KR100256347B1 - The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property - Google Patents

The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property Download PDF

Info

Publication number
KR100256347B1
KR100256347B1 KR1019950048484A KR19950048484A KR100256347B1 KR 100256347 B1 KR100256347 B1 KR 100256347B1 KR 1019950048484 A KR1019950048484 A KR 1019950048484A KR 19950048484 A KR19950048484 A KR 19950048484A KR 100256347 B1 KR100256347 B1 KR 100256347B1
Authority
KR
South Korea
Prior art keywords
steel
less
temperature
rolling
steel slab
Prior art date
Application number
KR1019950048484A
Other languages
Korean (ko)
Other versions
KR970043168A (en
Inventor
박종수
박찬엽
소문섭
Original Assignee
이구택
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사 filed Critical 이구택
Priority to KR1019950048484A priority Critical patent/KR100256347B1/en
Publication of KR970043168A publication Critical patent/KR970043168A/en
Application granted granted Critical
Publication of KR100256347B1 publication Critical patent/KR100256347B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method for manufacturing a steel plate product for pipe is provided, which not only secures high strength and toughness but also improves hydrogen induced cracking resistance by properly controlling steel constituents, particularly appropriately adding Nb, V, Cu and Ni in steel while properly spheroidizing CaS inclusion in the steel, and optimally setting the conditions for the controlled rolling. CONSTITUTION: The method comprises the processes of controlled rolling the heated steel slab to an accumulated reduction ratio of 40 to 70% at the non-recrystallization zone of 850 to 880 deg.C after heating a steel slab comprising 0.07 to 0.13 wt.% of C, 0.35 wt.% or less of Si, 0.80 to 1.20 wt.% of Mn, 0.015 to 0.060 wt.% of soluble Al, 0.020 wt.% or less of P, 0.003 wt.% or less of S, 0.020 to 0.050 wt.% of Nb, 0.030 to 0.060 wt.% of V, 0.005 to 0.015 wt.% of Ti, 0.15 to 0.33 wt.% of Cu, 0.10 to 0.20 wt.% of Ni, 70 ppm or less of N, 50 ppm or less of Ca, and a balance of Fe and other inevitable impurities, wherein a weight ratio of Ca/S is 0.5 to 1.8, and a ratio of Ti/N is 1.0 to 3.0 in the temperature range of 1150 to 1320 deg.C; water cooling the finish rolled steel slab to a temperature of 500 to 550 deg.C in a cooling rate of 8 to 13 deg.C/sec after finish rolling the controlled rolled steel slab at a temperature on the straight line of Ar3+25 deg.C; and air cooling the water cooled steel slab to an ordinary temperature, wherein the Ca is first injected during powder injection, and injected again to be refluxed after high clean molten steel is produced by the degassing treatment, and wherein Ar3(deg.C)=869-395C+24.5Si-68.0Mn-36.1Ni-20.7Cu-24.9Cr+29.5Mo.

Description

수소유기 균열 저항성이 우수한 파이프용 강재의 제조방법Manufacturing method of pipe steel with excellent hydrogen organic crack resistance

제1도는 본 발명재와 비교재에 함유한 CaS 개재물을 나타내는 주사현미경 사진.1 is a scanning micrograph showing the CaS inclusions contained in the present invention and the comparative material.

제2도는 본 발명재와 비교재에 함유한 HIC 시험후의 조직을 나타내는 사진임.2 is a photograph showing the structure after the HIC test contained in the present invention and the comparative material.

본 발명은 원유 및 천연가스 수송에 사용되는 파이프용강재의 제조방법에 관한 것이며, 보다 상세하게는 수소유기 균열 저항성이 우수한 인장강도 50kg/mm2급 라인 파이프용 강재의 제조방법에 관한 것이다.The present invention relates to a method for producing a steel for pipes used for transporting crude oil and natural gas, and more particularly, to a method for producing a steel for 50 kg / mm 2 line pipe with excellent tensile strength of hydrogen-organic cracks.

최근 내륙의 극한지, 바다의 심해저에서 원유 및 천연가스의 개발이 활발히 추진됨에 따라 유전지에서 추출된 원유와 천연가스등의 수송을 위한 파이프 소재의 품질 향상이 더욱 요구되고 있다.Recently, as the development of crude oil and natural gas in the extreme regions of the inland and the deep sea of the sea is actively promoted, the quality of the pipe material for transportation of crude oil and natural gas extracted from the oil field is required more.

보통 원유 및 천연가스에는 황화수소가 함유되어 부식성 분위기(sour 분위기)를 형성하기 때문에 원유 및 천연가스 수송용 파이프(이하, 단지 '라인파이프'라 함)소재는 이러한 부식성 분위기하에서 강도, 인성은 물론 특히 수소유기균열(Hydrogen Induced Cracking : 이하, 단지 'HIC'라 함) 저항성을 갖추는 것이 필수적이다. 상기 라인 파이프 소재에서 HIC 가 발생되는 원인은 원유나 천연가스 수송시 시간이 흐르면서 황화수소중 수소가스가 분리되어 파이프 소재 내부에 수소가 침투되면서 부식이 진행되기 때문이다. 즉, 부식이 진행되면서 수소는 강재 내부로 확산되면서 강재 내부의 연신된 MnS 개재물에 집적되어 균열발생 기점으로 자리를 잡고, 수소분자가 원자로 분리되면서 발생하는 수소팽창 입력에 의하여 스스로 균열을 전파하게 되며, 이러한 균열 전파시 내부 불균일 조직층인 비정상 Mn, P 편석층(pearlite band structure)을 따라 균열이 전파되게 되는 것이다.Since crude oil and natural gas usually contain hydrogen sulfide to form a corrosive sour atmosphere, pipes for transporting crude oil and natural gas (hereinafter referred to simply as "line pipes"), in particular, are particularly characterized by strength, toughness, It is essential to have resistance to Hydrogen Induced Cracking (hereinafter, simply HIC). The HIC is generated in the line pipe material because the hydrogen gas in the hydrogen sulfide is separated as time passes during the transportation of crude oil or natural gas, and the corrosion proceeds as hydrogen penetrates into the pipe material. That is, as the corrosion progresses, hydrogen diffuses into the steel, accumulates in the elongated MnS inclusions inside the steel, and becomes a starting point for cracking, and propagates the cracks by the hydrogen expansion input generated by the hydrogen molecules separated into atoms. When the crack propagates, the crack propagates along the abnormal Mn and P segregation layers (pearlite band structure).

상기 HIC 발생원인이 되는 부식성 분위기는 H2S 분압에 따라 3종류로 구분될 수 있다. 즉, 하기표 1에 나타난 바와같이 H2S 분압이 0.0035-0.1atm 인 약 부식성 분위기(light sour)와 H2S 분압이 0.1-1atm 인 부식성분위기(sour), 그리고 H2S 분압이 1atm 이상인 강부식성 분위기(heavy sour)로 대별되는데, 이중 강부식성 분위기에서 사용되는 라인 파이프 강재의 경우에는 유화수소 응력부식 균열(sulfide stress corrosion cracking : SSCC)까지 요구되는 것으로 알려지고 있으나 약 30일 이상 장기간 시험이 소요될 뿐만 아니라 시험설비도 미비하기 때문에 선진 간국에서도 아직까지 현실적으로 개발이 어렵다고 알려져 있다. 또한, 약 부식성 분위기에서 사용될 수 있는 라인 파이프소재는 대체로 HIC 보증이 불필요한 고강도 고인성 강재인데, 이들 소재는 이미 개발단계를 넘어 적극 생산되고 있는 단계에 있다. 반면에 H2S 분압이 1atm 이하인 부식성 분위기에서 사용되는 라인 파이프 소재는 대부분 HIC 보증을 필요로 하고 있고 현재 다양하게 개발이 추진되고 있다.Corrosive atmosphere that causes the HIC generation may be classified into three types according to the H 2 S partial pressure. That is, the following Table 1 the corrosive atmosphere (sour) H 2 S partial pressure of from about 0.0035-0.1atm corrosive atmosphere (light sour) and H 2 S partial pressure is 0.1-1atm as shown in, and the H 2 S partial pressure less than 1atm It is generally classified as a heavy sour, which is known to require sulfide stress corrosion cracking (SSCC) in the case of a line pipe steel used in a highly corrosive atmosphere. It is known that it is difficult to develop realistically even in advanced countries because of the shortage of test facilities and lack of test facilities. In addition, line pipe materials that can be used in a weakly corrosive atmosphere are generally high strength, high toughness steels that do not require HIC assurance. These materials are already in the stage of being actively produced beyond the development stage. On the other hand, line pipe materials used in corrosive atmospheres with H 2 S partial pressures of less than 1 atm require HIC assurance and are currently being developed in various ways.

한편, 1atm 이하의 H2S 분압기 환경하에서 HIC 보증용 파이프 소재를 제조하기 위한 종래의 기술을 살펴보면, HIC 를 방지하기 위해 다음과 같이 제조방법들이 알려져 있다.On the other hand, when looking at the prior art for manufacturing the HIC guarantee pipe material in the H 2 S voltage divider environment of less than 1 atm, manufacturing methods are known as follows to prevent HIC.

즉, 1) Mn, P 등의 함유량을 저감시키거나 압연중에 균질화 처리(열처리)를 통하여 편석도를 줄임으로써 크랙전파를 억제하는 방법,That is, 1) a method of suppressing crack propagation by reducing the content of Mn, P, or the like and reducing segregation through the homogenization treatment (heat treatment) during rolling,

2) 제강중에 희토류 원소(EEM)등을 첨가하여 MnS 형상을 구상화시킴으로서 HIC 생성을 억제하는 방법,2) Method of suppressing HIC generation by adding rare earth element (EEM) in steelmaking to spheroidizing MnS shape,

3) Cu, Ni, Cr, Mo 등의 합금원소를 첨가하여 강재표면에 안정피막을 형성시킴을 특징으로써 수소 내부 확산침투를 억제하는 방법,3) A method of suppressing diffusion into hydrogen, characterized by forming a stable film on the surface of steel by adding alloying elements such as Cu, Ni, Cr, and Mo,

4) 압연후 가속냉각함으로써 미세조직을 형성하여 크랙의 전파를 억제하는 방법, 및4) forming a microstructure by accelerated cooling after rolling to suppress the propagation of cracks, and

5) 비금속 개재물(Ca/S)배합을 2-4배로 배합시켜 MnS 구상화의 최적화로 HIC 발생억제 하는 방법등이 있다.5) There is a method of suppressing HIC generation by optimizing MnS spheroidization by mixing the non-metallic inclusion (Ca / S) mixture 2-4 times.

그러나, 상기 방법중 (1)의 방법은 단독으로 Mn을 저감시켜도 HIC 보증용 강에서 요구되는 고강도를 확보할 수 없으며, 열처리시 열처리 적용에 따른 원가상승과 열처리 표면경화에 따른 조관가공이 어려운 단점이 있다.However, the method of (1) of the above method cannot secure the high strength required for HIC guarantee steel even when Mn is reduced by itself, and it is difficult to increase the cost due to the heat treatment during the heat treatment and to make the pipe work due to the surface hardening of the heat treatment. There is this.

또한, (2)의 방법은 제강공정시 S의 제어능력에 대한 기술의 미흡으로 충분한 MnS 구상화가 이루어지지 않는다.In addition, in the method of (2), sufficient MnS visualization is not achieved due to the lack of technology regarding the controllability of S in the steelmaking process.

또한, (3)의 방법은 고원가의 Cr, Mo 성분으로 원가상승은 물론 압연시 소입성증대원소로 압연시 냉각에 의한 미세조직 제어가 불규칙하여 HIC 보증성이 난이하며 더욱이 이 방법은 전기로 소재에서 행하는 기술로 알려져 탄소당량이 높아 용접성에 불리한 결점을 안고 있다.In addition, the method of (3) is the Cr and Mo components of the plateau price, and the HIC guaranteeability is difficult because the microstructure control by cooling when rolling to the quenchability increasing element during rolling is irregular as well as the cost increase. It is known as a technique performed in the US, and has a high carbon equivalent, which has disadvantages in weldability.

또한, (4)의 방법은 최근에 알려지고 있는 방법으로서 고강도, 고인성에는 큰 효과를 얻을 수 있으나 퍼얼라이트 집합 조직 형성으로 HIC 보증율은 낮아 각 제조업체 별 설비능력 및 성분조성에 따라 별도의 냉각제어 기술을 필요로 하고 있다.In addition, the method of (4) is a recently known method, and can have a great effect on high strength and high toughness, but the HIC guarantee rate is low due to the formation of the pearlite aggregate structure, so that cooling is performed separately according to facility capacity and composition of each manufacturer. Control technology is required.

마지막으로 (5)의 방법은 Ca/S가 2-4배로 조합된 개재물에서는 용접성이 저하하여 현재 사용을 회피하고 있는 실정이다.Finally, in the method of (5), the weldability is lowered in the inclusions in which Ca / S is combined 2-4 times and is currently avoided.

따라서, 본 발명은 상기한 종래의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명은 적절한 강 성분 제어, 특히 강중 Nb, V, Cu와 Ni을 적절히 첨가하는 한편 강중 CaS 재개물을 적절히 구상화시키고, 제어압연 조건을 최적으로 설정하므로서 고강도, 고인성 확보는 물론 내수소유기 균열 저항성이 우수한 파이프용 후판 강재의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present invention has been proposed to solve the above-mentioned conventional problems, and the present invention provides adequate steel component control, in particular, appropriately adding the Nb, V, Cu and Ni in the steel while properly visualizing and controlling the CaS reinforcement in the steel. It is an object of the present invention to provide a method for producing a thick steel plate for pipes having excellent high strength and high toughness as well as excellent resistance to cracking of hydrogen-based organics by setting rolling conditions optimally.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 라인 파이프용 후판 강재의 제조방법에 있어서,The present invention provides a method for producing a thick plate steel for line pipe,

중량%로, C:0.07-0.13%, Si:0.35% 이하, Mn:0.80-1.20%, 가용성 Al:0.015-0.060%, P:0.020% 이하, S:0.003% 이하, Nb:0.020-0.050%, V:0.030-0.060%, Ti:0.005-0.015%, Cu:0.15-0.33%, Ni:0.10-0.20%, N:70ppm 이하, Ca:50ppm 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, Ca/S 중량비가 0.5-1.8 이고, Ti/N 비가 1.0-3.0 인 강 슬라브를 1150-1320℃의 온도범위에서 가열한 후, 미재결정 영역인 850-880℃에서 40-70%의 누적 압하율로 제어압연하고, Ar3+25℃ 직상의 온도에서 마무리 압연을 행한 다음, 8-13℃/초의 냉각속도로 500-550℃의 온도범위까지 수냉하고, 이후 상온까지는 공랭함을 포함하여 구성되는 수소유기 균열저항성이 우수한 파이프용 강재의 제조방법에 관한 것이다.By weight%, C: 0.07-0.13%, Si: 0.35% or less, Mn: 0.80-1.20%, Soluble Al: 0.015-0.060%, P: 0.020% or less, S: 0.003% or less, Nb: 0.020-0.050% , V: 0.030-0.060%, Ti: 0.005-0.015%, Cu: 0.15-0.33%, Ni: 0.10-0.20%, N: 70ppm or less, Ca: 50ppm or less, remaining Fe and other unavoidable impurities, and are composed of Ca After heating a steel slab having a weight ratio of S / S of 0.5-1.8 and a Ti / N ratio of 1.0-3.0 at a temperature range of 1150-1320 ° C., a cumulative reduction of 40-70% at 850-880 ° C., which is an uncrystallized region, Control rolling, finish rolling at a temperature directly above Ar 3 + 25 ° C., followed by water cooling to a temperature range of 500-550 ° C. at a cooling rate of 8-13 ° C./sec, followed by air cooling to room temperature. The present invention relates to a method for producing a pipe steel having excellent organic crack resistance.

이하, 본 발명에 따라 강성분 및 조성에 대하여 상세히 설명한다.Hereinafter, the steel component and the composition according to the present invention will be described in detail.

탄소(C)는 강도를 향상시키는데 가장 크게 기여하는 원소로서, 첨가량이 적을 경우 제2 상분율이 저하되어 강도가 저하되고 많을 경우 강도가 비례적으로 증가하는 반면에 충격인성을 저해시키고 경도가 증가하여 내 HIC 저항성을 감소시키므로 탄소(C) 함량은 0.07-0.13% 범위로 한정하는 것이 바람직하다.Carbon (C) is the most contributing element to improving the strength. If the addition amount is small, the second phase fraction is lowered and the strength is decreased, while the strength is proportionally increased while the impact toughness is increased and the hardness is increased. Therefore, since the HIC resistance is reduced, the carbon (C) content is preferably limited to the range of 0.07-0.13%.

규소(Si)는 강도향상에 부분적인 기여를 하지만, 0.35% 이상 첨가되면 용접성이 저하되고 강판표면에 산화피막이 심하게 형성된다. 또한 규소는 탈산제로서, 그 함량이 0.35% 이하에서 가장 유효한 탈산효과가 있기 때문에 0.35% 이상 첨가시 규소계 개재물이 증가하여 내 HIC 저항성을 감소시키므로 상기 규소의 함량은 0.35% 이하로 제한하는 것이 바람직하다.Silicon (Si) partially contributes to strength improvement, but when 0.35% or more is added, weldability is degraded and an oxide film is severely formed on the surface of the steel sheet. In addition, silicon is a deoxidizer, and since its content is most effective at 0.35% or less, it is preferable to limit the content of silicon to 0.35% or less since the addition of 0.35% or more increases the silicon-based inclusions and decreases the HIC resistance. Do.

망간(Mn)은 강도와 인성을 동시에 향상시킬 수 있는 원소로서, 그 첨가량의 증가와 함께 페라이트 및 제2 상의 결정립은 미세해지지만 망간함량이 1.20% 이상이 되면 도상 마르텐사이트 조직이 생성되어 충격인성을 해치는 한편 S와 함께 MnS 개재물을 형성하여 경도증가와 함께 내 HIC 저항성을 감소시키며, 0.8% 이하가 되면 강의 경화능을 저하시켜 후속되는 가속 냉각시 제2상 조직으로 베이나이트를 형성하기 어려워 강도 확보가 곤란하기 때문에 망간의 함량은 0.80-1.20% 로 제한하는 것이 바람직하다.Manganese (Mn) is an element that can improve strength and toughness at the same time. As the addition amount increases, the grains of ferrite and the second phase become finer, but when manganese content is 1.20% or more, phase martensite structure is formed and impact toughness MnS inclusions are formed together with S to decrease the HIC resistance with increasing hardness, and below 0.8% reduces the hardenability of the steel, making it difficult to form bainite into the second phase structure during subsequent accelerated cooling. Since it is difficult to secure, the content of manganese is preferably limited to 0.80-1.20%.

인(P)의 강재의 충격인성을 크게 저해시키는 불순물로서, 연주시 중심편석부에 집적하여 내부품질을 열화시키기 때문에 가능한한 낮게 관리함이 바람직하나 제강과 정에서 피할 수 없는 원소이므로 조업기술이 수반되는 수준인 0.020% 이하로 규제하는 것이 바람직하다.It is an impurity that greatly impairs the impact toughness of the steel of phosphorus (P), and it is preferable to manage it as low as possible because it accumulates in the central segregation part during performance, but it is an inevitable element in the steelmaking process. It is desirable to regulate it to 0.020% or less.

황(S)은 인 성분과 동일하게 유해한 원소로서, 연주시 표면크랙, 내부크랙 및 중심 편석을 유발할 수 있고 이에 따라 충격인성을 대폭 감소시키는 한편 MnS 개재물로 형성되어 내 HIC 저해시키기 때문에 그 함량을 0.003% 이하로 제한하는 것이 바람직하다.Sulfur (S) is the same harmful element as phosphorus, which can cause surface cracks, internal cracks and central segregation when played, thereby greatly reducing impact toughness, while forming MnS inclusions and inhibiting HIC content. It is desirable to limit it to 0.003% or less.

상기 가용성 Al은 제강시 탈산제로 첨가되나 0.015% 이하가 되면 탈산효과가 적어 개재물이 증가될 수 있으며, 0.06% 이상이 되면 충격인성을 저해하고 pH 4.8-5.4 용액에서 Al2O3가 HIC 발생장소로 작용할 우려가 있으므로 가용성 Al 의 함량은 0.015-0.060% 로 관리하는 것이 바람직하다.The soluble Al is added as a deoxidizer during steelmaking, but if less than 0.015%, the deoxidation effect is small, so the inclusions may be increased.When the soluble Al is more than 0.06%, the impact toughness may be inhibited and the Al 2 O 3 may be HIC in the pH 4.8-5.4 solution. It is desirable to manage the content of soluble Al to 0.015-0.060% because it may act as a.

니오븀(Nb)은 그 첨가량이 증가할수록 오스테나이트내에 고용되어 오스테나이트의 경화능을 증대시켜 페라이트 변태온도를 낮추어 페라이트 입도를 미세하게 하는 효과가 있고, 또한 페라이트 변태후에 기지조직과 정합을 이루는 탄질화물 Nb(C, N)로 석출물을 생성을 항 인장강도가 증가하며 후판압연시는 입계에 석출된 Nb(C, N) 석출물이 결정립 성장을 억제함으로써 결정립 미세화효과에 의한 강도 및 충격인성을 향상시킨다.Niobium (Nb) is dissolved in austenite as its amount is increased, which increases the hardenability of austenite, lowers the ferrite transformation temperature, and makes the ferrite grain size fine. Nb (C, N) increases the tensile strength to produce precipitates, and in thick plate rolling, Nb (C, N) precipitates deposited at grain boundaries inhibit grain growth, improving strength and impact toughness due to the grain refinement effect. .

그러나, Nb 의 함량이 0.04% 까지는 그 첨가량에 따라 제질특성이 향상되나, 0.05% 초과 함유시는 포화 현상을 나타나기 때문에 강도효과가 증가하지 않으며 페라이트 내에 고용된 상태로 존재하여 용접성과 용접부의 충격인성을 저해시키므로 0.020-0.050% 범위로 설정한다.However, up to 0.04% of Nb, the quality of the material is improved depending on the amount added. However, when the content of Nb is more than 0.05%, the saturation phenomenon occurs. Therefore, the strength effect does not increase. Set the range of 0.020-0.050% because it inhibits.

바나듐(V)은 V(C, N) 석출원소로서, 그 함유량의 증가에 따라 항복강도의 증가보다는 인장강도 증가에 크게 기여한다. 따라서, 강도적인 측면외에 인성과의 균형을 고려하면 바나듐의 함량을 0.03-0.06% 로 함이 바람직한데, 0.060% 이상의 다량 함유시 탄소당량(Ceq)의 증가와 함께 강도확보는 가능하나 모재 및 용접부 충격인성을 크게 저해시킨다.Vanadium (V) is a V (C, N) precipitation element, and contributes to the increase in tensile strength rather than the increase in yield strength as the content thereof increases. Therefore, considering the balance of toughness in addition to the strength aspect, it is preferable to set the content of vanadium to 0.03-0.06%. When a large amount of 0.060% or more is contained, it is possible to secure the strength with the increase of the carbon equivalent (Ceq), but the base material and the welded part It greatly impairs impact toughness.

티타늄(Ti)은 슬라브 재가열공정 및 용접부등 고온에서 TiN 석출물이 입계에 미세 분산되어 초기 오스테나이트 결정립 성장을 억제함으로써 강도의 부분적인 증가와 함께 인성의 대폭적으로 개선하는 역활을 한다.Titanium (Ti) serves to significantly improve toughness with partial increase in strength by inhibiting initial austenite grain growth by finely dispersing TiN precipitates at grain boundaries at high temperatures such as slab reheating and welding.

그러나, 용강중 질소수준(70ppm)에 비해 0.015% 이상의 다량의 Ti 함유시는 산화물계 개재물 형성 또는 과잉 고용 Ti 가 조대석출물을 형성시켜 인성을 저해시키고 0.005% 이하로 함유되면 초기 오스테나이트 결정립 성장을 억제하는 역활이 미흡하게 된다. 본 발명에서는 Ti/N 의 비를 1.0-3.0 으로 관리함이 보다 바람직하다.However, when a large amount of Ti is contained in an amount of 0.015% or more relative to the nitrogen level (70 ppm) in molten steel, oxide-based inclusions or excessively dissolved Ti form coarse precipitates, thereby inhibiting toughness and inhibiting initial austenite grain growth when contained in 0.005% or less. The role to play is insufficient. In this invention, it is more preferable to manage the ratio of Ti / N to 1.0-3.0.

본 발명에 따른 강중에 함유되는 Cu 성분은 Fe 보다 이온화경향이 적지 때문에 강재 표면에 석출되어 표면에 보호피막을 형성하는데, 이 보호피막에 의해 수소의 흡수력은 저지될 수 있다. 즉, 원유나 천연가스에 함유된 황화수소가스로 부터 분리된 수소원자가 분자로 되면서 압력이 발생하고 이 압력에 기인하여 파이프 내부에 침입하려고 하는 수소는 상기 Cu 성분에 의해 형성된 보호피막에 의해 침투하지 못한다. 이때, 수소의 침투력을 0에 가깝도록 하기 위해서는 Cu 의 함량을 0.15-0.33%로 하는 것이 바람직하다.Since the Cu component contained in the steel according to the present invention has less ionization tendency than Fe, it precipitates on the surface of the steel to form a protective film on the surface, and the absorption of hydrogen can be prevented by the protective film. In other words, hydrogen atoms separated from hydrogen sulfide gas contained in crude oil or natural gas become molecules, and pressure is generated, and due to this pressure, hydrogen that tries to penetrate inside the pipe cannot be penetrated by the protective film formed by the Cu component. . At this time, in order to make the penetration force of hydrogen close to zero, it is preferable to make the content of Cu 0.15-0.33%.

그러나, Cu 는 용융점이 다른 첨가원소보다 낮아 단독 첨가시에는 용융에서 냉각도면서 또는 재가열시 1000℃ 부근에서 석출되어 슬라브 또는 강판표면에 별모양의 결함이 발생한다. 이러한 결함을 방지하기 위하여 Cu 성분과 결합형성하여 용융점을 높여 석출을 방지할 수 있는 Ni 성분을 0.10-0.20% 첨가하면 강도보상과 동시에 Cu 석출에 의한 결함을 방지하고 인성과 HIC 저항성이 우수한 합금강을 얻을 수 있다. 이와같이, 본 발명에서는 Cu, Ni 성분이 조성없이는 pH 4.8-5.4 에서 HIC 저항성은 보증이 불가하며, 더욱이 C 성분이나 Mn 하향첨가가 내 HIC 성에 필수적이다.However, Cu has a lower melting point than other additive elements, so when it is added alone, Cu is precipitated at about 1000 ° C during cooling in melting or reheating, and star defects occur on the surface of the slab or steel sheet. In order to prevent such defects, adding 0.10-0.20% of Ni, which forms a bond with the Cu component to increase the melting point and prevents precipitation, prevents defects due to Cu precipitation and prevents defects due to Cu precipitation. You can get it. As described above, in the present invention, the HIC resistance cannot be guaranteed at pH 4.8-5.4 without the Cu and Ni components, and further, the C or Mn down addition is essential for the HIC resistance.

즉, 본 발명은 강중에 Cu, Ni 성분을 첨가하여 원유나 천연가스에 함유된 황화수소가스로 부터 분리된 수소가 강재 내부에 침투되는 것을 방지하는 한편 HIC 성에 유리한 C 이나 Mn 을 적절히 낮춤으로서, 발생하는 강도손실을 보상하고 후속되는 제어압연 및 가속냉각에 의한 미세조직 제어로 강도보상을 확보하는데 그 특징이 있다.That is, the present invention prevents the infiltration of hydrogen separated from hydrogen sulfide gas contained in crude oil or natural gas by adding Cu and Ni components into the steel, while appropriately lowering C or Mn, which is advantageous for HIC properties, It is characterized by compensating for the strength loss and securing the strength compensation by controlling the microstructure by the subsequent control rolling and accelerated cooling.

또한, 본 발명은 강중 MnS 개재물 생성을 억제하고 HIC 방지에 유리한 CaS 개재물을 형성하고 이 CaS 개재물을 구상화처리하여 HIC 발생특성을 크게 억제시킴을 또 다른 특징으로 하고 있다.In addition, the present invention is characterized by further suppressing the formation of MnS inclusions in steel, forming CaS inclusions which are advantageous for HIC prevention, and spheroidizing the CaS inclusions to greatly suppress HIC generation characteristics.

이러한 개재물 구성화 제어를 우해 본 발명에서는 강종 Ca 함량을 50ppm 이하로 하는 한편 Ca/S 의 비를 0.5-1.8 의 범위로 해야만 한다. 그러나, Ca 함량이 50ppm 이상이 되거나 또는 Ca/S 의 비가 1.8 이상으로 되면 CaS의 개재물이 많아져 오히려 인성을 저해할 수 있고, 또한 Ca/S 의 비가 0.5 미만으로 되면 구상화된 CaS 개재물이 적어 내 HIC 특성을 충분히 발휘할 수 없어 바람직하지 못하다.In view of such inclusion composition control, in the present invention, the steel content Ca content should be 50 ppm or less while the Ca / S ratio should be in the range of 0.5-1.8. However, when the Ca content is 50 ppm or more or the Ca / S ratio is 1.8 or more, the inclusion of CaS increases, which may inhibit toughness, and when the Ca / S ratio is less than 0.5, less spherical CaS inclusions are produced. It is not preferable because the HIC characteristics cannot be sufficiently exhibited.

상기와 같이, 강중의 Ca/S 를 0.5-1.8 범위로 하여 구상화된 CaS 개재물을 형성하기 위한 바람직한 제강조업 방법을 예를들면 다음과 같다.As described above, a preferred steelmaking manufacturing method for forming spherical CaS inclusions with Ca / S in the steel in the range of 0.5-1.8 is as follows.

즉, CaS 개재물의 적정한 처리를 위해서 먼저 1차 정련시 파우더인젝션(powder injection)처리에서 Ca 분말을 투입하여 MnS 개재물 생성을 억제하고 CaS 개재물 생성분위기를 조성한 다음, 진공상태의 탈가스 처리(RH 처리)로 고청정한 용강을 생성 후 MnS 개재물이 다시 생성되기 전 적정한 Ca 분말을 투입하고 적정한 시간내에 용강을 환류처리하는 것이 바람직하다.That is, for proper treatment of CaS inclusions, Ca powder is injected in the powder injection treatment during the first refining to suppress MnS inclusions, and the CaS inclusion formation atmosphere is formed, followed by vacuum degassing (RH treatment). After the highly clean molten steel is generated, it is preferable to add appropriate Ca powder and reflux the molten steel within a suitable time before the MnS inclusions are produced again.

이하, 본 발명에 따른 제조방법에 대한 조건에 대하여 상세히 설명한다.Hereinafter, the conditions for the production method according to the present invention will be described in detail.

우선, 상기와 같이 조성되는 강슬라브는 열간압연하기 전에 1150-1320℃의 온도범위에서 가열해 주는 것이 바람직한데, 그 이유는 슬라브 상태에서 Nb이 C과 결합하여 탄화물(NbC)로 존재하며, 이 NbC가 용해 및 Nb, V 첨가강에 재고용될 수 있는 온도는 상기한 범위이기 때문이다. 즉, 재가열온도가 이보다 낮을 경우는 재고용효과의 영향도가 적어 본 발명강에서 필요한 항복강도 49kg/mm2이상, 인장강도 57kg/mm2이상을 확보할 수 없다. 본 발명에서는 특히 1150℃ 이상에서 20분 이상 유지함이 보다 바람직한데, 이는 재고용 핵생성 석출로 조직 미세화에 따른 강도 확보가 용이하게 때문이다. 그러나, 재가열온도가 1320℃ 이상에서는 오스테나이트 입자가 너무 조대화되어 강중에 델타-페라이트(δ-Ferrite)가 일부 생성되어 강도와 인성을 열화시키므로 바람직하지 않다.First, the steel slab formed as described above is preferably heated at a temperature range of 1150-1320 ° C. before hot rolling, because Nb is combined with C and is present as carbide (NbC) in the slab state. This is because the temperature at which NbC can be dissolved and reclaimed in Nb and V-added steels is in the above-described range. In other words, when the reheating temperature is lower than this, the effect of reusability is less effective, and thus the yield strength required in the present invention steel cannot be secured more than 49kg / mm 2 or more than 57kg / mm 2 . In the present invention, it is particularly preferable to maintain at least 1150 ° C. or more for 20 minutes or more, since it is easy to secure strength due to refining the nucleation of the tissue. However, at a reheating temperature of 1320 ° C or higher, the austenite particles are so coarse that some delta-ferrite is generated in the steel, which deteriorates strength and toughness.

상기와 같이 가열된 슬라브는 통상의 방법으로 재결정 온도 영역에서 열간 조압연 후 미재결정 온도 영역에서 누적 압하율을 40-70% 가 되도록 하여 제어압연을 실시한다. 이때, 누적 압하율을 40% 미만으로 하면 본 발명에 부합되는 재질확보(항복강도 49kg/mm2이상, 인장강도 57kg/mm2이상), 특히 항복강도 확보가 불가능하며, 70% 를 초과하면 후속되는 가속냉각을 위한 적정 마무리 온도 확보가 불가능하다. 보다 바람직하게는 통상 30-60℃가 낮은 미재결정 영역인 850-880℃ 의 온도범위에서 제어압연하는 것이다. 이후, 상기한 제어압연이 완료된 후에는 Ar3+ 25℃ 직상에서 압연을 종료해야만 한다. 만일, 마무리 압연종료 온도가 Ar3+ 25℃ 보다 높으면(Ar3+ 25℃ 직상에서 마무리 압연을 행하게 되면)강의 연성은 물론 인성, 강도 및 내 HIC 성이 향상되지만, 마무리 압연종료 온도가 Ar3+ 25℃ 보다 낮으면 2상역 압연이 되어 연신된 페라이트와 퍼얼라이트 생성에 의해 집합조직이 발생되고, 이로인해 내 HIC 측면에서 매우 불리하다. 따라서, 마무리 압연 온도는 Ar3+ 25℃ 직상의 온도에서 관리함이 바람직하다. 참고적으로 Ar3온도는 하기 (1)식과 같이 정의된다.The slab heated as described above is subjected to controlled rolling by hot rolling in the recrystallization temperature range in a conventional manner so that the cumulative reduction ratio is 40-70% in the uncrystallized temperature range. At this time, if the cumulative reduction ratio is less than 40%, the material to meet the present invention (yield strength 49kg / mm 2 or more, tensile strength 57kg / mm 2 or more), in particular yield strength is impossible to secure, if exceeding 70% It is not possible to secure an appropriate finish temperature for accelerated cooling. More preferably, control rolling is carried out in the temperature range of 850-880 degreeC which is 30-60 degreeC low unrecrystallization area | region. Thereafter, after the above-mentioned control rolling is completed, rolling must be finished directly on Ar 3 + 25 ° C. If the finish rolling end temperature is higher than Ar 3 + 25 ° C. (when finish rolling directly on Ar 3 + 25 ° C.), the ductility of steel, toughness, strength and HIC resistance are improved, but the finish rolling end temperature is Ar 3. If the temperature is lower than + 25 ° C, it becomes two-phase rolling, resulting in the formation of stretched ferrite and pearlite, which is very disadvantageous in terms of HIC. Therefore, the finish rolling temperature is preferably managed at a temperature directly above Ar 3 + 25 ° C. For reference, Ar 3 temperature is defined as in the following formula (1).

Ar3(℃) = 869-395C+24.5Si-68.0Mn-36.1Ni-20.7Cu-24.9Cr+29.5Mo....(1)Ar 3 (° C.) = 869-395C + 24.5Si-68.0Mn-36.1Ni-20.7Cu-24.9Cr + 29.5Mo .... (1)

한편, 상기한 압연을 행한 다음, 강재 일부에 발생된 집합조직을 소멸시키기 위하여 본 발명에서는 Ar3+ 25℃ 이상에서 마무리 압연직후 바로 가속냉각을 실시하는데, 이때 냉각조건은 8-13℃/초의 범위로 냉각하여 500-550℃에서 종료되도록 하는 것이 바람직하다.On the other hand, after the above-mentioned rolling, in order to dissipate the texture generated in a part of the steel in the present invention accelerated cooling immediately after the finish rolling at Ar 3 + 25 ℃ or more, wherein the cooling conditions of 8-13 ℃ / sec It is desirable to cool to the range and end at 500-550 ° C.

만일, 강도확보를 위한 수단인 냉각속도는 8℃/초 미만으로 하게 되면 냉각종료 온도를 상기 범위로 맞출수 없어 최종강의 조직이 페라이트 + 퍼얼라이트를 형성하게 되어 인성 및 HIC 저항성이 저하되며, 13℃/초를 초과할 경우 강도는 확보가능하나 마르텐사이트 저온조직이 다량 형성되어 HIC 저항성이 크게 감소되고 냉각능 증가에 따른 강판 형상이 불량하게 되어 바람직하지 않다.If the cooling rate, which is a means for securing strength, is lower than 8 ° C./sec, the cooling end temperature cannot be adjusted to the above range, and thus, the structure of the final steel forms ferrite + pearlite, which lowers toughness and HIC resistance. When / sec is exceeded, the strength can be secured, but a large amount of martensite low-temperature structure is formed, so that the HIC resistance is greatly reduced and the shape of the steel sheet is poor due to the increase in cooling capacity.

또한, 상기 냉각속도에 부합되게 냉각을 하는 경우 종료온도가 500-550℃의 온도가 될 수 있다. 따라서, 냉각종료온도가 500-550℃ 의 범위를 벗어나게 되면 상기 냉각속도에 대한 제한 사유와 동일한 현상이 발생되는 것이다. 이후, 가속 냉각된 후판은 상온까지 공랭한다.In addition, when cooling to match the cooling rate the end temperature may be a temperature of 500-550 ℃. Therefore, when the cooling end temperature is out of the range of 500-550 ° C the same phenomenon occurs as the reason for the limitation on the cooling rate. Thereafter, the accelerated cooled thick plate is air cooled to room temperature.

이와같이 제조된 본 발명에 의한 파이프용 후판 강재는 최종조직이 침상 페라이트와 약 30% 정도의 균일하고 미세한 베이나이프 혼합조직을 나타내며, 항복강도가 49kg/mm2이상, 인장강도가 57kg/mm2이상을 확보 가능하고, 동시에 저온 인성이 우수할 뿐만 아니라 특히 H2S 1.0atm 이하의 부식성 분위기(Sour 환경)에서도 내수소유기 균열 저항성이 매우 우수한 특성을 나타낸다. 따라서, 이러한 강재는 극한지등의 원유 또는 천연가스 수송용 라인파이프 뿐만 아니라 LNG 또는 부식성 환경하에서 필요한 소재로 매우 적합한 것이다.The steel plate for pipes according to the present invention prepared as described above has a uniform and fine structure of bay knife with a needle-like ferrite of about 30%, yield strength of 49kg / mm 2 or more, tensile strength of 57kg / mm 2 or more At the same time, it is excellent in low temperature toughness and particularly excellent in resistance to cracking of hydrogen-containing hydrogen in a corrosive atmosphere (Sour environment) of H 2 S 1.0atm or less. Therefore, these steels are well suited for materials required in LNG or corrosive environments, as well as in line pipes for transporting crude oil or natural gas such as extreme regions.

이하, 본 발명을 실시예를 통항 구체적으로 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예]EXAMPLE

하기표 2와 같은 조성을 갖는 발명강 및 비교강 슬라브를, 하기표 3과 같이 제강공정 처리를 거쳐서 제조하였다. 즉, 발명강은 파우더 인젝션 처리시 Ca 분말을 투입하고 RH 탈가스 처리후 Ca 분말을 다시 투입한 다음, 용강을 5-10분간 환류처리한 것이며, 비교강은 환류처리 하지 않거나 RH 탈가스 처리시 Ca 분말을 투여하지 않은 강종이다. 이와같이 처리된 발명강과 비교강에 대하여 Ca/S 의 조성비를 측정하여 하기표 3에 나타내었다.Invented steels and comparative steel slabs having the composition shown in Table 2 below were manufactured through a steelmaking process treatment as shown in Table 3 below. That is, the invention steel is Ca powder is added during the powder injection treatment, Ca powder is added after RH degassing treatment, and the molten steel is refluxed for 5-10 minutes, the comparative steel is not reflux treatment or RH degassing treatment It is a steel grade not administered Ca powder. The composition ratio of Ca / S of the inventive steel and the comparative steel thus treated was measured and shown in Table 3 below.

상기와 같이 처리되어 제조된 강 슬라브는 계속하여 하기표 4와 같은 조건으로 재가열처리한 다음, 제어 압연을 행하고, 급속냉각을 하여 두께가 11.1, 14.3, 17.5, 19.1, 20.6mm 인 후판을 제조하였다.The steel slab prepared as described above was subsequently reheated under the conditions shown in Table 4, then subjected to controlled rolling, and rapidly cooled to prepare thick plates having a thickness of 11.1, 14.3, 17.5, 19.1, and 20.6 mm. .

이후, 제조된 발명재 및 비교재에 대하여 각각 기계적 특성 및 청정도, HIC 정도를 평가하고, 그 결과를 하기표 5에 나타내었다.Then, the mechanical properties, cleanliness, and HIC degree were evaluated for the manufactured invention and the comparative material, respectively, and the results are shown in Table 5 below.

상기 기계적 특성중 충격시험은 챠피 V-노치(Charpy V-notch : CVN)로 -60℃ 에서 행하였다.The impact test of the mechanical properties was carried out at -60 ℃ with Charpy V-notch (CVN).

또한, HIC 평가는 H2S 포화상태에서 96시간 동안 시편을 유지후 크랙의 발생정도로 평가하였다.In addition, HIC evaluation was evaluated for the occurrence of cracks after maintaining the specimen for 96 hours in H 2 S saturation.

또한, 발명재(A) 및 비교재(C)에 대한 CaS 개재물을 주사전자현미경(SEM)을 이용하여 각각 500, 1000배로 관찰하고 그 결과를 제1도에 나타내었다.In addition, CaS inclusions for the inventive material (A) and the comparative material (C) were observed at 500 and 1000 times, respectively, using a scanning electron microscope (SEM), and the results are shown in FIG.

또한, 발명재(A) 및 비교재(C)에 대하여 HIC 시험후 조직을 각각 120, 500배로 관찰하고, 그 결과를 제2도에 나타내었다.In addition, the invention material (A) and the comparative material (C) were observed 120 and 500 times the tissue after the HIC test, respectively, and the results are shown in FIG.

상기 표 5에 나타난 바와같이, 발명재 및 비교재는 항복강도, 인장강도, 연신등의 기계적 특성이 모두 기준 내에 부합되고는 있지만, 비교재(C-E)의 경우 발명재(A)(B)에 비하여 충격인성 및 천이온도 값에 있어 매우 저하됨을 알 수 있다.As shown in Table 5, the invention material and the comparative material are all mechanical properties such as yield strength, tensile strength, elongation, etc. within the standard, but the comparative material (CE) compared to the invention material (A) (B) It can be seen that the impact toughness and the transition temperature are very low.

특히, 발명재(A)(B)의 경우 비교재(C-E)에 비하여 강의 청정성 및 내 HIC 측면에서 매우 우수함을 알 수 있는데, 이러한 사실은 제1도 내지 제2도에서도 확인되고 있다.In particular, it can be seen that the invention material (A) (B) is very excellent in terms of cleanliness of the steel and HIC in comparison to the comparative material (C-E), which is also confirmed in FIGS.

즉, 제1도에 나타난 바와같이, 발명재(A)의 경우 비교재(C)에 비하여 CaS 개재물(a,b,c로 표시됨)이 현저히 감소됨을 확인할 수 있고, 제2도체 도시된 바와같이, HIC 시험후 조직 상태에 있어서도 비교재(C)에는 균열이 발생한 반면 발명재(A)의 경우에는 HIC 시험후에도 균열이 전혀 발생하지 않음을 알 수 있다.That is, as shown in Figure 1, in the case of the invention (A) it can be seen that the CaS inclusions (represented by a, b, c) is significantly reduced compared to the comparative material (C), as shown in the second conductor In addition, even in the state of the tissue after the HIC test, the comparative material (C) was cracked, whereas in the case of the invention (A), no crack was generated even after the HIC test.

Claims (1)

라인 파이프용 후판 강재의 제조방법에 있어서, 중량%로, C:0.07-0.13%, Si:0.35% 이하, Mn:0.80-1.20%, 가용성 Al:0.015-0.060%, P:0.020% 이하, S:0.003% 이하, Nb:0.020-0.050%, V:0.030-0.060%, Ti:0.005-0.015%, Cu:0.15-0.33%, Ni:0.10-0.20%, N:70ppm 이하, Ca:50ppm 이하, 나머지 Fe 및 기타 불가피한 불순물로 조성되며, Ca/S 중량비가 0.5-1.8 이고, Ti/N 비가 1.0-3.0 인 강 슬라브를 1150-1320℃의 온도범위에서 가열한 후, 미재결 영역인 850-880℃에서 40-70%의 누적 압하율로 제어압연하고 Ar3+25℃ 직상의 온도에서 마무리 압연을 행한 다음, 8-13℃/초의 냉각속도로 500-550℃의 온도범위까지 수냉하고, 이후 상온까지는 공랭함을 포함하여 구성되며, 상기 Ca 은 파우더 인젝션시 1차 투입된 다음 탈가스처리로 고청정용강 생성후 2차 투입되어 환류처리됨을 특징으로 하는 수소유기균열저항성이 우수한 파이프용 강재의 제조방법.In the method for producing a thick steel plate for a line pipe, in weight%, C: 0.07-0.13%, Si: 0.35% or less, Mn: 0.80-1.20%, soluble Al: 0.015-0.060%, P: 0.020% or less, S : 0.003% or less, Nb: 0.020-0.050%, V: 0.030-0.060%, Ti: 0.005-0.015%, Cu: 0.15-0.33%, Ni: 0.10-0.20%, N: 70 ppm or less, Ca: 50 ppm or less, It is composed of the remaining Fe and other unavoidable impurities, the steel slab having a Ca / S weight ratio of 0.5-1.8 and a Ti / N ratio of 1.0-3.0 is heated at a temperature range of 1150-1320 ° C., and then the unresolved region 850-880 Control rolling at a cumulative reduction ratio of 40-70% at 0 ° C., finish rolling at a temperature directly above Ar 3 + 25 ° C., and then water-cooled to a temperature range of 500-550 ° C. at a cooling rate of 8-13 ° C./second, and then It is configured to include air-cooling up to room temperature, wherein the Ca is injected into the powder injection first, then the degassing treatment to produce a high-purity steel, the second injection is characterized in that the hydrogen-resistant cracking pipe is excellent Method of making ash. 단, Ar3(℃) = 869-395C+24.5Si-68.0Mn-36.1Ni-20.7Cu-24.9Cr+29.5Mo 이다.Provided that Ar 3 (° C.) = 869-395C + 24.5Si-68.0Mn-36.1Ni-20.7Cu-24.9Cr + 29.5Mo.
KR1019950048484A 1995-12-11 1995-12-11 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property KR100256347B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048484A KR100256347B1 (en) 1995-12-11 1995-12-11 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048484A KR100256347B1 (en) 1995-12-11 1995-12-11 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property

Publications (2)

Publication Number Publication Date
KR970043168A KR970043168A (en) 1997-07-26
KR100256347B1 true KR100256347B1 (en) 2000-05-15

Family

ID=19439134

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048484A KR100256347B1 (en) 1995-12-11 1995-12-11 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property

Country Status (1)

Country Link
KR (1) KR100256347B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399231B1 (en) * 1998-12-14 2004-02-14 주식회사 포스코 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance
KR101377791B1 (en) 2012-05-30 2014-03-25 현대제철 주식회사 Steel and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435445B1 (en) * 1996-10-22 2004-08-25 주식회사 포스코 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment
KR100584748B1 (en) * 2001-12-22 2006-05-30 주식회사 포스코 Continuous Cast Steel Slab for Linepipe with Superior Hydrogen Induced Crack Resistance
KR102020415B1 (en) 2017-12-24 2019-09-10 주식회사 포스코 High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242944A (en) * 1994-03-04 1995-09-19 Nippon Steel Corp Production of sour resistant high strength steel plate having excellent low temperature toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242944A (en) * 1994-03-04 1995-09-19 Nippon Steel Corp Production of sour resistant high strength steel plate having excellent low temperature toughness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399231B1 (en) * 1998-12-14 2004-02-14 주식회사 포스코 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance
KR101377791B1 (en) 2012-05-30 2014-03-25 현대제철 주식회사 Steel and method of manufacturing the same

Also Published As

Publication number Publication date
KR970043168A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
JP7219882B2 (en) Steel material for pressure vessel and its manufacturing method
KR20180074281A (en) Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
KR100979007B1 (en) Ultra-High Strength Steel Sheet For Line Pipe Having Excellent Low Temperature Toughness And Method For Manufacturing The Same
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
KR100256350B1 (en) The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR20160079166A (en) High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP4268462B2 (en) Manufacturing method of non-tempered low yield ratio high strength steel sheet with excellent high temperature strength
KR20070116561A (en) Steel sheets having superior haz toughness and reduced lowering of strength by post weld heat treatment
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
KR100723203B1 (en) Linepipe steel sheet with superior low temperature toughness and high hic resistance and method for manufacturing the steel sheet
KR100833070B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR100256347B1 (en) The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR100584762B1 (en) The method of manufacturing hot rolled steels with less anisotropic properties for linepipes
JP4261765B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
KR100435445B1 (en) Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment
EP3889301A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee