JPS59211528A - Production of non-tempered steel having low yield ratio - Google Patents

Production of non-tempered steel having low yield ratio

Info

Publication number
JPS59211528A
JPS59211528A JP8630983A JP8630983A JPS59211528A JP S59211528 A JPS59211528 A JP S59211528A JP 8630983 A JP8630983 A JP 8630983A JP 8630983 A JP8630983 A JP 8630983A JP S59211528 A JPS59211528 A JP S59211528A
Authority
JP
Japan
Prior art keywords
steel
cooling
rolling
less
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8630983A
Other languages
Japanese (ja)
Other versions
JPH0563525B2 (en
Inventor
Ryota Yamaba
山場 良太
Kentaro Okamoto
健太郎 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8630983A priority Critical patent/JPS59211528A/en
Publication of JPS59211528A publication Critical patent/JPS59211528A/en
Publication of JPH0563525B2 publication Critical patent/JPH0563525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PURPOSE:To obtain a titled steel having good bendability without adding particularly costly alloy elements and reheating after rolling in a controlled rolling- controlled cooling method of the specifically composed steel by limiting conditions for heating temp., hot rolling draft and cooling. CONSTITUTION:A steel contg., by weight %, 0.03-0.20 C, 0.05-0.60 Si, 0.50-2.5 Mn and 0.005-0.1 Al, contg., if necessary, >=1 kind among <=0.50 Cr, <=1.0 Ni, <=0.50 Mo, <=0.1 V, <=0.05 Ti, <=0.1 Nb, <=0.5 Cu and <=0.01 Ca and consisting of the balance Fe is heated to 900-1,200 deg.C and is subjected to >=30% cumulative rolling down with respect to the finish plate thickness between 900 deg.C and Ar3 in hot rolling. The steel is thereafter air cooled and the cooling is started at >=0.3m<3>/m<2>.min water flow density from between [Ar3 -20 deg.C]-[Ar3 -80 deg.C] surface temp. of the steel plate. The cooling is stopped between 350-600 deg.C temp. of the steel plate. The steel plate having a low yield ratio of <70% and >=50kg/ cm<2> strength while having good low temp. toughness with the fine granular ferrite is thus obtd.

Description

【発明の詳細な説明】 本発明は低降伏比非調質鋼の製造方法に関するものであ
る〇 近年、造船、タンク、産業機械等の各分野にわたって、
競争力向上のため溶接施工の減少、曲げ加工性を代表と
して調料特性の極限追求、溶接性の向上および鋼材コス
トの低減など各種の要求が強まっている。このうち厚鋼
板の曲げ加工性改善のためには70%未満の低降伏比を
有する厚鋼板の開発が必要である。また、橋梁分野では
構造物の安全性向上のため溶接性向上で共に降伏比の低
下が望まれている。
[Detailed Description of the Invention] The present invention relates to a method for producing low yield ratio non-tempered steel. In recent years, in various fields such as shipbuilding, tanks, and industrial machinery,
In order to improve competitiveness, various demands are increasing, such as reducing the number of welding operations, pursuing the ultimate in preparation properties such as bending workability, improving weldability, and reducing steel material costs. Among these, in order to improve the bending workability of thick steel plates, it is necessary to develop thick steel plates with a low yield ratio of less than 70%. Furthermore, in the field of bridges, it is desired to improve weldability and reduce yield ratio in order to improve the safety of structures.

このような動向から廉価で溶接性、加工性がよい低降伏
比を有する鋼材の開発が要請されているのが現状である
In light of these trends, there is currently a demand for the development of steel materials that are inexpensive, have good weldability and workability, and have a low yield ratio.

最近、造船用、ラインパイプ用等を中心として母材低温
靭性、溶接性改善を狙いとした鋼板圧延後の加速冷却技
術を用いた強度50キロ以上の鋼材の開発が盛んである
が、曲げ加工性の良好な低降伏比鋼板の製造については
検討されていない。
Recently, there has been active development of steel materials with a strength of 50 kg or more using accelerated cooling technology after steel plate rolling, aiming at improving the low-temperature toughness and weldability of the base material, mainly for shipbuilding, line pipes, etc. The production of low yield ratio steel sheets with good properties has not been studied.

本発明はこのような要望を満たすべく、70%未満の低
降伏比を有する強度50キロ以上の鋤板の製造を可能と
したもので11)その要旨とするところは、重量パーセ
ントでC:0.03〜020チ。
In order to meet these demands, the present invention has made it possible to manufacture a plow board with a strength of 50 kg or more and a low yield ratio of less than 70%. .03~020chi.

St : 0.05〜0.60%、 Mn : 0.5
0〜2.5%。
St: 0.05-0.60%, Mn: 0.5
0-2.5%.

AA:0.005〜01チを基本成分として含み、必要
に応じてCr:0.50%以下、Ni:1.0%以下。
Contains AA: 0.005 to 0.01% as a basic component, and optionally Cr: 0.50% or less and Ni: 1.0% or less.

Mo : 0.50%以下、V:0.1%以下、Ti 
: 0.15チ以下、Nb : 0.1%以下、Cu:
0.5%以下、Ca:o、oi%以下の一種又は二押以
上含有し、残部Feおよび不可避不純物からなる銅を9
00〜1200℃で加熱し、熱間圧延において900℃
からA r 5間で仕上板厚に対して30%以上の累積
圧下を施し、その後空冷し鋼板表面温度がAr 3−2
0℃〜Ar3−80℃の間から水量密度0.3m3/、
、2・分収上で冷却開始し鋼板温度が350〜600℃
間で冷却停止することを特徴とする低降伏比非調質鋼の
製造方法にある。
Mo: 0.50% or less, V: 0.1% or less, Ti
: 0.15 or less, Nb: 0.1% or less, Cu:
Copper containing 0.5% or less, one or more of Ca: o, oi% or less, the balance consisting of Fe and unavoidable impurities.
Heating at 00-1200℃, 900℃ in hot rolling
A cumulative reduction of 30% or more is applied to the finished plate thickness between A and A r 5, and then the steel plate is cooled in air until the surface temperature of the steel plate reaches Ar 3-2.
From 0℃ to Ar3-80℃ water density 0.3m3/,
, 2. Cooling starts on the separation stage and the steel plate temperature reaches 350-600℃.
The present invention provides a method for manufacturing low yield ratio non-thermal treated steel characterized by stopping cooling between 1 and 2.

従来の制御圧延−制御冷却プロセスにおいては、低温靭
性向上のため熱間圧延でできる限シ細粒にすると共に、
オーステナイト−相域から加速冷却することが採用され
ている。しかしながらこの方法によってもフェライトの
細粒化と硬化及び一部iR−ライトのベーナイト化によ
って降伏点が上昇し降伏比の上昇となって曲げ加工性が
低下する問題がある。
In the conventional controlled rolling-controlled cooling process, in order to improve low-temperature toughness, the grains are made as fine as possible by hot rolling, and
Accelerated cooling from the austenite phase region is employed. However, even with this method, there is a problem that the yield point increases due to the grain refinement and hardening of the ferrite and the conversion of some iR-lite to bainite, resulting in an increase in the yield ratio and a decrease in bending workability.

本発明名等は制御圧延−制御冷却プロセスを用いて降伏
点を低下させる方法について種々検R’l した結果、
同じく細粒フェライトで良好なイ氏温靭性を得ながら且
つ低降゛伏点て70%未満の低降伏比を石する強度50
キロ以上の鋼板のjJi竜方法を開発したものである。
The title of the present invention is based on the results of various investigations into methods of lowering the yield point using a controlled rolling-controlled cooling process.
Similarly, fine-grained ferrite has a strength of 50%, achieving good temperature toughness and a low yield ratio of less than 70%.
This method has been developed for steel plates weighing more than 1 kg.

すなわち、900〜1200℃で加熱した後Ar  以
上で30%以上の累積圧下を行ない細粒イヒを図った後
、Ar5以下まで空冷して軟い初析フェライトを適切に
析出せしめ、その後強制冷却を行なうと、軟い初析フェ
ライトと残部オーステナイトから得られるフエライトー
ノぐ−ライトーベーナイトの適切な混合によって得られ
る組織によシ、引張強さおよび低温靭性の低下なく降伏
点のみ力(低下することを知見し本発明を完成したもの
である。
That is, after heating at 900 to 1200°C, a cumulative reduction of 30% or more is applied at Ar or higher to achieve fine grain formation, and then air cooling to Ar of 5 or lower to properly precipitate soft pro-eutectoid ferrite, followed by forced cooling. It was found that the structure obtained by appropriately mixing ferrite-to-bainite, which is obtained from soft pro-eutectoid ferrite and the remaining austenite, reduces only the yield point strength without deteriorating tensile strength or low-temperature toughness. This completes the present invention.

次に本発明における成分限定理由を述べる。Next, the reason for limiting the ingredients in the present invention will be described.

Cは強度確保のため0.03係以上は必要であるが多く
なると鋼の靭性および溶接性を害するので含有量は0.
20%を上限とする。
C is necessary to have a coefficient of 0.03 or more to ensure strength, but if it increases, it will impair the toughness and weldability of the steel, so the content should be 0.03 or more.
The upper limit is 20%.

Stは脱酸のため0.05%以上は必要で添加されるが
多くなると溶接性を損うので含有量は0.6%以下とす
る。
0.05% or more of St is necessary for deoxidation and is added, but if it is too large, weldability will be impaired, so the content should be 0.6% or less.

Mnは安価に強度をあげる元素として有用であシ強度確
保のため0.5%以上は必要であるが多くなると溶接性
を損うので、含有量は2.5%以下とする。
Mn is useful as an element that increases strength at a low cost, and 0.5% or more is necessary to ensure strength, but if it increases, weldability will be impaired, so the content should be 2.5% or less.

Atは脱酸のため0.005%以上添加することが必些
であるが、多くなると鋼中介在物が多くなシすぎ鋼の性
質を悪化させ名ため含有量は0.1%を上限とする。
It is essential to add at least 0.005% of At for deoxidization, but if it is too large, the properties of the steel will be deteriorated due to the presence of too many inclusions, so the upper limit of the content should be 0.1%. do.

本発明は上記の必須基本成分の他に要求される鋼の特性
に応じて以下の元素を一種又は二種以上選択的に含有さ
せることができる。
In the present invention, in addition to the above-mentioned essential basic components, one or more of the following elements can be selectively included depending on the required characteristics of the steel.

Crは強度上昇に有用で添加されるが多くなると低温靭
性、溶接性を阻害するだめ含有量は05%を上限とする
Cr is useful for increasing strength and is added, but too much will impede low-temperature toughness and weldability, so the upper limit of the content is 0.5%.

Niは低温靭性の改善に有用で添加されるが高価な元素
であるため含有量は1.0係を上限とする。
Ni is useful for improving low-temperature toughness and is added, but since it is an expensive element, the upper limit of the content is 1.0.

MOは強度上昇に有用であるが高”価な元素であるため
含有量は0.50%を上限とする。
MO is useful for increasing strength, but since it is a high-valent element, the upper limit of its content is 0.50%.

■は析出効果に有用であるが多くなると溶接性を阻害す
るため含有量は054%を上限とする。
(2) is useful for the precipitation effect, but if too much it impedes weldability, so the upper limit of the content is 0.054%.

Tiはオーステナイト粒の細粒化に有′用で添加される
が多くなると溶接性を阻害するため含有量は0.15%
を上限とする。
Ti is useful for refining austenite grains and is added, but if too much it impedes weldability, so the content is 0.15%.
is the upper limit.

NbはTiと同様オーステナイト粒の細粒化に有用で添
加されるが多くなると溶接性を阻害するので含有量の上
限は0,1%とする。
Like Ti, Nb is useful for refining austenite grains and is added, but if too much, it impedes weldability, so the upper limit of the content is set at 0.1%.

Cuは強度上昇、耐食性向上に有用で添加されるが多く
なると鋼表面にヒビ割れを発生させるので含有量の上限
は0.50%とする。
Cu is useful for increasing strength and improving corrosion resistance and is added, but if too much Cu is added, cracks will occur on the steel surface, so the upper limit of the content is set at 0.50%.

Caは硫化物系介在物の形態制御に有用で添加されるが
多くなると鋼中介在物を形成し鋼の性質を悪化させるた
め含有量は0.01%を上限とする。
Ca is useful for controlling the form of sulfide-based inclusions and is added, but if too much Ca forms inclusions in the steel and deteriorates the properties of the steel, the upper limit of the content is set at 0.01%.

次に本発明の重要な振作である加熱、圧延、冷却条件に
ついて述べる。
Next, heating, rolling, and cooling conditions, which are important aspects of the present invention, will be described.

加熱温度はオーステナイト域で十分加熱できる温度とし
て下限を900℃とした。温度が高すぎるとオーステナ
イト粒が太きくなシすぎ、鋼の性質を劣化させるので1
200℃を加熱温度の上限とする。
The lower limit of the heating temperature was set at 900° C., which was sufficient to heat the austenite region. If the temperature is too high, the austenite grains will become too thick and the properties of the steel will deteriorate.
The upper limit of the heating temperature is 200°C.

圧延温度はオーステナイト粒の細粒化のため900℃を
上限とし、オーステナ1’トー相域のみの圧延とするた
め圧延温度の下限’fr Ars点とする。
The upper limit of the rolling temperature is 900° C. in order to refine the austenite grains, and the lower limit of the rolling temperature is ’fr Ars point in order to roll only the austenite 1′ toe phase region.

また900℃〜A r 3間での累積圧下率を仕上板厚
に対して30%以上としたのは細粒化を十分達成するた
めである。
The reason why the cumulative rolling reduction rate between 900° C. and Ar 3 is set to 30% or more with respect to the finished plate thickness is to sufficiently achieve grain refinement.

次に圧延後加速冷却に先立って空冷を施こすが該空冷は
圧延直後からA r s−20C〜A r s −80
℃の間のいづれかの温度まで空冷することが好ましく、
これによって細粒の軟い初析フェライトの適量の析出を
行なわしめるものである。
Next, air cooling is performed before accelerated cooling after rolling, and the air cooling is performed immediately after rolling.
It is preferable to air cool to a temperature somewhere between ℃,
This allows a suitable amount of fine-grained soft pro-eutectoid ferrite to be precipitated.

加速冷却開始温度の上限をAr s −20℃としたの
は降伏点を低くするためであシ、下限をAr 5−80
℃としたのはこれ以下の低い温度から冷却すると加速冷
却の効果がうすく引張強さが下がシ、強度確保が困難な
ためである。水量密度を0.3 m3//ln2・分取
上としたのはこれ以下では強度上昇が少ないためである
The reason why the upper limit of the accelerated cooling start temperature was set to Ar s -20°C was to lower the yield point, and the lower limit was set to Ar 5-80°C.
The reason why the temperature is set at ℃ is because if the temperature is lower than this, the effect of accelerated cooling will be weak and the tensile strength will decrease, making it difficult to maintain the strength. The reason why the water density was set at 0.3 m3//ln2·preparative is because below this value, there is little increase in strength.

また加速冷却の冷却停止温度を350〜600℃とした
のは、350℃未満の低温域まで冷却すると低温靭性が
劣化するからであシ、また600℃を超える高温域で冷
却停止すると強度上昇が不十分となるからである。
The reason why the cooling stop temperature for accelerated cooling is set at 350 to 600°C is because low-temperature toughness deteriorates when cooling to a low temperature range of less than 350°C, and strength increases when cooling is stopped at a high temperature range of over 600°C. This is because it will be insufficient.

以上詳細に説明した通シ、本発明は特別に高価な合金元
素を使用することなく、かつ圧延後再加熱処理を施こす
ことなく、曲げ加工性の良い低降伏比型厚鋼板を制御圧
延−制御冷却法で安価に製造可能としたもので、50キ
ロ以上の高強度と優れた低温靭性及び溶接性を備えてお
り産業上その効果の大きい発明である。
As explained in detail above, the present invention enables controlled rolling of low yield ratio thick steel plates with good bendability without using special expensive alloying elements or without reheating after rolling. This invention can be manufactured at low cost using a controlled cooling method, has a high strength of 50 kg or more, and has excellent low-temperature toughness and weldability, making it a highly effective invention in industry.

次に本発明の実施例を比較例とともに挙け゛る。Next, examples of the present invention will be listed together with comparative examples.

第1衣に供試材の化学成分を示し、第2表に加熱、圧延
、冷却条件と得られた銅板の機械的性質を示す。
Table 1 shows the chemical composition of the test material, and Table 2 shows the heating, rolling, and cooling conditions and the mechanical properties of the obtained copper plate.

しかして鋼Aは50キロ級、鋼B、Cは60キロ級の強
度を狙った成分系で、第2表に示す如く鋼板AA1.B
1.C1は本発明実施例であシ、それぞれ50キロ、6
0キロ級鋼として十分な強度と良好な低温靭性を備え、
本発明の狙いとする70%未満の低降伏比を達成してい
る。これに対し銅板A A 2は加熱温度が高すぎるた
め低1)2+靭性が低下している。A3は900℃〜A
 r 3間の累積圧下率が低いものでそのだめ低温靭性
が低下している。A4は圧延温度が上限外れでやはシ低
温靭性が低下している。B2は強制冷却開始温度が高す
ぎた例であシ降伏比が高い拐質となっている。
Steel A has a compositional system aiming at a strength of 50kg class, steels B and C have a strength of 60kg class, and as shown in Table 2, steel plate AA1. B
1. C1 is an embodiment of the present invention, 50 kg and 6
It has sufficient strength and good low-temperature toughness as a 0 kg class steel,
A low yield ratio of less than 70%, which is the aim of the present invention, has been achieved. On the other hand, copper plate A A 2 has low 1)2+ toughness because the heating temperature is too high. A3 is 900℃~A
The cumulative reduction ratio between r3 is low, and as a result, the low temperature toughness is reduced. In A4, the rolling temperature was outside the upper limit and the low temperature toughness was deteriorated. B2 is an example in which the forced cooling start temperature was too high, resulting in a grain with a high yield ratio.

B3は強制冷却終了温度が像くなシすぎた例であシ強度
が出すぎ低温靭性が低い材質となった。C2は強制冷却
開始温度が低くすぎた例で強度が低く降伏比の高い材質
になっている。C3は水量密度が低い例であり、このた
め強度が低く降伏比の高い拐賀になっている。
B3 is an example in which the forced cooling end temperature was too inconsistent, resulting in a material with too much strength and low low-temperature toughness. C2 is an example in which the forced cooling start temperature was too low, resulting in a material with low strength and high yield ratio. C3 is an example of a low water density, and therefore has low strength and a high yield ratio.

Claims (1)

【特許請求の範囲】[Claims] 重量ノ平−セントでC:0.03〜0.20%*Si:
0、05〜0.60%、 Mn : 0.50〜2.5
%、 At :0.005〜0.196を基本成分とし
て含み、必要に応じてCr:0.50%以下、Ni:1
.0%以下、 Mo :0.50%以下、 V : 0
.1 %以下、 Ti : 0.15%以乍、 Nb 
: 0.1 q6以下+Cu:0.5%以下+’Ca:
o、ois以下の一種又は二種以上含有し、残部Feお
よび不可避不純物からなる鋼を、900〜1200℃で
加熱し熱間圧延において900℃からAr sO間で仕
上板厚に対して30%以上の累積圧下を施し、その後空
冷し鋼板表面温度がAr5−20℃〜Ar5−80℃の
間から水量密度0.3 m3/m2・分易上で冷却開始
し鋼板温度が350〜600℃間で冷却停止することを
特徴とする低降伏比非調質鋼の製造方法。
C: 0.03-0.20%*Si:
0.05~0.60%, Mn: 0.50~2.5
%, At: 0.005 to 0.196 as a basic component, and optionally Cr: 0.50% or less, Ni: 1
.. 0% or less, Mo: 0.50% or less, V: 0
.. 1% or less, Ti: 0.15% or more, Nb
: 0.1 q6 or less + Cu: 0.5% or less +'Ca:
A steel containing one or more of the following: O, OIS, and the remainder consisting of Fe and unavoidable impurities is heated at 900 to 1200°C and hot rolled between 900°C and Ar sO by 30% or more of the finished plate thickness. After applying cumulative reduction of A method for producing low yield ratio non-thermal treated steel characterized by stopping cooling.
JP8630983A 1983-05-17 1983-05-17 Production of non-tempered steel having low yield ratio Granted JPS59211528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8630983A JPS59211528A (en) 1983-05-17 1983-05-17 Production of non-tempered steel having low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8630983A JPS59211528A (en) 1983-05-17 1983-05-17 Production of non-tempered steel having low yield ratio

Publications (2)

Publication Number Publication Date
JPS59211528A true JPS59211528A (en) 1984-11-30
JPH0563525B2 JPH0563525B2 (en) 1993-09-10

Family

ID=13883229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8630983A Granted JPS59211528A (en) 1983-05-17 1983-05-17 Production of non-tempered steel having low yield ratio

Country Status (1)

Country Link
JP (1) JPS59211528A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318020A (en) * 1986-07-11 1988-01-25 Kobe Steel Ltd Manufacture of high-tensile steel plate with low yielding ratio by accelerated cooling method
JPS6318021A (en) * 1986-07-11 1988-01-25 Kobe Steel Ltd Manufacture of high-tensile steel plate with low yielding ratio by accelerated cooling method
JPS63189294A (en) * 1987-02-02 1988-08-04 Sanyo Kokusaku Pulp Co Ltd Duplication method
JPS63219523A (en) * 1987-03-10 1988-09-13 Nippon Steel Corp Manufacture of non-heattreated steel with low yielding ratio
JPS63223123A (en) * 1987-03-12 1988-09-16 Nippon Steel Corp Manufacture of non-heat-treated steel having low yielding ratio
JPS63286517A (en) * 1987-05-19 1988-11-24 Nippon Steel Corp Manufacture of high-tensile steel with low yielding ratio
JPH01156421A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Manufacture of steel material having low yield ratio
JPH01156422A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Manufacture of steel material having low yield ratio
JPH01159320A (en) * 1987-12-16 1989-06-22 Sumitomo Metal Ind Ltd Production of high-strength extra-thick steel
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
KR100480003B1 (en) * 1999-12-28 2005-03-30 주식회사 포스코 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio
JP2007002311A (en) * 2005-06-24 2007-01-11 Jfe Steel Kk High tensile strength steel plate with excellent workability, and its manufacturing method
JP2007002308A (en) * 2005-06-24 2007-01-11 Jfe Steel Kk High tensile strength steel plate with excellent workability, and its manufacturing method
CN104561771A (en) * 2014-12-26 2015-04-29 南阳汉冶特钢有限公司 Boron charging thick plate with low compression ratio, low alloy content and high strength and production method of boron charging thick plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739127A (en) * 1980-08-21 1982-03-04 Nippon Steel Corp Strengthening treatment of steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739127A (en) * 1980-08-21 1982-03-04 Nippon Steel Corp Strengthening treatment of steel

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318021A (en) * 1986-07-11 1988-01-25 Kobe Steel Ltd Manufacture of high-tensile steel plate with low yielding ratio by accelerated cooling method
JPS6318020A (en) * 1986-07-11 1988-01-25 Kobe Steel Ltd Manufacture of high-tensile steel plate with low yielding ratio by accelerated cooling method
JPS63189294A (en) * 1987-02-02 1988-08-04 Sanyo Kokusaku Pulp Co Ltd Duplication method
JPS63219523A (en) * 1987-03-10 1988-09-13 Nippon Steel Corp Manufacture of non-heattreated steel with low yielding ratio
JPS63223123A (en) * 1987-03-12 1988-09-16 Nippon Steel Corp Manufacture of non-heat-treated steel having low yielding ratio
JPS63286517A (en) * 1987-05-19 1988-11-24 Nippon Steel Corp Manufacture of high-tensile steel with low yielding ratio
JPH0581645B2 (en) * 1987-12-11 1993-11-15 Nippon Steel Corp
JPH01156421A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Manufacture of steel material having low yield ratio
JPH01156422A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Manufacture of steel material having low yield ratio
JPH0581644B2 (en) * 1987-12-11 1993-11-15 Nippon Steel Corp
JPH01159320A (en) * 1987-12-16 1989-06-22 Sumitomo Metal Ind Ltd Production of high-strength extra-thick steel
JPH066743B2 (en) * 1987-12-16 1994-01-26 住友金属工業株式会社 Method for manufacturing high strength ultra thick steel
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US5858130A (en) * 1997-06-25 1999-01-12 Bethlehem Steel Corporation Composition and method for producing an alloy steel and a product therefrom for structural applications
KR100480003B1 (en) * 1999-12-28 2005-03-30 주식회사 포스코 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio
JP2007002311A (en) * 2005-06-24 2007-01-11 Jfe Steel Kk High tensile strength steel plate with excellent workability, and its manufacturing method
JP2007002308A (en) * 2005-06-24 2007-01-11 Jfe Steel Kk High tensile strength steel plate with excellent workability, and its manufacturing method
CN104561771A (en) * 2014-12-26 2015-04-29 南阳汉冶特钢有限公司 Boron charging thick plate with low compression ratio, low alloy content and high strength and production method of boron charging thick plate

Also Published As

Publication number Publication date
JPH0563525B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2899128B2 (en) Method of manufacturing rebar having low yield ratio and high yield elongation
JPS5914535B2 (en) Non-heat treated high tensile strength steel line pipe thick plate with unstable ductility and good fracture resistance
JP2556411B2 (en) Method for producing high-strength hot-rolled steel sheet with good workability and weldability
JPH083636A (en) Production of low yield ratio high toughness steel
JP2022505840A (en) High-strength steel with excellent sulfide stress corrosion cracking resistance and its manufacturing method
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JP7332692B2 (en) High-strength structural steel and its manufacturing method
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPH05345917A (en) Production of high strength hot rolled steel plate
JPS6367524B2 (en)
JPH01275719A (en) Manufacture of thick steel plate having high strength and high toughness
JPH0247525B2 (en)
JPH06172917A (en) Production of high tensile strength steel for large heat input welding, excellent in toughness at low temperature
JPH05339637A (en) Production of steel pipe or square pipe having low yield ratio and excellent weatherability
JPH05345918A (en) Production of high strength hot rolled steel plate
JPS63219523A (en) Manufacture of non-heattreated steel with low yielding ratio
JPH04224623A (en) Manufacture of thick 50kg class low yield ratio-high tensile strength steel plate small in difference of hardness in plate thickness direction
JPS63223123A (en) Manufacture of non-heat-treated steel having low yielding ratio