JPS61174326A - Production of machine structural steel having superior delayed fracture resistance - Google Patents

Production of machine structural steel having superior delayed fracture resistance

Info

Publication number
JPS61174326A
JPS61174326A JP1610885A JP1610885A JPS61174326A JP S61174326 A JPS61174326 A JP S61174326A JP 1610885 A JP1610885 A JP 1610885A JP 1610885 A JP1610885 A JP 1610885A JP S61174326 A JPS61174326 A JP S61174326A
Authority
JP
Japan
Prior art keywords
steel
less
temperature
delayed fracture
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1610885A
Other languages
Japanese (ja)
Other versions
JPH0454725B2 (en
Inventor
Yoshihiko Kamata
芳彦 鎌田
Yasuo Otani
大谷 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1610885A priority Critical patent/JPS61174326A/en
Publication of JPS61174326A publication Critical patent/JPS61174326A/en
Publication of JPH0454725B2 publication Critical patent/JPH0454725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a machine structural steel having specified tensile strength or above and superior delayed fracture resistance by restricting the contents of C, Si, Mn, P, S and Cr as principal components and regulating temp. conditions during quenching and tempering after hot rolling. CONSTITUTION:A steel consisting of 0.18-0.35% C, <=0.5% Si, <0.5% Mn, <=0.01% P, <=0.01% S, 0.01-5% Cr and the balance Fe with inevitable impurities is hot rolled, quenched from >=870 deg.C, and tempered at a low temp. of 150-600 deg.C. The machine structural steel having >=125kgf/mm<2> tensile strength and causing no delayed fracture for >=about 5,000hr can be obtd. The steel may further contain 0.005-0.1% Nb and one or more among <=0.3% V, <=0.005% B, <=0.05% Ti and <=0.5% Mo.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、125kgf/mm2以上の引張強さを有し
、且つ耐遅れ破壊性に優れた高張力ボルトやPC鋼棒、
更に大型機械用の高張力鋼板などの機械構造用鋼の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to high-tensile bolts and PC steel bars that have a tensile strength of 125 kgf/mm2 or more and excellent delayed fracture resistance.
Furthermore, it relates to a method of manufacturing steel for machine structures such as high-strength steel plates for large machines.

更に詳細には本発明は、構造物の大型化に伴い自重の軽
減と断面減少による材料と旅行費の節約によって経済性
の向上が要求されつつある量産鋼である高張力鋼、更に
は構造物、機械部品などの高性能化、軽量化に伴って高
応力に耐え、しかも比強度の高いことの要求される強力
鋼および超強力鋼の製造法に関する。
More specifically, the present invention applies to high-strength steel, which is mass-produced steel, which is required to improve economical efficiency by reducing self-weight and reducing cross-section to save material and travel costs as structures become larger. This invention relates to a method for manufacturing strong steel and ultra-strong steel, which are required to withstand high stress and have high specific strength as mechanical parts and the like are improved in performance and reduced in weight.

従来の技術 近年、特に構造物の大型化、自動車やトラック、土木機
械等の軽量化に伴い引張強さが125kgf/mm2以
上の機械構造用鋼、特に高張力ボルトやPC鋼棒の開発
が要求されてきている。
Conventional technology In recent years, as structures have become larger and automobiles, trucks, civil engineering machinery, etc. have become lighter, there has been a demand for the development of mechanical structural steel with a tensile strength of 125 kgf/mm2 or higher, especially high-tensile bolts and PC steel bars. It has been done.

従来、一般に100kgf/mm2以上の引張強さを有
する機械構造用強靭鋼は、例えば0.35%C−1,0
%Cr−0,2%iAoの組成を有するJ I’S −
SCM431低合金鋼や、0.31%C−1,8%Cr
−0,2%Moの組成を有するJ I S−3NCM4
31の低合金鋼や、さらニ0.2%(,0,8%Cr 
−0,002%Bの組成を有するボロン鋼などの熱延材
に焼入れ、焼戻し処理を施すことによって製造されてい
る。
Conventionally, strong steel for mechanical structures, which generally has a tensile strength of 100 kgf/mm2 or more, is made of, for example, 0.35% C-1,0
%Cr-J I'S- with a composition of 0.2% iAo
SCM431 low alloy steel, 0.31%C-1,8%Cr
- J I S-3NCM4 with a composition of 0.2% Mo
31 low alloy steel, Sarani 0.2% (,0.8%Cr
It is manufactured by quenching and tempering a hot rolled material such as boron steel having a composition of -0,002% B.

しかし、これらの機械構造用強靭鋼を実用に供した場合
、125kgf/mm2以上の引張強さを有するものに
おいては、使用中に遅れ破壊を生じる場合があることか
ら、高張力ボルトやPGI1棒をはじめとして自動車や
土木機械の重要保安部品としては品質安定性に欠けると
いう問題があった。
However, when these high-strength steels for machine structures are put into practical use, those with a tensile strength of 125 kgf/mm2 or more may suffer delayed fracture during use, so high-tensile bolts and PGI1 rods are not used. Initially, there was a problem of lack of quality stability as an important safety part for automobiles and civil engineering machinery.

なお、遅れ破壊とは、静荷重下におかれた鋼が、ある時
間経過後に突然脆性的に破断する現象であり、外部環境
から鋼中に侵入した水素による一種の水素脆性とされて
いる。
Note that delayed fracture is a phenomenon in which steel under a static load suddenly breaks brittle after a certain period of time, and is considered to be a type of hydrogen embrittlement due to hydrogen penetrating into the steel from the external environment.

このようなことから上記の機械構造用鋼においては、実
用上その強度レベルが引張強さで125kgf/mm2
以下に制限されているのが現状であり、例えば高力ボル
トに関しては、J I S −B−1186(1979
)の「摩擦接合用高力六角ボルト、六角ナツト、平座金
セット」において、F8T (引張強さ:80〜100
kgf/mm2) 、FIOT (同100〜120k
gf/mm2) 、及びFIIT (同110〜130
kgf/mm2)の3種に規定され、しかもFIITに
ついては、なるべく使用しないことと注意事項が付され
ている。
For this reason, the strength level of the above-mentioned mechanical structural steel is 125 kgf/mm2 in terms of tensile strength.
Currently, high-strength bolts are limited to the following, for example, JIS-B-1186 (1979
F8T (Tensile strength: 80-100
kgf/mm2), FIOT (100~120k
gf/mm2), and FIIT (110 to 130
kgf/mm2), and there are precautions to avoid using FIIT as much as possible.

また、土木建設機械用として耐摩耗性の要求される鋼板
においても引張強さが125kgf/mm2を越えるも
のでは使用中の遅れ破壊が問題とされている。
Further, even in steel plates for civil engineering and construction machinery that require wear resistance, those with a tensile strength exceeding 125 kgf/mm2 have a problem of delayed fracture during use.

これに対して、上記の通常の低合金鋼より耐遅れ破壊性
の優れた鋼として、例えば18%Ni−7,5%Co−
5%Mo−0,5%Ti−0.1%AIの組成を有する
18%Niマルエージング鋼があり、この鋼は、引張強
さが150kgf/mm2程度のものまで遅れ破壊の発
生の恐れなく使用できるが、きわめて高価な鋼であるた
め、経済性の点で一部のきわめて限られた用途にしか実
用化されておらず、機械構造用として広く使用されるに
は到って′J)ない。
On the other hand, for example, 18%Ni-7,5%Co-
There is an 18%Ni maraging steel with a composition of 5%Mo-0.5%Ti-0.1%AI, and this steel can withstand tensile strength of around 150kgf/mm2 without fear of delayed fracture. Although it can be used, since it is an extremely expensive steel, it has only been put to practical use in a few extremely limited applications due to economic efficiency, and it has never been widely used for machine structures. do not have.

これに対して、経済的であり、高強度且つ耐遅れ性に優
れた構造用鋼として、例えば特開昭58−61219号
、特開昭58−84960号、特開昭58−11331
7号、特開昭58−117856号及び特開昭58−1
57921号等に各種成分の高強度鋼゛及びそれらの製
造法が提案されている。
On the other hand, as a structural steel that is economical, has high strength, and has excellent delay resistance, for example, JP-A-58-61219, JP-A-58-84960, JP-A-58-11331,
No. 7, JP-A-58-117856 and JP-A-58-1
No. 57921 and other publications propose high-strength steels with various components and methods for producing them.

しかしながら、これらの125kgf/mm2を越える
引張強さを有する鋼でも、例えば橋梁用高張力ボルトに
使用できるほど完全に遅れ破壊を発生する危険を払底で
きるものではなく、それらの適用範囲は不確定且つ十分
なものでない。
However, even these steels with a tensile strength exceeding 125 kgf/mm2 cannot completely eliminate the risk of delayed fracture to the extent that they can be used, for example, in high-tensile bolts for bridges, and their range of application is uncertain and It's not enough.

発明の解決すべき問題点 本発明は上記した産業界の要求に答えるべく、125k
gf/mm2以上の引張強さを有し且つ耐遅れ破壊性に
優れた機械構造用鋼の製造法を提供することを目的とす
る。
Problems to be Solved by the Invention In order to meet the above-mentioned demands of the industrial world, the present invention
It is an object of the present invention to provide a method for manufacturing steel for mechanical structures having a tensile strength of gf/mm2 or more and excellent delayed fracture resistance.

更に本発明の目的を詳細に説明すると、例えば橋梁用高
張力ボルト等と異なり、定期的な補修或いは取替えを前
提し、一定期間、例えば5000時間以内の遅れ破壊の
発生の恐れのない、125kgf/mm2以上の引張強
さを有する機械構造用鋼の製造法を提供することを本発
明の目的とする。このような用途としては、各種構造物
用高張力鋼、自動車、土木機械、産業機械用のボルト用
鋼及び高張力鋼板があり、これらに本発明により製造さ
れた鋼材を使用す−ることによって上記した産業界の要
求に答えることが可能である。
To explain the purpose of the present invention in more detail, for example, unlike high-tensile bolts for bridges, etc., 125 kgf/ It is an object of the present invention to provide a method for producing mechanical structural steel having a tensile strength of mm2 or more. Such uses include high-tensile steel for various structures, steel for bolts for automobiles, civil engineering machinery, and industrial machinery, and high-tensile steel plates, and by using the steel manufactured by the present invention in these, It is possible to meet the demands of the industry mentioned above.

すなわち、本発明は、橋梁用高張力ボルトはどの耐遅れ
破壊性でなくとも所定の期間のあいだ遅れ破壊の発生す
る危険のなく、従って定期的な補修或いは取替えを前提
する部品等に好適に使用てきる125kgf/mm2以
上の引張強さを有する機械構造用鋼の製造法を提供する
ことを目的とする。
In other words, the present invention provides that high-tensile bolts for bridges do not have any delayed fracture resistance, but there is no risk of delayed fracture occurring for a predetermined period of time, and therefore, they can be suitably used for parts that require periodic repair or replacement. It is an object of the present invention to provide a method for manufacturing steel for machine structural use having a tensile strength of 125 kgf/mm2 or more.

問題点を解決する手段 上記した本発明の目的を達成するため、本発明者等は鋭
意実験・研究を重ねた結果、5000時間以上の期間に
わたり遅れ破壊を発生せず且つ125kgf/mm2以
上の引張強さを有する鋼を製造するには、低P化、低S
化による粒界偏析の軽減および清浄化は勿論のこと、低
Mn化により耐遅れ破壊性を改善し、更には製造に際し
て熱間圧延後870℃以上の温度から急冷することによ
りP等の不純物元素のオーステナイト粒界への偏析を軽
減することが有効であることを発見したものである。
Means for Solving the Problems In order to achieve the above-mentioned object of the present invention, the inventors of the present invention have conducted extensive experiments and research, and have found that no delayed fracture occurs over a period of 5,000 hours or more, and a tensile strength of 125 kgf/mm2 or more is achieved. To produce steel with strength, low P, low S
In addition to reducing grain boundary segregation and cleaning by reducing Mn, it also improves delayed fracture resistance by reducing Mn, and furthermore, by rapidly cooling from a temperature of 870°C or higher after hot rolling during manufacturing, impurity elements such as P are reduced. It was discovered that it is effective to reduce the segregation of austenite to austenite grain boundaries.

従って、本発明に従い、 C:0.18〜0.35%、 Si:0.5%以下、 Mn:0.5%未満、 P:0.01%以下、 S:0.01%以下、 Cr : 0.01〜5%、 を含有し、残部がFeおよび不可避的不純物からなる鋼
を熱間圧延後、870℃以上の温度から焼入れを行い、
次いで150〜600℃の範囲内の温度で低温焼戻を行
うことを特徴とする125kgf7mm”以上の引張強
さを有し且つ耐遅れ破壊性に優れた機械構造用鋼の製造
法が提供される。
Therefore, according to the present invention, C: 0.18-0.35%, Si: 0.5% or less, Mn: less than 0.5%, P: 0.01% or less, S: 0.01% or less, Cr : 0.01 to 5%, with the remainder consisting of Fe and unavoidable impurities. After hot rolling, the steel is quenched at a temperature of 870°C or higher,
Provided is a method for producing a mechanical structural steel having a tensile strength of 125 kgf7 mm or more and excellent delayed fracture resistance, which is then subjected to low-temperature tempering at a temperature in the range of 150 to 600°C. .

更に、本発明に従うと、 C:O,18〜0.35%、 Si:0.5%以下、 Mn:0.5%未満、 P:0.01%以下、 S:0.01%以下、 Cr:0,01〜5%、 Nb : 0.005〜0.1%、 を含有し、更にV:OJ%以下、B:0.005%以下
、Ti:0.05%以下及び!、lo:0.5%以下の
うちの1種または2種以上を含有し、残部がFe及び不
可避的不純物からなる鋼を熱間圧延後、870℃以上の
温度から焼入れを行い、次いで150〜600℃の範囲
内の温度で低温焼戻を行うことを特徴とする125kg
f/mm2以上の引張強さを有し且つ耐遅れ破壊性に優
れた機械構造用鋼の製造法が提供される。
Further, according to the present invention, C: O, 18 to 0.35%, Si: 0.5% or less, Mn: less than 0.5%, P: 0.01% or less, S: 0.01% or less, Contains Cr: 0.01 to 5%, Nb: 0.005 to 0.1%, and further contains V: OJ% or less, B: 0.005% or less, Ti: 0.05% or less, and! , lo: 0.5% or less, and the remainder is Fe and unavoidable impurities. 125 kg characterized by low temperature tempering at a temperature within the range of 600°C
Provided is a method for manufacturing steel for mechanical structures that has a tensile strength of f/mm2 or more and has excellent delayed fracture resistance.

更に本発明の好ましい態様に従うと、熱間圧延を870
℃以上の仕上温度で行い、圧延材を870℃以下に冷却
することなく直接焼入を行うのが好ましい。
Further, according to a preferred embodiment of the present invention, hot rolling is carried out at 870 mm.
It is preferable to carry out quenching at a finishing temperature of 870° C. or higher and to directly quench the rolled material without cooling it to 870° C. or lower.

更に、本発明の他の態様に従うと、焼入れ後の圧延材に
ついて150〜600℃の範囲内の温度で低温焼戻を行
う。
Furthermore, according to another aspect of the present invention, the rolled material after quenching is subjected to low-temperature tempering at a temperature within the range of 150 to 600°C.

なお、本明細書において鋼成分をパーセントで表示する
ときはすべて重量パーセントである。
In this specification, when steel components are expressed in percentages, they are all percentages by weight.

作用 ついで、本発明の方法において採用する成分組成及び製
造条件を上記のとおりに限定した理由を説明する。
Next, the reason why the component composition and manufacturing conditions employed in the method of the present invention are limited as described above will be explained.

(A)成分組成 arc: Cは鋼に強度を付与する作用があるが、その含有量が0
.18%未満では所望の強度を確保することができず、
一方、0.35%を越えて含有させると、他の合金成分
と関連して靭性が劣化するようになることから、その含
有量を0.18〜0.35%と定めた。
(A) Composition arc: C has the effect of imparting strength to steel, but its content is 0.
.. If it is less than 18%, the desired strength cannot be secured;
On the other hand, if the content exceeds 0.35%, the toughness will deteriorate in relation to other alloy components, so the content was set at 0.18 to 0.35%.

b)Si: Siは鋼の脱酸のために必要な元素であるが、その含有
量が、0.5%をこえると鋼の脆化が著しくなるため、
その上限値を0.5%と定めた。
b) Si: Si is an element necessary for deoxidizing steel, but if its content exceeds 0.5%, the steel will become significantly brittle.
The upper limit was set at 0.5%.

C)Mn: Mnは脱酸の他、焼入性向上に有効な元素であるが、多
量に添加すると、粒界にMnの酸化物あるいは炭化物等
が生成し、粒界脆化現象が生じ、遅れ破壊の発生を促進
する。さらに、MnはSと結合して、これが割れの起点
となることからも耐遅れ破壊性の改善のためには極力そ
の含有量を低下させなければならない。従って、耐遅れ
破壊性の改善を目的とする本発明ではMnの含有量を0
.5%未満とした。このようにMnの含有量を制限し、
他の合金成分および熱処理条件を調整することによって
125kgf/mm”以上の引張強さを有し且つ耐遅れ
破壊性に優れた機械構造用鋼の製造が可能となる。
C) Mn: Mn is an effective element for deoxidizing and improving hardenability, but when added in large amounts, Mn oxides or carbides are formed at grain boundaries, causing grain boundary embrittlement. Promotes the occurrence of delayed fracture. Furthermore, since Mn combines with S and becomes a starting point for cracking, its content must be reduced as much as possible in order to improve delayed fracture resistance. Therefore, in the present invention, which aims to improve delayed fracture resistance, the Mn content is reduced to 0.
.. It was set to less than 5%. In this way, the Mn content is limited,
By adjusting other alloy components and heat treatment conditions, it is possible to manufacture a mechanical structural steel having a tensile strength of 125 kgf/mm" or more and excellent delayed fracture resistance.

d)P: Pはいかなる熱処理を施してもその粒界偏析を完全に消
滅することはできず、かつ、粒界強度を低下させ耐遅れ
破壊性を劣化させるため、その上限を0.01%とした
d) P: P cannot completely eliminate its grain boundary segregation no matter what heat treatment is applied, and also reduces grain boundary strength and deteriorates delayed fracture resistance, so the upper limit is set at 0.01%. And so.

e)S: 上述したようにSはMnと結合して割れの起点となり、
さらに単独でも粒界に偏析して脆化の促進するため、極
力その含有量を低く制限することが必要である。従って
、本発明ではSを0.01%以下とした。
e) S: As mentioned above, S combines with Mn and becomes the starting point of cracking.
Furthermore, even if it is used alone, it segregates at grain boundaries and promotes embrittlement, so it is necessary to limit its content as low as possible. Therefore, in the present invention, S is set to 0.01% or less.

f)Cr: Crは鋼の焼入性を向上させ、かつ鋼に焼戻軟化抵抗を
付与する作用があるが、その含有量が0.01%未満で
は、前記作用に所望の効果が得られず、他方Crは高価
な合金元素であるため経済性を考慮し、その含有量を0
.01〜5%とした。
f) Cr: Cr has the effect of improving the hardenability of steel and imparting temper softening resistance to the steel, but if its content is less than 0.01%, the desired effect cannot be obtained. On the other hand, since Cr is an expensive alloying element, its content was reduced to 0 in consideration of economic efficiency.
.. 01 to 5%.

g)Nb: Nbは、本発明鋼のような清浄鋼に添加されると、耐遅
れ破壊特性を著しく改善せしめる。その効果を確保する
ためには、0.005%以上の添加が必要である。他方
、0.1%以上添加すると、その効果は飽和し、かつコ
スト的に高くつくので、その範囲を0.005〜0.1
%とした。
g) Nb: When added to clean steel such as the steel of the present invention, Nb significantly improves delayed fracture resistance. In order to ensure this effect, it is necessary to add 0.005% or more. On the other hand, if more than 0.1% is added, the effect will be saturated and the cost will be high, so the range should be limited to 0.005 to 0.1
%.

h)V: ■は鋼を細粒化し、さらに析出硬化して鋼の強度を向上
させる作用があるので、より高い強度が要求される場合
に必要に応じて添加するが、0.3%を越えて含有させ
ると添加効果が飽和し、より一層の強度向上硬化は得ら
れないことから、0.3%をその上限とした。
h) V: (1) has the effect of making the steel grain finer and further improving the strength of the steel by precipitation hardening, so it is added as necessary when higher strength is required, but 0.3% is added. If the content exceeds 0.3%, the effect of addition will be saturated and further strength-improving hardening cannot be obtained, so 0.3% was set as the upper limit.

1)BSTi及びMo: これらの成分には、鋼の焼入性を一段と向上させる作用
があるので、特に鋼寸法が大きい場合に高強度を確保す
る目的で必要に応じて添加するが、B、Tiはそれぞれ
B:0.003%及びTi:0.05%を越えて含有さ
せると、鋼の靭性が劣化するようになり、かつTiにお
いては被削性も劣化するようになることから、それぞれ
B:0.003%以下、Tl:0.05%以下と定めた
。また、MOについては0.5%を越えて添加しても、
その効果は飽和し、コスト的上昇を招くだけのため、そ
の上限を0.5%とした。
1) BSTi and Mo: These components have the effect of further improving the hardenability of steel, so they are added as necessary to ensure high strength, especially when the steel size is large. If Ti is contained in excess of 0.003% B and 0.05% Ti, the toughness of the steel will deteriorate, and the machinability of Ti will also deteriorate. B: 0.003% or less, Tl: 0.05% or less. Furthermore, even if MO is added in excess of 0.5%,
Since the effect reaches saturation and only increases costs, the upper limit was set at 0.5%.

(B)熱処理条件 a)焼入温度 引張強さが125kgf/mm2を越える強靭鋼は、通
常の低合金鋼の熱延棒鋼あるいは熱延鋼板をAc3点以
上に再加熱した後焼入れし、引続きAc、点以下の温度
で焼戻すことにより製造される。C含有量が0.18〜
0.35%の鋼では、焼入れは870℃以上で実施され
るため、焼入温度を870℃以上とした。
(B) Heat treatment conditions a) Quenching temperature Tough steel with a tensile strength exceeding 125 kgf/mm2 is a hot rolled steel bar or hot rolled steel plate of ordinary low alloy steel that is reheated to Ac3 point or higher and then quenched. , produced by tempering at temperatures below the point. C content is 0.18~
For 0.35% steel, quenching is performed at 870°C or higher, so the quenching temperature was set at 870°C or higher.

また焼入方法としては、圧延後直接焼入れする方法と圧
延後再加熱する方法があり、双方とも有効であるが、前
者の方がγ粒界におけるP等の偏析が少なくなるので、
より効果的である。
In addition, there are two methods of quenching: direct quenching after rolling and reheating after rolling, both of which are effective, but the former results in less segregation of P, etc. at the γ grain boundaries.
more effective.

b)焼戻温度 一般に焼入ままの鋼は降伏点が低く、機械構造用鋼とし
て使用さる場合に使用中に応力緩和の増大が生じ、さら
に焼入れままでは靭性、加工性などが良好でないという
問題がある。従って、鋼に所定の強度および靭性を付与
するためには、焼入後、焼戻処理を行う必要がある。一
般に鋼の焼戻しは、Ac、点以下の温度で行うが、一般
的には150〜600℃の温度範囲にて行われる。しか
し、300〜400℃の範囲では、低温焼戻脆化を生じ
易く、耐遅れ破壊性を劣化させる傾向を有すので、この
範囲での焼戻しは避ける方が良い。逆に成分的にも所要
の強度を得るための焼戻温度がこの範囲にならないよう
配慮すべきである。
b) Tempering temperature Generally, as-quenched steel has a low yield point, and when used as mechanical structural steel, stress relaxation increases during use, and furthermore, as-quenched steel has poor toughness, workability, etc. There is. Therefore, in order to impart predetermined strength and toughness to steel, it is necessary to perform a tempering treatment after quenching. Generally, tempering of steel is carried out at a temperature below the Ac point, but generally in a temperature range of 150 to 600°C. However, in the range of 300 to 400°C, low-temperature tempering tends to cause embrittlement and deteriorate delayed fracture resistance, so it is better to avoid tempering in this range. On the other hand, care should be taken to ensure that the tempering temperature for obtaining the required strength does not fall within this range.

実施例 次に、本発明を比較例と対比しながら実施例により説明
する。
EXAMPLES Next, the present invention will be explained by examples in comparison with comparative examples.

通常の溶解法により第1表に示す化学組成の鋼を溶製し
、直径500mm x長さ1mの寸法のビレットに成形
し、ついで前記ビレットを1200℃に1時間均熱した
後、仕上温度が870℃以上になるように熱間圧延を実
施し、25mmφの棒鋼に仕上げた。
Steel having the chemical composition shown in Table 1 is melted using a normal melting method, formed into a billet with dimensions of 500 mm in diameter x 1 m in length, and then the billet is soaked at 1200°C for 1 hour, and the finishing temperature is Hot rolling was carried out at a temperature of 870° C. or higher to produce a steel bar of 25 mmφ.

125kgf/mm2以上の強度を得るため、熱処理と
しては、熱間圧延後直ちに焼入れを施す直接焼入方法と
、870℃以上の温度に再加熱した後焼入を行う通常法
を採用した。また焼戻温度は、引張強さが125kgf
/mm2となる様に予備実験にて確認し、それぞれ選定
した。
In order to obtain a strength of 125 kgf/mm2 or more, the heat treatment used was a direct quenching method in which quenching is performed immediately after hot rolling, and a conventional method in which quenching is performed after reheating to a temperature of 870° C. or higher. In addition, the tempering temperature is such that the tensile strength is 125 kgf.
/mm2 was confirmed in a preliminary experiment, and each was selected.

一方、遅れ破壊の発生有無の確認は、第1図に示すくさ
び挿入型の遅れ破壊試験方法によった。
On the other hand, the presence or absence of delayed fracture was confirmed by the wedge insertion type delayed fracture test method shown in FIG.

すなわち、第1rIIJ(a)に示すような形状、寸法
の試験片のノツチ部(第1図ら)に示す)に第1図(C
)に示すようなくさびを挿入して静荷重をかけ、これを
55℃に保持した温水中に入れ、割れの発生の時間を観
察した。
That is, the notch part (shown in Fig. 1 et al.) of the test piece having the shape and dimensions as shown in Fig. 1rIIJ (a) was
) A static load was applied by inserting a wedge as shown in (), and the wedge was placed in hot water maintained at 55° C., and the time required for cracking to occur was observed.

5000時間を耐遅れ破壊性の一つの判断基準としたの
は、3ケ月を機材の定期的な補修あるいは点検期間と仮
定し、その約2倍の誤差を見積ったからである。試験環
境として、55℃の温水中は、実使用環境の最も厳しい
環境に相当する。従って、得られた遅れ破壊時間は、実
使用のうちもっとも厳しい環境での遅れ破壊発生時間に
相当すると考えられる。
The reason why 5,000 hours was used as one of the criteria for determining delayed fracture resistance was because it was assumed that the equipment would be regularly repaired or inspected for three months, and an error of approximately twice that was estimated. As a test environment, 55°C warm water corresponds to the most severe environment in actual use. Therefore, the obtained delayed fracture time is considered to correspond to the delayed fracture occurrence time in the harshest environment in actual use.

第1表の鋼No、 1〜7が本発明鋼で、鋼No、 8
〜lOが比較鋼である。第1表に示す試験結果かられか
るように、低Mn、低PのN011の鋼において良好な
耐遅れ破壊性が発揮され、この結果より低Mn化および
低P化することの有意性が理解できる。さらに、Nbを
添加したNo、 2の鋼においては、さらに高強度化さ
れても耐遅れ破壊発生時間は同等である。
Steel Nos. 1 to 7 in Table 1 are the steels of the present invention, and Steel No. 8
~lO is the comparison steel. As can be seen from the test results shown in Table 1, good delayed fracture resistance was demonstrated in N011 steel with low Mn and low P, and from this result, the significance of lowering Mn and P was understood. can. Furthermore, steels No. 2 and No. 2 with added Nb have the same delayed fracture resistance even if the strength is further increased.

但し、N011の鋼の引張強さが149.5kgf/ 
mm2の場合、遅れ破壊発生時間が3500時間に対し
、Nb添加鋼(N[L2の鋼)は引張強さが151.5
kgf/mm”でも5000時間以上の遅れ破壊発生時
間を有し、Nb添加による耐遅れ破壊性の改善効果がう
かがわれる。
However, the tensile strength of N011 steel is 149.5 kgf/
In the case of mm2, the delayed fracture occurrence time is 3500 hours, whereas the tensile strength of Nb-added steel (N[L2 steel) is 151.5 hours.
kgf/mm", the delayed fracture occurrence time was more than 5000 hours, indicating the effect of improving delayed fracture resistance by adding Nb.

一方、Nα1の鋼において、遅れ破壊発生時間が、35
00時間と短いのは引張強さを145kgf/mm2以
上の高強度レベルとした場合である。Nα1の鋼成分に
おいては、本発明で目的とする5000時間以上の耐遅
れ破壊性は、引張強さが125kgf/mm2、あるい
はせいぜい引張強さが140kgf/n+n+2未満の
場合に確実に実現できる。
On the other hand, in steel with Nα1, the delayed fracture occurrence time is 35
00 hours is short when the tensile strength is set to a high strength level of 145 kgf/mm2 or more. For a steel composition of Nα1, delayed fracture resistance of 5000 hours or more, which is the objective of the present invention, can be reliably achieved when the tensile strength is 125 kgf/mm2, or at most less than 140 kgf/n+n+2.

No、 3の鋼の様にCを0.33%と増加しても、あ
るい;ま、Nos、 3.4.6.7の鋼のようにT1
、Bを添加、あるいはNo、 4の鋼の様にMoを添加
、No、 5の鋼の様にVを添加しても耐遅れ破壊性が
劣化しないことがわかる。このように、耐遅れ破壊性の
改善には、低Mn、低P化が重要なポイントであり、N
b添加はさらに効果的であることがわかる。
Even if C is increased to 0.33% like the steel No. 3, or T1 like the steel No. 3.4.6.7.
It can be seen that the delayed fracture resistance does not deteriorate even when B is added, or Mo is added as in steel No. 4, or V is added as in steel No. 5. In this way, low Mn and low P are important points for improving delayed fracture resistance, and N
It can be seen that addition of b is even more effective.

一方、比較鋼のNo、 3の鋼はMnが1%と高いため
、No、 9の鋼はCが0.38%と高いため、No、
10の鋼はCが0.39%と高く、かつPが0.030
%と高いために耐遅れ破壊性が劣化したものと推察され
る。
On the other hand, the comparison steel No. 3 has a high Mn content of 1%, and the No. 9 steel has a high C content of 0.38%.
Steel No. 10 has a high C content of 0.39% and a P content of 0.030.
It is presumed that the delayed fracture resistance deteriorated due to the high %.

発明の効果 以上の実施例よりC:0.18〜0.35%、Si:0
.5%以下、Mn:0.5%未満、P:0.01以下、
Cr:0.01〜5%を含有し、残りがFeと不可避的
不純物からなる鋼、あるいは上記成分系にNb:0.0
05〜0.1%を含有し、さらにV:0.3%以下、B
 : 0,005%以下、およびTi:0.05%以下
およびMo:C1,5%以下のうちの1種又は2種以上
を含有し、残部がFeと不可避的不純物からなる鋼を、
熱間圧延後870℃以上の仕上温度から急冷し、150
〜600℃の温度範囲内で低温焼戻処理を行うか、ある
いは熱間圧延後870℃以上の温度で再加熱焼入処理を
施し、150〜600℃の温度範囲内で低温焼戻処理を
行うことによって、125kgf/mm2以上の引張強
さを有し、かつ耐遅れ破壊性の優れた機械構造用鋼を製
造し得ることが判明した。
Effects of the invention From the above examples, C: 0.18 to 0.35%, Si: 0
.. 5% or less, Mn: less than 0.5%, P: 0.01 or less,
Steel containing 0.01 to 5% Cr and the remainder consisting of Fe and unavoidable impurities, or steel containing 0.0% Nb in the above composition system.
05 to 0.1%, further V: 0.3% or less, B
: 0,005% or less, and one or more of Ti: 0.05% or less and Mo: C 1,5% or less, with the balance consisting of Fe and inevitable impurities,
After hot rolling, it is rapidly cooled from a finishing temperature of 870°C or higher to 150°C.
Perform low temperature tempering treatment within the temperature range of ~600℃, or perform reheating and quenching treatment at a temperature of 870℃ or higher after hot rolling, and perform low temperature tempering treatment within the temperature range of 150~600℃. It has been found that by doing so, it is possible to produce a mechanical structural steel having a tensile strength of 125 kgf/mm2 or more and excellent delayed fracture resistance.

すなわち本発明の方法に従うと、125kgf/ mm
”以上の引張強さを有し、かつ5000時間以上の期間
にわたり遅れ破壊を発生しない機械構造用鋼をうろこと
ができ、前述したように定期的補修または取替を前提と
し、必要な耐遅れ破壊性の程度の明確な用途の鋼材には
本発明の方法により製造された機械構造用鋼を広範囲に
使用できる。
That is, according to the method of the present invention, 125 kgf/mm
It is possible to use mechanical structural steel that has a tensile strength of 5,000 hours or more and does not cause delayed fracture for a period of 5,000 hours or more. The mechanical structural steel produced by the method of the present invention can be used in a wide range of steel materials for applications where the degree of fracture resistance is clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本実施例で実施した遅れ破壊試験で用いた試験
片とくさびの形状および寸法を示す図である。第1図(
a)は試験片を示し、第1図ら)は試験片のノツチ部の
詳細を示し、第1図(C)は試験片のノツチ部に挿入し
て負荷を加えるためのくさびを示す。なお、図中におい
て数字はmmの単位の長さを示す。
FIG. 1 is a diagram showing the shapes and dimensions of the test piece and wedge used in the delayed fracture test conducted in this example. Figure 1 (
Figure 1 (a) shows a test piece, Figure 1 et al.) shows details of the notch part of the test piece, and Figure 1 (C) shows a wedge to be inserted into the notch part of the test piece to apply a load. Note that in the figures, numbers indicate lengths in mm.

Claims (8)

【特許請求の範囲】[Claims] (1)C:0.18〜0.35%、 Si:0.5%以下、 Mn:0.5%未満、 P:0.01%以下、 S:0.01%以下、 Cr:0.01〜5%、 を含有し、残部がFeおよび不可避的不純物からなる鋼
を熱間圧延後、870℃以上の温度から焼入れを行い、
次いで150〜600℃の範囲内の温度で低温焼戻を行
うことを特徴とする125kgf/mm^2以上の引張
強さを有し且つ耐遅れ破壊性に優れた機械構造用鋼の製
造法。
(1) C: 0.18-0.35%, Si: 0.5% or less, Mn: less than 0.5%, P: 0.01% or less, S: 0.01% or less, Cr: 0. After hot rolling a steel containing 01 to 5%, with the remainder consisting of Fe and unavoidable impurities, quenching is performed at a temperature of 870°C or higher,
A method for manufacturing a mechanical structural steel having a tensile strength of 125 kgf/mm^2 or more and excellent delayed fracture resistance, which is then subjected to low-temperature tempering at a temperature in the range of 150 to 600°C.
(2)上記熱間圧延を870℃以上の仕上温度で行い、
圧延材を870℃以下に冷却することなく、直接焼入を
行うことを特徴とする特許請求の範囲第1項記載の機械
構造用鋼の製造法。
(2) The above hot rolling is carried out at a finishing temperature of 870°C or higher,
2. The method for producing steel for machine structures according to claim 1, wherein the rolled material is directly quenched without being cooled to 870° C. or lower.
(3)上記熱間圧延後に圧延材を870℃以上の温度に
再加熱して焼入を行うことを特徴とする特許請求の範囲
第1項記載の機械構造用鋼の製造法。
(3) The method for manufacturing steel for machine structures according to claim 1, characterized in that after the hot rolling, the rolled material is reheated to a temperature of 870° C. or higher and quenched.
(4)上記低温焼戻を150〜300℃の範囲内の温度
で行うことを特徴とする特許請求の範囲第1項乃至第3
項のいずれかに記載の機械構造用鋼の製造法。
(4) Claims 1 to 3, characterized in that the low-temperature tempering is performed at a temperature within the range of 150 to 300°C.
A method for manufacturing steel for machine structural use according to any of paragraphs.
(5)C:0.18〜0.35%、 Si:0.5%以下、 Mn:0.5%未満、 P:0.01%以下、 S:0.01%以下、 Cr:0.01〜5%、 Nb:0.005〜0.1%、 を含有し、更にV:0.3%以下、B:0.005%以
下、Ti:0.05%以下及びMo:0.5%以下のう
ち1種または2種以上を含有し、残部がFe及び不可避
的不純物からなる鋼を熱間圧延後、870℃以上の温度
から焼入れを行い、次いで150〜600℃の範囲内の
温度で低温焼戻を行うことを特徴とする125kgf/
mm^2以上の引張強さを有し且つ耐遅れ破壊性に優れ
た機械構造用鋼の製造法。
(5) C: 0.18-0.35%, Si: 0.5% or less, Mn: less than 0.5%, P: 0.01% or less, S: 0.01% or less, Cr: 0. 01 to 5%, Nb: 0.005 to 0.1%, and further contains V: 0.3% or less, B: 0.005% or less, Ti: 0.05% or less, and Mo: 0.5. % or less, with the remainder consisting of Fe and unavoidable impurities. After hot rolling, the steel is quenched at a temperature of 870°C or higher, and then at a temperature within the range of 150 to 600°C. 125kgf/
A method for producing mechanical structural steel having a tensile strength of mm^2 or more and excellent delayed fracture resistance.
(6)上記熱間圧延を870℃以上の仕上温度で行い、
圧延材を870℃以下に冷却することなく、直接焼入を
行うことを特徴とする特許請求の範囲第5項記載の機械
構造用鋼の製造法。
(6) Performing the above hot rolling at a finishing temperature of 870°C or higher,
6. The method for producing steel for machine structures according to claim 5, wherein the rolled material is directly quenched without being cooled to 870° C. or lower.
(7)上記熱間圧延後に圧延材を870℃以上の温度に
再加熱して焼入を行うことを特徴とする特許請求の範囲
第5項記載の機械構造用鋼の製造法。
(7) The method for manufacturing steel for machine structures according to claim 5, characterized in that after the hot rolling, the rolled material is reheated to a temperature of 870° C. or higher and quenched.
(8)上記低温焼戻を150〜600℃の範囲内の温度
で行うことを特徴とする特許請求の範囲第5項乃至第7
項のいずれかに記載の機械構造用鋼の製造法。
(8) Claims 5 to 7, characterized in that the low-temperature tempering is performed at a temperature within the range of 150 to 600°C.
A method for manufacturing steel for machine structural use according to any of paragraphs.
JP1610885A 1985-01-29 1985-01-29 Production of machine structural steel having superior delayed fracture resistance Granted JPS61174326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1610885A JPS61174326A (en) 1985-01-29 1985-01-29 Production of machine structural steel having superior delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1610885A JPS61174326A (en) 1985-01-29 1985-01-29 Production of machine structural steel having superior delayed fracture resistance

Publications (2)

Publication Number Publication Date
JPS61174326A true JPS61174326A (en) 1986-08-06
JPH0454725B2 JPH0454725B2 (en) 1992-09-01

Family

ID=11907318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1610885A Granted JPS61174326A (en) 1985-01-29 1985-01-29 Production of machine structural steel having superior delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPS61174326A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263047A (en) * 1991-02-15 1992-09-18 Kobe Steel Ltd High strength fire resisting bolt excellent in delayed fracture resistance
JPH05339678A (en) * 1992-06-05 1993-12-21 Nkk Corp Ultrahigh tensile strength electric resistance welded tube for vehicle member excellent in delayed fracture resistance
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2012017519A (en) * 2010-06-11 2012-01-26 Kobe Steel Ltd High strength bolt steel
CN114875308A (en) * 2022-04-08 2022-08-09 鞍钢股份有限公司 Steel for thin-gauge high-strength nuclear reactor containment vessel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174551A (en) * 1982-04-03 1983-10-13 Sumitomo Electric Ind Ltd Steel containing boron and manufacture thereof
JPS59162252A (en) * 1983-03-07 1984-09-13 Daido Steel Co Ltd High strength bolt steel
JPS60114551A (en) * 1983-11-25 1985-06-21 Daido Steel Co Ltd High strength bolt steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174551A (en) * 1982-04-03 1983-10-13 Sumitomo Electric Ind Ltd Steel containing boron and manufacture thereof
JPS59162252A (en) * 1983-03-07 1984-09-13 Daido Steel Co Ltd High strength bolt steel
JPS60114551A (en) * 1983-11-25 1985-06-21 Daido Steel Co Ltd High strength bolt steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263047A (en) * 1991-02-15 1992-09-18 Kobe Steel Ltd High strength fire resisting bolt excellent in delayed fracture resistance
JPH05339678A (en) * 1992-06-05 1993-12-21 Nkk Corp Ultrahigh tensile strength electric resistance welded tube for vehicle member excellent in delayed fracture resistance
JP2007146284A (en) * 2005-10-31 2007-06-14 Jfe Steel Kk High-strength steel excellent in delayed fracture resistance characteristic and metal bolt
JP2012017519A (en) * 2010-06-11 2012-01-26 Kobe Steel Ltd High strength bolt steel
CN114875308A (en) * 2022-04-08 2022-08-09 鞍钢股份有限公司 Steel for thin-gauge high-strength nuclear reactor containment vessel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0454725B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JPS61130462A (en) High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
EP3395997A1 (en) Low-yield-ratio type high-strength steel, and manufacturing method therefor
KR102289520B1 (en) Steel reinforcement and method of manufacturing the same
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JP2680350B2 (en) Method for producing Cr-Mo steel sheet having excellent toughness
JPH08209289A (en) Steel for machine structural use excellent in delayed fracture resistance
JPH04371547A (en) Production of high strength and high toughness steel
JPH05156409A (en) High-strength martensite stainless steel having excellent sea water resistance and production thereof
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
JPH0770695A (en) Steel for machine structure excellent in delayed fracture resistance
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH03243744A (en) Steel for machine structural use excellent in delayed fracture resistance
JPH0860291A (en) Steel for machine structural use, excellent in delayed fracture resistance
JPS61174327A (en) Manufacture of machine structural steel having superior delayed fracture resistance
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
CN115595507B (en) High-strength twisted steel and manufacturing method thereof
JPS609824A (en) Production of tough and hard steel
JPS58113317A (en) Manufacture of tough and hard steel for machine structure superior in delayed breaking resistance
JPH0140091B2 (en)
JPS63206449A (en) Low-carbon steel for cold forging
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
KR900007445B1 (en) Method for producing a high tensile steel
JPH08120399A (en) Steel for machine structure excellent in delayed fracture resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term