed before cooling. The lower limit of the water cooling initiation temperature Ac 3 -100 ° C. are preferred, it is better to start with even Ac 3 -100 ° C. or more when the rolling before cooling.

【0011】また、冷却により到達する温度域を板厚平
均温度でAr3 点+100℃以下Ar3 点以上としたの
は、Ar3 点+100℃超では、板厚中心部の復熱過程
で未済結晶域まで下がらないためであり、また、Ar3
点未満の温度では復熱後の板表面温度が低すぎて、引続
いて行われる圧延により多量の加工フェライトを生じて
靭性に悪影響を与えるためである。
Further, the temperature range to reach the cooling was set to Ar 3 point + 100 ° C. or less Ar 3 point or more in thickness average temperature, the Ar 3 point + 100 ° C. than at recuperation process of the plate thickness center pending This is because it does not go down to the crystal region, and Ar 3
This is because if the temperature is below the point, the plate surface temperature after recuperation is too low, and a large amount of worked ferrite is generated by the subsequent rolling, which adversely affects the toughness.

【0012】また、板厚表層部は冷却により一度オース
テナイトからフェライトに変態させた後、再びオーステ
ナイトへ変態させる必要があるが、冷却により到達する
温度域を板厚平均温度でAr3 以上と制限する必要があ
るため、冷却時の冷却速度が小さすぎると板厚表面部で
変態する部分の割合が小さくなりすぎて、板厚中心部を
強圧下できなくなるため、冷速は鋼板表面において2℃
/s以上とした。一方で冷却速度が大きすぎると板厚表
層部の復熱に時間がかかりすぎるため、冷却速度の上限
を50℃/sとした。
Further, it is necessary to transform the austenite from the austenite to the ferrite once by cooling the surface layer portion of the sheet thickness, and then to transform it to austenite again. However, the temperature range reached by cooling is limited to Ar 3 or more in the sheet thickness average temperature. Since it is necessary, if the cooling rate during cooling is too low, the ratio of the portion transformed at the surface of the plate thickness becomes too small, and it becomes impossible to strongly reduce the central part of the plate thickness.
/ S or more. On the other hand, if the cooling rate is too high, it takes too long to recover the heat of the surface layer of the plate, so the upper limit of the cooling rate was set to 50 ° C / s.

【0013】また、冷却終了後板厚中心部の温度がAr
3 点+100℃以下の温度域に低下するまで放置する理
由は、板厚中心部の温度をオーステナイトの未再結晶域
温度に低下させた後圧下を加えるためである。ただし、
放置しすぎると、板厚中心部においても変態が開始して
しまい靭性に悪影響をおよぼすため、放置後圧延を開始
する板厚中心部の温度はAr3 点温度以上とした。板厚
中心温度は、熱伝導方程式から計算されるが、簡便には
水冷開始時の表面温度T0 、水冷後の表面温度Ts1、復
熱後の表面温度Ts2から、T0 +Ts1−T s2で算出して
もよい。
After cooling, the temperature at the center of the plate thickness is Ar
3The reason for leaving it to fall below the temperature range of + 100 ° C
The reason is that the temperature at the center of the plate thickness is the unrecrystallized region of austenite.
This is to reduce the temperature and then apply reduction. However,
If left unattended, transformation will start even in the center of the plate thickness.
Rolling is started after standing because it adversely affects the toughness.
The temperature at the center of the plate thickness is Ar3The temperature was set to the point temperature or higher. Plate thickness
The core temperature is calculated from the heat conduction equation, but simply
Surface temperature T at the start of water cooling0, Surface temperature T after water coolings1, Return
Surface temperature after heating Ts2From T0+ Ts1-T s2Calculate with
Good.

【0014】さらに、板厚表層部の復熱温度をAc1
温度以上としたのは、Ac1 点温度より低い場合では板
厚表面部にフェライトが残り加工を受けるために、板厚
表面部の靭性が低下するためである。圧延終了温度は、
冷却後圧延開始温度以下であればよいが、不要なフェラ
イト加工を避けるためAr3 −200℃以上とする。
Further, the recuperation temperature of the surface layer portion of the plate thickness is set at the Ac 1 point temperature or higher, because when the temperature is lower than the Ac 1 point temperature, ferrite remains on the surface portion of the plate and undergoes processing, so This reduces the toughness of. The rolling end temperature is
The temperature may be lower than the rolling start temperature after cooling, but is set to Ar 3 -200 ° C. or higher in order to avoid unnecessary ferrite processing.

【0015】次に成分限定の理由について説明する。 C:Cは鋼における母材強度を向上させる基本的な元素
として欠かせない元素であり、その有効な下限として
0.01%以上の添加が必要であるが、0.18%を超
える過剰の添加では、鋼材の溶接性や靱性の低下を招く
ので、その上限を0.18%とした。
Next, the reason for limiting the components will be described. C: C is an element that is indispensable as a basic element for improving the strength of the base material in steel, and its effective lower limit is to add 0.01% or more. Addition causes a decrease in the weldability and toughness of the steel material, so the upper limit was made 0.18%.

【0016】Si:Siは製鋼上脱酸元素として必要な
元素であり0.01%以上添加するが、0.5%を超え
るとHAZ靱性を低下させるので0.5%を上限とす
る。
Si: Si is an element required as a deoxidizing element for steelmaking, and is added in an amount of 0.01% or more. However, if it exceeds 0.5%, the HAZ toughness decreases, so 0.5% is made the upper limit.

【0017】Mn:Mnは、母材の強度および靱性の確
保に必要な元素であることから、0.6%以上添加する
ことが必要である。しかしながら、3%を超えるとHA
Z靱性を著しく阻害するために、その範囲を0.6〜3
%とした。
Mn: Mn is an element necessary for securing the strength and toughness of the base material, so it is necessary to add it at 0.6% or more. However, if it exceeds 3%, HA
In order to significantly inhibit Z toughness, the range is set to 0.6 to 3
%.

【0018】P:Pは鋼の靱性に影響を与える元素であ
り、0.02%を超えて含有すると靱性を著しく阻害す
るため、その含有される上限を0.02%とした。
P: P is an element that affects the toughness of steel, and if it is contained in excess of 0.02%, the toughness is significantly impaired, so the upper limit of its content is set to 0.02%.

【0019】S:Sは0.02%を超えて過剰に添加さ
れると粗大な硫化物の生成の原因となり靱性を阻害する
ために、その含有される上限を0.02%とした。
S: When S is added in excess of 0.02%, it causes formation of coarse sulfides and impairs toughness. Therefore, the upper limit of S content is set to 0.02%.

【0020】Ti:Tiは微量の添加で結晶粒の微細化
に有効であり、0.005%以上添加する。しかし、
0.05%超の添加では溶接部靭性を劣化させるため、
上限を0.05%とした。
Ti: Ti is effective for refining crystal grains even if added in a trace amount, and is added in an amount of 0.005% or more. But,
Addition of more than 0.05% deteriorates the toughness of the weld, so
The upper limit was set to 0.05%.

【0021】Nb:Nbは、未再結晶温度域を広げる上
で本発明においてもっとも重要な元素であり、また、炭
化物、窒化物を形成し強度の向上に効果がある元素であ
るが、0.01%未満の添加ではその効果がなく、0.
05%を超える添加では、靱性の低下を招くために、そ
の範囲を0.01〜0.05%とする。
Nb: Nb is the most important element in the present invention for expanding the non-recrystallization temperature range, and is an element that forms carbides and nitrides and is effective in improving strength. Addition of less than 01% has no effect, and
If added over 05%, the toughness is lowered, so the range is made 0.01 to 0.05%.

【0022】N:NはAlと共に窒化物を形成し結晶粒
の微細化に有効であり0.001%以上添加するが、過
剰なNの含有は溶接部の靭性を損なうため0.01%以
下とした。
N: N forms a nitride together with Al and is effective for refining the crystal grains, and is added in an amount of 0.001% or more. However, since excessive N content impairs the toughness of the welded portion, it is 0.01% or less. And

【0023】Mg、Al、Caはこれらのうち2種以上
添加してその複合酸化物を生成させる。この複合酸化物
はTiの酸化物や窒化物の核として有効に作用し、Ti
を単独で添加したときよりも微細に分散しやすくなる。
Mg、Al、Caの添加量は、2種以上の同時添加を前
提に、以下のように限定する。
Two or more of Mg, Al and Ca are added to form a complex oxide thereof. This composite oxide effectively acts as a nucleus of an oxide or nitride of Ti,
It becomes easier to disperse finely than when added alone.
The addition amounts of Mg, Al, and Ca are limited as follows on the premise of simultaneous addition of two or more kinds.

【0024】Mg:Mgは本発明の主たる合金元素であ
り、主に鋼中で酸化物を形成しγ粒の成長を抑制するこ
とから添加されるが、0.004%を超えて添加される
と、粗大な酸化物が生成し易くなり、母材およびHAZ
靱性の低下をもたらす。しかしながら、0.0001%
未満の添加では、ピニング粒子として必要な酸化物の生
成が十分に期待できなくなるため、その添加範囲を0.
0001〜0.004%と限定した。
Mg: Mg is the main alloying element of the present invention, and is added mainly because it forms an oxide in steel and suppresses the growth of γ grains, but it is added in excess of 0.004%. And coarse oxides are more likely to be generated, and the base metal and HAZ
It causes a decrease in toughness. However, 0.0001%
If the addition amount is less than 0.1, it is not possible to sufficiently expect the formation of oxides necessary for the pinning particles.
It was limited to 0001 to 0.004%.

【0025】Al:Alは本発明の主たる合金元素であ
り、主に鋼中で酸化物を形成しγ粒の成長を抑制するこ
とから添加されるが、0.1%を超えて添加されると、
粗大な酸化物が生成し易くなり、母材およびHAZ靱性
の低下をもたらす。しかしながら、0.0001%未満
の添加では、ピニング粒子として必要な酸化物の生成が
十分に期待できなくなるため、その範囲を0.0001
〜0.1%とした。
Al: Al is the main alloying element of the present invention, and is added mainly because it forms an oxide in steel and suppresses the growth of γ grains, but is added in excess of 0.1%. When,
Coarse oxides are likely to be formed, resulting in deterioration of the base material and HAZ toughness. However, if the addition amount is less than 0.0001%, it is not possible to sufficiently expect the formation of oxides necessary for the pinning particles.
˜0.1%.

【0026】Ca:Caは本発明の主たる合金元素であ
り、主に鋼中で酸化物を形成しオーステナイト粒の成長
を抑制することから添加されるが、0.003%を超え
て添加されると、粗大な酸化物が生成し易くなり、母材
およびHAZ靱性の低下をもたらす。しかしながら、
0.0005%未満の添加では、ピニング粒子として必
要な酸化物の生成が十分に期待できなくなるため、その
添加範囲を0.0005〜0.003%と限定した。
Ca: Ca is the main alloying element of the present invention, and is added mainly because it forms an oxide in steel and suppresses the growth of austenite grains, but is added in excess of 0.003%. If so, a coarse oxide is likely to be generated, resulting in deterioration of the base material and HAZ toughness. However,
If the addition amount is less than 0.0005%, the oxide required for the pinning particles cannot be expected to be sufficiently generated, so the addition range is limited to 0.0005 to 0.003%.

【0027】なお、本発明においては、強度および靱性
を改善する元素として、Cu、Ni、Cr、Mo、V、
Ta、B、Zr、REMの中で、1種または2種以上の
元素を添加することができる。
In the present invention, as elements for improving strength and toughness, Cu, Ni, Cr, Mo, V,
In Ta, B, Zr, or REM, one or more elements can be added.

【0028】Cu:Cuは、強度の上昇に有効な元素で
あるが、0.01%未満では効果がなく、1%を超える
と鋼片加熱時や溶接時に割れを生じやすくする。従っ
て、その含有量を0.01〜1%とした。
Cu: Cu is an element effective for increasing the strength, but if it is less than 0.01%, it has no effect, and if it exceeds 1%, cracking is likely to occur during heating of the steel slab or during welding. Therefore, the content is set to 0.01 to 1%.

【0029】Ni:Niは、強度の上昇に有効な元素で
あるが、0.01%未満では効果がなく、過度の添加は
溶接性を損なうので5%を上限とした。
Ni: Ni is an element effective in increasing the strength, but if it is less than 0.01%, it has no effect and excessive addition impairs weldability, so the upper limit was made 5%.

【0030】Cr:Crは析出強化による鋼の強度を向
上させるために、0.01%以上の添加が有効である
が、多量に添加すると、焼入れ性を上昇させ、ベイナイ
ト組織を生じさせ、靱性を低下させる。従って、その上
限を1%とした。
Cr: Cr is effective to be added in an amount of 0.01% or more in order to improve the strength of the steel by precipitation strengthening. However, if added in a large amount, hardenability is increased, bainite structure is generated, and toughness is increased. Lower. Therefore, the upper limit is set to 1%.

【0031】Mo:Moは、焼入れ性を向上させると同
時に、炭窒化物を形成し強度を改善する元素であり、そ
の効果を得るためには、0.01%以上の添加が必要に
なるが、1%を超えた多量の添加は必要以上の強化とと
もに、靱性の著しい低下をもたらすために、その範囲を
0.01〜1%とした。
Mo: Mo is an element that improves hardenability and at the same time forms carbonitrides to improve strength. To obtain the effect, 0.01% or more must be added. The addition of a large amount exceeding 1% brings about a significant decrease in toughness as well as excessive strengthening, so the range was made 0.01 to 1%.

【0032】V:Vは、炭化物、窒化物を形成し強度の
向上に効果がある元素であるが、0.001%未満の添
加ではその効果がなく、0.5%を超える添加では、逆
に靱性の低下を招くために、その範囲を0.001〜
0.5%とした。
V: V is an element that forms carbides and nitrides and is effective in improving strength. Addition of less than 0.001% has no effect, and addition of more than 0.5% has the opposite effect. To lower the toughness,
It was set to 0.5%.

【0033】Zr、Ta:ZrとTaは炭化物、窒化物
を形成し強度の向上に効果がある元素であるが、0.0
1%未満の添加ではその効果がなく、1%を超える添加
では、逆に靱性の低下を招くために、その範囲を0.0
1〜1%とした。
Zr, Ta: Zr and Ta are elements which form carbides and nitrides and are effective in improving strength, but 0.0
Addition of less than 1% has no effect, and addition of more than 1% causes deterioration of toughness.
It was set to 1 to 1%.

【0034】B:Bは一般に、固溶すると焼入れ性を増
加させるが、またBNとして固溶Nを低下させ、溶接熱
影響部の靱性を向上させる元素である。従って、0.0
001%以上の添加でその効果を利用できるが、過剰の
添加は、靱性の低下を招くために、その上限を0.00
5%とした。
B: B is an element which generally increases the hardenability when it forms a solid solution, but also lowers the solid solution N as BN and improves the toughness of the weld heat affected zone. Therefore, 0.0
The effect can be utilized by adding 001% or more, but an excessive addition causes reduction in toughness, so the upper limit is set to 0.00
It was set to 5%.

【0035】REM:REMは硫化物を生成することに
より伸長MnSの生成を抑制し、鋼材の板厚方向の特
性、特に耐ラメラティアー性を改善する。この効果は
0.0005%未満では得られないのでこれを下限値に
する。また0.05%を超えると粗大な酸化物個数が増
加し、超微細なMg含有酸化物の個数が低下するためそ
の上限を0.05%とした。
REM: REM suppresses the formation of elongated MnS by forming sulfides and improves the properties of the steel material in the plate thickness direction, especially the lamella tear resistance. This effect cannot be obtained with less than 0.0005%, so this is made the lower limit. If it exceeds 0.05%, the number of coarse oxides increases and the number of ultrafine Mg-containing oxides decreases, so the upper limit was made 0.05%.

【0036】[0036]

【実施例】まず、表1に示す成分の本発明鋼及び比較鋼
について、表2に示す本発明方法および比較方法を適用
した場合、表3に示した最終フェライト粒径となり、2
0μm以下となる本発明鋼の強度、靭性は、表3に示し
た通り、明らかに優れた特性を示している。
EXAMPLE First, when the method of the present invention and the comparative method shown in Table 2 were applied to the present invention steel and the comparative steel having the components shown in Table 1, the final ferrite grain sizes shown in Table 3 were obtained.
As shown in Table 3, the strength and toughness of the steel of the present invention, which is 0 μm or less, clearly show excellent properties.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】以上、示したように本発明の製造方法に
よれば、板厚の大きな場合においても板厚全体にわたっ
て靱性に優れた高強度高靭性厚板鋼板が提供でき、その
産業上の価値は極めて高いといえる。
As described above, according to the manufacturing method of the present invention, it is possible to provide a high-strength and high-toughness steel plate having excellent toughness over the entire plate thickness even when the plate thickness is large. It can be said that the value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植森 龍治 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 児島 明彦 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA16 AA17 AA21 AA22 AA27 AA29 AA31 AA35 BA01 CA00 CB01 CB02 CC00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryuji Uemori             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Akihiko Kojima             1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel shares             Company Kimitsu Works F term (reference) 4K032 AA01 AA04 AA05 AA08 AA16                       AA17 AA21 AA22 AA27 AA29                       AA31 AA35 BA01 CA00 CB01                       CB02 CC00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.01〜0.18%、 Si:0.01〜0.5%、 Mn:0.6〜3%、 P :0.02%以下、 S :0.02%以下、 Ti:0.005〜0.05%、 Nb:0.01〜0.05%、 N :0.001〜0.01%を含有し、さらに、 Mg:0.0001〜0.004%、 Al:0.0001〜0.1%、 Ca:0.0005〜0.003%の2種以上を含有
し、残部はFeおよび不可避不純物からなる鋼成分と
し、 鋳片をAc3 以上の温度に加熱後圧下せずに、もしくは
圧下を加えた後圧下を中断し、板厚平均温度がAr3
+100℃以下Ar3 点以上の温度になるまで、鋼板表
面の冷速が2℃/s以上50℃/s以下となるよう冷却
し、冷却終了後、板厚中心部の温度がAr3 点+100
℃以下Ar3 点以上の温度に低下し、かつ、表層がAc
1 点以上の温度に復熱するまで放置し、その後、累積圧
下率が30%以上99%以下でAr3 −200℃以上の
温度で終了する圧延を行ない、板厚中心のフェライト粒
径を20μm以下とすることを特徴とする高強度高靭性
厚鋼板の製造方法。
1. In mass%, C: 0.01 to 0.18%, Si: 0.01 to 0.5%, Mn: 0.6 to 3%, P: 0.02% or less, S: 0.02% or less, Ti: 0.005 to 0.05%, Nb: 0.01 to 0.05%, N: 0.001 to 0.01%, and further Mg: 0.0001 to 0.004%, Al: 0.0001 to 0.1%, Ca: 0.0005 to 0.003%, two or more kinds are contained, and the balance is a steel component consisting of Fe and unavoidable impurities. Without heating after heating to a temperature of 3 or more, or after applying the reduction, the reduction is interrupted, and the cold speed of the steel sheet surface is kept until the plate thickness average temperature reaches Ar 3 point + 100 ° C or less Ar 3 point or more. After cooling is completed at a temperature of 2 ° C / s or more and 50 ° C / s or less, the temperature at the center of the plate thickness is Ar 3 point +100
℃ or less Ar to a temperature of 3 points or more, and the surface layer is Ac
It is left standing until it is reheated to a temperature of 1 point or more, and then rolling is performed at a cumulative rolling reduction of 30% or more and 99% or less at a temperature of Ar 3 -200 ° C. or more, and the ferrite grain size at the center of the plate thickness is 20 μm. A method for manufacturing a high-strength, high-toughness thick steel sheet characterized by the following.
【請求項2】 鋼が、質量%で、 Cu:0.01〜1%、 Ni:0.01〜5%、 Cr:0.01〜1%、 Mo:0.01〜1%、 V :0.001〜0.5%、 Zr:0.01〜1%、 Ta:0.01〜1%、 B :0.0001〜0.005%、 REM:0.0005〜0.05%の1種または2種以
上を、さらに含有することを特徴とする請求項1に記載
の高強度高靭性厚鋼板の製造方法。
2. Steel in mass%, Cu: 0.01 to 1%, Ni: 0.01 to 5%, Cr: 0.01 to 1%, Mo: 0.01 to 1%, V: 0.001 to 0.5%, Zr: 0.01 to 1%, Ta: 0.01 to 1%, B: 0.0001 to 0.005%, REM: 0.0005 to 0.05%, 1 The method for producing a high-strength, high-toughness thick steel sheet according to claim 1, further comprising one or more kinds.
JP2001326678A 2001-10-24 2001-10-24 Method for manufacturing thick steel plate with high strength and high toughness Withdrawn JP2003129133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326678A JP2003129133A (en) 2001-10-24 2001-10-24 Method for manufacturing thick steel plate with high strength and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326678A JP2003129133A (en) 2001-10-24 2001-10-24 Method for manufacturing thick steel plate with high strength and high toughness

Publications (1)

Publication Number Publication Date
JP2003129133A true JP2003129133A (en) 2003-05-08

Family

ID=19143024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326678A Withdrawn JP2003129133A (en) 2001-10-24 2001-10-24 Method for manufacturing thick steel plate with high strength and high toughness

Country Status (1)

Country Link
JP (1) JP2003129133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447278C (en) * 2005-01-11 2008-12-31 宝山钢铁股份有限公司 Thick steel plate capable of being welded under large heat input and method for manufacturing the same
WO2014132627A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
CN104328350A (en) * 2014-11-25 2015-02-04 湖南华菱涟源钢铁有限公司 Hardened and tempered steel with yield strength of 960MPa level and manufacturing method of hardened and tempered steel
JP7261364B1 (en) * 2023-01-20 2023-04-19 株式会社神戸製鋼所 steel plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447278C (en) * 2005-01-11 2008-12-31 宝山钢铁股份有限公司 Thick steel plate capable of being welded under large heat input and method for manufacturing the same
WO2014132627A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
US10041159B2 (en) 2013-02-28 2018-08-07 Jfe Steel Corporation Thick steel plate and production method for thick steel plate
CN104328350A (en) * 2014-11-25 2015-02-04 湖南华菱涟源钢铁有限公司 Hardened and tempered steel with yield strength of 960MPa level and manufacturing method of hardened and tempered steel
JP7261364B1 (en) * 2023-01-20 2023-04-19 株式会社神戸製鋼所 steel plate

Similar Documents

Publication Publication Date Title
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP6736959B2 (en) Steel plate manufacturing method
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JPH09279233A (en) Production of high tension steel excellent in toughness
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JPH1112657A (en) Manufacture of ti added hot rolled high tensile steel plate having excellent formability
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH07126797A (en) Manufacture of thick steel plate excellent in low temperature toughness
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH083636A (en) Production of low yield ratio high toughness steel
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104