KR100399231B1 - Steel plate manufacturing method with excellent corrosion resistance fatigue resistance - Google Patents

Steel plate manufacturing method with excellent corrosion resistance fatigue resistance Download PDF

Info

Publication number
KR100399231B1
KR100399231B1 KR10-1998-0054790A KR19980054790A KR100399231B1 KR 100399231 B1 KR100399231 B1 KR 100399231B1 KR 19980054790 A KR19980054790 A KR 19980054790A KR 100399231 B1 KR100399231 B1 KR 100399231B1
Authority
KR
South Korea
Prior art keywords
cooling
rolling
corrosion resistance
present
temperature
Prior art date
Application number
KR10-1998-0054790A
Other languages
Korean (ko)
Other versions
KR20000039446A (en
Inventor
엄정현
권영각
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1998-0054790A priority Critical patent/KR100399231B1/en
Publication of KR20000039446A publication Critical patent/KR20000039446A/en
Application granted granted Critical
Publication of KR100399231B1 publication Critical patent/KR100399231B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Abstract

본 발명은 강도 및 인성이 우수하면서 특히 내유화물 부식피로특성이 우수함과 동시에 생산성이 향상된 후강판 제조방법에 관한 것으로, 중량%로, C: 0.03∼0.20%, Si: 0.05∼0.5%, Mn: 0.5∼2.0%, P: 0.03% 이하, S: 0.01% 이하, Al: 0.001∼0.1%, Ti: 0.005∼0.020% 및, Cr: 0.1∼0.35%, W: 0.1∼0.35%, Cu: 0.1∼0.35% 중에서 1종 이상과 잔여량의 Fe 및 불가피한 불순물을 함유하는 강슬래브를 1100∼1250℃ 사이의 온도로 재가열하며 조압연하는 단계와; 상기 조압연된 소재를 재결정온도 영역인 1000∼900℃ 구간에서는 압연을 하지 않고 3∼10℃/초의 냉각속도로 수냉한 다음, 900∼800℃ 구간에서 마무리 제어압연을 실시하는 단계와; 상기 마무리 제어압연된 직후인 800∼500℃ 온도구간에서는 5∼15℃/초의 냉각속도로 냉각한 다음, 500℃ 이하의 온도에서는 공냉하는 단계로 구성되는 것을 특징으로 하는 내유화물 부식피로 특성이 우수한 후강판 제조방법을 제공한다.The present invention relates to a method for producing a thick steel sheet having excellent strength and toughness, particularly excellent corrosion resistance to emulsion corrosion resistance and improved productivity. The present invention relates to a weight% of C: 0.03 to 0.20%, Si: 0.05 to 0.5%, and Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.001 to 0.1%, Ti: 0.005 to 0.020%, Cr: 0.1 to 0.35%, W: 0.1 to 0.35%, Cu: 0.1 to Reheating and roughly heating the steel slab containing at least one of 0.35% and the remaining amount of Fe and unavoidable impurities to a temperature between 1100 and 1250 ° C .; Cooling the roughly rolled material at a cooling rate of 3 to 10 ° C./sec without rolling in a recrystallization temperature range of 1000 to 900 ° C., and then performing final control rolling in a 900 to 800 ° C. section; Cooling resistance of the refractory corrosion resistance characterized in that it consists of a step of cooling at a cooling rate of 5 ~ 15 ℃ / second in the 800 ~ 500 ℃ temperature range immediately after the finish control rolling, and air cooling at a temperature below 500 ℃ It provides a thick steel sheet manufacturing method.

본 발명에 의해 제조된 강판은 유화수소 가스가 함유된 원유에서 부식피로균열 전파속도가 가속되는 현상이 현저히 개선되는 효과가 있었으며 또한 생산성도 우수하였다.The steel sheet produced according to the present invention had an effect of remarkably improving the phenomenon of accelerated corrosion fatigue crack propagation in crude oil containing hydrogen sulfide gas and also having excellent productivity.

Description

내유화물 부식피로 특성이 우수한 후강판 제조방법Manufacturing method of thick steel plate with excellent corrosion resistance

본 발명은 강도 및 인성이 우수하면서 특히 내유화물 부식피로특성이 우수함과 동시에 생산성이 향상된 후강판 제조방법에 관한 것이다.The present invention relates to a method for producing a thick steel sheet which is excellent in strength and toughness, in particular, excellent in corrosion resistance to emulsion corrosion and at the same time improving productivity.

원유에는 일반적으로 10 ppm 정도의 H2S 가스가 함유되어 있으나, 최근에는 경제 환경의 변화에 따라 100 ppm 이상 함유된 저급의 것들도 생산되고 있다.Crude oil generally contains about 10 ppm of H2S gas, but in recent years, low-grade ones containing more than 100 ppm are being produced due to changes in the economic environment.

원유 중에 H2S 가스가 다량 함유된 경우에는 부식, 수소 취성 등의 작용으로 강재의 수명을 저하시킬 수 있으며, 특히 피로균열 전파 속도를 10배 이상 수십 배까지 가속시키는 것은 다수의 연구자들에 의하여 잘 알려져 있다.If the crude oil contains a large amount of H2S gas, it can reduce the life of the steel due to corrosion, hydrogen embrittlement, etc. In particular, it is well known by many researchers to accelerate the fatigue crack propagation rate by 10 to 10 times. have.

그런데, 원유 수송에 사용되는 선박은 다른 대부분의 선박의 경우와 마찬가지로 어느 정도 크기의 균열은 선박 제조공정이나 사용 중의 균열 성장에 의하여 존재하는 것을 허용할 수밖에 없다.However, in the case of ships used for transporting crude oil, as in most other ships, cracks of a certain size have to be allowed to exist due to crack growth during the ship manufacturing process or use.

이런 균열의 존재를 감안하여 수명을 관리하고 보수시점을 결정하고 있는데 수송되는 원유에 다량의 H2S 가스가 함유되는 경우에는 피로균열 전파속도가 10배이상 가속되므로 예측할 수 없는 피로에 의한 파괴가 발생할 수 있는 치명적인 문제점이 있다.In consideration of the presence of such cracks, the service life is managed and the time for repair is determined. When a large amount of H2S gas is contained in the transported crude oil, the fatigue crack propagation speed is accelerated more than 10 times, which may cause unpredictable fatigue destruction. There is a fatal problem.

이에 따라 다량의 H2S 가스가 함유된 원유 운반용 선박 제조에 강판을 사용할 때 발생하는 피로균열 전파속도 가속 현상에 대한 많은 연구가 수행되고 있으며, 피로균열 전파 속도 가속 원인과 기구는 어느 정도 규명된 형편이다.Accordingly, many studies have been conducted on the acceleration of fatigue crack propagation speed that occurs when steel sheets are used to manufacture crude oil transport vessels containing a large amount of H2S gas. .

그러나 H2S 가스에 의한 피로균열 전파속도 가속을 억제하기 위한 방법의 제안이나 연구는 아직 미흡한 상태이다.However, proposals and studies for suppressing the fatigue crack propagation rate acceleration by H2S gas are still insufficient.

다만, 일반적인 공기 중의 환경에서 피로균열전파속도를 작게 하기 위하여 강재의 결정입자를 크게 하거나 방향성을 갖게 하여 배열하는 방법 등은 이미 기존의 특허 등에서 제안되고 있으나, 균열선단에 수소원자가 작용하여 피로균열전파속도의 가속이 발생하는 경우에는 적용할 수 없는 방법들이다.However, in order to reduce the fatigue crack propagation speed in general air environment, the method of arranging the crystal grains of steel or making them oriented is already proposed in the existing patents, but the fatigue crack propagation due to the hydrogen atom acting on the crack tip. These methods are not applicable when acceleration of speed occurs.

본 발명은 상기 설명한 문제점들을 해결하기 위하여 이루어진 것으로, 기존의 조선용 후판강재 성분계에 적정량의 합금 성분을 첨가하고 중간 온도역 수냉제어압연 및 압연후의 냉각을 제어하는 가속냉각을 적용하여 H2S 가스가 다량 함유된 원유 중에서도 피로균열전파속도가 가속되지 않는 생산성이 우수한 후강판 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-described problems, by adding an appropriate amount of alloy components to the existing shipbuilding steel plate component system, by applying an accelerated cooling to control the intermediate temperature zone water cooling control rolling and cooling after rolling a large amount of H2S gas It is an object of the present invention to provide a method for producing a thick steel sheet having excellent productivity in which the fatigue crack propagation speed is not accelerated among the crude oil.

도 1 은 본 발명 공정을 나타낸 도면이다.1 is a view showing the process of the present invention.

이하에서는 양호한 실시예와 관련하여 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to preferred embodiments.

본 발명의 후강판 제조방법은, 중량%로, C: 0.03∼0.20%, Si: 0.05∼0.5%, Mn: 0.5∼2.0%, P: 0.03% 이하, S: 0.01% 이하, Al: 0.001∼0.1%, Ti: 0.005∼0.020% 및, Cr: 0.1∼0.35%, W: 0.1∼0.35%, Cu: 0.1∼0.35% 중에서 1종 이상과 잔여량의 Fe 및 불가피한 불순물을 함유하는 강슬래브를 1100∼1250℃ 사이의 온도로 재가열하며 조압연하는 단계와; 상기 조압연된 소재를 재결정온도 영역인 1000∼900℃ 구간에서는 압연을 하지 않고 3∼10℃/초의 냉각속도로 수냉한 다음, 900∼800℃ 구간에서 마무리 제어압연을 실시하는 단계와; 상기 마무리 제어압연된 직후인 800∼500℃ 온도구간에서는 5∼15℃/초의 냉각속도로 냉각한 다음, 500℃ 이하의 온도에서는 공냉하는 단계로 구성되는 것을 특징으로 하는 내유화물 부식피로 특성이 우수한 후강판 제조방법을 제공한다.The thick steel sheet manufacturing method of this invention is C: 0.03-0.20%, Si: 0.05-0.5%, Mn: 0.5-2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.001-1.0 by weight%. Steel slab containing at least one kind and remaining amount of Fe and unavoidable impurities in 0.1%, Ti: 0.005 to 0.020%, Cr: 0.1 to 0.35%, W: 0.1 to 0.35% and Cu: 0.1 to 0.35% Reheating and rough rolling to a temperature between 1250 ° C .; Cooling the roughly rolled material at a cooling rate of 3 to 10 ° C./sec without rolling in a recrystallization temperature range of 1000 to 900 ° C., and then performing final control rolling in a 900 to 800 ° C. section; Cooling resistance of the refractory corrosion resistance characterized in that it consists of a step of cooling at a cooling rate of 5 ~ 15 ℃ / second in the 800 ~ 500 ℃ temperature range immediately after the finish control rolling, and air cooling at a temperature below 500 ℃ It provides a thick steel sheet manufacturing method.

상기 설명한 바와 같은 본 발명 공정에서 성분 조성 및 냉각 조건을 수치한정한 이유에 대해서 설명하면 다음과 같다.The reason for numerically limiting the component composition and cooling conditions in the process of the present invention as described above is as follows.

탄소(C)는 강재의 강도를 확보하기 위한 성분이지만 다량 함유되는 경우에는 인성과 용접성을 저하시키므로 본 발명의 경우에서는 0.03% ∼ 0.20% 범위가 적당하다.Carbon (C) is a component for securing the strength of the steel, but when contained in a large amount, the toughness and weldability are lowered, so in the case of the present invention, the range of 0.03% to 0.20% is appropriate.

또한, Si는 강 제조시 중요한 탈산제이며, 동시에 고용강화원소로 작용하지만, 과도하게 함유하면 용접부 인성을 악화시키므로 0.05%∼0.5% 범위가 바람직하다.In addition, Si is an important deoxidizer in steel production and at the same time acts as a solid solution strengthening element. However, excessively containing Si deteriorates weld toughness, so the range of 0.05% to 0.5% is preferable.

Mn 은 기본적으로 강도를 확보하기 위하여 첨가하는 원소이지만 과량 함유되면 용접부 인성이 열화되고 용접성 자체도 나빠지므로 0.5%∼2.0%가 적정 첨가범위이다.Mn is basically an element added to secure the strength, but if it is contained in an excessive amount, the toughness of the welded portion deteriorates and the weldability itself deteriorates, so 0.5% to 2.0% is an appropriate addition range.

P 및 S는 강 제조공정 중에서 불가피하게 함유되는 불순원소이지만 P는 편석되기 쉽고 편석부에 저온변태 조직을 형성하기 쉬우므로 그 상한을 0.03%로 본 발명에서는 한정하였고, S는 비금속개재물을 증가시켜 인성을 열화시키므로 그 상한을 0.01% 이하로 제한하였다.P and S are inevitably contained in the steel manufacturing process, but P is easy to segregate and easily form low temperature metamorphic structure in the segregation, so the upper limit thereof is limited to 0.03% in the present invention, and S increases nonmetallic inclusions. Since the toughness deteriorated, the upper limit was limited to 0.01% or less.

또한, Al은 탈산을 위해 필수적으로 첨가되는 원소이나 0.1% 이상 함유되면 용접부 인성이 저하되므로 그 상한값을 0.1%로 한정하였다.In addition, when Al contains 0.1% or more of elements which are essentially added for deoxidation, the toughness of the weld portion decreases, so the upper limit thereof is limited to 0.1%.

그리고 Ti는 모재 및 용접부의 저온인성 향상에 유효한 원소이나 0.02% 이상에서는 그 효과가 포화되므로 상한을 0.02%로 하였다.And Ti is an element effective for improving the low temperature toughness of the base metal and the welded part, but the effect is saturated at 0.02% or more, so the upper limit is made 0.02%.

본 발명 제조공정중의 강슬래브에 함유되는 Cr, W, Cu는 특히 본 발명의 목적인 내유화물 부식피로특성을 향상시키기 위하여 첨가하는 원소이며, 강재의 강화에도 효과가 있다.Cr, W, and Cu contained in the steel slab during the manufacturing process of the present invention are elements that are added to improve the corrosion resistant fatigue resistance particularly for the purpose of the present invention, and are effective in reinforcing steel materials.

그러나 다량 함유하게 되면 용접부 인성을 열화시키게 되며 제강공정에서도 난점이 발생하므로 각각 0.1%∼0.35%로 그 첨가량을 한정하였다.However, if it contains a large amount, the toughness of the weld portion is deteriorated, and since the difficulty occurs in the steelmaking process, the amount of addition is limited to 0.1% to 0.35%, respectively.

이러한 성분계의 강재를 최종적으로 강판으로 생산하기 위하여서는 제어압연 및 가속냉각을 적용하는데, 도 1에 그 제조공정을 도식적으로 나타내었다.In order to finally produce the steel of the component system to the steel sheet is applied to the control rolling and accelerated cooling, Figure 1 schematically shows the manufacturing process.

제조강재의 목표 두께를 얻기 위하여 압연을 하여야 하며 압연을 위한 재가열온도는 1100∼1250℃로 제한하는데, 첨가된 합금원소를 충분히 고용화시키고 압연에 적합한 가공성을 확보하기 위해서는 1100℃ 이상으로 가열하여야 하며, 반면 너무 높은 온도로 가열하면 오스테나이트 결정입자의 이상조대화가 발생하므로 그상한은 1250℃로 하였다.Rolling is to be carried out to obtain the target thickness of the manufactured steel, and the reheating temperature for rolling is limited to 1100 to 1250 ℃. In order to sufficiently solidify the added alloy element and to secure workability suitable for rolling, it must be heated to 1100 ℃ or higher. On the other hand, when heated to too high temperature, abnormal coarsening of austenite crystal grains occurs, so the upper limit was 1250 ° C.

마무리압연은 최종조직의 연신을 방지하고 혼립발생을 억제하기 위하여 오스테나이트 온도영역에서 종료하는 것이 바람직하며, 이를 위하여 마무리압연온도는 800℃ 이상으로 하였다.Finish rolling is preferably terminated in the austenite temperature range in order to prevent the stretching of the final structure and to suppress the occurrence of mixing, for this purpose, the finish rolling temperature is 800 ℃ or more.

그리고 생산되는 강재의 부분재결정 온도영역인 1000∼900℃의 온도구간에서는 압연을 실시하면 혼립이 발생하므로 압연을 하지 않고 냉각하는데, 공냉 하게되면 압연중 대기 시간이 발생하여 생산성이 저하하므로 생산성을 향상시키기 위하여 수냉을 실시하였다. 수냉속도는 생산성 향상을 위하여 중요한 요소이므로 3℃/초 이상으로 하였으며 수냉속도가 과도하게 빠르면 슬래브에 온도편차가 발생하며 변형될 가능성도 있으므로 10℃/초 이하로 하였다.In the temperature range of 1000 ~ 900 ℃ which is the partial recrystallization temperature range of the steel produced, mixing occurs when rolling, so it is cooled without rolling. When air-cooled, waiting time during rolling occurs, productivity decreases and productivity is improved. Water cooling was performed in order to make. Water cooling rate is an important factor to improve productivity, so the temperature was set to 3 ℃ / sec or more. If the water cooling rate is too fast, the temperature difference in the slab occurs and may be deformed, so 10 ℃ / sec or less.

생산되는 강재의 결정립을 미세화하고 강도 및 인성의 향상을 위하여 압연직후에 가속냉각을 실시하며 수냉 종료온도는 500℃±20℃로 한다.Accelerated cooling is carried out immediately after rolling to refine the grains of steel produced and to improve strength and toughness. The end temperature of water cooling is 500 ℃ ± 20 ℃.

가속냉각 종료온도를 한정하는 이유는, 이 온도 이하까지 급냉하면 강도는 증대되나 인성이 열화되며, 이 온도 이상에서 냉각을 종료하면 강도가 충분히 확보되지 않기 때문이다.The reason why the accelerated cooling end temperature is limited is that rapid cooling to below this temperature increases strength, but toughness deteriorates. When cooling is terminated above this temperature, strength is not sufficiently secured.

냉각속도는 5∼15℃/초로 한정하며, 이것도 강도와 인성의 균형을 유지하기 위한 것이다.The cooling rate is limited to 5 to 15 ° C / sec, which is also to maintain the balance between strength and toughness.

상기와 같이 구성된 본 발명을 적용하여 제조한 원유운반 선박 건조용 후판 강재는 원유 중에 H2S 가스가 다량 함유된 경우에 사용하여도 통상의 조선용 후판 강재에 비해서 피로균열 전파속도가 급격히 가속되는 현상이 현저히 저하되는 내유화물 부식 피로 특성이 우수한 후판강재를 고생산성으로 생산할 수 있다.The steel plate for drying the crude oil carrier ship manufactured by applying the present invention configured as described above has a phenomenon in which the fatigue crack propagation speed is accelerated rapidly compared to the general steel plate for shipbuilding even when a large amount of H2S gas is contained in crude oil. It is possible to produce high-strength plate steel having excellent corrosion resistance fatigue resistance significantly lowered.

이하에서는 실시예와 관련하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

본 발명에 의해 제조된 강재가 H2S 가스가 함유된 원유에서 내유화물 부식피로 특성이 우수함을 기존의 강재와 비교하기 위하여 다음의 표 1에 나타낸 조성을 가지는 강재를 준비하고, 시험적으로 압연 후, 유화물 부식피로 특성을 비교하였다.In order to compare the steel produced by the present invention with excellent corrosion resistance fatigue corrosion resistance in the crude oil containing the H2S gas compared with the existing steel materials, the steel having the composition shown in Table 1 below, and after test rolling, the emulsion Corrosion fatigue characteristics were compared.

슬래브를 1150℃ 에서 2시간 재가열하여 충분히 균열이 되도록 하였고, 마무리 압연온도는 830℃로 하고 판두께는 20mm로 하였다. 압연중 1000∼900℃사이 구간에서는 압연을 실시하지 않고, 냉각 대기시간을 단축하여 생산성을 향상시키 위하여 5℃/초의 냉각속도로 수냉하였다. 압연이 종료된 후에는 800∼500℃ 사이를 7℃/초의 냉각속도로 수냉하였다.The slab was reheated at 1150 ° C. for 2 hours to sufficiently crack, the finish rolling temperature was 830 ° C., and the plate thickness was 20 mm. In the section between 1000 and 900 DEG C during rolling, water cooling was performed at a cooling rate of 5 DEG C / sec in order to shorten the cooling waiting time and improve productivity. After rolling was completed, water was cooled between 800 to 500 ° C. at a cooling rate of 7 ° C./sec.

종래강은 일반적인 압연을 실시하고 공냉하여 제조한 것이다.Conventional steel is manufactured by performing general rolling and air cooling.

[표 1]TABLE 1

표 2 는 유화물 부식 피로균열 전파속도 시험 결과를 나타낸 것으로 실험조건은 H2S 가스를 358ppm 함유한 원유, 1Hz 로하여 실시하였으며, da/dn 은 25MPa.M1/2에서의 값이다.Table 2 shows the results of the propagation rate test of corrosion corrosion fatigue cracking. The experimental conditions were conducted with crude oil containing 358 ppm of H2S gas at 1 Hz, and da / dn was at 25 MPa.M 1/2 .

[표 2]TABLE 2

표 2 로부터 알 수 있는 바와 같이, 본 발명 제조방법에 의하여 생산된 후판 강재는 내유화물 부식피로 특성이 우수하였다.As can be seen from Table 2, the thick steel produced by the production method of the present invention was excellent in corrosion resistance fatigue corrosion.

따라서, 본 발명 제조방법에 의하여 생산된 후판 강재는 내유화물 부식피로특성이 공기중에 비하여 2.5배 이내로 억제되는 우수한 물성을 나타내며, 통상의 강재가 10∼20배 정도 가속되는 것과 대비하여 H2S 가스가 함유된 원유에서 부식피로균열 전파속도가 가속되는 현상이 현저히 개선되는 효과가 있었으며, 또한 생산성도 우수하였다.Therefore, the steel plate produced by the production method of the present invention exhibits excellent physical properties that the corrosion resistance of the emulsion corrosion is suppressed to within 2.5 times that of the air, and contains H2S gas in contrast to the acceleration of about 10 to 20 times that of ordinary steels. The phenomenon of accelerated corrosion fatigue crack propagation speed in crude oil was remarkably improved, and the productivity was also excellent.

Claims (1)

중량%로, C: 0.03∼0.20%, Si: 0.05∼0.5%, Mn: 0.5∼2.0%, P: 0.03% 이하, S: 0.01% 이하, Al: 0.001∼0.1%, Ti: 0.005∼0.020% 및, Cr: 0.1∼0.35%, W: 0.1∼0.35%, Cu: 0.1∼0.35% 중에서 1종 이상과 잔여량의 Fe 및 불가피한 불순물을 함유하는 강슬래브를 1100∼1250℃ 사이의 온도로 재가열하며 조압연하는 단계와;By weight%, C: 0.03-0.20%, Si: 0.05-0.5%, Mn: 0.5-2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.001-0.1%, Ti: 0.005-0.020% And reheating the steel slab containing at least one species and the remaining amount of Fe and unavoidable impurities in Cr: 0.1 to 0.35%, W: 0.1 to 0.35%, and Cu: 0.1 to 0.35% with a temperature of between 1100 and 1250 ° C. Rolling; 상기 조압연된 소재를 재결정온도 영역인 1000∼900℃ 구간에서는 압연을 하지 않고 3∼10℃/초의 냉각속도로 수냉한 다음, 900∼800℃ 구간에서 마무리 제어압연을 실시하는 단계와;Cooling the roughly rolled material at a cooling rate of 3 to 10 ° C./sec without rolling in a recrystallization temperature range of 1000 to 900 ° C., and then performing final control rolling in a 900 to 800 ° C. section; 상기 마무리 제어압연된 직후인 800∼500℃ 온도구간에서는 5∼15℃/초의 냉각속도로 냉각한 다음, 500℃ 이하의 온도에서는 공냉하는 단계로 구성되는 것을 특징으로 하는 내유화물 부식피로 특성이 우수한 후강판 제조방법.Cooling resistance of the refractory corrosion resistance characterized in that it consists of a step of cooling at a cooling rate of 5 ~ 15 ℃ / second in the 800 ~ 500 ℃ temperature range immediately after the finish control rolling, and air cooling at a temperature below 500 ℃ Thick steel plate manufacturing method.
KR10-1998-0054790A 1998-12-14 1998-12-14 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance KR100399231B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054790A KR100399231B1 (en) 1998-12-14 1998-12-14 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054790A KR100399231B1 (en) 1998-12-14 1998-12-14 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance

Publications (2)

Publication Number Publication Date
KR20000039446A KR20000039446A (en) 2000-07-05
KR100399231B1 true KR100399231B1 (en) 2004-02-14

Family

ID=19562670

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0054790A KR100399231B1 (en) 1998-12-14 1998-12-14 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance

Country Status (1)

Country Link
KR (1) KR100399231B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572319B1 (en) * 2013-10-30 2015-11-27 현대제철 주식회사 Method of manufacturing hot-rolled steel sheet and high strength steel pipe
CN110423940A (en) * 2019-07-25 2019-11-08 浙江荣鑫带钢有限公司 A kind of high-strength special type steel and its processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068019A (en) * 1997-08-21 1998-03-10 Sumitomo Metal Ind Ltd Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment
KR19990052502A (en) * 1997-12-22 1999-07-15 이구택 Method for manufacturing thick steel plate with excellent corrosion resistance fatigue corrosion resistance
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR100256347B1 (en) * 1995-12-11 2000-05-15 이구택 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR100256347B1 (en) * 1995-12-11 2000-05-15 이구택 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property
JPH1068019A (en) * 1997-08-21 1998-03-10 Sumitomo Metal Ind Ltd Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment
KR19990052502A (en) * 1997-12-22 1999-07-15 이구택 Method for manufacturing thick steel plate with excellent corrosion resistance fatigue corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572319B1 (en) * 2013-10-30 2015-11-27 현대제철 주식회사 Method of manufacturing hot-rolled steel sheet and high strength steel pipe
CN110423940A (en) * 2019-07-25 2019-11-08 浙江荣鑫带钢有限公司 A kind of high-strength special type steel and its processing method

Also Published As

Publication number Publication date
KR20000039446A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP2008202124A (en) Steel wire for high-strength spring, high-strength spring and method for manufacturing them
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
CN107937807B (en) 770 MPa-grade low-welding-crack-sensitivity pressure vessel steel and manufacturing method thereof
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JPH10121202A (en) High strength steel used in environment requiring sulfides stress creaking resistance and its production
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
KR100399231B1 (en) Steel plate manufacturing method with excellent corrosion resistance fatigue resistance
JP7431325B2 (en) Thick composite structure steel with excellent durability and its manufacturing method
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
CN116615570A (en) High-strength thick hot-rolled steel sheet excellent in elongation and method for producing same
KR101368547B1 (en) High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH0813087A (en) Steel for welded steel pipe excellent in ssc resistance in seam zone
JP2967889B2 (en) Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
KR19990052502A (en) Method for manufacturing thick steel plate with excellent corrosion resistance fatigue corrosion resistance
JP3221309B2 (en) Steel for machine structure and method of manufacturing the same
KR900007445B1 (en) Method for producing a high tensile steel
JPH10121131A (en) Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120829

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130906

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150909

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160909

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee