KR100480003B1 - A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio - Google Patents

A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio Download PDF

Info

Publication number
KR100480003B1
KR100480003B1 KR10-1999-0063193A KR19990063193A KR100480003B1 KR 100480003 B1 KR100480003 B1 KR 100480003B1 KR 19990063193 A KR19990063193 A KR 19990063193A KR 100480003 B1 KR100480003 B1 KR 100480003B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
temperature
manufacturing
strength
Prior art date
Application number
KR10-1999-0063193A
Other languages
Korean (ko)
Other versions
KR20010060766A (en
Inventor
김성호
박길수
박찬엽
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063193A priority Critical patent/KR100480003B1/en
Publication of KR20010060766A publication Critical patent/KR20010060766A/en
Application granted granted Critical
Publication of KR100480003B1 publication Critical patent/KR100480003B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 건축구조용 TMCP 후강판의 제조방법에 관한 것으로, 강중 Cu, Ni, V의 합금 원소를 첨가하고 제어압연을 실시한 후, 열연강판을 급냉시켜 저온조직인 베이나이트조직을 생성함으로써, 강도 및 인성이 높고 항복비가 우수한 YP355급(N/㎟) 후강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing a TMCP thick steel sheet for building structure, after adding Cu, Ni, V alloy elements in steel and performing controlled rolling, quenching the hot rolled steel sheet to produce a low-temperature bainite structure, strength and toughness The purpose of the present invention is to provide a high and high yield ratio YP355 grade (N / mm 2) thick steel sheet manufacturing method.

본 발명은 중량%로 C: 0.136~0.164%, Si: 0.40~0.50%, Mn: 1.00~1.25%, P: 0.012%이하, Nb: 0.025~0.035%, Ti: 0.015%이하, Cu: 0.30%이하, Ni: 0.30%이하, V: 0.020%이하, Ceq.: 0.42% 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를, 재가열하여 미재결정역 직상의 온도에서 사상압연하고, Ar3 직상의 온도에서 5~6℃/sec의 냉각속도로 냉각하여 강판의 최종온도를 600~550℃가 되도록 한 후 공냉하는 것을 특징으로 하는 항복비가 우수한 TMCP 건축구조용 후강판의 제조방법을, 그 기술적 요지로 한다.In the present invention, C: 0.136 to 0.164%, Si: 0.40 to 0.50%, Mn: 1.00 to 1.25%, P: 0.012% or less, Nb: 0.025 to 0.035%, Ti: 0.015% or less, Cu: 0.30% or less, Ni: 0.30% or less, V: 0.020% or less, Ceq .: 0.42% or less, the balance Fe and other unavoidable impurities the steel slab containing, by re-heating and rolling in the temperature history of the non-recrystallized station immediately above, immediately above Ar 3 Method of manufacturing a thick steel sheet for excellent yield ratio TMCP building structure, characterized in that the cooling temperature of 5 ~ 6 ℃ / sec at a temperature of 5 to 6 ~ 550 ℃ after the final temperature of the steel sheet is cooled by air Shall be.

Description

항복비가 우수한 건축구조용 TMCP후강판의 제조방법{A METHOD FOR MANUFACTURING TMCP THICK STEEL SHEET FOR CONSTRUCTION STRUCTURE WITH SUPERIOR YEILD RATIO}Manufacturing method of TMC thick steel sheet for building structure with excellent yield ratio {A METHOD FOR MANUFACTURING TMCP THICK STEEL SHEET FOR CONSTRUCTION STRUCTURE WITH SUPERIOR YEILD RATIO}

본 발명은 철골구조물에 사용되는 BEAM 제작용 고장력 후강판의 제조방법에 관한 것으로서, 보다상세하게는 강중 Cu, Ni, V의 합금 원소를 첨가하고, 미재결정 영역 압하율을 증가시켜 제어압연을 실시하고, 그 후 열연강판을 급냉시켜 저온조직을 생성함으로써, 고강도 및 우수한 항복비를 동시에 갖는 건축구조용 TMCP 후강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a high-tension thick steel sheet for manufacturing BEAMs used in steel structures, and more specifically to the addition of Cu, Ni, V alloy elements in the steel, and to increasing the uncrystallized area reduction rate to control rolling The present invention relates to a method for producing a TMCP thick steel sheet for building structures having high strength and excellent yield ratio at the same time by quenching the hot rolled steel sheet to produce a low temperature structure.

최근 건축물의 대형화 및 초고층화로 인하여, 구조부재에 있어서도 건축철골용 강판의 사용두께가 확대되고 있고, 이로 인한 강재의 강도, 인성 및 내지진성 확보의 중요성이 대두되고 있다. In recent years, due to the increase in size and height of buildings, the use thickness of steel sheet for building steel is also increasing in structural members, and thus, the importance of securing strength, toughness, and anti-tearness of steel materials is increasing.

종래 건축철골용 후강판의 제조기술에서는, 용접성 확보를 위해서 합금성분에 의한 강화기구를 최소화하고, 제어압연 및 가속냉각을 이용하여 강도향상을 꾀하였다. In the conventional manufacturing technology of the steel plate for building steel, in order to ensure the weldability, to minimize the strengthening mechanism by the alloy component, and to improve the strength by using the control rolling and accelerated cooling.

그러나, 이와 같은 종래기술로는 강도를 향상시키는데 한계가 있으므로, 초고층 대형구조물의 실현을 위해서는, 강도확보뿐 아니라, 기존의 제어압연 및 가속냉각을 이용한 인성과 용접성향상의 이점을 공유할 수 있는 제조방법이 요구된다.However, such a conventional technology has a limitation in improving strength, and in order to realize ultra-high-rise large structures, not only securing strength but also manufacturing that can share advantages of toughness and weldability using conventional control rolling and accelerated cooling. Method is required.

이에, 본 발명자는 상기와 같은 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강중 Cu, Ni, V의 합금 원소를 첨가하고 제어압연을 실시한 후, 열연강판을 급냉시켜 저온조직인 베이나이트조직을 생성함으로써, 강도 및 인성이 높고 항복비가 우수한 YP355급(N/㎟) 후강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the above problems and propose the present invention based on the results. The present invention adds alloy elements of Cu, Ni, and V in steel and controls rolling. After performing, the hot rolled steel sheet is quenched to produce bainite structure, which is a low temperature structure, to provide a method for producing a YP355 grade (N / mm 2) thick steel sheet having high strength and toughness and excellent yield ratio.

본 발명은 중량%로 C: 0.136~0.164%, Si: 0.40~0.50%, Mn: 1.00~1.25%, P: 0.012%이하, Nb: 0.025~0.035%, Ti: 0.015%이하, Cu: 0.30%이하, Ni: 0.30%이하, V: 0.020%이하, Ceq.: 0.42% 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를, 재가열하여 미재결정역 직상의 온도에서 사상압연하고, Ar3 직상의 온도에서 5~6℃/sec의 냉각속도로 냉각하여 강판의 최종온도를 600~550℃가 되도록 한 후 공냉하는 것을 특징으로 하는 항복비가 우수한 건축구조용 TMCP 후강판의 제조방법에 관한 것이다.In the present invention, C: 0.136 to 0.164%, Si: 0.40 to 0.50%, Mn: 1.00 to 1.25%, P: 0.012% or less, Nb: 0.025 to 0.035%, Ti: 0.015% or less, Cu: 0.30% or less, Ni: 0.30% or less, V: 0.020% or less, Ceq .: 0.42% or less, the balance Fe and other unavoidable impurities the steel slab containing, by re-heating and rolling in the temperature history of the non-recrystallized station immediately above, immediately above Ar 3 Cooling at a temperature of 5 ~ 6 ℃ / sec at the temperature of the final temperature of the steel sheet to 600 ~ 550 ℃ after the cooling method and the production method of the TMCP thick steel sheet for excellent structural structure characterized in that the air cooling.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 강중에 적절한 합금원소를 첨가하고, 미재결정역 압하율을 증가시킴과 동시에 열연강판을 가속냉각함으로써, 강도 및 인성의 향상을 꾀하고 있으나, 이 때 건축용 철골구조물에서는 항복비를 고려해야만 한다.The present invention seeks to improve the strength and toughness by adding an appropriate alloying element to steel, increasing the unrecrystallized zone reduction rate, and simultaneously cooling the hot rolled steel sheet, but at this time, the yield ratio must be considered in the steel structure for construction. do.

상기 항복비는 강판의 물성 중 강도 즉, 항복강도(YIELD STRENTH, 이하 YP)와 인장강도(TNESILE STRENGTH, 이하 TS)와의 비율(YP/TS, %)을 말하는 것으로서, 외부에서 어떤 자연적인 혹은 인위적인 외력을 받았을 때 강판 내부에서 외력에 대응하는 능력을 말한다. 통상, 건축용 철골강판에서는 그 한계선이 약 80% 이내인데, 이것은 단순히 항복비가 80%가 아니라, 강판자체가 소정의 강도를 가진 상태에서를 말하는 것이다. 즉, 강재는 강도(TS)가 증가될수록 비례해서 항복강도(YP)가 증가하므로, 이에 따라 강도가 높은 조질 고장력강의 경우 항복비가 일반적으로 80%를 초과하는 경우가 많다. The yield ratio refers to the strength (YIELD STRENTH, YP) and the tensile strength (TNESILE STRENGTH, hereinafter TS) of the properties of the steel sheet, YP / TS,%. When the external force is received, it refers to the ability to respond to the external force inside the steel sheet. Normally, the limit line is within about 80% in steel sheet steel for construction, which is not simply a yield ratio of 80%, but refers to a state in which the steel sheet itself has a predetermined strength. That is, since the yield strength (YP) of steel is increased proportionally as the strength (TS) increases, the yield ratio of high strength high tensile strength steel generally exceeds 80%.

따라서, 본 발명에서는 하기 표1에 나타난 바와 같이, 다량의 화학성분 증가없이 저탄소당량으로 하여 용접성을 향상시키면서도, 항복비를 80% 이하로 규제하여 우수한 내지진성을 가질수 있는, YP355급(N/㎟) 건축 철골구조용 TMCP 후강판이 된다.Therefore, in the present invention, as shown in Table 1, YP355 grade (N / ㎜) that can have excellent to intrinsic by controlling the yield ratio to 80% or less while improving the weldability to a low carbon equivalent without increasing a large amount of chemical components ) It becomes TMCP thick steel plate for building steel structure.

구분division 품질특성Quality characteristic 두께thickness 기계적성질Mechanical property 항복강도Yield strength 인장강도The tensile strength 인성(0℃)Toughness (0 ℃) Z-RAZ-RA 건축철골구조물Steel structure -고항복강도 요구-항복비 80%내-저탄소당량(용접성)-High yield strength requirement-80% yield ratio-Low carbon equivalent (welding) 6~80mm6 ~ 80mm ≥36kg/㎟≥36kg / ㎡ 53~65kg/㎟53 ~ 65kg / ㎡ ≥2.8kg·m≥2.8kgm ≥25%≥25%

이하, 본 발명의 강성분 및 제조조건에 대하여 설명한다.Hereinafter, the steel component and manufacturing conditions of the present invention will be described.

상기 C는 강의 열처리시 소입성을 증가시켜 경도 및 강도를 증가시키는 원소이지만, 그 함량이 지나치게 많으면 인성 및 용접성에 유해하고, 그 함량이 소량 이면 소입성이 낮아 경도를 보증할 수 없으므로, 그 성분범위를 0.136~0.164%로 설정하는 것이 바람직하다.The C is an element that increases the hardness and strength by increasing the hardenability during heat treatment of steel, but if the content is too high, it is harmful to toughness and weldability, and if the content is small, the hardness cannot be guaranteed because the hardness is low. It is preferable to set the range at 0.136% to 0.164%.

상기 Si는 탄화물을 형성하며 Fe중에 고용되어 탄성한계인장력을 높이는 원소이지만, 그 함량이 0.5%보다 많으면 페라이트 조직저하 및 비금속 개재물(SILICATE)을 형성하여 인성을 해치므로, 그 함량을 0.40~0.50%로 설정하는 것이 바람직하다.The Si is an element which forms carbide and is solid-solution in Fe to increase the elastic limit tensile strength, but if the content is more than 0.5%, the ferrite structure is lowered and the non-metallic inclusion (SILICATE) is formed to damage the toughness, so the content is 0.40 to 0.50%. It is preferable to set to.

상기 Mn은 소입성 향상원소로 열처리시 경도를 향상시킬 수 있으나, 과다 첨가시 용접성을 해치고, 소량 첨가시 소입성 저하로 경도확보가 불안정하기 때문에, 그 함량은 1.00~1.25%로 제한하는 것이 바람직하다.The Mn may improve the hardness when heat-treated as an element for improving the hardenability, but when it is added, the weldability is impaired, and when the small amount is added, the hardness is unstable due to the decrease in the hardenability. Therefore, the content is preferably limited to 1.00 to 1.25%. Do.

상기 P은 강판의 저온충격인성을 저해시키는 가장 큰 불순물로서, 내부 품질을 열화시키므로 그 함량은 0.012%로 제한하는 것이 바람직하다.P is the largest impurity that inhibits the low temperature impact toughness of the steel sheet, and deteriorates the internal quality, so the content is preferably limited to 0.012%.

상기 S은 P과 동일한 유해원소로서, 후판제품에 있어서 저온충격 인성열화의 원인이 되고 용접성을 해치므로, 그 함량은 0.003%이하로 제한하는 것이 바람직하다.S is the same harmful element as P, which causes deterioration of low-temperature impact toughness and impairs weldability in thick plates, so the content thereof is preferably limited to 0.003% or less.

상기 Nb은 강조직상 오스테나이트내에 고용되어 오스테나이트의 경화능을 증대시켜 페라이트 변태온도를 낮춤으로써, 페라이트 입도를 미세하게 하는 효과를 갖는다. 또한, 석출강화에 의해 인장강도 및 항복강도를 증가시킬 뿐 아니라, 항복강도증가의 효과도 지닌다. 그러나, 그 함량이 과다한 경우에는 소려취성을 유발할 수 있고, 용접부인성의 열화에 유해하므로, 그 함량은 0.025~0.035%로 설정하는 것이 바람직하다.The Nb is solid-dissolved in austenite phase in order to increase the hardenability of the austenite to lower the ferrite transformation temperature, thereby having an effect of making the ferrite grain size fine. In addition, the precipitation strengthening not only increases tensile strength and yield strength, but also has an effect of increasing yield strength. However, if the content is excessive, it may cause brittle brittleness and is detrimental to the deterioration of weld toughness, so the content is preferably set at 0.025 to 0.035%.

상기 Ti은 슬라브 재가열공정 및 용접부 등 고온에서, TiN 석출물로서 입계에 미세하게 분산되어 초기 오스테나이트 결정립성장을 억제함으로써 강도의 부분적인 증가와 함께 인성을 개선시킨다. 그러나, 그 함량이 과다하면 산화물계 개재물을 형성하거나 조대 석출물을 형성시켜 인성을 저하시키므로, 그 함량은 0.015%이하로 제한하는 것이 바람직하다.The Ti is finely dispersed at the grain boundaries as TiN precipitates at high temperatures such as slab reheating processes and welds to suppress initial austenite grain growth, thereby improving toughness with partial increase in strength. However, if the content is excessive, the oxide-based inclusions are formed or coarse precipitates are formed to reduce toughness. Therefore, the content is preferably limited to 0.015% or less.

상기 Cu는 강판내 석출물의 형성으로 인한 강화효과와, 강의 내식성을 향상시키는 효과가 있지만, 그 함량이 0.30%를 초과하는 경우에는 강판표면에 산화피막이 심하게 형성되므로, 그 상한은 0.30%로 설정하는 것이 바람직하다.The Cu has a reinforcing effect due to the formation of precipitates in the steel sheet and an effect of improving the corrosion resistance of the steel, but when the content exceeds 0.30%, an oxide film is formed heavily on the surface of the steel sheet, so the upper limit thereof is set to 0.30%. It is preferable.

상기 Ni은 Cu첨가시 문제가 되는 강판표면의 산화막을 억제하는 원소로, 강도 및 인성 향상에 좋은 효과가 있으나, 고가의 원소이며 다량첨가하면 소입성을 증가시켜 강도가 규격치를 초과할 수 있으므로, 그 함량은 0.30%로 제한하는 것이 바람직하다.Ni is an element that suppresses the oxide film on the surface of the steel sheet, which is a problem when Cu is added, but has a good effect on improving strength and toughness. However, Ni is an expensive element, and when added in large amounts, the quenchability increases to increase the strength. Its content is preferably limited to 0.30%.

상기 V은 탄화물형성능이 커서 미립 탄화물을 만들어 강조직을 미세화시키는 원소로, 고온강도도 대폭 향상시키지만 산화물인 오산화바나듐(V205)은 고온 증발 경향이 있으므로, 0.020%이하로 제한하는 것이 바람직하다.The V is an element that makes carbides fine to make fine carbides by making fine carbides, and greatly improves the high temperature strength. However, vanadium pentoxide (V 2 0 5 ), which is an oxide, tends to evaporate at a high temperature, so it is preferably limited to 0.020% or less. Do.

상기와 같이 조성된 용강에 있어서, 불순물인 S은 그 함량을 최소화하는 것이 바람직하다. 또한, 상기 용강내에는 Ca-Si를 투입하여, 비금속 개재물을 구상화한다.In the molten steel formed as described above, it is preferable that the impurity S minimizes its content. In addition, Ca-Si is introduced into the molten steel to spheroidize nonmetallic inclusions.

이렇게 얻어진 주괴를 미재결정온도 영역 직상의 온도인 800~900℃에서 40~50%의 압하율로 사상압연하여, 강판재질의 이방성을 향상시킴과 동시에 조직 미세화를 조장시켜 인성을 확보한다. 만일, 상기 사상압연온도가 부분재결정역영역인 900℃보다 높으면, 혼립조직이 생성되어 충격인성이 저하되고, 800℃ 미만이면 이상역 압연(2 PHASE ROLLED)시 조직상에 밴드구조(BANDED SRTUCTURE)가 생성되어 부분 재결정 압연에서처럼 충격치가 낮아지고 두께 방향 물성치가 불량하게 된다. 또한, 상기 압하율이 낮으면 압연후 생성되는 오스테나이트 재결정립이 커지게 되므로 물성확보가 어려워 바람직하지 않게 된다.The ingot thus obtained is subjected to filamentous rolling at a rolling reduction ratio of 40 to 50% at 800 to 900 ° C, which is directly above the unrecrystallized temperature range, to improve anisotropy of the steel sheet material, and to promote microstructure of the structure to secure toughness. If the filament rolling temperature is higher than 900 ° C., which is a partial recrystallization zone, a mixed structure is formed and impact toughness is lowered. If the filament rolling temperature is lower than 800 ° C., a band structure is formed on the structure during abnormal phase rolling (2 PHASE ROLLED). Is generated so that the impact value is lowered as in the partial recrystallization rolling and the thickness direction physical properties are poor. In addition, when the reduction ratio is low, austenite recrystallized grains formed after rolling become large, and thus physical properties are difficult to obtain, which is undesirable.

따라서, 상기 사상압연온도는 900~800℃로 , 잔압하율은 45~50%로 행하는 것이 바람직하다.Therefore, it is preferable to perform the finishing rolling temperature at 900-800 degreeC and the residual reduction rate at 45-50%.

그 후, 80% 이내의 항복비를 위해, Ar3 직상의 온도인 750~850℃에서 5~6℃/sec의 냉각속도로 냉각하여, 강판의 최종온도가 600~550℃가 되도록 하고, 공냉한다.Thereafter, for a yield ratio within 80%, cooling is performed at a cooling rate of 5 to 6 ° C./sec at 750 ° C. to 850 ° C., which is directly above Ar 3 , so that the final temperature of the steel sheet is 600 to 550 ° C., and air-cooled. do.

이 때, 그 냉각속도가 늦으면 생성되는 페라이트 입도가 조대해져 제2차상의 생성이 적어 적정강도 확보가 어려워지고, 반대로 냉각속도가 빠르면 제2차상의 양이 많아져 강도를 급격히 증가시키는데, 이것은 항복비 상승으로 이어져 소성변형능력 을 저하시킴으로써, 건축철골구조물에 사용되기 위한 소정의 물성치, 즉 항복비가 80%를 초과하게 된다.At this time, if the cooling rate is slow, the ferrite grain size is coarse to produce the secondary phase, so that it is difficult to secure proper strength. On the contrary, if the cooling rate is fast, the amount of the secondary phase is increased to increase the strength rapidly. By raising the ratio and lowering the plastic deformation capacity, the predetermined property value for use in the construction steel structure, that is, the yield ratio exceeds 80%.

한편, 냉각종료후의 강판온도가 550℃미만인 경우에는, 강판내외부의 열전달 계수차이에 의해 내부응력이 과다하게 발생하여 강판형상이 불량하게 된다. 또한, 강판온도가 600℃보다 높으면 조직이 연한조직인 펄라이트로 변태되어 강도가 물성치를 만족하지 못한다. On the other hand, when the temperature of the steel sheet after the end of cooling is less than 550 ° C, the internal stress is excessively generated due to the difference in heat transfer coefficient inside and outside the steel sheet, resulting in poor steel sheet shape. In addition, when the steel sheet temperature is higher than 600 ℃, the structure is transformed into pearlite, a soft structure, the strength does not satisfy the properties.

따라서, 상기 강판의 최종온도는 600~550℃의 범위로 제어하는 것이 바람직하다.Therefore, the final temperature of the steel sheet is preferably controlled in the range of 600 ~ 550 ℃.

상기와 같이, 제조된 후강판의 최종조직에는 저온조직인 베이나이트가 생성되어, 고강도 및 고인성 특성을 제공할 수 있게 된다.As described above, bainite, which is a low temperature structure, is formed in the final structure of the manufactured thick steel sheet, thereby providing high strength and high toughness.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표2와 같이 조성되는 강 슬라브에 대하여, 하기 표3의 압연 및 냉각 조건을 적용하여 작업하였다. For the steel slab composed as shown in Table 2, the rolling and cooling conditions of Table 3 were applied.

그 후, 각 시편들에 대하여 기계적 성질을 측정하고, 그 결과를 하기 표3에 나타내었다. Thereafter, the mechanical properties of the specimens were measured, and the results are shown in Table 3 below.

구분division CC SiSi MnMn PP SS NbNb CuCu NiNi VV CeqCeq 비교강1Comparative Steel 1 0.1500.150 0.410.41 1.201.20 0.0140.014 0.0020.002 0.0150.015 0.030.03 0.010.01 0.0010.001 0.36740.3674 비교강2Comparative Steel 2 0.1450.145 0.450.45 1.221.22 0.0180.018 0.0020.002 0.0130.013 0.010.01 0.010.01 0.0070.007 0.36780.3678 발명강1Inventive Steel 1 0.1600.160 0.450.45 1.191.19 0.0090.009 0.0020.002 0.0260.026 0.230.23 0.230.23 0.0140.014 0.38380.3838 발명강2Inventive Steel 2 0.1580.158 0.460.46 1.211.21 0.0090.009 0.0010.001 0.0330.033 0.250.25 0.230.23 0.0150.015 0.38570.3857 *Ceq.= C + Mn/6 + Si/24 + Cr/5 + V/14 + Ni/40 + Mo/4*각 원소의 함량 단위는 중량%임* Ceq. = C + Mn / 6 + Si / 24 + Cr / 5 + V / 14 + Ni / 40 + Mo / 4 * The content of each element is in weight percent

구분division 사상압연온도(℃)Finish rolling temperature (℃) 잔압하율(%)Residual Pressure Reduction Rate (%) 냉각종료온도(℃)Cooling end temperature (℃) 냉각속도(℃/s)Cooling rate (℃ / s) YP(kg/㎟)YP (kg / ㎡) TS(kg/㎟)TS (kg / ㎡) YR[%]YR [%] 충격인성(0℃, kg·m)Impact Toughness (0 ℃, kgm) 비교재1Comparative Material 1 870870 3030 607607 5.05.0 34.734.7 52.552.5 6868 19.819.8 비교재2Comparative Material 2 890890 3030 647647 3.63.6 33.633.6 50.950.9 6666 13.513.5 발명재1Invention 1 812812 4545 572572 5.15.1 38.438.4 57.957.9 6666 24.724.7 발명재2Invention 2 804804 4545 578578 5.45.4 41.141.1 59.359.3 6969 18.818.8

상기 표3에 나타난 바와 같이, 발명재(1),(2)는 Cu, Ni, V 성분을 첨가하고, 압연온도, 압하율, 냉각조건을 좀더 엄격하게 관리하여 충격인성의 감소없이도 강도를 향상시킬 수 있었다. As shown in Table 3, the invention materials (1), (2) is added to the Cu, Ni, V components, and more strictly manage the rolling temperature, rolling rate, and cooling conditions to improve the strength without reducing the impact toughness I could make it.

한편, 도1에는 발명재(1)과 비교재(1)의 조직사진을 나타내었는데, 본 발명재(1)은 비교재(1)에 비해 베이나이트 변태조직이 상당 부분 관찰되는 것을 알 수 있는데, 이것이 강도를 증가시키는 요인이 되는 것이다.On the other hand, Figure 1 shows a tissue picture of the invention material (1) and the comparative material (1), the present invention material (1) can be seen that a significant portion of the bainite transformation tissue is observed compared to the comparative material (1) This is the factor that increases the strength.

상술한 바와같이, 본 발명은 강성분, 압연조건 및 그후 냉각조건을 적절히 제어하여, 용접성의 변화없이도 강도, 인성 및 내지진성을 향상시킴으로써, 최근 건축물의 초고층 및 대형화 추세에 부합하는 구조재로서 사용할 수 있고, 또한 종래재 대비 고강도 확보용이로 그 사용량을 10% 절감할 수 있는 효과가 있는 것이다.As described above, the present invention can be used as a structural material in accordance with the trend of recent high-rise and large-scale construction of buildings by appropriately controlling the steel components, rolling conditions and subsequent cooling conditions to improve strength, toughness and anti-vibration without changing weldability. In addition, there is an effect that can reduce the amount of use by 10% to ensure high strength compared to conventional materials.

도 1은 본 발명재와 비교재의 조직을 나타내는 사진1 is a photograph showing the structure of the present invention and the comparative material

Claims (1)

중량%로 C: 0.136~0.164%, Si: 0.40~0.50%, Mn: 1.00~1.25%, P: 0.012%이하, Nb: 0.025~0.035%, Ti: 0.015%이하, Cu: 0.30%이하, Ni: 0.30%이하, V: 0.020%이하, Ceq.: 0.42% 이하, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강 슬라브를, 재가열하여 미재결정역 직상의 온도(800~900℃)에서 사상압연하고, Ar3 직상의 온도(750~850℃)에서 5~6℃/sec의 냉각속도로 냉각하여 강판의 최종온도를 600~550℃가 되도록 한 후 공냉하는 것을 특징으로 하는 항복비가 우수한 건축구조용 TMCP 후강판의 제조방법.By weight%, C: 0.136 ~ 0.164%, Si: 0.40 ~ 0.50%, Mn: 1.00 ~ 1.25%, P: 0.012% or less, Nb: 0.025 ~ 0.035%, Ti: 0.015% or less, Cu: 0.30% or less, Ni : 0.30% or less, V: 0.020% or less, Ceq .: 0.42% or less, steel slab containing remainder Fe and other unavoidable impurities is reheated, followed by finishing rolling at a temperature directly above the unrecrystallized region (800 to 900 ° C), Cooling at a cooling rate of 5-6 ℃ / sec at the temperature directly above Ar 3 (750 ~ 850 ℃) to make the final temperature of the steel sheet 600 ~ 550 ℃ and then air-cooled after excellent yield ratio of the building structure TMCP Method of manufacturing steel sheet.
KR10-1999-0063193A 1999-12-28 1999-12-28 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio KR100480003B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063193A KR100480003B1 (en) 1999-12-28 1999-12-28 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063193A KR100480003B1 (en) 1999-12-28 1999-12-28 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio

Publications (2)

Publication Number Publication Date
KR20010060766A KR20010060766A (en) 2001-07-07
KR100480003B1 true KR100480003B1 (en) 2005-03-30

Family

ID=19630566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063193A KR100480003B1 (en) 1999-12-28 1999-12-28 A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio

Country Status (1)

Country Link
KR (1) KR100480003B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226471B1 (en) 2009-07-27 2013-01-28 현대제철 주식회사 Hot rolled steel sheet with low yield ratio and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981235B (en) * 2021-01-22 2022-12-06 江阴兴澄特种钢铁有限公司 Hardened and tempered steel plate with yield strength of 420MPa grade for building structure and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211528A (en) * 1983-05-17 1984-11-30 Nippon Steel Corp Production of non-tempered steel having low yield ratio
JPH08283837A (en) * 1995-04-13 1996-10-29 Nkk Corp Production of fire resistant steel for building excellent in weldability and gas cuttability
KR19990001172A (en) * 1997-06-12 1999-01-15 김종진 Manufacturing method of 50Kg steel sheet with excellent strength and yield ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211528A (en) * 1983-05-17 1984-11-30 Nippon Steel Corp Production of non-tempered steel having low yield ratio
JPH08283837A (en) * 1995-04-13 1996-10-29 Nkk Corp Production of fire resistant steel for building excellent in weldability and gas cuttability
KR19990001172A (en) * 1997-06-12 1999-01-15 김종진 Manufacturing method of 50Kg steel sheet with excellent strength and yield ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101226471B1 (en) 2009-07-27 2013-01-28 현대제철 주식회사 Hot rolled steel sheet with low yield ratio and method for manufacturing the same

Also Published As

Publication number Publication date
KR20010060766A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
EP2623625A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
JP7221475B2 (en) High-strength steel material with excellent ductility and low-temperature toughness, and method for producing the same
KR100711371B1 (en) Thick steel sheet for linepipes having excellent excessive low temperature toughness and the method for manufacturing the same
KR101185336B1 (en) STEEL PLATE WITH HIGH STRENGTH OF 500MPa GRADE AND LOW TEMPERATURE TOUGHNESS AND METHOD FOR MANUFACTURING THE SAME
JPH0941088A (en) Production of high toughness steel plate for low temperature use
KR20120097160A (en) High strength steel plate and method of manufacturing the same
KR100480003B1 (en) A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio
KR102252106B1 (en) Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same
JPS63145745A (en) Hot rolled high tensile steel plate and its production
KR101166967B1 (en) Steel plate with high strength and low temperature toughness and method of manufacturing the steel
JPS642647B2 (en)
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
KR20200076799A (en) Ultra thick steel plate having excellent toughness at the center of thickness and manufacturing method for the same
KR102409897B1 (en) Pressure vessel steel plate having excellent low-temperature impact toughness and method for manufacturing thereof
KR101149258B1 (en) Steel with superior anisotropy for impact toughness and the method of producing the same
KR100544638B1 (en) A method for manufacturing high strength plate having the superior fracture arrest
KR102492029B1 (en) High strength steel having excellent shock-resistance and method for manufacturing thereof
KR100470643B1 (en) A high strength cold rolled steel sheet with excellent drawability and secondary working brittleness resistance, and a method for manufacturing it
KR102674148B1 (en) H-shaped steel and method of manufacturing the same
KR102512885B1 (en) Ultra-thick steel sheet with excellent strength and low-temperature impact toughness, and manufacturing method thereof
KR101344556B1 (en) High strength thick steel and method of manufacturing the thick steel
KR101125986B1 (en) Steel and method for manufacturing steel plate having low yield ratio, high strength and excellent toughness and steel plate made of the same
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
KR20230089767A (en) Steel plate having high strength and excellent impact toughness, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130304

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140321

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150316

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160322

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee