KR100325714B1 - A bainitic steel with good low temperature toughness and a method of manufacturing thereof - Google Patents

A bainitic steel with good low temperature toughness and a method of manufacturing thereof Download PDF

Info

Publication number
KR100325714B1
KR100325714B1 KR1019970073716A KR19970073716A KR100325714B1 KR 100325714 B1 KR100325714 B1 KR 100325714B1 KR 1019970073716 A KR1019970073716 A KR 1019970073716A KR 19970073716 A KR19970073716 A KR 19970073716A KR 100325714 B1 KR100325714 B1 KR 100325714B1
Authority
KR
South Korea
Prior art keywords
steel
temperature
rolling
low temperature
toughness
Prior art date
Application number
KR1019970073716A
Other languages
Korean (ko)
Other versions
KR19990053985A (en
Inventor
주세돈
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970073716A priority Critical patent/KR100325714B1/en
Publication of KR19990053985A publication Critical patent/KR19990053985A/en
Application granted granted Critical
Publication of KR100325714B1 publication Critical patent/KR100325714B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Abstract

PURPOSE: A method for manufacturing a bainitic steel with good low temperature toughness is provided, which is characterized in that bainite matrix structure is minutely controlled by accelerated cooling after finishing hot rolling process at high temperatures, thus it is possible to produce a bainitic steel with a tensile strength of 60kgf/mm¬2. CONSTITUTION: The method for manufacturing a bainitic steel with good low temperature toughness includes the steps of reheating a slab comprising C 0.01 to 0.04 wt.%, Mn 1.2 to 2.0 wt.%, Si 0.1 to 0.3 wt.%, Al 0.02 to 0.06 wt.%, Ti 0.01 to 0.03 wt.%, Nb 0.04 to 0.06 wt.%, V 0.05 to 0.07 wt.%, Mo 0.15 to 0.25, B 0.001 to 0.002 wt.%, 0.02 wt.% or less of S, 0.02 wt.% or less of P, N 10 to 100 ppm, O 0.01 to 0.05 wt.%, Ca 10 to 100 ppm, a balance of Fe and incidental impurities in a temperature range of 1050 to 1300°C, followed by hot rolling; finish hot rolling the slab at a temperature higher than Ar3 transformation temperature by 100 to 200 deg.C; accelerated cooling the hot rolled steel sheet at a cooling rate of 7 to 15 deg.C.

Description

저온인성이 우수한 베이나이트계 강재의 제조방법{A bainitic steel with good low temperature toughness and a method of manufacturing thereof}A bainitic steel with good low temperature toughness and a method of manufacturing

본 발명은 저온인성이 우수한 베이나이트계강의 제조방법에 관한 것으로서, 특히 인장강도 62kgf/mm2이상을 유지하면서 저온인성도 -60℃에서 200J/cm 이상 확보되는 후판 강재를 고온압연 및 가속냉각에 의해 제조함으로써 생산 단가를 향상시킨 강재의 재조 방법에 관한 것이다.The present invention relates to a method for manufacturing bainite-based steel having excellent low temperature toughness. In particular, the present invention relates to a method for manufacturing a thick plate steel, which has a tensile strength of 62 kgf / mm 2 or more and a low temperature toughness of 200 J / cm or more at -60 ° C., for high temperature rolling and accelerated cooling. It is related with the manufacturing method of the steel material which improved the production cost by manufacturing.

종래에는 인장강도 60kgf/mm2급 이상을 요구하는 고강도 구조용 강재는 C,Mn 이외에 미량원소 들을 다량 함유시켜 강재의 강도를 높이는 방법과, 혹은 강재의 필수적인 후속공정인 용접시의 용접성을 개선하기 위하여 합금원소의 함유를 가급적 줄이고, 이에 따른 강도 저하는 가속냉각을 통한 미세조직의 제어를 통하여보상하는 방법이 주로 이용되어 왔다. 한편 극저탄소형 베이나이트 합금의 경우에는 고온 압연 후 공냉을 통하여 기지조직을 베이나이트로 만들어서 강도 및 용접성을 향상시키는 방법이 최근에 공지된 바 있다. 그런데 고온압연 및 공냉에 의해 제조된 저탄소형 강재는 베이나이트 조직이 비교적 조대하여 저온인성이 취약한 단점을 가지고 있으며, 특히 마무리압연온도를 850℃이상으로 관리해야 하며, 이는 생산성저하와 염격한 품질관리를 초래하는 단점이 있다.Conventionally, high strength structural steels requiring a tensile strength of 60kgf / mm 2 or more contain a large amount of trace elements in addition to C and Mn to increase the strength of the steel, or to improve weldability during welding, which is an essential subsequent process of the steel. The method of reducing the content of the alloying element as much as possible and thereby reducing the strength of the alloying element through the control of the microstructure through accelerated cooling has been mainly used. On the other hand, in the case of ultra-low carbon type bainite alloy, a method of improving the strength and weldability by making the base structure into bainite through air cooling after hot rolling has been recently known. However, the low carbon steel produced by high temperature rolling and air cooling has the disadvantage that the bainite structure is relatively coarse and the low temperature toughness is weak. In particular, the finishing rolling temperature must be managed above 850 ° C. There is a disadvantage that causes.

본 발명은 강의 강도에 결정적인 영향을 미치는 C의 함량을 극소화하는 대신 Mo와 B을 이용하여 강재의 경화능을 높여서 기지조직을 페라이트가 아닌 베이나이트로 만드는데 있어서, 고온에서 압연을 종료한 후 가속냉각하여 베이나이트 기지조직을 치밀하게 제어함으로서 저온인성이 우수한 인장강도 60kgf/mm2을 제조할 수 있는 방법을 제공하고자 하는데 그 목적이 있다.In the present invention, instead of minimizing the content of C, which has a decisive influence on the strength of steel, to increase the hardenability of the steel by using Mo and B to make the base structure into bainite instead of ferrite, accelerated cooling after finishing rolling at a high temperature. By precisely controlling the bainite matrix structure to provide a method for producing a tensile strength of 60kgf / mm 2 excellent in low temperature toughness.

도 1은 발명강과 비교강의 차피충격에너지 값을 실험온도에 대하여 나타낸 그래프.1 is a graph showing the chaff impact energy values of the inventive steel and the comparative steel against the experimental temperature.

도 2는 (a)발명강과 (b)비교강의 미세조직사진(압연종료온도=950℃)Figure 2 is a microstructure photograph of (a) the invention steel and (b) comparative steel (rolling end temperature = 950 ℃)

상술한 목적을 달성하기 위한 본 발명은 항복강도 60kgf/mm2급 구조용 강재를 제조하는 방법에 있어서, 강의 성분을 중량 %로 C: 0.01∼0.04%, Mn:1.2∼2.0%, Si: 0.1∼0.3%, Al: 0.02∼0.06%, Ti: 0.01∼0.03%, Nb: 0.04∼0.06%, V: 0.05∼0.07%, Mo: 0.15∼0.25%, B: 0.001∼0.002%, S: 0.02%이하, P:0.02%이하, N: 10∼100ppm, O: 0.01∼0.05%, Ca: 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 강의 슬라브를 1050∼1300℃의 온도범위에서 가열한 후 통상의 방법으로 열간압연하는 단계와; 상기 열간압연팝을 변태온도(Ar3)보다 100℃∼200℃높은 온도에서 압연을 종료하는 단계와; 상기 압연을 종료한 강판을 가속냉각는 단계;를 포함하여 이루어진 것을 특징으로 하는 저온인성이 우수한 베이나이트계강의 제조방법을 제공한다.The present invention for achieving the above object is a method of producing a yield strength 60kgf / mm grade 2 structural steel, the steel component in weight% C: 0.01 to 0.04%, Mn: 1.2 to 2.0%, Si: 0.1 to 0.3%, Al: 0.02 to 0.06%, Ti: 0.01 to 0.03%, Nb: 0.04 to 0.06%, V: 0.05 to 0.07%, Mo: 0.15 to 0.25%, B: 0.001 to 0.002%, S: 0.02% or less , P: 0.02% or less, N: 10 to 100 ppm, O: 0.01 to 0.05%, Ca: 10 to 100 ppm, the slab of steel consisting of the remaining Fe and other unavoidable impurities is heated in a temperature range of 1050 to 1300 ° C. Hot rolling in a method; Terminating the hot rolled pop at a temperature of 100 ° C. to 200 ° C. higher than a transformation temperature (Ar 3 ); Accelerated cooling of the steel sheet after the rolling; provides a method for producing bainite-based steel having excellent low-temperature toughness, characterized in that it comprises a.

이하 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명은 C의 함량을 극소화하는 대신 C:0.01∼0.04%로 함유시키고 Mo와 B을 각각 Mo:0.15~0.25%, B: 0.001~0.002%범위로 첨가하여 강재의 경화능을 높이고, 이 강의 슬라브를 기지조직을 페라이트가 아닌 베이나이트로 만드는데 있어서, 1050∼1300℃의 온도범위에서 가열한 후 변태온도(Ar3)보다 100∼200℃높은 고온에서 압연을 종료한 후 가속냉각하여 베이나이트 기지조직을 치밀하게 제어함으로서 저온인성이 우수한 인장강도 60kgf/mm2급 강재를 제조할 수 있는 것을 특징으로 한다.In the present invention, instead of minimizing the content of C, C: 0.01 to 0.04% and Mo and B are added in the range of Mo: 0.15 to 0.25% and B: 0.001 to 0.002%, respectively, to increase the hardenability of the steel, In making slab base structure into bainite instead of ferrite, it is heated in the temperature range of 1050 to 1300 ° C, finish rolling at a high temperature of 100 to 200 ° C higher than transformation temperature (Ar 3 ), and then accelerated cooling to bainite base By precisely controlling the structure, it is possible to produce a tensile strength 60kgf / mm grade 2 steel excellent in low temperature toughness.

이하, 본 발명의 성분 한정이유에 대하여 설명한다.Hereinafter, the reason for component limitation of this invention is demonstrated.

C은 통상 강의 합금성분중 함량이 적을 경우 제 2상 조직의 분율이 저하하여 강도가 저하되고, 많을 경우에는 강도는 증가하나 충격인성 특히 저온인성을 해치고 용접시에 용접성을 저하시킨다. 따라서 본 발명은 C함량을 0.04%이하로 관리하여, 압연후의 기지조직을 베이나이트로 만들고 제 2상의 생성을 억제시키되, C의 함량이 0.01% 미만이면 베이나이트 기지상의 자체강도가 저하되므로 C의 함량을 0.01%∼0.04%범위로 한정하는 것이다.In general, when the content of the alloying elements of steel is small, the fraction of the second phase structure is lowered, and the strength is decreased. Therefore, the present invention manages the C content to 0.04% or less, to make the base structure after rolling to bainite and to suppress the formation of the second phase, if the content of C is less than 0.01%, the self strength of the bainite matrix is reduced, so The content is limited to the range of 0.01% to 0.04%.

Si은 제강시에 탈산제로 첨가되며 고용강화 효과도 있으나, 충격천이 온도를 높이고 0.3%를 초과 첨가되면 용접성이 저하되며 강판표면에 산화피막이 심하게 형성되므로 그 함량은 0.1∼0.3%범위로 한정하는 것이다.Si is added as a deoxidizer during steelmaking and also has a solid solution effect. However, when the impact transition temperature is increased and more than 0.3% is added, weldability is deteriorated, and an oxide film is severely formed on the surface of the steel sheet so that the content is limited to 0.1 to 0.3%. .

Mn은 S와 함께 연신된 비금속개재물인 MnS을 형성하여 상온연신율 및 저온인성을 저하시키므로 2.0%이하로 관리하는 것이 바람직하나, 1.2% 미만으로 되면 강의 소압성을 저하키켜 공냉시에 베나이트를 형성하기 어려워 강도확보가 어려우므로 1.2~2.0%로 제한하는 것이다.Since Mn forms MnS, a non-metallic inclusion that is elongated with S, and lowers room temperature elongation and low temperature toughness, it is preferable to manage it at 2.0% or less. However, when Mn is less than 1.2%, it decreases the steel's pressure resistance and forms benite at air cooling. Since it is difficult to secure strength, it is limited to 1.2 ~ 2.0%.

Al은 제강시에 탈산제로 첨가되나 0.06% 초과 첨가되면 비금속 산화물인 Al2O3를 형성하여 충격인성을 저하시키고, 0.02% 미만이 되면 제강시에 산화성 분위기로 인하여 탈황이 어려우므로 0.02~0.06%범위로 제한하는 것이 바람직하다.Al is added as a deoxidizer during steelmaking, but when it is added more than 0.06%, Al 2 O 3 , a nonmetallic oxide, forms the impact toughness, and when it is less than 0.02%, desulfurization is difficult due to the oxidizing atmosphere during steelmaking. It is preferable to limit the range.

Ti은 강의 응고과정에서 TiN석출물을 형성하여 주괴를 가열하는 동안에 결정립의 성장을 억제하고, 열간압연과정에서 재결정립의 성장을 억제함으로써, 강의 결정립 미세화에 큰 역할을 하는 주요한 원소이다. Ti의 적정 첨가량은 N의 함량에 따라 변하게 되는데, 질소의 양에 비해 Ti의 첨가가 상대적으로 적으면 즉, 0.01% 보다 적으면 형성되는 TiN의 양이 적어서 결정립을 미세화시키는데 불리하고, 반면 0.03%보다 과량 첨가되면 가열 중 TiN이 조대해져서 또한 결정립 성장 억제 효과가 감소하게 된다. 따라서 Ti의 첨가량은 0.01∼0.03로 한정하는 것이다.Ti is a major element that forms a TiN precipitate during the solidification process of steel and suppresses grain growth during heating of the ingot, and suppresses growth of recrystallized grains during hot rolling, thereby playing a major role in grain refinement of steel. The amount of Ti added varies depending on the content of N. When the amount of Ti is relatively low compared to the amount of nitrogen, i.e., less than 0.01%, the amount of TiN formed is disadvantageous due to the small amount of TiN formed, whereas 0.03% When added in excess, TiN coarsens during heating, and the grain growth inhibiting effect is reduced. Therefore, Ti addition amount is limited to 0.01-0.03.

Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Martrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출함으로서 강의 강도를 증가시키는 중요한 원소이다. 본 발명의 특징이 가속냉각에 의한 베이나이트 기지 조직의 형성에 의하여 강도 및 저온인성이 우수한 강을 제조함에 있으므로 경화능을 증진시키기 위해서는 Nb을 다량함유시키는 것이 중요하나, 0.06% 이상 첨가하여도 상기의 효과가 증대시키는 것이 아니며, 페라이트 내의 고용된 상태로 존재하여 충격인성을 저하시킬 위험이 있고, 용접성을 저하시킬 수도 있고, 0.04% 미만으로 첨가되면 경화능 증진효과가 저감되므로 0.04%∼0.06%로 제한하는 것이다.Nb is an important element that increases the strength of the steel by solid solution of austenite to increase the hardenability of austenite and to precipitate as carbonitride (Nb (C, N)) to match the matrix (Martrix). Since the characteristics of the present invention are to produce a steel having excellent strength and low temperature toughness by forming the bainite matrix by accelerated cooling, it is important to contain a large amount of Nb in order to enhance the hardenability, but may be added even when 0.06% or more is added. It does not increase the effect of, and exists in the solid state in the ferrite, there is a risk of lowering the impact toughness, may also reduce the weldability, when added to less than 0.04%, the effect of improving the hardenability is reduced 0.04% to 0.06% Will be limited.

V은 냉각 중에 VC를 형성하여 석출강화 및 입계성장 억제에 기여하며, 냉각중에 미세한 VC가 석출하여 강도를 증가시키므로 0.05% 이상 함유시키는 것이 바람직하나 0.07%초과 함유되면 조대한 VC가 취성을 유발시키고 용접성을 저해하므로 0.05%∼0.07%로 제한하는 것이다.V forms VC during cooling, contributing to strengthening precipitation and suppressing grain boundary growth.It is preferable to contain 0.05% or more because fine VC precipitates during cooling to increase strength, but when it exceeds 0.07%, coarse VC causes brittleness. Since weldability is impaired, it limits to 0.05%-0.07%.

B은 경화능을 증대시킬 뿐 아니라 입계에 편석하여 입계의 결합력을 증대시키는 것으로 알려져 있다. 이는 입계를 따라 파단이 진전되는 인성 파괴 특성을 보이는 강에서의 저온인성을 증진시키는데 B이 큰 기여를 하게됨으로 B을 0.001% 이상 함유시키는 것이 필요하다. 그러나 0.002% 초과 함유하면 입계를 오히려 취화시키는 경향이 있으므로 0.001%∼0.002% 범위로 제한하는 것이다.B is known not only to increase the hardenability but also to segregate at the grain boundaries to increase the binding force of the grain boundaries. It is necessary to contain B not less than 0.001% because B contributes to the low temperature toughness in the steel exhibiting the toughness fracture property that breaks along the grain boundary. However, if it contains more than 0.002%, the grain boundary tends to be embrittled, so it is limited to the range of 0.001% to 0.002%.

Mo는 경화능을 증진시켜 페라이트 변태를 억제함으로서 기지조직을 베이나이트 조직으로 만드는데 필수적인 원소이나. 0.25%초과 함유하면 Mo-C석출물이 형성되어 입계를 취화시키고, C에 의한 냉각능 또한 저하시키며, 0.15% 미만 함유하면 경화능 확보가 어려우므로 0.15∼0.25%범위로 제한하는 것이 바람직하다.Mo is an essential element to make the base structure into bainite structure by increasing the hardenability and suppressing ferrite transformation. If it contains more than 0.25%, Mo-C precipitates are formed to embrittle the grain boundary, and the cooling ability by C is also lowered. If the content is less than 0.15%, it is difficult to secure hardenability, so it is preferably limited to 0.15 to 0.25%.

P는 충격인성에 특히 나쁜 원소로서 함량이 낮으면 낮을수록 좋으나 제강과정에서 피할 수 없는 원소이므로 물성에 해로운 영향을 끼치지 않도록 그 함량은0.02%이하로 제한하는 것이다.P is a particularly bad element of impact toughness, the lower the content is better but the inevitable element in the steelmaking process, so the content is limited to 0.02% or less so as not to adversely affect the physical properties.

S은 MnS의 비금속 개재물로 존재하여 열간압연에 의하여 길게 연신되어 강판 물성의 이방성을 조장하고 충격인성을 저하시키므로 그 함량은 0.002%이하로 관리하는 것이다.S is present as a non-metallic inclusion of MnS and is elongated by hot rolling to promote anisotropy of steel sheet properties and to lower impact toughness. Therefore, its content is controlled to 0.002% or less.

상기 합금성분 외에 다른 합금 성분으로서, N,O 및 Ca은 일반 구조용 강재의 경우 통상 함유되는 성분으로서 그 함량 또한 통상의 범위인 N: 10∼100ppm, O:0.01%∼0.05%, Ca: 10∼100ppm이다.As other alloy components in addition to the alloy components, N, O and Ca are commonly contained in the case of general structural steel, the content of which is also in the usual range of N: 10 to 100 ppm, O: 0.01% to 0.05%, and Ca: 10 to 100 ppm.

이하, 열간압연 및 냉각조건에 대해 보다 상세히 설명한다.Hereinafter, the hot rolling and cooling conditions will be described in more detail.

본 발명에서는 상기와 같이 조성되는 강의 슬라브를 1050~1300℃의 온도범위에서 가열한 후 재결정 영역에서 열간 압연하고, 60∼80%의 압하량 범위로 재결정 온도 이하의 미재결정 영역에서 열간압연하여 변태온도(Ar3)+100∼200℃의 온도범위에서 종료하는 열간압연을 행한 압연판을 물을 이용하여 냉각속도 7~15℃/초로 가속 냉각시킨다.In the present invention, after heating the slab of the steel composition as described above in the temperature range of 1050 ~ 1300 ℃ hot rolling in the recrystallization region, and hot rolling in the unrecrystallized region below the recrystallization temperature to 60 ~ 80% rolling reduction range transformation temperature of (Ar 3) + by the rolled sheet subjected to hot rolling terminating at a temperature of 100~200 ℃ using water cooled speed 7 ~ 15 ℃ / sec accelerated cooling.

상기와 같이 조성되는 저합금강의 슬라브를 열간압연 하기전에 1050∼1300℃의 온도범위서 가열해 주게 되는데, 그 이유는 다음과 같다. 본 발명에서는 Nb를 오스테나이트 중에 용해된 상태로 존재하도록 하며, 이 Nb에 의한 경화능 증가로 생기는 변태온도의 강하로 페라이트를 미세화 시키는 것이 강도 및 저온인성 향상을 위하여 주요한 점이다. 슬라브 상태에서는 Nb이 C과 결합하여 탄화물 NbC로 존재하며, 따라서 열간압연전에 슬라브를 1050℃ 이상으로 가열하여 NbC가 용해되어 Nb이 원자상태로 존재하도록 해야하며, 단 가열온도가 1300℃를 초과할 경우에는오스테나이트 입자가 너무 조대화되고, 강중에 델타 페라이트(δ-ferrite)가 일부 생성되어 강판의 성질을 열화시키므로 슬라브 가열온도는 1050∼1300℃ 범위로 한정하는 것이다.Before the hot rolled slab of the low-alloy steel formed as described above is heated to a temperature range of 1050 ~ 1300 ℃, the reason is as follows. In the present invention, Nb is present in a dissolved state in austenite, and the refinement of the ferrite to the drop in the transformation temperature caused by the increase in the hardenability by the Nb is a major point for improving the strength and low temperature toughness. In the slab state, Nb is combined with C to exist as carbide NbC. Therefore, before hot rolling, the slab must be heated to 1050 ° C or higher to dissolve NbC so that Nb exists in an atomic state, provided that the heating temperature exceeds 1300 ° C. In this case, the slab heating temperature is limited to the range of 1050 to 1300 ° C. because the austenite particles are too coarse and delta-ferrite is partially generated in the steel to degrade the properties of the steel sheet.

상기 가열온도로 가열된 주괴는 재결정영역에서 열간압연한 후 재결정온도이하의 미재결정 영역에서의 압하량이 60∼80%가 되도록 미재결정 압연한다. 압하량이 60%미만일 경우에는 미재결정 압연에 의한 페라이트 입자 미세화를 기대할수 없고, 80%를 초과할 경우에는 압연 후에 판내에 극심한 재질편차가 우려되므로 압하량은 60∼80% 범위에서 관리하는 것이다.The ingot heated to the heating temperature is hot-rolled in the recrystallization zone and then unrecrystallized rolled so that the amount of reduction in the unrecrystallized zone below the recrystallization temperature is 60 to 80%. If the rolling reduction is less than 60%, the ferrite particles may not be miniaturized by recrystallization rolling. If the rolling reduction exceeds 80%, the rolling reduction may be controlled in the range of 60 to 80% because of severe material deviation in the plate after rolling.

이 때 미재결정 압하 개시 온도(T4)는 재결정온도 보다 50℃가량 낮은 것이 적당한데 재결정온도(R)은 강의 성분조성에 따라 변하며, 경험식에 의해 다음과 같은 수학식 1로서 계산될수 있다.At this time, the uncrystallized reduction start temperature (T4) is preferably about 50 ℃ lower than the recrystallization temperature, the recrystallization temperature (R) is changed according to the composition of the steel, it can be calculated by the following equation (1) by the empirical formula.

Figure pat00001
Figure pat00001

여기서 본 발명에 의한 재결정 온도는 상기 수학식 1에 의해 환산해보면 1030℃정도임을 알 수 있다.Here, it can be seen that the recrystallization temperature according to the present invention is about 1030 ° C. in terms of Equation (1).

압연종료온도(T5)는 강도이외에도 저온인성에 밀접한 연관이 있으므로 특히 엄격하게 관리하여야 할 지표이며, 종래의 가속냉각강의 경우에는 변태온도(Ar3)를 기준으로 ±30℃정도에서 압연을 종료하였다. 이는 압연종료온도(T5)가 너무 높으면 연성, 저온인성 등은 우수하지만 강도가 저하되며, 압연종료온도가 너무 낮으면이상역 압연이 발생하여 연신된 페라이트와 퍼얼라이트가 존재하며 퍼얼라이트 밴드가 형성되어 연성 및 저온인성을 매우 저하시키므로 압연종료온도는 하기 수학식 2의 변태온도 (Ar3)를 기준으로 ±30℃ 이내에서 관리하는 것이 종래의 기술이었다.The rolling end temperature (T5) is closely related to low temperature toughness as well as strength, which is an indicator to be strictly controlled. In the case of conventional accelerated cooling steel, rolling is finished at about ± 30 ° C based on the transformation temperature (Ar 3 ). . If the rolling end temperature (T5) is too high, the ductility and low temperature toughness are excellent, but the strength is lowered. If the rolling end temperature is too low, abnormal reverse rolling occurs, resulting in stretched ferrite and perlite, and the formation of a perlite band. Since the ductility and low-temperature toughness is very low, it is a conventional technique to manage the rolling end temperature within ± 30 ℃ based on the transformation temperature (Ar3) of the following formula (2).

Figure pat00002
Figure pat00002

즉, 상기 수학식 2에 의해 변태온도(Ar3)를 환산해보면 750℃정도를 나타내며, 종래에는 상기 온도보다 낮거나 높은 720~780℃에서 압연을 종료함으로써 입도미세화를 도모할 수 있으나That is, when the transformation temperature (Ar 3 ) is converted by Equation 2, the transformation temperature (Ar 3 ) is about 750 ° C. In the related art, grain size may be reduced by ending rolling at 720 to 780 ° C lower or higher than the temperature.

본 발명의 극저탄소형 베이나이트강의 가장 중요한 특징은 상기 750℃보다 상대적으로 고온인 900℃±50℃에서 압연을 종요함으로써 생산성을 25%정도 향상시킨 강재의 제조방법을 제공하는데 있는데, 이는 공냉 후의 미세조직이 베이나이트로 이루어질 수 있기 때문에 가능하다. 공냉 후의 조직이 베이나이트가 되면 강도 및 인성의 압연 종료온도 의존성이 매우 작아지므로 종래의 기술보다 고온에서 압연을 종료할수 있으며, 본 발명에서는 상기의 변태온도(Ar3)보다 100℃∼200℃온도에서 압연을 종료하는 것으로 한정한다.The most important feature of the ultra-low carbon type bainite steel of the present invention is to provide a method for manufacturing a steel material which improves productivity by about 25% by requiring rolling at 900 ° C. ± 50 ° C., which is relatively hotter than 750 ° C., which is after air cooling. This is possible because the microstructure can consist of bainite. When the structure after air cooling becomes bainite, the rolling end temperature dependency of strength and toughness becomes very small, so that rolling can be terminated at a higher temperature than in the prior art. In the present invention, the temperature is 100 ° C. to 200 ° C. above the transformation temperature (Ar 3 ). It is limited to finishing rolling in.

압연후에는 물을 이용하여 가속냉각하는 단계를 거친다. 이때의 가속냉각 속도는 7~15℃/초로 한정하는데, 7℃미만에서는 베이나이트 변태가 일어나기 전에 오스테나이트 입계에서 초석 페라이트가 석출하여 강도 및 인성을 현저히 저하시키고, 15℃를 초과하면 기지조직이 마르텐사이트 조직이 되므로 카바이드 석출에 의한 저온인성이 현저히 저하되거나, 이를 방지하기 위해서는 별도의 소준열처리를 행해야 하므로 7~15℃/초로 한정하는 것이 바람직하다.After rolling, accelerated cooling is performed using water. At this time, the accelerated cooling rate is limited to 7 ~ 15 ℃ / second, but below 7 ℃, before the bainite transformation occurs, the precipitated cornerstone ferrite precipitates at the austenite grain boundary, significantly lowering the strength and toughness. Since it becomes a martensitic structure, the low-temperature toughness due to carbide precipitation is remarkably lowered, or in order to prevent it, it is preferable to limit it to 7 to 15 ° C./sec.

이하 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

하기의 표 1과 같이 조성되는 합금강의 슬라브를 제작하였으며, 동일한 슬라브를 여러부분으로 나누어 압연마무리 온도를 950℃,850℃등으로 제어하여 압연하였으며, 압연된 판재는 가속냉각 혹은 공냉하였는데, 여기서 공냉재는 비교강(B)이며, 가속냉각재는 발명강(A)으로부터, 압연 및 냉각조건은 하기의 표 2에 나타내었다.Slabs of alloy steel were prepared as shown in Table 1 below, and the same slabs were divided into several parts and rolled by controlling the finish temperature of rolling to 950 ° C, 850 ° C, etc., and the rolled sheet was accelerated or air-cooled, where air-cooled The ash is a comparative steel (B), and the accelerated coolant is from the inventive steel (A), and the rolling and cooling conditions are shown in Table 2 below.

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

상기의 표 2에서 알수 있듯이 발명강과 비교강은 동일한 진공용해한후 슬라브로 만든 다음 절단하여 각각 압연후 가속냉각 혹은 공냉한 강으로서 공냉재인 비교강(B)에 비하여 가속냉각재인 발명강(A)가 동일조건의 마무리압연 온도에서 인장강도가 약 2kg/mm2정도 증가한 것을 볼수 있다.As can be seen in Table 2, the invention steel and the comparative steel are made of slabs after the same vacuum melting, and then cut and rolled, respectively, to be accelerated-cooled or air-cooled steels. It can be seen that the tensile strength increased by about 2kg / mm 2 at the same finish rolling temperature.

(실시예 2)(Example 2)

도 1은 상기의 압연판재 중 압연종료온도가 850℃,950℃인 발명강과 비교강의 챠피 충격인성치를 실험온도에 대하여 도시한 것이다. 발명강은 압연종료온도에 관계없이 -60℃에서도 충격인성값이 200J/cm를 상회하는데 반하여 비교강 중 압연종료온도가 950℃인 경우에는 저온에서 인성값이 급격히 하락하는 것을 볼수 있다. 이는 가속냉각을 적용하지 않을 경우에는 압연 종료온도를 필히 850℃이하로 관리해야 함을 의미하며, 이는 생산성 저하를 수반하게 된다. 또한 강판 생산중에 압연종료온도를 850℃이하로 관리하지 못할 경우에는 압연강판이 저온인성 불량처리 되는 단점이 있다. 반면, 가속냉각법을 적용하는 발명강의 경우에는 압연종료온도를 950℃까지 높일수 있으므로 압연중 공냉대기 시간이 필요없으므로 생산성이 향상되고, 850℃보다 높은 온도에서 압연이 종료되어도 저온인성이 -60℃까지 확보되므로 불량율을 매우 줄일수 있는 장점이 있다.1 shows the Charpy impact toughness values of the inventive steel and the comparative steel having a rolling end temperature of 850 ° C. and 950 ° C. in the rolled sheet material with respect to the test temperature. Although the toughness of the invention steel exceeds 200J / cm at -60 ° C regardless of the rolling end temperature, when the rolling end temperature of the comparative steel is 950 ° C, the toughness decreases rapidly at low temperatures. This means that when the accelerated cooling is not applied, the rolling end temperature must be managed at 850 ° C. or lower, which leads to a decrease in productivity. In addition, when the rolling finish temperature is not maintained below 850 ° C. during the production of steel sheet, the rolled steel sheet has a disadvantage of poor temperature toughness treatment. On the other hand, in the case of the invention steel to which the accelerated cooling method is applied, the end temperature of the rolling can be increased to 950 ° C., thus eliminating the need for air-cooling waiting time during rolling, resulting in improved productivity. As it is secured, there is an advantage that can greatly reduce the defective rate.

(실시예 3)(Example 3)

상기 실시예 1 및 실시예 2에서 알수 있듯이, 발명강이 비교강에 비하여 강도 및 저온인성이 우수하였는데, 이는 발명강과 비교강이 동일하게 베이나이트 기지조직을 보이지만 발명강은 도 2에서 보는 것과 같이 비교강에 비하여 보다 치밀하고 균일한 미세조직을 가지기 때문이다.As can be seen in Examples 1 and 2, the invention steel was superior in strength and low temperature toughness as compared to the comparative steel, which showed the same bainite structure as the invention steel and the comparative steel, but the invention steel as shown in FIG. This is because it has a finer and more uniform microstructure than the comparative steel.

상술한 바와 같이 본 발명에 의하면 인장강도 60kgf/mm2급을 만족하고, 저온인성이 우수하고 강재가 고온압연+가속냉각법을 이용하여 제조할 수 있으므로 생산성이 향상되는 우수한 효과를 가진다.As described above, the present invention satisfies the tensile strength of 60kgf / mm 2 , has excellent low-temperature toughness, and the steel can be manufactured by using high-temperature rolling + acceleration cooling method, thereby improving productivity.

Claims (2)

본 발명은 중량%로 C: 0.01∼0.04%, Mn: 1.2∼2.0%, Si: 0.1∼0.3%, Al: 0.02∼0.06%, Ti: 0.01∼0.03%, Nb: 0.04∼0.06%, V: 0.05∼0.07%, Mo: 0.15∼0.25, B: 0.001∼0.002%, S: 0.02%이하, P: 0.02%이하, N: 10∼100ppm, O: 0.01∼0.05%, Ca: 10∼100ppm, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 강의 슬라브를 인장강도 60kgf/㎟급 구조용 강재를 제조하는 방법에 있어서,In the present invention, C: 0.01 to 0.04%, Mn: 1.2 to 2.0%, Si: 0.1 to 0.3%, Al: 0.02 to 0.06%, Ti: 0.01 to 0.03%, Nb: 0.04 to 0.06%, V: 0.05 to 0.07%, Mo: 0.15 to 0.25, B: 0.001 to 0.002%, S: 0.02% or less, P: 0.02% or less, N: 10 to 100 ppm, O: 0.01 to 0.05%, Ca: 10 to 100 ppm, remaining In the method for producing a structural steel material of 60kgf / ㎜ class tensile strength slab of steel consisting of Fe and other unavoidable impurities, 상기 강의 슬라브를 1050∼1300℃의 온도범위에서 가열한 후 통상의 방법으로 열간압연하는 단계와; 상기 열간압연판을 변태온도(Ar3)보다 100∼200℃높은 온도에서 압연을 종료하는 단계와; 상기 압연을 종료한 강판을 가속냉각하는 단계; 를 포함하여 이루어진 것을 특징으로 하는 저온인성이 우수한 베이나이트계강의 제조방법.Heating the slab of the steel in a temperature range of 1050 to 1300 ° C. and then hot rolling the steel slab in a conventional manner; Terminating the hot rolled plate at a temperature of 100 to 200 ° C. higher than the transformation temperature (Ar 3 ); Accelerated cooling the steel sheet after the rolling; Method for producing bainite-based steel excellent in low temperature toughness, characterized in that it comprises a. 제 1항에 있어서,The method of claim 1, 상기 압연강판을 가속냉각할 때에 냉각속도를 7℃∼15℃/초 범위에서 제어하는 것을 특징으로 하는 저온인성이 우수한 베이나이트계강의 제조방법.A method for producing bainite steel having excellent low temperature toughness, wherein the cooling rate is controlled in a range of 7 ° C. to 15 ° C./sec when the cold rolling is accelerated.
KR1019970073716A 1997-12-24 1997-12-24 A bainitic steel with good low temperature toughness and a method of manufacturing thereof KR100325714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970073716A KR100325714B1 (en) 1997-12-24 1997-12-24 A bainitic steel with good low temperature toughness and a method of manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970073716A KR100325714B1 (en) 1997-12-24 1997-12-24 A bainitic steel with good low temperature toughness and a method of manufacturing thereof

Publications (2)

Publication Number Publication Date
KR19990053985A KR19990053985A (en) 1999-07-15
KR100325714B1 true KR100325714B1 (en) 2002-06-29

Family

ID=37478259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970073716A KR100325714B1 (en) 1997-12-24 1997-12-24 A bainitic steel with good low temperature toughness and a method of manufacturing thereof

Country Status (1)

Country Link
KR (1) KR100325714B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125700A1 (en) 2007-04-13 2008-10-23 Sidenor Investigación Y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833075B1 (en) * 2006-12-22 2008-05-27 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness and brittle crack arrest property and producing method of the same
KR100833076B1 (en) * 2006-12-22 2008-05-27 주식회사 포스코 High strength and low yield ratio steel for structure having excellent low temperature toughness and brittle crack arrest property and producing method of the same
KR101999015B1 (en) * 2017-12-24 2019-07-10 주식회사 포스코 Steel for structure having superior resistibility of brittle crack arrestability and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219371A (en) * 1978-04-05 1980-08-26 Nippon Steel Corporation Process for producing high-tension bainitic steel having high-toughness and excellent weldability
US4521258A (en) * 1981-10-31 1985-06-04 Nippon Steel Corporation Method of making wrought high tension steel having superior low temperature toughness
JPH0361321A (en) * 1989-07-29 1991-03-18 Nippon Steel Corp Production of steel stock having superior toughness at low temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219371A (en) * 1978-04-05 1980-08-26 Nippon Steel Corporation Process for producing high-tension bainitic steel having high-toughness and excellent weldability
US4521258A (en) * 1981-10-31 1985-06-04 Nippon Steel Corporation Method of making wrought high tension steel having superior low temperature toughness
JPH0361321A (en) * 1989-07-29 1991-03-18 Nippon Steel Corp Production of steel stock having superior toughness at low temperature

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008125700A1 (en) 2007-04-13 2008-10-23 Sidenor Investigación Y Desarrollo, S.A. Hardened and tempered steel and method for producing parts of said steel

Also Published As

Publication number Publication date
KR19990053985A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
JP2007016296A (en) Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
CN113061701B (en) Low-compression-ratio super-thick fine grain structure steel plate and preparation method thereof
KR102020435B1 (en) High strength hot-rolled steel sheet having excellent bendability and low-temperature toughness and mathod for manufacturing thereof
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR20220133842A (en) Cold rolled plated steel sheet and method of manufacturing the same
JP5701483B2 (en) Extremely thick steel plate for welded structure with excellent strength and toughness at the center of thickness and little material deviation, and method for manufacturing the same
KR101070132B1 (en) Steel with Excellent Low-Temperature Toughness for Construction and Manufacturing Method Thereof
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2000336455A (en) High ductility hot rolled steel sheet and its production
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
KR102209575B1 (en) Steel sheet having excellent workability and balance of strength and ductility, and method for manufacturing the same
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3325146B2 (en) Manufacturing method for high yield strength steel sheet with low yield ratio
KR100470640B1 (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
JP2002012939A (en) High tensile steel excellent in hot strength and its production method
KR100435446B1 (en) Method for manufacturing steel in which toughness at low temperature required in ultra-cold area is greatly improved while maintaining 60 kgf/mm¬2 or more tensile strength by means of controlling alloy composition, hot rolling and cooling conditions of steel properly
CN114901852B (en) High-strength steel sheet excellent in workability and method for producing same
KR100470643B1 (en) A high strength cold rolled steel sheet with excellent drawability and secondary working brittleness resistance, and a method for manufacturing it
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100544638B1 (en) A method for manufacturing high strength plate having the superior fracture arrest
KR970009089B1 (en) Method for manufacturing a hot rolled steel sheet
KR102209569B1 (en) High strength and ductility steel sheet, and method for manufacturing the same
KR101149258B1 (en) Steel with superior anisotropy for impact toughness and the method of producing the same
KR100340557B1 (en) A method of manufacturing steel in the 50Kgf/mm2 grade for shipbuilding
EP1888800A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080212

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee