JPH09209085A - Steel for machine structural use and its production - Google Patents

Steel for machine structural use and its production

Info

Publication number
JPH09209085A
JPH09209085A JP1498496A JP1498496A JPH09209085A JP H09209085 A JPH09209085 A JP H09209085A JP 1498496 A JP1498496 A JP 1498496A JP 1498496 A JP1498496 A JP 1498496A JP H09209085 A JPH09209085 A JP H09209085A
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
fracture resistance
effective
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1498496A
Other languages
Japanese (ja)
Other versions
JP3221309B2 (en
Inventor
Naoyuki Kuratomi
直行 倉富
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP01498496A priority Critical patent/JP3221309B2/en
Publication of JPH09209085A publication Critical patent/JPH09209085A/en
Application granted granted Critical
Publication of JP3221309B2 publication Critical patent/JP3221309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel for machine structural use, containing specific weight percentages of specific elements, free from delayed fracture for a fixed period, and having a tensile strength of specific value or above. SOLUTION: This steel for machine structural use has a composition which consists of, by weight, 0.3-0.6% C, 0.5-2% Si, 0.1-1% Cu, 1.5-5% Cr, 0.05-1% Mo, 0.005-0.01% Al, 0.005-0.2% Nb, 0.05-0.5% Ni, 0.01-0.3% V, 0-0.5% Mn, <=0.01% N, 0-0.15% Zr, 0-0.1% Ti, 0-0.005% B, and the balance Fe with inevitable impurities and simultaneously satisfies 0.4(%)<=Cu(%) +Mo(%) and 1.93<=Al(%)/[effective N(%)]=10, where equation [effective N(%)]=N(%)-Zr(%)/6.25-Ti(%)/3.43-B(%)/0.78 is satisfied, and in which the contents of P and S among the inevitable impurities are regulated to <=0.015% and <=0.01%, respectively. Further, this steel for machine structural use, excellent in delayed fracture resistance, can be produced by performing hardening and then tempering at a temp. less than the Ac1 point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、160kgf/m
2 以上の引張強さを有しかつ耐遅れ破壊性に優れた、
高張力ボルト、PC鋼棒、大型機械等への使用に好適な
機械構造用鋼に関するものである。
TECHNICAL FIELD The present invention relates to 160 kgf / m.
Having a tensile strength of m 2 or more and excellent delayed fracture resistance,
The present invention relates to a machine structural steel suitable for use in high-tensile bolts, PC steel rods, large machines, and the like.

【0002】[0002]

【従来の技術】近年、構造物の大型化および自動車、ト
ラック、土木・鉱山機械などの軽量化に伴い、今まで以
上に高強度の機械構造用鋼、とくに高張力ボルトやPC
鋼棒用の鋼材が要望されている。
2. Description of the Related Art In recent years, with the increase in size of structures and the weight reduction of automobiles, trucks, civil engineering and mining equipment, etc., mechanical structural steels with higher strength than ever, especially high-tensile bolts and PCs.
A steel material for a steel rod is desired.

【0003】これまで一般に使用されている低合金の高
強度機械構造用鋼にはつぎのものがある。
The low-alloy, high-strength mechanical structural steels that have been commonly used until now are as follows.

【0004】(イ)引張強さ100kgf/mm2 級:
0.4%C−1.05%Cr−0.23%Mo鋼に代表
される JIS G 4105 (1989)規定のSCM440。
(A) Tensile strength 100 kgf / mm 2 grade:
SCM440 defined by JIS G 4105 (1989) represented by 0.4% C-1.05% Cr-0.23% Mo steel.

【0005】(ロ)引張強さ130kgf/mm2 級:
0.17%C−3%Ni−1.6%Cr−0.5%Mo
鋼に代表される JIS G 4103 (1989)規定のSNCM61
6。
(B) Tensile strength 130 kgf / mm 2 grade:
0.17% C-3% Ni-1.6% Cr-0.5% Mo
SNCM61 stipulated by JIS G 4103 (1989) represented by steel
6.

【0006】(ハ)引張強さ174kgf/mm2 級:
上記(イ)または(ロ)と同じ組成で熱処理を変えた
鋼。
(C) Tensile strength 174 kgf / mm 2 grade:
Steel with the same composition as in (a) or (b) but with different heat treatment.

【0007】上記の(イ)および(ロ)ともに、いずれ
も熱間圧延後に焼入れ焼戻し処理が施され所要の強度が
付与される。また、(ハ)の引張強さ174kgf/m
2級では、上記の低合金鋼を熱間圧延し、その後に
(イ)または(ロ)において行う熱処理とは条件を変え
て焼入れ焼戻し処理を施すことによって強靭化が図られ
る。
In both of the above (a) and (b), quenching and tempering treatment is performed after hot rolling to give a required strength. The tensile strength of (C) is 174 kgf / m.
In the m 2 class, toughening is achieved by hot rolling the above low alloy steel and then performing quenching and tempering treatment under different conditions from the heat treatment performed in (a) or (b).

【0008】これらの機械構造用鋼は、しかしながら、
使用中に遅れ破壊を生じる場合があるので、高張力ボル
トやPC鋼棒をはじめとして、自動車や土木機械の重要
部品に本格的に用いるには至らなかった。“遅れ破壊”
とは、静荷重下におかれた鋼がある時間経過後に突然脆
性的に破断する現象であり、外部環境から鋼中に侵入し
た水素に起因する一種の水素脆性とされている。
These mechanical structural steels, however,
Since delayed fracture may occur during use, it has not been fully used for important parts of automobiles and civil engineering machines, including high-tensile bolts and PC steel rods. “Delayed destruction”
The phenomenon is a phenomenon in which steel placed under a static load suddenly becomes brittle after a certain period of time, and is considered to be a kind of hydrogen embrittlement due to hydrogen that has penetrated into the steel from the external environment.

【0009】上記の低合金機械構造用鋼は、一般に、遅
れ破壊を生じる場合があるので、その引張強さを100
kgf/mm2 以下に制限することが望ましいとされて
いる。
Since the above low alloy steel for machine structural use generally causes delayed fracture, its tensile strength is 100%.
It is said that it is desirable to limit it to kgf / mm 2 or less.

【0010】上記の低合金鋼より耐遅れ破壊性の優れた
鋼として、例えば、18%Ni−7.5%Co−5%M
o−0.5%Ti−0.1%Al鋼に代表される18%
Niマルエージング鋼があるが、きわめて高価であるた
めに経済性の点から用途が限られている。
As a steel having a delayed fracture resistance superior to that of the above low alloy steel, for example, 18% Ni-7.5% Co-5% M.
18% typified by o-0.5% Ti-0.1% Al steel
Ni maraging steel is available, but its application is limited from the economical point of view because it is extremely expensive.

【0011】そこで、経済性を考慮した耐遅れ破壊性に
優れた高強度ボルト用鋼として、Ca等を添加して硫化
物の形態を制御し、同時にCrとMoを複合添加する鋼
が提案された(特開昭58−84960号公報、特開昭
61−117248号公報および特開昭61−1304
56号公報)。しかし、これら鋼でも耐遅れ破壊性は十
分ではないために、SiおよびMnを低く抑えた鋼が開
発された(特開平3−243745号公報、特開平2−
145746号公報など)。しかし、これらSiおよび
Mnを低くした鋼でも、なお水素透過性または靭性の点
で十分とは言えず、遅れ破壊の生じない鋼材として一般
的に使用されるに至っていない。ここで、水素透過性と
は、水素イオンの還元をともなう鋼表面での腐食反応の
際、水素ガスとして環境中にとどまらずに鋼中へ透過
(侵入)する水素の透過しやすさの程度を意味する。水
素透過性が小さいほうが脆化の原因である鋼中の水素量
が少ないので、遅れ破壊は発生しにくくなる。
Therefore, as a steel for high-strength bolts having excellent delayed fracture resistance in consideration of economic efficiency, a steel is proposed in which Ca or the like is added to control the morphology of sulfides and at the same time, Cr and Mo are added in combination. (JP-A-58-84960, JP-A-61-117248 and JP-A-61-1304)
No. 56). However, even with these steels, the delayed fracture resistance is not sufficient, and therefore steels in which Si and Mn are suppressed to a low level have been developed (JP-A-3-243745 and JP-A-2-).
145746, etc.). However, even those steels having reduced Si and Mn are still insufficient in terms of hydrogen permeability or toughness, and have not been generally used as steel materials that do not cause delayed fracture. Here, hydrogen permeability refers to the degree of easiness of hydrogen permeation (penetration) into the steel as hydrogen gas during the corrosion reaction on the surface of the steel accompanied by reduction of hydrogen ions, without remaining in the environment as hydrogen gas. means. The smaller the hydrogen permeability, the smaller the amount of hydrogen in the steel, which is the cause of embrittlement, and the delayed fracture is less likely to occur.

【0012】これら遅れ破壊性の改善が図られた鋼は、
引張強さを100〜120kgf/mm2 に制限された
うえで、後記するpH=2のワルポール液中(塩酸と酢
酸ナトリウム水溶液の混合液)での浸漬実験において2
00時間以内に割れを発生しなければよいとされてい
る。これら鋼が実際に使用される環境は、ワルポール液
よりも遅れ破壊を発生させる作用が緩やかであるので、
200時間よりも永い一定の期間を定めて、その期間ご
とにこれら鋼材が使用された部品(ボルトなど)を取り
替えている。
The steels with improved delayed fracture resistance are
After the tensile strength was limited to 100 to 120 kgf / mm 2 , in the dipping experiment in a Walpol solution (mixture of hydrochloric acid and sodium acetate aqueous solution) of pH = 2 described later, 2
It is said that cracks should not occur within 00 hours. The environment in which these steels are actually used has a slower effect of causing delayed fracture than Walpol's liquid, so
A fixed period of time longer than 200 hours is set, and parts (bolts, etc.) using these steel materials are replaced for each period.

【0013】[0013]

【発明が解決しようとする課題】本発明は、160kg
f/mm2 以上の引張強さを有し、かつ耐遅れ破壊性に
優れた機械構造用鋼を提供することを目的とする。具体
的には、橋梁用高張力ボルト等のように恒久的に使用す
るのではなく定期的な取り替えを前提として、例えば、
pH=2のワルポール液中で、切り欠き付き引張試験片
に140kgf/mm2 の一定荷重をかけ1mA/cm
2 の定電流を流した状態で、750h以内に遅れ破壊を
全く生じない引張強さ160kgf/cm2 以上の鋼材
を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is 160 kg.
An object of the present invention is to provide a mechanical structural steel having a tensile strength of f / mm 2 or more and excellent delayed fracture resistance. Specifically, assuming not to use it permanently like high tension bolts for bridges, etc., but to replace it regularly, for example,
In a Walpol solution of pH = 2, a constant load of 140 kgf / mm 2 was applied to a tensile test piece with a notch, and 1 mA / cm 2.
An object of the present invention is to provide a steel material having a tensile strength of 160 kgf / cm 2 or more, which does not cause delayed fracture at all within 750 hours in the state where a constant current of 2 is applied.

【0014】[0014]

【課題を解決するための手段】これまで提案されてきた
耐遅れ破壊性に優れた構造用鋼には、Moが添加されて
いるものが多かった。鋼中のMoは、水素過電圧を下げ
ることによって、すなわち水素還元反応を促進すること
によって、外部環境にとどまる水素ガスの比率を高めて
水素の鋼中への侵入を抑制する。この効果によって遅れ
破壊の原因である水素脆化が防止され、鋼の耐遅れ破壊
性は向上する。しかし、強度が現行レベルより高く、か
つ、現行レベル以上の優れた耐遅れ破壊性を備えるに
は、現行より厳しい水素侵入の抑制が必要となる。
[Means for Solving the Problems] Many of the structural steels which have been proposed so far and have excellent delayed fracture resistance are those to which Mo is added. Mo in the steel suppresses the invasion of hydrogen into the steel by lowering the hydrogen overvoltage, that is, by promoting the hydrogen reduction reaction, thereby increasing the ratio of hydrogen gas remaining in the external environment. This effect prevents hydrogen embrittlement, which is the cause of delayed fracture, and improves the delayed fracture resistance of steel. However, in order to have strength higher than the current level and excellent delayed fracture resistance equal to or higher than the current level, it is necessary to suppress hydrogen penetration more severely than the current level.

【0015】そこで、本発明者らは、Moと同様に水素
の侵入を抑制することで知られているCuに着目し、M
oおよびCuの複合添加の耐遅れ破壊性に及ぼす影響に
ついて研究した結果、下記の(a) 〜(c) の事項を確認す
ることができた。
Therefore, the present inventors have focused on Cu, which is known to suppress the penetration of hydrogen, like Mo, and
As a result of studying the effect of the combined addition of o and Cu on the delayed fracture resistance, the following items (a) to (c) could be confirmed.

【0016】(a) 従来提案されているMo量(重量%で
0.01〜0.8%)を含む低合金鋼にCuを追加添加
しても、それ以上の水素侵入抑制効果は認められない。
(A) Even if Cu is additionally added to the low alloy steel containing the amount of Mo (0.01 to 0.8% by weight) that has been conventionally proposed, a further hydrogen penetration inhibiting effect is recognized. Absent.

【0017】図1は、Cr1.5%未満の低合金鋼の水
素透過量に及ぼすMoおよびCuの影響を表す図面であ
る。同図によれば、Moが0.01〜0.8%の各種低
合金鋼(Cr1.5%未満)にCu0.3%を含有させ
ても、Cu無添加の場合に比べて水素透過量に実質的な
差は生じず、したがって鋼中への水素侵入量は減少しな
い。図1を求める際に用いた鋼のCuおよびMo以外の
合金元素の中心値は、C:0.35%、Si:0.64
%、Mn:0.22%、P:0.005%、S:0.0
02%、solAl:0.005%、Cr:0.63
%、Ni:0.25%、Nb:0.08%、V:0.0
5%およびN:0.003%である。なお、水素透過量
はイオン化して測定されているので、水素透過量の単位
(μC/cm)は、同図中、電気量(μC:マイクロク
ーロン)を含む単位で表示されている。
FIG. 1 is a drawing showing the effect of Mo and Cu on the amount of hydrogen permeation through a low alloy steel containing less than 1.5% Cr. According to the figure, even if various low alloy steels with Mo of 0.01 to 0.8% (Cr less than 1.5%) contain Cu 0.3%, the amount of hydrogen permeation is greater than that in the case where Cu is not added. Does not result in a substantial difference, and therefore the amount of hydrogen penetration into the steel does not decrease. The center values of alloying elements other than Cu and Mo of the steel used for obtaining FIG. 1 are C: 0.35%, Si: 0.64.
%, Mn: 0.22%, P: 0.005%, S: 0.0
02%, solAl: 0.005%, Cr: 0.63
%, Ni: 0.25%, Nb: 0.08%, V: 0.0
5% and N: 0.003%. Since the hydrogen permeation amount is measured by ionization, the unit of hydrogen permeation amount (μC / cm) is shown in the figure in a unit including the electric amount (μC: microcoulomb).

【0018】(b) Mo鋼にCuと併せてCrを1.5%
以上と高く含ませることにより、水素侵入の抑制効果を
飛躍的に高めることができる。
(B) Mo steel with Cu containing 1.5% of Cr
When the content is high as above, the effect of suppressing hydrogen invasion can be dramatically enhanced.

【0019】図2は、0.4%Mo鋼の水素透過量に及
ぼすCrおよびCuの影響を表す図面である。同図で用
いた鋼のCu、MoおよびCr以外の合金元素の中心値
は、C:0.35%、Si:0.28%、Mn:0.3
6%、P:0.005%、S:0.008%、solA
l:0.006%、Ni:0.45%、Nb:0.17
1%、V:0.05%およびN:0.003%であり、
ばらつきはきわめて小さかった。同図によればCrを
1.5%以上とし、同時にCuを0.3%含有させた
0.4%Mo鋼の水素透過量は著しく低くなることが分
かる。
FIG. 2 is a drawing showing the effect of Cr and Cu on the hydrogen permeation amount of 0.4% Mo steel. The center values of the alloy elements other than Cu, Mo and Cr of the steel used in the figure are C: 0.35%, Si: 0.28%, Mn: 0.3.
6%, P: 0.005%, S: 0.008%, solA
1: 0.006%, Ni: 0.45%, Nb: 0.17
1%, V: 0.05% and N: 0.003%,
The variability was very small. According to the figure, it can be seen that the hydrogen permeation amount of 0.4% Mo steel containing Cr at 1.5% or more and simultaneously containing 0.3% of Cu is significantly reduced.

【0020】(c) 引張強さが160kgf/mm2 以上
の高強度鋼の耐遅れ破壊性を高めるためには、Alは、
Al含有量のみでの制限のほかに、Nとの比、それもZ
r、TiおよびBと結合していない、いわゆる“有効
N”との比において適正な範囲に制限することが必要で
ある。
(C) In order to enhance the delayed fracture resistance of high strength steel having a tensile strength of 160 kgf / mm 2 or more, Al is
In addition to the limitation only by the Al content, the ratio with N, that is Z
It is necessary to limit the ratio to the so-called "effective N", which is not bound to r, Ti and B, to a proper range.

【0021】上記の事項に基づく本発明は、下記(1)
および(2)に示す耐遅れ破壊性に優れた機械構造用鋼
およびその製造方法を要旨とする。
The present invention based on the above matters has the following (1).
The gist is a steel for machine structural use, which is excellent in delayed fracture resistance, and a method for producing the same, as shown in (2).

【0022】(1)重量%で、C:0.3〜0.6%、
Si:0.5〜2%、Cu:0.1〜1%、Cr:1.
5〜5%、Mo:0.05〜1%、Al:0.005〜
0.01%、Nb:0.005〜0.2%、Ni:0.
05〜0.5%、V:0.01〜0.3%、Mn:0〜
0.5%、N:0.01%以下、Zr:0〜0.15
%、Ti:0〜0.1%およびB:0〜0.005%を
含有し、同時に下記の式および式を満たし、残部が
Feおよび不可避的不純物からなり、不可避的不純物の
うちのPおよびSの含有量が、P:0.015%以下お
よびS:0.01%以下であることを特徴とする耐遅れ
破壊性に優れた機械構造用鋼。
(1) C: 0.3-0.6% by weight,
Si: 0.5-2%, Cu: 0.1-1%, Cr: 1.
5-5%, Mo: 0.05-1%, Al: 0.005-
0.01%, Nb: 0.005-0.2%, Ni: 0.
05-0.5%, V: 0.01-0.3%, Mn: 0-
0.5%, N: 0.01% or less, Zr: 0 to 0.15
%, Ti: 0 to 0.1% and B: 0 to 0.005%, at the same time satisfying the following formulas and formulas, the balance consisting of Fe and inevitable impurities, and P and inevitable impurities: A steel for machine structural use having excellent delayed fracture resistance, wherein the content of S is P: 0.015% or less and S: 0.01% or less.

【0023】 0.4(%) ≦ Cu(%)+Mo(%) ・・・・・ 1.93 ≦ Al(%)/有効N(%) ≦10・・・・ ただし、有効N(%)=N(%)−{Zr(%)/6.
25}−{Ti(%)/3.43}−{B(%)/0.
78}(2)焼入れた後、Ac1 点以下の温度で焼戻し
をおこなうことを特徴とする請求項1に記載する機械構
造用鋼の製造方法。
0.4 (%) ≤ Cu (%) + Mo (%) ・ ・ ・ 1.93 ≤ Al (%) / effective N (%) ≤10 ... However, effective N (%) = N (%)-{Zr (%) / 6.
25}-{Ti (%) / 3.43}-{B (%) / 0.
78} (2) After quenching, tempering is performed at a temperature of Ac 1 point or less, The method for producing a steel for machine structural use according to claim 1.

【0024】ここで、有効Nとは、鋼中に含まれるA
l、Cr等以外の窒化物生成元素Zr、TiおよびBが
すべてNと結合して窒化物を生成したと仮定したとき、
Zr窒化物、Ti窒化物およびB窒化物を形成する窒素
以外の窒素をいう。すなわち、前記仮定のもとにおい
て、固溶窒素([])とAlNとしての窒素(N as A
lN)およびそのほかの元素との窒化物、例えばCrの窒
化物としての窒素(N as CrNなど)の和が対応する。強
力な窒化物生成元素であるZrやTiの窒化物は、12
50℃以上の高温で生成し粗大化しやすい特徴がある。
実際には、すべてのZr、TiおよびBが、Nと結合す
ることはないので、実際の固溶窒素、N as AlNおよびN
as CrNなどの和は、上記に定義される有効Nよりも多
い。また、上記の範囲ではCr窒化物は多くは生成しな
いので、実際には有効Nの大部分は、固溶窒素とN as A
lNからなる。ただし、1150℃以上の高温域ではAl
Nは固溶するので、同温度域ではほとんど全て固溶窒素
となる。
Here, effective N is A contained in steel.
When it is assumed that the nitride-forming elements Zr, Ti and B other than 1, Cr and the like are all combined with N to form a nitride,
Nitrogen other than nitrogen that forms Zr nitride, Ti nitride and B nitride. That is, under the above assumption, solid solution nitrogen ([ N ]) and nitrogen as AlN (N as A
lN) and a nitride with other elements, for example, the sum of nitrogen (N as CrN, etc.) as a nitride of Cr. Zr and Ti nitrides, which are strong nitride-forming elements, are
It has a feature that it is generated at a high temperature of 50 ° C or higher and is likely to coarsen.
Practically all Zr, Ti and B do not bond with N, so the actual solid solution nitrogen, N as AlN and N
The sum, such as as CrN, is greater than the effective N defined above. Further, in the above range, a large amount of Cr nitride is not formed, so in practice, most of the effective N is solid solution nitrogen and N as A.
It consists of lN. However, in the high temperature range of 1150 ° C or higher, Al
Since N dissolves in solid solution, almost all of it becomes solid solution nitrogen in the same temperature range.

【0025】また、有効N(%)でAl(%)を除した
“Al/有効N”は、後記するように実験値の整理に好
都合なために用いられたもので、その金相的意味は完全
には解明されていないが、AlおよびNを上記の範囲に
制限してAlNおよび固溶Alの量に歯止めをかけたう
えで、微細なAlNの生成しやすさを表示するものと考
えられる。
"Al / effective N", which is obtained by dividing Al (%) by effective N (%), is used because it is convenient for rearranging the experimental values as will be described later, and its metallic meaning. Has not been completely clarified, but it is considered that it limits the amount of AlN and solid solution Al by limiting Al and N to the above range and displays the easiness of forming fine AlN. To be

【0026】[0026]

【発明の実施の形態】以下に、本発明における鋼の化学
組成および製造方法の限定理由について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition of steel and the manufacturing method according to the present invention will be described below.

【0027】1.化学組成 本説明中、「%」は、いずれも「重量%」を表す。1. Chemical Composition In the present description, “%” represents “% by weight”.

【0028】C:Cは、炭化物を形成し析出強化によっ
て鋼を強化し、また、焼入時に安定なマルテンサイトを
生成させて変態によっても鋼を強化するので、高強度化
する上で必須の元素である。さらに焼入性の向上および
結晶の細粒化にも有効である。0.3%未満では焼入性
の劣化をきたし、また、炭化物の析出量が少なく強度が
低下する。一方、0.6%を超えると、焼入時の焼き割
れ感受性が増加し、加えて鋼が著しく硬化して延性、溶
接性および加工性が低下するので、0.3〜0.6%と
する。なお、所望の高強度を安定して得るためには、
0.4〜0.6%とすることが望ましい。
C: C forms a carbide and strengthens the steel by precipitation strengthening, and also forms stable martensite during quenching to strengthen the steel by transformation, so it is essential for increasing the strength. It is an element. Further, it is also effective in improving hardenability and making crystals finer. If it is less than 0.3%, the hardenability is deteriorated, and the amount of precipitated carbide is small and the strength is lowered. On the other hand, if it exceeds 0.6%, the susceptibility to quench cracking during quenching increases, and in addition, the steel remarkably hardens and the ductility, weldability and workability deteriorate, so 0.3-0.6% To do. In order to stably obtain the desired high strength,
It is desirable to be 0.4 to 0.6%.

【0029】Si:Siは、鋼の脱酸および強度増加の
ために有効である。0.5%未満ではその効果が得られ
ず、他方、2%を超えると鋼の清浄性を損い靭性の劣化
をきたす場合があるので、0.5〜2%とする。
Si: Si is effective for deoxidizing steel and increasing strength. If it is less than 0.5%, the effect cannot be obtained. On the other hand, if it exceeds 2%, the cleanliness of the steel may be impaired and toughness may be deteriorated, so the content is made 0.5 to 2%.

【0030】Cu:Cuは、外部から鋼中への水素侵入
を抑制するとともに、NbおよびCrと複合添加するこ
とによって鋼の焼戻し軟化抵抗を著しく高め、焼戻し温
度を高くとれるので、耐遅れ破壊性を大きく向上させ
る。さらに、図2に示したように、1.5%以上のCr
および一定量のMoと共存することにより、水素透過量
をいちじるしく減少させ耐遅れ破壊性の向上に有効であ
る。0.1%未満ではその効果が十分でなく、一方、1
%を超えると溶接性、熱間加工性および靭性の劣化をき
たすので、0.1〜1%とする。
Cu: Cu suppresses hydrogen invasion into the steel from the outside, and by adding Nb and Cr in combination, the tempering softening resistance of the steel is remarkably increased and the tempering temperature can be increased, so that delayed fracture resistance Greatly improve. Further, as shown in FIG. 2, 1.5% or more of Cr
Also, by coexisting with a fixed amount of Mo, the hydrogen permeation amount is remarkably reduced, and it is effective in improving delayed fracture resistance. If less than 0.1%, the effect is not sufficient, while 1
%, The weldability, hot workability and toughness are deteriorated, so the content is made 0.1 to 1%.

【0031】Cr:Crは、鋼の焼入性を向上させ、か
つ鋼の焼戻し軟化抵抗を高める。特に、NbやCuとの
複合添加により著しく焼戻軟化抵抗を向上させる。1.
5%未満ではCuとMoの複合添加による水素侵入抑制
効果が得られず、耐遅れ破壊性を飛躍的に向上させるこ
とはできない。他方、5%を超えると溶接性、熱間加工
性および靭性の劣化をきたす。従って、Crは、1.5
〜5%とする。非常に優れた耐遅れ破壊性を安定して得
るためには、1.7〜4%とするのが望ましい。
Cr: Cr improves the hardenability of the steel and enhances the temper softening resistance of the steel. In particular, the addition of Nb and Cu in combination significantly improves the temper softening resistance. 1.
If it is less than 5%, the effect of suppressing hydrogen intrusion by the combined addition of Cu and Mo cannot be obtained, and the delayed fracture resistance cannot be dramatically improved. On the other hand, if it exceeds 5%, weldability, hot workability and toughness deteriorate. Therefore, Cr is 1.5
To 5%. In order to stably obtain a very excellent delayed fracture resistance, the content is preferably 1.7 to 4%.

【0032】Mo:Moは、機構は異なるがCuと同様
に単独で水素侵入抑制効果を示す。また、鋼の焼入性を
向上させ、同時に焼戻し軟化抵抗をも高める。特に、C
u、Nb、Crとの複合添加により焼戻し軟化抵抗を著
しく増大させ、高い焼戻温度の採用を可能にして耐遅れ
破壊性を大きく改善する。また、Cuおよび1.5%以
上のCrとの共存による水素透過量の抑制にも有効であ
る。0.05%未満ではこれら効果は得られず、一方、
1%を超えてもその効果は飽和し、コストの上昇を招く
だけなので、0.05〜1%とする。
Mo: Mo has a different mechanism but exhibits a hydrogen invasion suppressing effect by itself like Cu. It also improves the hardenability of steel and at the same time increases the resistance to temper softening. In particular, C
By adding u, Nb, and Cr in combination, the temper softening resistance is remarkably increased, a high tempering temperature can be adopted, and the delayed fracture resistance is greatly improved. It is also effective in suppressing the amount of hydrogen permeation due to the coexistence of Cu and 1.5% or more of Cr. If less than 0.05%, these effects cannot be obtained, while
Even if it exceeds 1%, the effect is saturated and only the cost is increased, so the content is made 0.05 to 1%.

【0033】Al:Alは、鋼の脱酸および細粒化を図
るのに有効である。0.005%未満では所望の効果を
得ることができず、一方、0.01%を超えると本発明
の指向する高強度レベルでは、介在物(アルミナなど)
の量が耐遅れ破壊性を劣化させる領域に入るので、0.
005〜0.01%とする。また、Alは、後記するよ
うに、有効Nとの比においても適正な範囲とする必要が
ある。
Al: Al is effective for deoxidizing and refining steel. If it is less than 0.005%, the desired effect cannot be obtained, while if it exceeds 0.01%, inclusions (alumina, etc.) are present at the high strength level targeted by the present invention.
Is in the range that deteriorates the delayed fracture resistance, so 0.
005-0.01%. Further, as described later, Al needs to be in a proper range also in the ratio with effective N.

【0034】Nb:Nbは、鋼の細粒化をもたらし、耐
遅れ破壊性を一段と向上させる。0.005%未満では
所望の効果が得られず、一方、0.2%を超えると強度
および延性を損うので0.005〜0.2%とする。
Nb: Nb causes grain refinement of steel and further improves delayed fracture resistance. If it is less than 0.005%, the desired effect cannot be obtained, while if it exceeds 0.2%, the strength and ductility are impaired, so the content is made 0.005 to 0.2%.

【0035】Ni:Niは、鋼の靭性を高め、同時に熱
間圧延中表面に濃縮した溶融Cuによる表面の熱間亀甲
われを防止する。0.05%未満では所望の効果が得ら
れず、一方、0.5%を超えるとその効果が飽和し、ま
た、Niは合金元素として高価であるため経済性を考慮
して、0.05〜0.5%とする。
Ni: Ni enhances the toughness of the steel, and at the same time prevents hot pebbles on the surface due to molten Cu concentrated on the surface during hot rolling. If it is less than 0.05%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.5%, the effect is saturated, and since Ni is expensive as an alloying element, it is economically considered to be 0.05. ~ 0.5%.

【0036】V:Vは、Nbと同様に鋼の細粒化作用が
あり、粒界偏析の軽減により耐遅れ破壊性を一段と向上
させる。また、Vは鋼の焼戻し軟化抵抗を高めるので、
高い焼戻し温度の採用を可能にして耐遅れ破壊性を改善
する。0.01%未満ではその効果は十分ではなく、一
方、0.3%を超えると靭性の劣化をきたすので、0.
01〜0.3%とする。
V: V has a grain refining effect on steel similarly to Nb, and further improves delayed fracture resistance by reducing grain boundary segregation. Further, V increases the resistance to temper softening of steel, so
Allows the use of high tempering temperatures to improve delayed fracture resistance. If it is less than 0.01%, the effect is not sufficient, while if it exceeds 0.3%, the toughness is deteriorated.
It is set to 01 to 0.3%.

【0037】Mn:Mnは、脱酸や焼入性向上に有効な
元素であるが、多量に含有させると粒界脆化現象が生
じ、遅れ破壊の発生を促進する。さらに、Mnは凝固時
に濃厚偏析部を形成しやすくそこで粗大なMnSを形成
し、これが圧延によって展伸して遅れ破壊の起点となる
ので、耐遅れ破壊性の改善のためには極力その量を低下
させなければならない。焼入性の確保を考慮して0.5
%未満とするが、焼入性をほかの元素で補うことができ
ればMnは実質的に0でもよい。
Mn: Mn is an element effective in deoxidizing and improving hardenability, but if contained in a large amount, a grain boundary embrittlement phenomenon occurs and promotes the occurrence of delayed fracture. Further, Mn easily forms a dense segregation portion during solidification, and coarse MnS is formed there. This expands by rolling and becomes a starting point of delayed fracture. Therefore, the amount thereof should be minimized to improve delayed fracture resistance. Must be lowered. 0.5 to ensure hardenability
%, But Mn may be substantially 0 if the hardenability can be supplemented with other elements.

【0038】N:Nは、鋼の細粒化を図り、耐遅れ破壊
性を改善するのに有効である。しかし、0.01%を超
えると粗大な窒化物を生成し、かえって耐遅れ破壊性を
劣化させるので、0.01%以下とする。一方、0.0
02%未満では細粒化効果は十分ではないが、Nが低い
ことによりオーステナイト粒界等に連なった窒化物がで
きにくくなり、その分、耐遅れ破壊性が向上する。した
がって、0.002%以上であることは望ましいが、
0.002%以上を必須とするわけではない。なお、N
は、後記するように、Al、Zr、TiおよびBととも
に条件の不等式、1.93≦Al(%)/有効N
(%)≦10を満足させる必要がある。
N: N is effective for making the steel finer and improving the delayed fracture resistance. However, if it exceeds 0.01%, coarse nitrides are generated and the delayed fracture resistance is deteriorated, so the content is made 0.01% or less. On the other hand, 0.0
If it is less than 02%, the grain refining effect is not sufficient, but if N is low, it becomes difficult to form nitrides linked to austenite grain boundaries and the like, and the delayed fracture resistance is improved accordingly. Therefore, 0.002% or more is desirable, but
0.002% or more is not essential. Note that N
Is an inequality condition of 1.93 ≦ Al (%) / effective N together with Al, Zr, Ti and B, as will be described later.
It is necessary to satisfy (%) ≦ 10.

【0039】Zr:Zrは、添加しなくてもよい。添加
すれば鋼中に炭化物を球状微細に分散させて耐遅れ破壊
性をいっそう改善する。従って、とくに高強度の鋼に高
い耐遅れ破壊性を付与する目的で含有させてもよい。前
記効果を確実に得るには、0.01%以上とすることが
望ましい。しかし、0.15%を超えると靭性の劣化を
きたすので添加する場合でも0.15%以下とする。
Zr: Zr may not be added. When added, the carbide is dispersed in the steel in a spherical fine form to further improve the delayed fracture resistance. Therefore, it may be contained for the purpose of imparting high delayed fracture resistance to particularly high strength steel. In order to surely obtain the above effect, it is desirable to set it to 0.01% or more. However, if it exceeds 0.15%, the toughness deteriorates, so even if it is added, the content is made 0.15% or less.

【0040】Ti:Tiは、添加しなくてもよい。添加
すれば高強度化し、かつ連続鋳造スラブの表面性状を改
善する作用を有する。このため、表面性状が問題となる
場合には添加してもよい。この効果を確実に得るために
はTiは0.01%以上とすることが望ましい。しか
し、その量が0.1%を超えると、鋼の靭性を劣化する
ようになるので、添加する場合でも0.1%以下とす
る。
Ti: Ti may not be added. If added, it has the effect of increasing the strength and improving the surface properties of the continuously cast slab. Therefore, they may be added when the surface properties are a problem. In order to surely obtain this effect, it is desirable that Ti is 0.01% or more. However, if the amount exceeds 0.1%, the toughness of the steel deteriorates, so even if it is added, it is made 0.1% or less.

【0041】B:Bは、添加しなくてもよい。添加すれ
ば、鋼の焼入性を一段と向上させ高強度化し、かつ粒界
を強化することにより耐遅れ破壊性を一層改善する。こ
のため、とくに製品寸法が大きい場合には高強度を確保
する目的で添加してもよい。この効果を確実に得るため
には、0.0003%以上とすることが望ましい。しか
し、0.005%を超えると、鋼の靭性を劣化するので
0.005%以下とする。
B: B may not be added. If added, the hardenability of the steel is further improved, the strength is increased, and the grain boundary is strengthened, whereby the delayed fracture resistance is further improved. Therefore, it may be added for the purpose of ensuring high strength particularly when the product size is large. In order to surely obtain this effect, it is desirable to be 0.0003% or more. However, if it exceeds 0.005%, the toughness of the steel deteriorates, so the content is made 0.005% or less.

【0042】Cu+Mo:Crを1.5%以上としたう
えでCuとMoを複合添加することは、本発明において
は非常に重要である。これら水素侵入抑制機構の異なる
元素を組み合わせることにより、各元素の単独添加で得
られる効果を合わせたものより高い水素侵入抑制効果を
得ることができる。
Cu + Mo: It is very important in the present invention to add Cu and Mo together after the content of Cr is 1.5% or more. By combining these elements having different hydrogen invasion suppressing mechanisms, it is possible to obtain a higher hydrogen invasion suppressing effect than the combined effect obtained by adding each element alone.

【0043】図3は、低合金鋼の水素透過量に及ぼすC
u+Mo(CuとMoを合わせた含有量)の影響を表す
図面である。同図に示すように、Cu+Moが0.4%
未満では所望の効果が得られない。したがって、優れた
耐遅れ破壊性を具備させるためには、Cu+Moを0.
4%以上としなければならない。図3を得るために用い
た鋼の合金元素の中心値は、C:0.52%、Si:
1.31%、Cr:4.0%、Al:0.01%、N
b:0.09%、Ni:0.09%、V:0.02%、
Mn:0.15%、P:0.013%、S:0.01%
であり、CuおよびMoをそれぞれ0.04〜0.53
%および0.04〜0.55%の範囲内で変えて、Cu
+Moを調整した。
FIG. 3 shows the effect of C on the amount of hydrogen permeation of low alloy steel.
It is a figure showing the influence of u + Mo (content which combined Cu and Mo). As shown in the figure, Cu + Mo is 0.4%
If it is less than the desired value, the desired effect cannot be obtained. Therefore, in order to provide excellent delayed fracture resistance, Cu + Mo is added to 0.
Must be 4% or more. The center values of the alloying elements of the steel used to obtain FIG. 3 are C: 0.52%, Si:
1.31%, Cr: 4.0%, Al: 0.01%, N
b: 0.09%, Ni: 0.09%, V: 0.02%,
Mn: 0.15%, P: 0.013%, S: 0.01%
And Cu and Mo are 0.04 to 0.53, respectively.
%, And within the range of 0.04 to 0.55%, Cu
+ Mo was adjusted.

【0044】Al/有効N:本発明者らは、Alおよび
Nも含めて合金元素を上記の本発明の範囲内として、A
l/有効Nを変化させた鋼について耐遅れ破壊性能を調
査することにより、Al/有効Nの大きな効果を確認し
た。すなわち、Al/有効Nを1.93〜10に制御す
ることにより、引張強さ160kg/mm2 以上の鋼で
も、所望の優れた耐遅れ破壊性を得ることができる。つ
ぎに示す図4〜図7は、本発明を完成させるためにおこ
なった実験結果である。これら図において、“Al/有
効N”が、実験結果を整理するのに好適な指標であるこ
とが分かる。
Al / Effective N: The present inventors set Al and N as alloying elements within the scope of the present invention as described above.
A large effect of Al / effective N was confirmed by investigating the delayed fracture resistance of steels with different 1 / effective N. That is, by controlling Al / effective N to be 1.93 to 10, it is possible to obtain desired excellent delayed fracture resistance even with steel having a tensile strength of 160 kg / mm 2 or more. Next, FIG. 4 to FIG. 7 show the results of experiments conducted to complete the present invention. In these figures, it can be seen that "Al / effective N" is a suitable index for organizing the experimental results.

【0045】図4は、Zr、TiおよびBを含まない鋼
の耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面
である。図中の記号“EN”は、有効Nを表す。
FIG. 4 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steel not containing Zr, Ti and B. The symbol "EN" in the figure represents an effective N.

【0046】また、図5は、TiおよびBを含まない鋼
の耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面
である。
FIG. 5 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steel containing neither Ti nor B.

【0047】図6は、Zrを含まない鋼の耐遅れ破壊性
に及ぼすAl/有効Nの影響を表す図面である。
FIG. 6 is a drawing showing the influence of Al / effective N on the delayed fracture resistance of Zr-free steel.

【0048】また、図7は、Zr、TiおよびBをすべ
て含む鋼の耐遅れ破壊性に及ぼすAl/有効Nの影響を
表す図面である。
FIG. 7 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of the steel containing all of Zr, Ti and B.

【0049】これらの図4〜図7から、前記のAl/有
効Nが1.93未満の場合と、10を超える場合にはい
ずれも割れが発生することが明らかである。さらに、割
れは全て粗大な窒化物を起点としていることが判明し
た。この結果に基づいて、Al/有効Nを1.93以上
10以下とする。
From these FIGS. 4 to 7, it is clear that cracking occurs both when the Al / effective N is less than 1.93 and when it exceeds 10. Furthermore, it was found that all cracks originated from coarse nitride. Based on this result, Al / effective N is set to 1.93 or more and 10 or less.

【0050】P:いかなる熱処理を施してもPの粒界偏
析を完全に消滅させることはできず、粒界強度を低下さ
せ耐遅れ破壊性を劣化させるため、Pは低いほど望まし
い。しかし、Pを低下させることは製鋼費用を上昇させ
るので、許容できる範囲である0.015%以下とす
る。
P: The grain boundary segregation of P cannot be completely eliminated by any heat treatment, the grain boundary strength is lowered and the delayed fracture resistance is deteriorated. However, lowering P raises the steelmaking cost, so it is made 0.015% or less, which is an allowable range.

【0051】S:Sは、上述したように、Mnと結合し
て割れの基点となり、さらに単独でも固溶状態で粒界に
偏析して遅れ破壊の原因となる水素脆化を促進するた
め、極力低く制限することが必要である。しかし、Sを
下げることは、Pと比較して製鋼費用の上昇は小さいも
のの、確実にコスト上昇を招く。したがって性能上許容
できる範囲である0.01%以下とする。
S: S, as described above, serves as a base point for cracking by combining with Mn, and even alone, segregates at the grain boundaries in a solid solution state to promote hydrogen embrittlement, which causes delayed fracture. It is necessary to limit it as low as possible. However, although lowering the S does not increase the steelmaking cost as compared with the P, the cost certainly increases. Therefore, the amount is set to 0.01% or less, which is an allowable range for performance.

【0052】2.製造方法 通常、本発明鋼は焼入れ焼戻しの熱処理を適用して使用
される。焼入れ焼戻しにより形成される組織はとくに限
定しない。しかし、上記した化学組成を有する鋼であっ
ても、160kgf/mm2 以上の引張強さと良好な耐
遅れ破壊性とを具備させるにはマルテンサイトあるいは
マルテンサイトとベイナイトの混合組織を焼戻した組織
であることが望ましい。そのための熱処理としては、通
常の熱間圧延(加熱温度:1000〜1250℃)を行
い、圧延後、Ar3 点より低い温度にまで冷却すること
なくそのままAr3 点以上の温度(好ましくは850〜
1020℃)から水または油で焼入れる、いわゆる直接
焼入れをおこなう。または、圧延後いったん冷却した
後、850〜1050℃(好ましくは920〜1020
℃)に再加熱し水または油で焼入れる。これら直接焼入
れまたは再加熱焼入れによって得られたマルテンサイト
やマルテンサイトとベイナイトの混合組織を、そののち
Ac1 点以下の温度で焼戻すことが望ましい。
2. Manufacturing method Usually, the steel of the present invention is used by applying a heat treatment of quenching and tempering. The structure formed by quenching and tempering is not particularly limited. However, even in the case of steel having the above chemical composition, in order to have tensile strength of 160 kgf / mm 2 or more and good delayed fracture resistance, it is necessary to use a tempered structure of martensite or a mixed structure of martensite and bainite. Is desirable. The heat treatment for the usual hot rolling (heating temperature: 1000 to 1250 ° C.) performs, after rolling, it is Ar 3 point or more temperature without cooling to a temperature lower than the Ar 3 point (preferably 850 to
Quenching with water or oil from 1020 ° C), so-called direct quenching is performed. Alternatively, after being rolled and then once cooled, it is 850 to 1050 ° C. (preferably 920 to 1020).
Reheat to ℃) and quench with water or oil. It is desirable that the martensite or the mixed structure of martensite and bainite obtained by these direct quenching or reheating quenching is then tempered at a temperature of Ac 1 point or less.

【0053】しかし、必ずしも焼入れ焼戻しをおこなう
必要はない。何故なら、本発明鋼は使用中、水素侵入量
を低減させて耐遅れ破壊性を向上させるものであるから
鋼内部の組織に大きく依存することがないからである。
例えば熱間圧延のまま、または焼入のまま(AsQ)等
の組織でも後述の実施例に示すように、160kgf/
mm2 以上の引張強さと優れた耐遅れ破壊性を示す。
However, quenching and tempering are not necessarily required. This is because the steel of the present invention reduces the amount of hydrogen penetration during use and improves delayed fracture resistance, and therefore does not largely depend on the structure inside the steel.
For example, even with a structure such as hot rolling or as-quenched (AsQ), as shown in Examples described later, 160 kgf /
It exhibits a tensile strength of mm 2 or more and excellent delayed fracture resistance.

【0054】ただし、焼入れままの鋼は引張強さは高い
が、降伏点が低く機械構造用鋼として使用する場合に使
用中に応力緩和の増大が生じるという問題がある。した
がって、所定の強度と耐遅れ破壊性を得るためには焼入
れ焼戻し処理を施して、主として焼戻しマルテンサイト
または焼戻ししたマルテンサイト+ベイナイトの混合組
織とするのが望ましい。
Although the as-quenched steel has a high tensile strength, it has a low yield point, and when it is used as a steel for machine structural use, there is a problem that stress relaxation increases during use. Therefore, in order to obtain a predetermined strength and delayed fracture resistance, it is desirable to apply quenching and tempering treatment to obtain mainly tempered martensite or a tempered martensite + bainite mixed structure.

【0055】[0055]

【実施例】次に本発明を実施例により比較鋼と対比しな
がら説明する。
EXAMPLES The present invention will now be described by way of examples in comparison with comparative steels.

【0056】表1および表2は、本発明鋼および比較鋼
(従来鋼を含む)の化学組成と製造方法をまとめた一覧
表である。
Tables 1 and 2 are a list of chemical compositions and production methods of the present invention steels and comparative steels (including conventional steels).

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】通常の方法によって、表1および表2に示
す化学組成の鋼(鋼1〜49)を50kg真空溶解炉に
て溶製した。鋼1〜37は、本発明の鋼であり、鋼38
〜49は、表2において*印を付した成分をもつ鋼で、
本発明の範囲から外れている。また、表2に示す鋼50
〜52は、従来鋼であり、鋼50はJIS G 4105(1989)の
SCM440、鋼51はJIS G 4103 (1989) のSNCM
616に相当する鋼であり、また鋼52は、特開昭58
−84960号公報に提案されている鋼である。
Steels (steels 1 to 49) having the chemical compositions shown in Tables 1 and 2 were melted in a 50 kg vacuum melting furnace by a usual method. Steels 1 to 37 are steels of the present invention, and steel 38
~ 49 is a steel having a component marked with * in Table 2,
It is outside the scope of the present invention. In addition, steel 50 shown in Table 2
52 are conventional steels, steel 50 is SCM440 of JIS G 4105 (1989), steel 51 is SNCM of JIS G 4103 (1989)
Steel corresponding to 616, and steel 52 is disclosed in
This is the steel proposed in Japanese Patent Publication No. 84960.

【0060】鋼1〜4、鋼8〜15、鋼19〜24、鋼
28〜32、鋼36〜39、鋼43〜49は、1100
〜1200℃にて熱間鍛造および熱間圧延して厚さ15
mmの板材とし、950℃に再加熱して45分間保持し
て水焼入れした後、焼戻し空冷した。焼戻しにおいて
は、引張強さを160kgf/mm2 以上となるように
焼戻し温度を調整した。また、鋼50〜52の従来鋼に
ついても同様の焼入れ焼戻し処理を行った。すなわち、
鋼50〜52についてそれぞれ870、900、950
℃に再加熱して45分間保持した後、水焼入れし、その
後焼戻しを施した。さらに上記以外の熱間圧延まま材
(鋼5、16、25、33、40)、焼入れまま材(鋼
6、17、26、34、41)、熱間圧延後加速冷却を
施したもの(鋼7、18、27、35、42)について
も試験材を準備した。加速冷却では、Ar3 点以上から
400〜500℃までの冷却速度を10〜15℃/秒と
なるように水冷した。
Steel 1 to 4, steel 8 to 15, steel 19 to 24, steel 28 to 32, steel 36 to 39, and steel 43 to 49 are 1100.
Hot forging and hot rolling at ~ 1200 ° C to a thickness of 15
After making it into a plate material of mm, it was reheated to 950 ° C., held for 45 minutes and water-quenched, and then tempered and air-cooled. In the tempering, the tempering temperature was adjusted so that the tensile strength was 160 kgf / mm 2 or more. Further, similar quenching and tempering treatment was performed on the conventional steels of the steels 50 to 52. That is,
870, 900, 950 for steels 50-52, respectively
After being reheated to ℃ and held for 45 minutes, it was water-quenched and then tempered. Further, hot-rolled materials other than the above (steels 5, 16, 25, 33, 40), as-quenched materials (steels 6, 17, 26, 34, 41), hot-rolled and accelerated cooling (steel) 7, 18, 27, 35, 42), the test material was prepared. In accelerated cooling, water cooling was performed so that the cooling rate from Ar 3 point or higher to 400 to 500 ° C was 10 to 15 ° C / sec.

【0061】これら試験材についての耐遅れ破壊性の調
査は、定荷重試験方法によった。
The delayed fracture resistance of these test materials was investigated by the constant load test method.

【0062】図8は、耐遅れ破壊性の評価に用いた試験
片および試験片に設けられた切り欠き(ノッチ)の形状
を示す図面である。図8(イ)は試験片の形状を示し、
図8(ロ)は試験片のノッチ部の拡大図を示す。
FIG. 8 is a drawing showing the shapes of the test pieces used for the evaluation of delayed fracture resistance and the notches provided in the test pieces. FIG. 8A shows the shape of the test piece,
FIG. 8B shows an enlarged view of the notch portion of the test piece.

【0063】図9は、耐遅れ破壊性を評価する定荷重試
験装置を表す図面である。図8に示すような形状、寸法
の試験片を図9に示す定荷重試験機にセットして、pH
=2のワルポール液(塩酸と酢酸ナトリウム水溶液の混
合液)環境下で静荷重(引張応力:140kgf/mm
2 )をかけ定電流(1mA/cm2 )を流して水素を試
験片に陰極チャージしながら、破断の発生を観察した。
試験環境としてのpH=2は、実使用環境において実現
可能な最も厳しい環境に相当する。また、試験の間、試
験温度は温度調節装置により遅れ破壊試験を行うときの
標準温度である25℃に保持された。
FIG. 9 is a drawing showing a constant load test apparatus for evaluating delayed fracture resistance. A test piece having a shape and dimensions as shown in FIG. 8 is set in the constant load tester shown in FIG.
= 2 under Walpol liquid (mixture of hydrochloric acid and sodium acetate solution) static load (tensile stress: 140 kgf / mm
While cathodic charging the specimen hydrogen flowing over 2) constant current (1 mA / cm 2), it was observed the occurrence of fracture.
PH = 2 as the test environment corresponds to the most severe environment that can be realized in the actual use environment. During the test, the test temperature was kept at 25 ° C., which is the standard temperature for the delayed fracture test, by the temperature controller.

【0064】表3および表4は、各鋼の引張強さ、衝撃
吸収エネルギと高温圧縮応力の測定結果に加えて、上記
の定荷重試験における破断時間をまとめた一覧表であ
る。同表において750h以内に破断しなかったものは
○、破断したものは×として表示し、課題達成の可否を
明示した。
Tables 3 and 4 are a list of the breaking times in the above-mentioned constant load tests, in addition to the measurement results of the tensile strength, impact absorption energy and high temperature compressive stress of each steel. In the same table, those that did not break within 750 h were indicated by ◯, and those that broke were indicated by ×, and the achievement of the task was clearly indicated.

【0065】[0065]

【表3】 [Table 3]

【0066】[0066]

【表4】 [Table 4]

【0067】表3および表4より、本発明の鋼は、定荷
重破断時間がいずれも従来の基準である200hを大き
く超えて750hでも破壊せず、すべて2000hを超
えており耐遅れ破壊性に優れていることが明らかであ
る。また靭性の点ではシャルピー試験の吸収エネルギ値
が高いこと、および、延性の点では高温圧縮試験の変形
必要応力が小さくなっていることから、それぞれ改善さ
れていることが判る。すなわち、耐遅れ破壊性だけでな
く、製造する上でもまた使用するうえでも、従来の鋼に
まさって実際に使用しやすい材料である。
From Tables 3 and 4, the steels of the present invention show that the constant load rupture time does not break even after 750 hours, which is much longer than the conventional standard of 200 hours, and exceeds 2000 hours in all, indicating delayed fracture resistance. It is clear that it is excellent. Further, in terms of toughness, the absorbed energy value of the Charpy test is high, and in terms of ductility, the required deformation stress of the high temperature compression test is small, and thus it can be understood that they have been improved. In other words, it is a material that is not only delayed fracture resistant but also easier to use in practice than conventional steels in manufacturing and use.

【0068】[0068]

【発明の効果】本発明鋼は、160kgf/mm2 以上
の引張強さを有し、従来よりも永い一定期間の取り替え
をおこなっても遅れ破壊発生のおそれがないので、市民
生活に近接した構造物において使用量の多い高張力ボル
トやPC鋼棒、さらに高強度を要する機械部品に従来よ
り高い信頼性のもとに使用でき、関連産業への効果は多
大である。
INDUSTRIAL APPLICABILITY The steel of the present invention has a tensile strength of 160 kgf / mm 2 or more, and there is no risk of delayed fracture even if it is replaced for a certain period of time longer than in the past. It can be used with high reliability in high-tensile bolts, PC steel rods, and mechanical parts that require high strength, and it has a great effect on related industries.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、Cr1.5%未満の低合金鋼の水素透
過量に及ぼすMoおよびCuの影響を表す図面である。
FIG. 1 is a drawing showing the effect of Mo and Cu on the hydrogen permeation amount of a low alloy steel with Cr less than 1.5%.

【図2】図2は、0.4%Mo鋼の水素透過量に及ぼす
CrおよびCuの影響を表す図面である。
FIG. 2 is a drawing showing the influence of Cr and Cu on the hydrogen permeation amount of 0.4% Mo steel.

【図3】図3は、低合金鋼の水素透過量に及ぼすCu+
Moの影響を表す図面である。
FIG. 3 is a diagram showing Cu + which affects the hydrogen permeation amount of a low alloy steel.
It is a figure showing the influence of Mo.

【図4】図4は、Zr、TiおよびBを含まない鋼の遅
れ耐破壊性に及ぼすAl/有効Nの影響を表す図面であ
る。
FIG. 4 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steels not containing Zr, Ti and B.

【図5】図5は、TiおよびBを含まない鋼の耐遅れ破
壊性に及ぼすAl/有効Nの影響を表す図面である。
FIG. 5 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of steels not containing Ti and B.

【図6】図6は、Zrを含まない鋼の耐遅れ破壊性に及
ぼすAl/有効Nの影響を表す図面である。
FIG. 6 is a drawing showing the effect of Al / effective N on the delayed fracture resistance of Zr-free steel.

【図7】図7は、Zr、TiおよびBをすべて含む鋼の
耐遅れ破壊性に及ぼすAl/有効Nの影響を表す図面で
ある。
FIG. 7 is a drawing showing the influence of Al / effective N on the delayed fracture resistance of steel containing all of Zr, Ti and B.

【図8】図8は、耐遅れ破壊性の評価に用いた試験片と
試験片のノッチの形状および寸法を示す図面であり、図
8(イ)は試験片を示し、図8(ロ)は試験片のノッチ
部の拡大図を示す。
FIG. 8 is a drawing showing shapes and dimensions of a test piece used for evaluation of delayed fracture resistance and a notch of the test piece, FIG. 8 (a) showing the test piece, and FIG. Shows an enlarged view of the notch portion of the test piece.

【図9】図9は、耐遅れ破壊性の評価に用いた定荷重試
験機の概要を表す図面である。
FIG. 9 is a drawing showing an outline of a constant load tester used for evaluation of delayed fracture resistance.

【符号の説明】[Explanation of symbols]

1…試験片(耐遅れ破壊性評価用引張試験片) 2…ワルポール液 3…ポンプ 4…重錘 5…ポテンショスタット 6…対極 7…温度調節装置 8…定荷重試験機 DESCRIPTION OF SYMBOLS 1 ... Test piece (tensile test piece for delayed fracture resistance evaluation) 2 ... Walpole liquid 3 ... Pump 4 ... Weight 5 ... Potentiostat 6 ... Counter electrode 7 ... Temperature control device 8 ... Constant load tester

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.3〜0.6%、Si:
0.5〜2%、Cu:0.1〜1%、Cr:1.5〜5
%、Mo:0.05〜1%、Al:0.005〜0.0
1%、Nb:0.005〜0.2%、Ni:0.05〜
0.5%、V:0.01〜0.3%、Mn:0〜0.5
%、N:0.01%以下、Zr:0〜0.15%、T
i:0〜0.1%およびB:0〜0.005%を含有
し、同時に下記の式および式を満たし、残部がFe
および不可避的不純物からなり、不可避的不純物のうち
のPおよびSの含有量が、P:0.015%以下および
S:0.01%以下であることを特徴とする耐遅れ破壊
性に優れた機械構造用鋼。 0.4(%) ≦ Cu(%)+Mo(%) ・・・・・ 1.93 ≦ Al(%)/有効N(%) ≦10・・・・ ただし、有効N(%)=N(%)−{Zr(%)/6.
25}−{Ti(%)/3.43}−{B(%)/0.
78}
1. C: 0.3-0.6% by weight, Si:
0.5-2%, Cu: 0.1-1%, Cr: 1.5-5
%, Mo: 0.05 to 1%, Al: 0.005 to 0.0
1%, Nb: 0.005 to 0.2%, Ni: 0.05 to
0.5%, V: 0.01 to 0.3%, Mn: 0 to 0.5
%, N: 0.01% or less, Zr: 0 to 0.15%, T
i: 0 to 0.1% and B: 0 to 0.005%, and at the same time satisfy the following formula and formula, with the balance being Fe
And unavoidable impurities, and the content of P and S in the unavoidable impurities is P: 0.015% or less and S: 0.01% or less, which is excellent in delayed fracture resistance. Steel for machine structure. 0.4 (%) ≤ Cu (%) + Mo (%) ・ ・ ・ ・ ・ 1.93 ≤ Al (%) / effective N (%) ≤10 ... However, effective N (%) = N ( %)-{Zr (%) / 6.
25}-{Ti (%) / 3.43}-{B (%) / 0.
78}
【請求項2】焼入れた後、Ac1 点以下の温度で焼戻し
をおこなうことを特徴とする請求項1に記載する機械構
造用鋼の製造方法。
2. The method for producing a steel for machine structural use according to claim 1, wherein after quenching, tempering is performed at a temperature of Ac 1 point or less.
JP01498496A 1996-01-31 1996-01-31 Steel for machine structure and method of manufacturing the same Expired - Lifetime JP3221309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01498496A JP3221309B2 (en) 1996-01-31 1996-01-31 Steel for machine structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01498496A JP3221309B2 (en) 1996-01-31 1996-01-31 Steel for machine structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09209085A true JPH09209085A (en) 1997-08-12
JP3221309B2 JP3221309B2 (en) 2001-10-22

Family

ID=11876231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01498496A Expired - Lifetime JP3221309B2 (en) 1996-01-31 1996-01-31 Steel for machine structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3221309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
RU2477760C1 (en) * 2011-12-14 2013-03-20 Юлия Алексеевна Щепочкина Steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088241A (en) * 2010-10-21 2012-05-10 Nippon Steel Corp Delayed fracture characteristic evaluation method for pc steel
RU2477760C1 (en) * 2011-12-14 2013-03-20 Юлия Алексеевна Щепочкина Steel

Also Published As

Publication number Publication date
JP3221309B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
MX2014002896A (en) Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing.
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
WO2001042523A1 (en) Wear-resistant steel product and method for production thereof
JPS6352090B2 (en)
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH08209289A (en) Steel for machine structural use excellent in delayed fracture resistance
JP3221309B2 (en) Steel for machine structure and method of manufacturing the same
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH06248386A (en) Steel for machine structure excellent in delayed fracture resistance
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JPH08333651A (en) Steel material excellent in heat-affected zone hardening resistance
JPH0770695A (en) Steel for machine structure excellent in delayed fracture resistance
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JPH06240406A (en) Steel plate with high strength and high toughness
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
JPH0860291A (en) Steel for machine structural use, excellent in delayed fracture resistance
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JP3400886B2 (en) High tension bolt steel with excellent hydrogen entry prevention effect
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JPH11140585A (en) Heat treated steel having optimum toughness
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
KR100345715B1 (en) Manufacturing method of composite tissue steel for high strength bolts with resistance ratio
WO2018002426A1 (en) Martensitic stainless steel and method for the manufacture
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term