JP3221309B2 - Steel for machine structure and method of manufacturing the same - Google Patents
Steel for machine structure and method of manufacturing the sameInfo
- Publication number
- JP3221309B2 JP3221309B2 JP01498496A JP1498496A JP3221309B2 JP 3221309 B2 JP3221309 B2 JP 3221309B2 JP 01498496 A JP01498496 A JP 01498496A JP 1498496 A JP1498496 A JP 1498496A JP 3221309 B2 JP3221309 B2 JP 3221309B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- delayed fracture
- fracture resistance
- effective
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、160kgf/m
m2 以上の引張強さを有しかつ耐遅れ破壊性に優れた、
高張力ボルト、PC鋼棒、大型機械等への使用に好適な
機械構造用鋼に関するものである。BACKGROUND OF THE INVENTION
m 2 or more and excellent in delayed fracture resistance,
The present invention relates to a machine structural steel suitable for use in high tension bolts, PC steel bars, large machines, and the like.
【0002】[0002]
【従来の技術】近年、構造物の大型化および自動車、ト
ラック、土木・鉱山機械などの軽量化に伴い、今まで以
上に高強度の機械構造用鋼、とくに高張力ボルトやPC
鋼棒用の鋼材が要望されている。2. Description of the Related Art In recent years, as structures have become larger and automobiles, trucks, civil engineering and mining equipment have become lighter, steel for machine structural use having higher strength than ever, especially high-tensile bolts and PCs have been developed.
There is a need for steel materials for steel bars.
【0003】これまで一般に使用されている低合金の高
強度機械構造用鋼にはつぎのものがある。The following are low alloy high strength mechanical structural steels generally used so far.
【0004】(イ)引張強さ100kgf/mm2 級:
0.4%C−1.05%Cr−0.23%Mo鋼に代表
される JIS G 4105 (1989)規定のSCM440。(A) Tensile strength 100 kgf / mm class 2 :
SCM440 specified by JIS G 4105 (1989) typified by 0.4% C-1.05% Cr-0.23% Mo steel.
【0005】(ロ)引張強さ130kgf/mm2 級:
0.17%C−3%Ni−1.6%Cr−0.5%Mo
鋼に代表される JIS G 4103 (1989)規定のSNCM61
6。(B) Tensile strength 130 kgf / mm class 2 :
0.17% C-3% Ni-1.6% Cr-0.5% Mo
SNCM61 defined by JIS G 4103 (1989) represented by steel
6.
【0006】(ハ)引張強さ174kgf/mm2 級:
上記(イ)または(ロ)と同じ組成で熱処理を変えた
鋼。(C) Tensile strength: 174 kgf / mm class 2 :
A steel with the same composition as (a) or (b) above but with a different heat treatment.
【0007】上記の(イ)および(ロ)ともに、いずれ
も熱間圧延後に焼入れ焼戻し処理が施され所要の強度が
付与される。また、(ハ)の引張強さ174kgf/m
m2級では、上記の低合金鋼を熱間圧延し、その後に
(イ)または(ロ)において行う熱処理とは条件を変え
て焼入れ焼戻し処理を施すことによって強靭化が図られ
る。In both (a) and (b), quenching and tempering are performed after hot rolling to provide the required strength. The tensile strength of (c) is 174 kgf / m.
In the m 2 class, the low-alloy steel is hot-rolled, and then subjected to quenching and tempering under different conditions from the heat treatment performed in (a) or (b) to achieve toughness.
【0008】これらの機械構造用鋼は、しかしながら、
使用中に遅れ破壊を生じる場合があるので、高張力ボル
トやPC鋼棒をはじめとして、自動車や土木機械の重要
部品に本格的に用いるには至らなかった。“遅れ破壊”
とは、静荷重下におかれた鋼がある時間経過後に突然脆
性的に破断する現象であり、外部環境から鋼中に侵入し
た水素に起因する一種の水素脆性とされている。[0008] These mechanical structural steels, however,
Since it may cause delayed fracture during use, it has not been fully used for important parts of automobiles and civil engineering machines, including high-tensile bolts and PC steel bars. “Delayed destruction”
Is a phenomenon in which a steel placed under a static load suddenly breaks brittlely after a certain time elapses, and is considered to be a kind of hydrogen embrittlement caused by hydrogen invading steel from the external environment.
【0009】上記の低合金機械構造用鋼は、一般に、遅
れ破壊を生じる場合があるので、その引張強さを100
kgf/mm2 以下に制限することが望ましいとされて
いる。[0009] Since the above-mentioned low alloy steel for mechanical structural use may generally cause delayed fracture, its tensile strength is set to 100%.
It is said that it is desirable to limit the weight to not more than kgf / mm 2 .
【0010】上記の低合金鋼より耐遅れ破壊性の優れた
鋼として、例えば、18%Ni−7.5%Co−5%M
o−0.5%Ti−0.1%Al鋼に代表される18%
Niマルエージング鋼があるが、きわめて高価であるた
めに経済性の点から用途が限られている。[0010] As a steel having more excellent delayed fracture resistance than the above low alloy steel, for example, 18% Ni-7.5% Co-5% M
18% represented by o-0.5% Ti-0.1% Al steel
Although there is Ni maraging steel, its use is limited in terms of economy because it is extremely expensive.
【0011】そこで、経済性を考慮した耐遅れ破壊性に
優れた高強度ボルト用鋼として、Ca等を添加して硫化
物の形態を制御し、同時にCrとMoを複合添加する鋼
が提案された(特開昭58−84960号公報、特開昭
61−117248号公報および特開昭61−1304
56号公報)。しかし、これら鋼でも耐遅れ破壊性は十
分ではないために、SiおよびMnを低く抑えた鋼が開
発された(特開平3−243745号公報、特開平2−
145746号公報など)。しかし、これらSiおよび
Mnを低くした鋼でも、なお水素透過性または靭性の点
で十分とは言えず、遅れ破壊の生じない鋼材として一般
的に使用されるに至っていない。ここで、水素透過性と
は、水素イオンの還元をともなう鋼表面での腐食反応の
際、水素ガスとして環境中にとどまらずに鋼中へ透過
(侵入)する水素の透過しやすさの程度を意味する。水
素透過性が小さいほうが脆化の原因である鋼中の水素量
が少ないので、遅れ破壊は発生しにくくなる。Therefore, as a high-strength bolt steel excellent in delayed fracture resistance in consideration of economy, a steel in which Ca and the like are added to control the form of sulfides, and at the same time, a combination of Cr and Mo is proposed. (JP-A-58-84960, JP-A-61-117248 and JP-A-61-1304).
No. 56). However, since these steels do not have sufficient delayed fracture resistance, steels with low Si and Mn have been developed (JP-A-3-243745, JP-A-2-243).
No. 145746). However, these steels with reduced Si and Mn are still insufficient in terms of hydrogen permeability or toughness, and have not yet been generally used as steel materials that do not cause delayed fracture. Here, the hydrogen permeability refers to the degree of permeability of hydrogen that permeates (penetrates) into steel without remaining in the environment as hydrogen gas during a corrosion reaction on the steel surface accompanied by reduction of hydrogen ions. means. Since the smaller the hydrogen permeability, the smaller the amount of hydrogen in the steel that causes embrittlement, delayed fracture is less likely to occur.
【0012】これら遅れ破壊性の改善が図られた鋼は、
引張強さを100〜120kgf/mm2 に制限された
うえで、後記するpH=2のワルポール液中(塩酸と酢
酸ナトリウム水溶液の混合液)での浸漬実験において2
00時間以内に割れを発生しなければよいとされてい
る。これら鋼が実際に使用される環境は、ワルポール液
よりも遅れ破壊を発生させる作用が緩やかであるので、
200時間よりも永い一定の期間を定めて、その期間ご
とにこれら鋼材が使用された部品(ボルトなど)を取り
替えている。[0012] These steels with improved delayed fracture properties are:
After limiting the tensile strength to 100 to 120 kgf / mm 2 , the immersion test in a Walpole solution having a pH of 2 (mixed solution of hydrochloric acid and sodium acetate aqueous solution) described later was performed at 2
It is said that cracks should not occur within 00 hours. The environment in which these steels are actually used has a slower action of causing delayed fracture than Walpole's solution,
For a certain period longer than 200 hours, parts (bolts and the like) in which these steel materials are used are replaced every period.
【0013】[0013]
【発明が解決しようとする課題】本発明は、160kg
f/mm2 以上の引張強さを有し、かつ耐遅れ破壊性に
優れた機械構造用鋼を提供することを目的とする。具体
的には、橋梁用高張力ボルト等のように恒久的に使用す
るのではなく定期的な取り替えを前提として、例えば、
pH=2のワルポール液中で、切り欠き付き引張試験片
に140kgf/mm2 の一定荷重をかけ1mA/cm
2 の定電流を流した状態で、750h以内に遅れ破壊を
全く生じない引張強さ160kgf/cm2 以上の鋼材
を提供することを目的とする。SUMMARY OF THE INVENTION
An object of the present invention is to provide a mechanical structural steel having a tensile strength of f / mm 2 or more and excellent in delayed fracture resistance. Specifically, assuming regular replacement instead of permanent use such as high tension bolts for bridges, for example,
A notched tensile test piece was subjected to a constant load of 140 kgf / mm 2 in Walpole's solution having a pH of 2 and applied with a constant load of 1 mA / cm 2.
Under a stream of second constant current, and to provide an entirely caused no tensile strength 160 kgf / cm 2 or more steel to delayed fracture within 750h.
【0014】[0014]
【課題を解決するための手段】これまで提案されてきた
耐遅れ破壊性に優れた構造用鋼には、Moが添加されて
いるものが多かった。鋼中のMoは、水素過電圧を下げ
ることによって、すなわち水素還元反応を促進すること
によって、外部環境にとどまる水素ガスの比率を高めて
水素の鋼中への侵入を抑制する。この効果によって遅れ
破壊の原因である水素脆化が防止され、鋼の耐遅れ破壊
性は向上する。しかし、強度が現行レベルより高く、か
つ、現行レベル以上の優れた耐遅れ破壊性を備えるに
は、現行より厳しい水素侵入の抑制が必要となる。SUMMARY OF THE INVENTION Many structural steels that have been proposed to date and have excellent delayed fracture resistance have Mo added thereto. Mo in the steel suppresses the penetration of hydrogen into the steel by increasing the ratio of hydrogen gas remaining in the external environment by lowering the hydrogen overvoltage, that is, by promoting the hydrogen reduction reaction. This effect prevents hydrogen embrittlement, which causes delayed fracture, and improves the delayed fracture resistance of steel. However, in order to provide strength that is higher than the current level and has excellent delayed fracture resistance that is higher than the current level, it is necessary to suppress hydrogen penetration more severely than the current level.
【0015】そこで、本発明者らは、Moと同様に水素
の侵入を抑制することで知られているCuに着目し、M
oおよびCuの複合添加の耐遅れ破壊性に及ぼす影響に
ついて研究した結果、下記の(a) 〜(c) の事項を確認す
ることができた。Therefore, the present inventors focused on Cu, which is known to suppress the invasion of hydrogen similarly to Mo, and
As a result of studying the effect of the combined addition of o and Cu on delayed fracture resistance, the following items (a) to (c) could be confirmed.
【0016】(a) 従来提案されているMo量(重量%で
0.01〜0.8%)を含む低合金鋼にCuを追加添加
しても、それ以上の水素侵入抑制効果は認められない。(A) Even if Cu is additionally added to a conventionally proposed low alloy steel containing an Mo amount (0.01 to 0.8% by weight), a further effect of suppressing hydrogen penetration is recognized. Absent.
【0017】図1は、Cr1.5%未満の低合金鋼の水
素透過量に及ぼすMoおよびCuの影響を表す図面であ
る。同図によれば、Moが0.01〜0.8%の各種低
合金鋼(Cr1.5%未満)にCu0.3%を含有させ
ても、Cu無添加の場合に比べて水素透過量に実質的な
差は生じず、したがって鋼中への水素侵入量は減少しな
い。図1を求める際に用いた鋼のCuおよびMo以外の
合金元素の中心値は、C:0.35%、Si:0.64
%、Mn:0.22%、P:0.005%、S:0.0
02%、solAl:0.005%、Cr:0.63
%、Ni:0.25%、Nb:0.08%、V:0.0
5%およびN:0.003%である。なお、水素透過量
はイオン化して測定されているので、水素透過量の単位
(μC/cm)は、同図中、電気量(μC:マイクロク
ーロン)を含む単位で表示されている。FIG. 1 is a drawing showing the effect of Mo and Cu on the amount of hydrogen permeation of a low alloy steel having a Cr content of less than 1.5%. According to the figure, even when various low alloy steels with Mo of 0.01 to 0.8% (Cr less than 1.5%) contain 0.3% of Cu, the amount of hydrogen permeation is higher than in the case of not adding Cu. Does not substantially differ, and therefore the amount of hydrogen penetrating into the steel does not decrease. The central values of alloying elements other than Cu and Mo used in obtaining the steel in FIG. 1 are: C: 0.35%, Si: 0.64
%, Mn: 0.22%, P: 0.005%, S: 0.0
02%, solAl: 0.005%, Cr: 0.63
%, Ni: 0.25%, Nb: 0.08%, V: 0.0
5% and N: 0.003%. Since the hydrogen permeation amount is measured by ionization, the unit of the hydrogen permeation amount (μC / cm) is shown in the figure in a unit including the electric amount (μC: microcoulomb).
【0018】(b) Mo鋼にCuと併せてCrを1.5%
以上と高く含ませることにより、水素侵入の抑制効果を
飛躍的に高めることができる。(B) 1.5% Cr in Mo steel combined with Cu
By increasing the content as described above, the effect of suppressing hydrogen intrusion can be dramatically increased.
【0019】図2は、0.4%Mo鋼の水素透過量に及
ぼすCrおよびCuの影響を表す図面である。同図で用
いた鋼のCu、MoおよびCr以外の合金元素の中心値
は、C:0.35%、Si:0.28%、Mn:0.3
6%、P:0.005%、S:0.008%、solA
l:0.006%、Ni:0.45%、Nb:0.17
1%、V:0.05%およびN:0.003%であり、
ばらつきはきわめて小さかった。同図によればCrを
1.5%以上とし、同時にCuを0.3%含有させた
0.4%Mo鋼の水素透過量は著しく低くなることが分
かる。FIG. 2 is a drawing showing the effect of Cr and Cu on the amount of hydrogen permeation of 0.4% Mo steel. The central values of alloy elements other than Cu, Mo and Cr in the steel used in the figure are: C: 0.35%, Si: 0.28%, Mn: 0.3
6%, P: 0.005%, S: 0.008%, solA
1: 0.006%, Ni: 0.45%, Nb: 0.17
1%, V: 0.05% and N: 0.003%,
The variability was very small. According to the figure, it can be seen that the amount of hydrogen permeation of a 0.4% Mo steel containing 1.5% or more of Cr and 0.3% of Cu at the same time is remarkably low.
【0020】(c) 引張強さが160kgf/mm2 以上
の高強度鋼の耐遅れ破壊性を高めるためには、Alは、
Al含有量のみでの制限のほかに、Nとの比、それもZ
r、TiおよびBと結合していない、いわゆる“有効
N”との比において適正な範囲に制限することが必要で
ある。(C) In order to increase the delayed fracture resistance of a high-strength steel having a tensile strength of 160 kgf / mm 2 or more, Al
In addition to the limitation on the Al content alone, the ratio with N, also Z
It is necessary to limit the ratio to the so-called "effective N" which is not bound to r, Ti and B to an appropriate range.
【0021】上記の事項に基づく本発明は、下記(1)
および(2)に示す耐遅れ破壊性に優れた機械構造用鋼
およびその製造方法を要旨とする。The present invention based on the above matters provides the following (1)
Further, the gist is a steel for machine structural use excellent in delayed fracture resistance and a method for producing the same, as described in (2).
【0022】(1)重量%で、C:0.4〜0.6%、
Si:0.5〜2%、Cu:0.1〜1%、Cr:1.
5〜5%、Mo:0.05〜1%、Al:0.005〜
0.01%、Nb:0.005〜0.2%、Ni:0.
05〜0.5%、V:0.01〜0.3%、Mn:0〜
0.5%、N:0.01%以下、Zr:0〜0.15
%、Ti:0〜0.1%およびB:0〜0.005%を
含有し、同時に下記の式および式を満たし、残部が
Feおよび不可避的不純物からなり、不可避的不純物の
うちのPおよびSの含有量が、P:0.015%以下お
よびS:0.01%以下であり、引張り強さが160k
gf/mm 2 以上であることを特徴とする耐遅れ破壊性
に優れた機械構造用鋼。 0.4(%) ≦ Cu(%)+Mo(%) ・・・・・ 1.93 ≦ Al(%)/有効N(%) ≦10・・・・ ただし、有効N(%)=N(%)−{Zr(%)/6.25} −{Ti(%)/3.43}−{B(%)/0.78} (2)上記(1)に記載の化学組成の機械構造用鋼を焼
入れた後、Ac1 点以下の温度で焼戻しをおこなう機
械構造用鋼の製造方法。(1) C: 0.4 to 0.6% by weight,
Si: 0.5-2%, Cu: 0.1-1%, Cr: 1.
5-5%, Mo: 0.05-1%, Al: 0.005-
0.01%, Nb: 0.005 to 0.2%, Ni: 0.
05 to 0.5%, V: 0.01 to 0.3%, Mn: 0 to 0%
0.5%, N: 0.01% or less, Zr: 0 to 0.15
%, Ti: 0 to 0.1% and B: 0 to 0.005%, and at the same time, satisfying the following formulas and formulas, with the balance being Fe and unavoidable impurities, and P and unavoidable impurities. the content of S, P: 0.015% or less and S: 0.01% or less der is, tensile strength 160k
gf / mm 2 or more, a steel for machine structural use having excellent delayed fracture resistance. 0.4 (%) ≦ Cu (%) + Mo (%) 1.93 ≦ Al (%) / Effective N (%) ≦ 10 However, Effective N (%) = N ( %)-{Zr (%) / 6.25}-{Ti (%) / 3.43}-{B (%) / 0.78} (2) Mechanical structure of chemical composition according to (1) above after a use steel quenched <br/>, method of manufacturing Oko of the Hare machine <br/>械structural steel tempered at temperatures below 1 point Ac.
【0023】 0.4(%) ≦ Cu(%)+Mo(%) ・・・・・ 1.93 ≦ Al(%)/有効N(%) ≦10・・・・ ただし、有効N(%)=N(%)−{Zr(%)/6.
25}−{Ti(%)/3.43}−{B(%)/0.
78}(2)焼入れた後、Ac1 点以下の温度で焼戻し
をおこなうことを特徴とする請求項1に記載する機械構
造用鋼の製造方法。0.4 (%) ≦ Cu (%) + Mo (%) 1.93 ≦ Al (%) / Effective N (%) ≦ 10 However, Effective N (%) = N (%)-{Zr (%) / 6.
25}-{Ti (%) / 3.43}-{B (%) / 0.
78. (2) The method for producing steel for machine structural use according to claim 1, wherein after quenching, tempering is performed at a temperature of 1 point or less of Ac.
【0024】ここで、有効Nとは、鋼中に含まれるA
l、Cr等以外の窒化物生成元素Zr、TiおよびBが
すべてNと結合して窒化物を生成したと仮定したとき、
Zr窒化物、Ti窒化物およびB窒化物を形成する窒素
以外の窒素をいう。すなわち、前記仮定のもとにおい
て、固溶窒素([N])とAlNとしての窒素(N as A
lN)およびそのほかの元素との窒化物、例えばCrの窒
化物としての窒素(N as CrNなど)の和が対応する。強
力な窒化物生成元素であるZrやTiの窒化物は、12
50℃以上の高温で生成し粗大化しやすい特徴がある。
実際には、すべてのZr、TiおよびBが、Nと結合す
ることはないので、実際の固溶窒素、N as AlNおよびN
as CrNなどの和は、上記に定義される有効Nよりも多
い。また、上記の範囲ではCr窒化物は多くは生成しな
いので、実際には有効Nの大部分は、固溶窒素とN as A
lNからなる。ただし、1150℃以上の高温域ではAl
Nは固溶するので、同温度域ではほとんど全て固溶窒素
となる。Here, effective N means A contained in steel.
When it is assumed that all of the nitride-forming elements Zr, Ti and B other than l, Cr, etc. are combined with N to form a nitride,
It means nitrogen other than nitrogen that forms Zr nitride, Ti nitride and B nitride. That is, based on the above assumption, the solid solution nitrogen ([ N ]) and nitrogen as AlN (N as A
1N) and nitrides with other elements, for example, the sum of nitrogen (such as N as CrN) as a nitride of Cr. The nitrides of Zr and Ti, which are strong nitride-forming elements,
It is formed at a high temperature of 50 ° C. or higher and tends to be coarse.
In practice, not all Zr, Ti and B will combine with N, so that the actual dissolved nitrogen, Nas AlN and N
The sum, such as as CrN, is greater than the effective N defined above. In addition, since a large amount of Cr nitride is not formed in the above range, most of the effective N is actually dissolved nitrogen and N as A
consists of lN. However, in the high temperature range of 1150 ° C or higher, Al
Since N forms a solid solution, almost all of it becomes solid solution nitrogen in the same temperature range.
【0025】また、有効N(%)でAl(%)を除した
“Al/有効N”は、後記するように実験値の整理に好
都合なために用いられたもので、その金相的意味は完全
には解明されていないが、AlおよびNを上記の範囲に
制限してAlNおよび固溶Alの量に歯止めをかけたう
えで、微細なAlNの生成しやすさを表示するものと考
えられる。"Al / effective N" obtained by dividing Al (%) by effective N (%) is used for convenience in organizing experimental values as described later, and its meaning in terms of gold. Although not completely elucidated, it is believed that the amount of AlN and solid solution Al is restricted by limiting Al and N to the above ranges, and then the easiness of formation of fine AlN is indicated. Can be
【0026】[0026]
【発明の実施の形態】以下に、本発明における鋼の化学
組成および製造方法の限定理由について述べる。BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of steel and the reasons for limiting the production method in the present invention will be described below.
【0027】1.化学組成 本説明中、「%」は、いずれも「重量%」を表す。1. Chemical composition In this description, "%" represents "% by weight".
【0028】C: Cは、炭化物を形成し析出強化によって鋼を強化し、ま
た、焼入時に安定なマルテンサイトを生成させて変態に
よっても鋼を強化するので、高強度化する上で必須の元
素である。さらに焼入性の向上および結晶の細粒化にも
有効である。0.4%未満では焼入性の劣化をきたし、
また、炭化物の析出量が少なく強度が低下する。一方、
0.6%を超えると、焼入時の焼き割れ感受性が増加
し、加えて鋼が著しく硬化して延性、溶接性および加工
性が低下するので、0.4〜0.6%とする。 C: C forms carbides and strengthens the steel by precipitation strengthening, and also forms stable martensite at the time of quenching and strengthens the steel by transformation. Therefore, C is indispensable for increasing the strength. Element. Further, it is effective for improving hardenability and refining crystals. If it is less than 0.4 %, the hardenability deteriorates,
In addition, the amount of carbide precipitation is small and the strength is reduced. on the other hand,
It exceeds 0.6%, an increase in quenching crack susceptibility baked Nyutoki, because the steel is hardened considerably ductility, weldability and workability is lowered in addition to the 0.4 to 0.6%.
【0029】Si:Siは、鋼の脱酸および強度増加の
ために有効である。0.5%未満ではその効果が得られ
ず、他方、2%を超えると鋼の清浄性を損い靭性の劣化
をきたす場合があるので、0.5〜2%とする。Si: Si is effective for deoxidizing steel and increasing strength. If the content is less than 0.5%, the effect cannot be obtained. On the other hand, if it exceeds 2%, the cleanliness of the steel may be impaired and the toughness may be deteriorated.
【0030】Cu:Cuは、外部から鋼中への水素侵入
を抑制するとともに、NbおよびCrと複合添加するこ
とによって鋼の焼戻し軟化抵抗を著しく高め、焼戻し温
度を高くとれるので、耐遅れ破壊性を大きく向上させ
る。さらに、図2に示したように、1.5%以上のCr
および一定量のMoと共存することにより、水素透過量
をいちじるしく減少させ耐遅れ破壊性の向上に有効であ
る。0.1%未満ではその効果が十分でなく、一方、1
%を超えると溶接性、熱間加工性および靭性の劣化をき
たすので、0.1〜1%とする。Cu: Cu inhibits the intrusion of hydrogen into the steel from the outside and, when combined with Nb and Cr, significantly increases the tempering softening resistance of the steel and increases the tempering temperature. Greatly improve. Further, as shown in FIG.
By coexisting with a certain amount of Mo, the amount of hydrogen permeation is remarkably reduced, which is effective for improving delayed fracture resistance. If it is less than 0.1%, the effect is not sufficient.
%, The weldability, the hot workability and the toughness are deteriorated.
【0031】Cr:Crは、鋼の焼入性を向上させ、か
つ鋼の焼戻し軟化抵抗を高める。特に、NbやCuとの
複合添加により著しく焼戻軟化抵抗を向上させる。1.
5%未満ではCuとMoの複合添加による水素侵入抑制
効果が得られず、耐遅れ破壊性を飛躍的に向上させるこ
とはできない。他方、5%を超えると溶接性、熱間加工
性および靭性の劣化をきたす。従って、Crは、1.5
〜5%とする。非常に優れた耐遅れ破壊性を安定して得
るためには、1.7〜4%とするのが望ましい。Cr: Cr improves the hardenability of the steel and increases the tempering softening resistance of the steel. In particular, the tempering softening resistance is significantly improved by the complex addition with Nb or Cu. 1.
If it is less than 5%, the effect of suppressing hydrogen intrusion by the combined addition of Cu and Mo cannot be obtained, and the delayed fracture resistance cannot be drastically improved. On the other hand, if it exceeds 5%, the weldability, hot workability and toughness are deteriorated. Therefore, Cr is 1.5
To 5%. In order to stably obtain extremely excellent delayed fracture resistance, the content is desirably 1.7 to 4%.
【0032】Mo:Moは、機構は異なるがCuと同様
に単独で水素侵入抑制効果を示す。また、鋼の焼入性を
向上させ、同時に焼戻し軟化抵抗をも高める。特に、C
u、Nb、Crとの複合添加により焼戻し軟化抵抗を著
しく増大させ、高い焼戻温度の採用を可能にして耐遅れ
破壊性を大きく改善する。また、Cuおよび1.5%以
上のCrとの共存による水素透過量の抑制にも有効であ
る。0.05%未満ではこれら効果は得られず、一方、
1%を超えてもその効果は飽和し、コストの上昇を招く
だけなので、0.05〜1%とする。Mo: Mo has a different mechanism, but exhibits an effect of suppressing hydrogen invasion by itself, similarly to Cu. In addition, it improves the hardenability of steel, and at the same time, increases the tempering softening resistance. In particular, C
The addition of u, Nb, and Cr significantly increases the tempering softening resistance, enables the use of a high tempering temperature, and greatly improves delayed fracture resistance. It is also effective in suppressing the amount of hydrogen permeation due to the coexistence of Cu and 1.5% or more of Cr. Below 0.05%, these effects cannot be obtained, while
Even if it exceeds 1%, the effect is saturated and only the cost is increased.
【0033】Al:Alは、鋼の脱酸および細粒化を図
るのに有効である。0.005%未満では所望の効果を
得ることができず、一方、0.01%を超えると本発明
の指向する高強度レベルでは、介在物(アルミナなど)
の量が耐遅れ破壊性を劣化させる領域に入るので、0.
005〜0.01%とする。また、Alは、後記するよ
うに、有効Nとの比においても適正な範囲とする必要が
ある。Al: Al is effective for deoxidizing and refining steel. If it is less than 0.005%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.01%, inclusions (such as alumina) may not be obtained at the high strength level of the present invention.
Is in the range where the delayed fracture resistance is deteriorated.
005 to 0.01%. Further, Al needs to be in an appropriate range in terms of ratio with effective N, as described later.
【0034】Nb:Nbは、鋼の細粒化をもたらし、耐
遅れ破壊性を一段と向上させる。0.005%未満では
所望の効果が得られず、一方、0.2%を超えると強度
および延性を損うので0.005〜0.2%とする。Nb: Nb brings about refinement of steel and further improves delayed fracture resistance. If it is less than 0.005%, the desired effect cannot be obtained, while if it exceeds 0.2%, the strength and ductility are impaired, so the content is made 0.005 to 0.2%.
【0035】Ni:Niは、鋼の靭性を高め、同時に熱
間圧延中表面に濃縮した溶融Cuによる表面の熱間亀甲
われを防止する。0.05%未満では所望の効果が得ら
れず、一方、0.5%を超えるとその効果が飽和し、ま
た、Niは合金元素として高価であるため経済性を考慮
して、0.05〜0.5%とする。Ni: Ni enhances the toughness of the steel and, at the same time, prevents hot cracking of the surface due to molten Cu concentrated on the surface during hot rolling. If it is less than 0.05%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.5%, the effect is saturated. Also, since Ni is expensive as an alloy element, Ni is considered to be economical. To 0.5%.
【0036】V:Vは、Nbと同様に鋼の細粒化作用が
あり、粒界偏析の軽減により耐遅れ破壊性を一段と向上
させる。また、Vは鋼の焼戻し軟化抵抗を高めるので、
高い焼戻し温度の採用を可能にして耐遅れ破壊性を改善
する。0.01%未満ではその効果は十分ではなく、一
方、0.3%を超えると靭性の劣化をきたすので、0.
01〜0.3%とする。V: V, like Nb, has the effect of grain refinement of steel, and further improves delayed fracture resistance by reducing grain boundary segregation. Also, V increases the tempering softening resistance of steel,
High tempering temperature can be adopted to improve delayed fracture resistance. If it is less than 0.01%, the effect is not sufficient, while if it exceeds 0.3%, toughness is deteriorated.
01 to 0.3%.
【0037】Mn: Mnは、脱酸や焼入性向上に有効な元素であるが、多量
に含有させると粒界脆化現象が生じ、遅れ破壊の発生を
促進する。さらに、Mnは凝固時に濃厚偏析部を形成し
やすくそこで粗大なMnSを形成し、これが圧延によっ
て展伸して遅れ破壊の起点となるので、耐遅れ破壊性の
改善のためには極力その量を低下させなければならな
い。焼入性の確保を考慮して0.5%未満とするが、焼
入性をほかの元素で補うことができればMnは実質的に
0でもよい。すなわち、添加しないで不純物として混入
してくる量であってもよい。 Mn: Mn is an element effective for improving deoxidation and hardenability, but when contained in a large amount, grain boundary embrittlement occurs and accelerates the occurrence of delayed fracture. Further, Mn easily forms a thick segregated portion during solidification, and forms coarse MnS there, which is expanded by rolling and becomes a starting point of delayed fracture. Therefore, in order to improve delayed fracture resistance, the amount of Mn should be as small as possible. Must be lowered. Although it is set to less than 0.5% in consideration of securing hardenability, Mn may be substantially zero as long as hardenability can be supplemented by another element. That is, do not add and mix as impurities
It may be the amount that comes.
【0038】N:Nは、鋼の細粒化を図り、耐遅れ破壊
性を改善するのに有効である。しかし、0.01%を超
えると粗大な窒化物を生成し、かえって耐遅れ破壊性を
劣化させるので、0.01%以下とする。一方、0.0
02%未満では細粒化効果は十分ではないが、Nが低い
ことによりオーステナイト粒界等に連なった窒化物がで
きにくくなり、その分、耐遅れ破壊性が向上する。した
がって、0.002%以上であることは望ましいが、
0.002%以上を必須とするわけではない。なお、N
は、後記するように、Al、Zr、TiおよびBととも
に条件の不等式、1.93≦Al(%)/有効N
(%)≦10を満足させる必要がある。N: N is effective for reducing the grain size of steel and improving delayed fracture resistance. However, if the content exceeds 0.01%, coarse nitrides are formed, and the delayed fracture resistance is rather deteriorated. On the other hand, 0.0
If it is less than 02%, the effect of grain refining is not sufficient, but since N is low, it is difficult to form nitrides connected to austenite grain boundaries and the like, and accordingly, delayed fracture resistance is improved. Therefore, it is desirable that the content is 0.002% or more,
0.002% or more is not essential. Note that N
Is the condition inequality together with Al, Zr, Ti and B, as described below, 1.93 ≦ Al (%) / effective N
(%) ≦ 10 must be satisfied.
【0039】Zr:Zrは、添加しなくてもよい。添加
すれば鋼中に炭化物を球状微細に分散させて耐遅れ破壊
性をいっそう改善する。従って、とくに高強度の鋼に高
い耐遅れ破壊性を付与する目的で含有させてもよい。前
記効果を確実に得るには、0.01%以上とすることが
望ましい。しかし、0.15%を超えると靭性の劣化を
きたすので添加する場合でも0.15%以下とする。Zr: Zr may not be added. If added, carbides are finely dispersed in a spherical shape in steel to further improve delayed fracture resistance. Therefore, it may be contained particularly for the purpose of imparting high delayed fracture resistance to high-strength steel. In order to reliably obtain the above-mentioned effects, it is desirable that the content be 0.01% or more. However, if it exceeds 0.15%, the toughness is deteriorated. Therefore, even when it is added, the content is made 0.15% or less.
【0040】Ti:Tiは、添加しなくてもよい。添加
すれば高強度化し、かつ連続鋳造スラブの表面性状を改
善する作用を有する。このため、表面性状が問題となる
場合には添加してもよい。この効果を確実に得るために
はTiは0.01%以上とすることが望ましい。しか
し、その量が0.1%を超えると、鋼の靭性を劣化する
ようになるので、添加する場合でも0.1%以下とす
る。Ti: Ti need not be added. When added, it has the effect of increasing the strength and improving the surface properties of the continuously cast slab. For this reason, when surface properties become a problem, they may be added. In order to reliably obtain this effect, it is desirable that the content of Ti be 0.01% or more. However, if the amount exceeds 0.1%, the toughness of the steel deteriorates. Therefore, even when it is added, the content is set to 0.1% or less.
【0041】B:Bは、添加しなくてもよい。添加すれ
ば、鋼の焼入性を一段と向上させ高強度化し、かつ粒界
を強化することにより耐遅れ破壊性を一層改善する。こ
のため、とくに製品寸法が大きい場合には高強度を確保
する目的で添加してもよい。この効果を確実に得るため
には、0.0003%以上とすることが望ましい。しか
し、0.005%を超えると、鋼の靭性を劣化するので
0.005%以下とする。B: B may not be added. If added, the hardenability of the steel is further improved and the strength is increased, and the delayed fracture resistance is further improved by strengthening the grain boundaries. For this reason, especially when the product size is large, it may be added for the purpose of securing high strength. In order to surely obtain this effect, the content is preferably set to 0.0003% or more. However, if it exceeds 0.005%, the toughness of the steel deteriorates, so the content is made 0.005% or less.
【0042】Cu+Mo:Crを1.5%以上としたう
えでCuとMoを複合添加することは、本発明において
は非常に重要である。これら水素侵入抑制機構の異なる
元素を組み合わせることにより、各元素の単独添加で得
られる効果を合わせたものより高い水素侵入抑制効果を
得ることができる。Cu + Mo: It is very important in the present invention to add Cu and Mo in combination after making Cr 1.5% or more. By combining these elements having different hydrogen intrusion suppressing mechanisms, it is possible to obtain a higher hydrogen intrusion suppressing effect than that obtained by combining the effects obtained by adding each element alone.
【0043】図3は、低合金鋼の水素透過量に及ぼすC
u+Mo(CuとMoを合わせた含有量)の影響を表す
図面である。同図に示すように、Cu+Moが0.4%
未満では所望の効果が得られない。したがって、優れた
耐遅れ破壊性を具備させるためには、Cu+Moを0.
4%以上としなければならない。図3を得るために用い
た鋼の合金元素の中心値は、C:0.52%、Si:
1.31%、Cr:4.0%、Al:0.01%、N
b:0.09%、Ni:0.09%、V:0.02%、
Mn:0.15%、P:0.013%、S:0.01%
であり、CuおよびMoをそれぞれ0.04〜0.53
%および0.04〜0.55%の範囲内で変えて、Cu
+Moを調整した。FIG. 3 shows the effect of C on the hydrogen permeation rate of low alloy steel.
It is a figure showing the influence of u + Mo (content which combined Cu and Mo). As shown in FIG.
If it is less than 30, the desired effect cannot be obtained. Therefore, in order to provide excellent delayed fracture resistance, Cu + Mo is added in an amount of 0.1%.
Must be at least 4%. The central values of the alloy elements of the steel used to obtain FIG. 3 are: C: 0.52%, Si:
1.31%, Cr: 4.0%, Al: 0.01%, N
b: 0.09%, Ni: 0.09%, V: 0.02%,
Mn: 0.15%, P: 0.013%, S: 0.01%
And Cu and Mo are respectively 0.04 to 0.53.
% And within the range of 0.04 to 0.55%,
+ Mo was adjusted.
【0044】Al/有効N:本発明者らは、Alおよび
Nも含めて合金元素を上記の本発明の範囲内として、A
l/有効Nを変化させた鋼について耐遅れ破壊性能を調
査することにより、Al/有効Nの大きな効果を確認し
た。すなわち、Al/有効Nを1.93〜10に制御す
ることにより、引張強さ160kg/mm2 以上の鋼で
も、所望の優れた耐遅れ破壊性を得ることができる。つ
ぎに示す図4〜図7は、本発明を完成させるためにおこ
なった実験結果である。これら図において、“Al/有
効N”が、実験結果を整理するのに好適な指標であるこ
とが分かる。Al / effective N: The present inventors set the alloying elements including Al and N within the scope of the present invention as described above, and
The effect of Al / effective N was confirmed by investigating the delayed fracture resistance of the steel in which 1 / effective N was changed. That is, by controlling the ratio of Al / effective N to 1.93 to 10, even with steel having a tensile strength of 160 kg / mm 2 or more, a desired excellent delayed fracture resistance can be obtained. 4 to 7 show the results of experiments performed to complete the present invention. In these figures, it can be seen that “Al / effective N” is a suitable index for organizing the experimental results.
【0045】図4は、Zr、TiおよびBを含まない鋼
の耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面
である。図中の記号“EN”は、有効Nを表す。FIG. 4 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steel containing no Zr, Ti and B. The symbol “EN” in the figure represents effective N.
【0046】また、図5は、TiおよびBを含まない鋼
の耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面
である。FIG. 5 is a graph showing the effect of Al / effective N on delayed fracture resistance of steel containing neither Ti nor B.
【0047】図6は、Zrを含まない鋼の耐遅れ破壊性
に及ぼすAl/有効Nの影響を表す図面である。FIG. 6 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steel containing no Zr.
【0048】また、図7は、Zr、TiおよびBをすべ
て含む鋼の耐遅れ破壊性に及ぼすAl/有効Nの影響を
表す図面である。FIG. 7 is a graph showing the effect of Al / effective N on delayed fracture resistance of steel containing all of Zr, Ti and B.
【0049】これらの図4〜図7から、前記のAl/有
効Nが1.93未満の場合と、10を超える場合にはい
ずれも割れが発生することが明らかである。さらに、割
れは全て粗大な窒化物を起点としていることが判明し
た。この結果に基づいて、Al/有効Nを1.93以上
10以下とする。It is apparent from FIGS. 4 to 7 that cracks occur when the ratio of Al / effective N is less than 1.93 or more than 10. Further, it was found that all cracks originated from coarse nitrides. Based on this result, Al / effective N is set to 1.93 or more and 10 or less.
【0050】P:いかなる熱処理を施してもPの粒界偏
析を完全に消滅させることはできず、粒界強度を低下さ
せ耐遅れ破壊性を劣化させるため、Pは低いほど望まし
い。しかし、Pを低下させることは製鋼費用を上昇させ
るので、許容できる範囲である0.015%以下とす
る。P: No heat treatment can completely eliminate grain boundary segregation of P, lowering the grain boundary strength and deteriorating delayed fracture resistance. However, lowering P increases steelmaking costs, so it is set to an acceptable range of 0.015% or less.
【0051】S:Sは、上述したように、Mnと結合し
て割れの基点となり、さらに単独でも固溶状態で粒界に
偏析して遅れ破壊の原因となる水素脆化を促進するた
め、極力低く制限することが必要である。しかし、Sを
下げることは、Pと比較して製鋼費用の上昇は小さいも
のの、確実にコスト上昇を招く。したがって性能上許容
できる範囲である0.01%以下とする。S: As described above, S combines with Mn to serve as a starting point for cracking. Further, S alone segregates at the grain boundary in a solid solution state to promote hydrogen embrittlement which causes delayed fracture. It is necessary to limit it as low as possible. However, lowering S certainly increases the steelmaking cost, although the increase in steelmaking cost is smaller than that of P. Therefore, the content is set to 0.01% or less, which is an allowable range in performance.
【0052】2.製造方法 通常、本発明鋼は焼入れ焼戻しの熱処理を適用して使用
される。焼入れ焼戻しにより形成される組織はとくに限
定しない。しかし、上記した化学組成を有する鋼であっ
ても、160kgf/mm2 以上の引張強さと良好な耐
遅れ破壊性とを具備させるにはマルテンサイトあるいは
マルテンサイトとベイナイトの混合組織を焼戻した組織
であることが望ましい。そのための熱処理としては、通
常の熱間圧延(加熱温度:1000〜1250℃)を行
い、圧延後、Ar3 点より低い温度にまで冷却すること
なくそのままAr3 点以上の温度(好ましくは850〜
1020℃)から水または油で焼入れる、いわゆる直接
焼入れをおこなう。または、圧延後いったん冷却した
後、850〜1050℃(好ましくは920〜1020
℃)に再加熱し水または油で焼入れる。これら直接焼入
れまたは再加熱焼入れによって得られたマルテンサイト
やマルテンサイトとベイナイトの混合組織を、そののち
Ac1 点以下の温度で焼戻すことが望ましい。2. Manufacturing method Usually, the steel of the present invention is used by applying a heat treatment of quenching and tempering. The structure formed by quenching and tempering is not particularly limited. However, even in the steel having the above chemical composition, in order to provide a tensile strength of 160 kgf / mm 2 or more and good delayed fracture resistance, it is necessary to use a structure obtained by tempering martensite or a mixed structure of martensite and bainite. Desirably. The heat treatment for the usual hot rolling (heating temperature: 1000 to 1250 ° C.) performs, after rolling, it is Ar 3 point or more temperature without cooling to a temperature lower than the Ar 3 point (preferably 850 to
Quenching with water or oil from 1020 ° C.), so-called direct quenching. Alternatively, after rolling and once cooling, 850 to 1050 ° C. (preferably 920 to 1020 ° C.)
℃) and quenched with water or oil. It is desirable that the martensite or the mixed structure of martensite and bainite obtained by the direct quenching or the reheating quenching be thereafter tempered at a temperature of 1 point or less of Ac.
【0053】しかし、必ずしも焼入れ焼戻しをおこなう
必要はない。何故なら、本発明鋼は使用中、水素侵入量
を低減させて耐遅れ破壊性を向上させるものであるから
鋼内部の組織に大きく依存することがないからである。
例えば熱間圧延のまま、または焼入のまま(AsQ)等
の組織でも後述の実施例に示すように、160kgf/
mm2 以上の引張強さと優れた耐遅れ破壊性を示す。However, it is not always necessary to perform quenching and tempering. This is because the steel of the present invention reduces the amount of hydrogen infiltration during use and improves delayed fracture resistance, and thus does not largely depend on the internal structure of the steel.
For example, even in a structure such as hot rolled or quenched (AsQ), as shown in Examples described later, 160 kgf /
It exhibits a tensile strength of at least 2 mm 2 and excellent delayed fracture resistance.
【0054】ただし、焼入れままの鋼は引張強さは高い
が、降伏点が低く機械構造用鋼として使用する場合に使
用中に応力緩和の増大が生じるという問題がある。した
がって、所定の強度と耐遅れ破壊性を得るためには焼入
れ焼戻し処理を施して、主として焼戻しマルテンサイト
または焼戻ししたマルテンサイト+ベイナイトの混合組
織とするのが望ましい。However, as-quenched steel has a high tensile strength, but has a low yield point and has a problem that stress relaxation increases during use when used as a machine structural steel. Therefore, in order to obtain a predetermined strength and delayed fracture resistance, it is desirable to perform quenching and tempering to obtain a tempered martensite or a mixed structure of tempered martensite and bainite.
【0055】[0055]
【実施例】次に本発明を実施例により比較鋼と対比しな
がら説明する。EXAMPLES Next, the present invention will be described by way of examples with reference to comparative steels.
【0056】表1および表2は、本発明鋼および比較鋼
(従来鋼を含む)の化学組成と製造方法をまとめた一覧
表である。Tables 1 and 2 are tables summarizing the chemical compositions and production methods of the steels of the present invention and comparative steels (including conventional steels).
【0057】[0057]
【表1】 [Table 1]
【0058】[0058]
【表2】 [Table 2]
【0059】通常の方法によって、表1および表2に示
す化学組成の鋼(鋼2〜49)を50kg真空溶解炉に
て溶製した。鋼2〜36は、本発明の鋼であり、鋼38
〜49は、表2において*印を付した成分をもつ鋼で、
本発明の範囲から外れている。また、表2に示す鋼50
〜52は、従来鋼であり、鋼50はJIS G 4105(1989)の
SCM440、鋼51はJIS G 4103 (1989) のSNCM
616に相当する鋼であり、また鋼52は、特開昭58
−84960号公報に提案されている鋼である。In a conventional manner, 50 kg of steel (steel 2 to 49) having the chemical composition shown in Tables 1 and 2 was melted in a vacuum melting furnace. Steels 2 to 36 are steels of the present invention,
-49 are steels having the components marked with * in Table 2,
It is outside the scope of the present invention. In addition, steel 50 shown in Table 2
52 are conventional steels, steel 50 is SCM440 of JIS G 4105 (1989), and steel 51 is SNCM of JIS G 4103 (1989).
616, and steel 52 is disclosed in
No. 84960.
【0060】鋼2〜4、鋼8〜14、鋼19〜24、鋼
28〜32、鋼36〜39、鋼43〜49は、1100
〜1200℃にて熱間鍛造および熱間圧延して厚さ15
mmの板材とし、950℃に再加熱して45分間保持し
て水焼入れした後、焼戻し空冷した。焼戻しにおいて
は、引張強さを160kgf/mm2 以上となるよう
に焼戻し温度を調整した。また、鋼50〜52の従来鋼
についても同様の焼入れ焼戻し処理を行った。すなわ
ち、鋼50〜52についてそれぞれ870、900、9
50℃に再加熱して45分間保持した後、水焼入れし、
その後焼戻しを施した。さらに上記以外の熱間圧延まま
材(鋼5、25、33、40)、焼入れまま材(鋼6、
26、34、41)、熱間圧延後加速冷却を施したもの
(鋼7、27、35、42)についても試験材を準備し
た。加速冷却では、Ar3 点以上から400〜500
℃までの冷却速度を10〜15℃/秒となるように水冷
した。Steels 2 to 4, steels 8 to 14 , steels 19 to 24, steels 28 to 32, steels 36 to 39, and steels 43 to 49 are 1100
Hot forging and hot rolling at ~ 1200 ° C to a thickness of 15
mm, reheated to 950 ° C., held for 45 minutes, water-quenched, and then tempered and air-cooled. In the tempering, the tempering temperature was adjusted so that the tensile strength was 160 kgf / mm 2 or more. The same quenching and tempering treatment was performed on the conventional steels 50 to 52. That is, 870, 900, 9 for steels 50 to 52, respectively.
After reheating to 50 ° C and holding for 45 minutes, water quenching
Thereafter, tempering was performed. Furthermore, other than the above-mentioned hot-rolled material (steel 5 , 25, 33, 40) and quenched material (steel 6 ,
26, 34, 41) and those subjected to accelerated cooling after hot rolling (steel 7 , 27 , 35 , 42) were also prepared as test materials. In the accelerated cooling, 400 to 500 Ar from 3 or more Ar points
Water cooling was performed so that the cooling rate to 10 ° C was 10 to 15 ° C / sec.
【0061】これら試験材についての耐遅れ破壊性の調
査は、定荷重試験方法によった。Examination of the delayed fracture resistance of these test materials was conducted by a constant load test method.
【0062】図8は、耐遅れ破壊性の評価に用いた試験
片および試験片に設けられた切り欠き(ノッチ)の形状
を示す図面である。図8(イ)は試験片の形状を示し、
図8(ロ)は試験片のノッチ部の拡大図を示す。FIG. 8 is a drawing showing a test piece used for evaluating delayed fracture resistance and the shape of a notch provided in the test piece. FIG. 8A shows the shape of the test piece,
FIG. 8B is an enlarged view of a notch portion of the test piece.
【0063】図9は、耐遅れ破壊性を評価する定荷重試
験装置を表す図面である。図8に示すような形状、寸法
の試験片を図9に示す定荷重試験機にセットして、pH
=2のワルポール液(塩酸と酢酸ナトリウム水溶液の混
合液)環境下で静荷重(引張応力:140kgf/mm
2 )をかけ定電流(1mA/cm2 )を流して水素を試
験片に陰極チャージしながら、破断の発生を観察した。
試験環境としてのpH=2は、実使用環境において実現
可能な最も厳しい環境に相当する。また、試験の間、試
験温度は温度調節装置により遅れ破壊試験を行うときの
標準温度である25℃に保持された。FIG. 9 is a drawing showing a constant load test apparatus for evaluating delayed fracture resistance. A test piece having the shape and dimensions shown in FIG. 8 was set on the constant load tester shown in FIG.
= 2 static load (tensile stress: 140 kgf / mm) under the environment of Walpole liquid (mixed solution of hydrochloric acid and sodium acetate aqueous solution)
2 ), a constant current (1 mA / cm 2 ) was passed, and hydrogen was negatively charged on the test piece, and the occurrence of breakage was observed.
PH = 2 as the test environment corresponds to the most severe environment that can be realized in the actual use environment. During the test, the test temperature was kept at 25 ° C., which is the standard temperature for performing the delayed fracture test by the temperature controller.
【0064】表3および表4は、各鋼の引張強さ、衝撃
吸収エネルギと高温圧縮応力の測定結果に加えて、上記
の定荷重試験における破断時間をまとめた一覧表であ
る。同表において750h以内に破断しなかったものは
○、破断したものは×として表示し、課題達成の可否を
明示した。Tables 3 and 4 are tables summarizing the results of measurement of the tensile strength, impact absorption energy and high temperature compressive stress of each steel, as well as the rupture time in the above constant load test. In the same table, those that did not break within 750 hours were indicated by ○, and those that did break were indicated by x, indicating whether the task could be achieved.
【0065】[0065]
【表3】 [Table 3]
【0066】[0066]
【表4】 [Table 4]
【0067】表3および表4より、本発明の鋼は、定荷
重破断時間がいずれも従来の基準である200hを大き
く超えて750hでも破壊せず、すべて2000hを超
えており耐遅れ破壊性に優れていることが明らかであ
る。また靭性の点ではシャルピー試験の吸収エネルギ値
が高いこと、および、延性の点では高温圧縮試験の変形
必要応力が小さくなっていることから、それぞれ改善さ
れていることが判る。すなわち、耐遅れ破壊性だけでな
く、製造する上でもまた使用するうえでも、従来の鋼に
まさって実際に使用しやすい材料である。As can be seen from Tables 3 and 4, the steels of the present invention did not break even at constant load rupture time, which greatly exceeded the conventional standard of 200 h, even at 750 h. It is clear that it is excellent. In addition, it can be seen that the absorption energy value in the Charpy test is high in terms of toughness, and the required stress for deformation in the high-temperature compression test is small in terms of ductility. In other words, it is a material that is actually easier to use than conventional steel not only in delayed fracture resistance but also in production and use.
【0068】[0068]
【発明の効果】本発明鋼は、160kgf/mm2 以上
の引張強さを有し、従来よりも永い一定期間の取り替え
をおこなっても遅れ破壊発生のおそれがないので、市民
生活に近接した構造物において使用量の多い高張力ボル
トやPC鋼棒、さらに高強度を要する機械部品に従来よ
り高い信頼性のもとに使用でき、関連産業への効果は多
大である。The steel of the present invention has a tensile strength of 160 kgf / mm 2 or more, and there is no risk of delayed fracture even if it is replaced for a certain period longer than before, so that it has a structure close to civil life. It can be used for high-tensile bolts and PC steel bars, which are frequently used in products, and for mechanical parts requiring high strength, with higher reliability than before, and has a great effect on related industries.
【図面の簡単な説明】[Brief description of the drawings]
【図1】図1は、Cr1.5%未満の低合金鋼の水素透
過量に及ぼすMoおよびCuの影響を表す図面である。FIG. 1 is a drawing showing the effect of Mo and Cu on the amount of hydrogen permeation of a low alloy steel with less than 1.5% Cr.
【図2】図2は、0.4%Mo鋼の水素透過量に及ぼす
CrおよびCuの影響を表す図面である。FIG. 2 is a drawing showing the effect of Cr and Cu on the amount of hydrogen permeation of 0.4% Mo steel.
【図3】図3は、低合金鋼の水素透過量に及ぼすCu+
Moの影響を表す図面である。FIG. 3 shows the effect of Cu + on the hydrogen permeation rate of low alloy steel.
It is a drawing showing the influence of Mo.
【図4】図4は、Zr、TiおよびBを含まない鋼の遅
れ耐破壊性に及ぼすAl/有効Nの影響を表す図面であ
る。FIG. 4 is a graph showing the effect of Al / effective N on delayed fracture resistance of steel containing no Zr, Ti and B.
【図5】図5は、TiおよびBを含まない鋼の耐遅れ破
壊性に及ぼすAl/有効Nの影響を表す図面である。FIG. 5 is a drawing showing the effect of Al / effective N on delayed fracture resistance of steel not containing Ti and B.
【図6】図6は、Zrを含まない鋼の耐遅れ破壊性に及
ぼすAl/有効Nの影響を表す図面である。FIG. 6 is a drawing showing the effect of Al / effective N on delayed fracture resistance of steel containing no Zr.
【図7】図7は、Zr、TiおよびBをすべて含む鋼の
耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面で
ある。FIG. 7 is a drawing showing the effect of Al / effective N on delayed fracture resistance of steel containing all of Zr, Ti and B.
【図8】図8は、耐遅れ破壊性の評価に用いた試験片と
試験片のノッチの形状および寸法を示す図面であり、図
8(イ)は試験片を示し、図8(ロ)は試験片のノッチ
部の拡大図を示す。FIG. 8 is a drawing showing a test piece used for evaluation of delayed fracture resistance and the shape and dimensions of a notch of the test piece. FIG. 8 (a) shows the test piece, and FIG. Shows an enlarged view of the notch portion of the test piece.
【図9】図9は、耐遅れ破壊性の評価に用いた定荷重試
験機の概要を表す図面である。FIG. 9 is a drawing showing an outline of a constant load tester used for evaluating delayed fracture resistance.
1…試験片(耐遅れ破壊性評価用引張試験片) 2…ワルポール液 3…ポンプ 4…重錘 5…ポテンショスタット 6…対極 7…温度調節装置 8…定荷重試験機 DESCRIPTION OF SYMBOLS 1 ... Test piece (tensile test piece for delayed fracture resistance evaluation) 2 ... Walpole liquid 3 ... Pump 4 ... Weight 5 ... Potentiostat 6 ... Counter electrode 7 ... Temperature controller 8 ... Constant load tester
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 6/00 C21D 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 6/00 C21D 9/00
Claims (2)
0.5〜2%、Cu:0.1〜1%、Cr:1.5〜5
%、Mo:0.05〜1%、Al:0.005〜0.0
1%、Nb:0.005〜0.2%、Ni:0.05〜
0.5%、V:0.01〜0.3%、Mn:0〜0.5
%、N:0.01%以下、Zr:0〜0.15%、T
i:0〜0.1%およびB:0〜0.005%を含有
し、同時に下記の式および式を満たし、残部がFe
および不可避的不純物からなり、不可避的不純物のうち
のPおよびSの含有量が、P:0.015%以下および
S:0.01%以下であり、引張り強さが160kgf
/mm 2 以上であることを特徴とする耐遅れ破壊性に優
れた機械構造用鋼。 0.4(%) ≦ Cu(%)+Mo(%) ・・・・・ 1.93 ≦ Al(%)/有効N(%) ≦10・・・・ ただし、有効N(%)=N(%)−{Zr(%)/6.25} −{Ti(%)/3.43}−{B(%)/0.78}C .: 0.4 to 0.6% by weight, Si:
0.5-2%, Cu: 0.1-1%, Cr: 1.5-5
%, Mo: 0.05-1%, Al: 0.005-0.0
1%, Nb: 0.005 to 0.2%, Ni: 0.05 to
0.5%, V: 0.01 to 0.3%, Mn: 0 to 0.5
%, N: 0.01% or less, Zr: 0 to 0.15%, T
i: 0 to 0.1% and B: 0 to 0.005%, simultaneously satisfying the following formulas and formulas, with the balance being Fe
And consists inevitable impurities, the content of P and S among unavoidable impurities, P: 0.015% or less and S: 0.01% or less der is, a tensile strength of 160kgf
/ Mm 2 or more, a steel for machine structural use having excellent delayed fracture resistance. 0.4 (%) ≦ Cu (%) + Mo (%) 1.93 ≦ Al (%) / Effective N (%) ≦ 10 However, Effective N (%) = N ( %)-{Zr (%) / 6.25}-{Ti (%) / 3.43}-{B (%) / 0.78}
を焼入れた後、Ac1 点以下の温度で焼戻しをおこな
うことを特徴とする機械構造用鋼の製造方法。2. A steel for machine structural use having the chemical composition according to claim 1.
The After quenched, method of manufacturing to that machinery structural steel and performing tempering at a temperature of 1 point Ac.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01498496A JP3221309B2 (en) | 1996-01-31 | 1996-01-31 | Steel for machine structure and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01498496A JP3221309B2 (en) | 1996-01-31 | 1996-01-31 | Steel for machine structure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09209085A JPH09209085A (en) | 1997-08-12 |
JP3221309B2 true JP3221309B2 (en) | 2001-10-22 |
Family
ID=11876231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01498496A Expired - Lifetime JP3221309B2 (en) | 1996-01-31 | 1996-01-31 | Steel for machine structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3221309B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5467026B2 (en) * | 2010-10-21 | 2014-04-09 | 新日鐵住金株式会社 | Method for evaluating delayed fracture characteristics of PC steel |
RU2477760C1 (en) * | 2011-12-14 | 2013-03-20 | Юлия Алексеевна Щепочкина | Steel |
JP7499691B2 (en) * | 2020-12-16 | 2024-06-14 | 株式会社神戸製鋼所 | Bolt steel and bolts |
-
1996
- 1996-01-31 JP JP01498496A patent/JP3221309B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09209085A (en) | 1997-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070095373A (en) | High tensile steel product excellent in delayed fracture resistance and method for production thereof | |
JPH0545660B2 (en) | ||
JP4998708B2 (en) | Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same | |
JPH0748621A (en) | Production of steel for pressure vessel excellent in ssc resistance and hic resistance | |
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP3221309B2 (en) | Steel for machine structure and method of manufacturing the same | |
JP3358679B2 (en) | High tension bolt with excellent delayed fracture resistance | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP3757027B2 (en) | High strength hot rolled steel with excellent weldability, high strength steel wire and high strength steel bar using the same | |
JPH08209289A (en) | Steel for machine structural use excellent in delayed fracture resistance | |
JP3279086B2 (en) | Machine structural steel with excellent delayed fracture resistance | |
JPH06248386A (en) | Steel for machine structure excellent in delayed fracture resistance | |
JP3232666B2 (en) | Spring steel with excellent delayed fracture resistance | |
JPH1129836A (en) | Steel for machine structural use for induction hardening | |
JP2002339037A (en) | High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor | |
JPH03243745A (en) | Steel for machine structural use excellent in delayed fracture resistance | |
JP3400886B2 (en) | High tension bolt steel with excellent hydrogen entry prevention effect | |
JPH0770695A (en) | Steel for machine structure excellent in delayed fracture resistance | |
JPH06240406A (en) | Steel plate with high strength and high toughness | |
JPH05171356A (en) | High strength bolt steel | |
JP2007031746A (en) | Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JPH11270531A (en) | High strength bolt having good delayed fracture characteristic and manufacture thereof | |
JP2001073080A (en) | High tensile strength steel excellent in delayed fracture characteristic and its production | |
JPH08120399A (en) | Steel for machine structure excellent in delayed fracture resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070817 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080817 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080817 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090817 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090817 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 12 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |