JPH02250941A - Low carbon chromium-molybdenum steel and its manufacture - Google Patents

Low carbon chromium-molybdenum steel and its manufacture

Info

Publication number
JPH02250941A
JPH02250941A JP7218089A JP7218089A JPH02250941A JP H02250941 A JPH02250941 A JP H02250941A JP 7218089 A JP7218089 A JP 7218089A JP 7218089 A JP7218089 A JP 7218089A JP H02250941 A JPH02250941 A JP H02250941A
Authority
JP
Japan
Prior art keywords
less
steel
strength
bainite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7218089A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kamata
芳彦 鎌田
Jun Furusawa
古澤 遵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP7218089A priority Critical patent/JPH02250941A/en
Publication of JPH02250941A publication Critical patent/JPH02250941A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the weldability, stress relief annealing(SR) embrittlement- resistant properties after welding, and tensile strength after SR treatment in the Cr-Mo steel having specified compsn. by reducing C, improving the hardenability of B by the addition of Ti and specifying the weld cracking sensitivity parameter. CONSTITUTION:A steel contg., by wt.%: 0.03<=C<0.11, 0.10 to 0.90 Si, 0.50 to 2.00 Mn, 0.40 to 2.50 Cr, 0.10 to 1.00 Mo, 0.00015 to 0.0030 B, 0.005 to 0.10 SolAl, 0.002 to 0.06 To, <=0.01 N, <=0.0010 P and <=0.0050 S, contg., at need, one or more kinds among <=0.5% Cu, <=0.5% Ni, <=0.1% Nb and <=0.1% V besides the balance Fe is heated to 1000 to 1250 deg.C and is thereafter subjected to hot working at the Ar3 transformation temp. or above into the prescribed dimension. The steel is furthermore heated to the Ac3 transformation temp. to 1000 deg.C, is thereafter air-cooled and is normalized to transform its main structure into bainite or bainite + martensite. In the steel, >0.21 to 0.35% weld cracking sensitivity parameter PCM and >=53kgf/mm<2> tensile strength after SR treatment are shown.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、例えば原子力発電設備用給水加熱器や類似
の用途等に好適な溶接割れ感受性の低い圧力容器用低炭
素クロムモリブデン鋼、及びその製造方法に関するもの
である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a low-carbon chromium-molybdenum steel for pressure vessels with low weld cracking susceptibility, which is suitable for, for example, feed water heaters for nuclear power generation facilities and similar applications, and the like. This relates to a manufacturing method.

〈従来技術とその課題〉 例えば原子力発電設備用等に供される中・高温用の圧力
容器材料については従来から様々な研究開発がなされ、
より優れた性能の製品を提供するために数多くの提案が
なされてきた。
<Prior art and its issues> For example, various research and development efforts have been made on materials for pressure vessels for medium and high temperatures used in nuclear power generation facilities, etc.
Many proposals have been made to provide products with better performance.

このような状況下で、近年、低C(炭素)化・低PCM
(溶接割れ感受性指数)化したB添加鋼を規準して主要
組織をベイナイト組織とした焼準型高強度鋼が提案され
(特公昭57−19731号)、高強度、高靭性及び優
れた溶接性を備えると共に、溶接後の応力除去焼鈍(“
SR”と略示する)によっても十分な靭性並びに強度を
維持し得る圧力容器用材料として注目がなされた。
Under these circumstances, in recent years, low C (carbon) and low PCM
A normalized high-strength steel with a bainite structure as the main structure was proposed (Japanese Patent Publication No. 57-19731) based on B-added steel with a high weld cracking susceptibility index, and has high strength, high toughness, and excellent weldability. In addition to providing stress relief annealing after welding (“
It has attracted attention as a material for pressure vessels that can maintain sufficient toughness and strength even when the material is SR (abbreviated as "SR").

しかし、各種設備の更なる性能向上要求は留まるところ
を知らず、これに伴って最近の圧力容器用鋼の使用環境
は一段と厳しさを増してきたことからSR条件も益々苛
酷化しつつあり、上記提案の如き PCM≦0.21%
の成分系”では必ずしもSR後必要強度を満足するには
至らない場合が生じてきた。
However, the demand for further performance improvement of various equipment is unstoppable, and as a result, the environment in which steel for pressure vessels is used has become even more severe recently, and the SR conditions are becoming increasingly severe. Like PCM≦0.21%
There have been cases in which the "component system" does not necessarily satisfy the required strength after SR.

即ち、従来は圧力容器用鋼の使用環境として比較的低温
域が想定されていたので、その仕様に関しても必然的に
「SR条件がテンパーリング・パラメータ(=TX(2
0+1ogt)、T:SR湯温度K)。
In other words, since the environment in which pressure vessel steel is used has traditionally been assumed to be in a relatively low-temperature range, it is inevitable that the SR conditions will be
0+1ogt), T: SR hot water temperature K).

t:sR待時間hr))で18.7 X 10’程度」
と言う比較的緩い条件に設定されていた。ところが、最
近では、数値シュミレーション技術の著しい進歩を前景
として、使用環境が厳しくかつ複雑な中・高温圧力容器
の“使用時における正確な温度分布或いは応力分布”を
容易に求めることができるようになり、使用に際しての
安全率を精度良く算出できるようになったことから、圧
力容器用鋼を従来にも増して厳しい高温環境で使用する
ことが可能となっている。そのため、高温仕様の圧力容
器も設計されるようになり、SR条件がテンパーリング
・パラメータで(20〜21) X 10”と言った厳
しい仕様を満足する圧力容器用鋼も求められるようにな
ってきた訳である。
t: sR waiting time hr)) is about 18.7 x 10'
Relatively lenient conditions were set. However, recently, with the remarkable progress in numerical simulation technology, it has become possible to easily determine the "accurate temperature distribution or stress distribution during use" of medium- and high-temperature pressure vessels, which have harsh and complex operating environments. Since it has become possible to accurately calculate the safety factor during use, it has become possible to use steel for pressure vessels in harsher high-temperature environments than ever before. Therefore, pressure vessels with high-temperature specifications are being designed, and steel for pressure vessels that satisfies strict specifications such as a tempering parameter of (20 to 21) x 10" is also being sought. This is the translation.

ところで、圧力容器用鋼には耐SR脆化特性が必要であ
ると共に、SR後にも十分に高い値を示す強度特性が要
求されることは言うまでない。しかしながら、“優れた
耐SR脆化特性”と“SR後の高強度”とは互いに相反
する特性である。
By the way, it goes without saying that steel for pressure vessels is required to have SR embrittlement resistance and also strength characteristics that exhibit sufficiently high values even after SR. However, "excellent SR embrittlement resistance" and "high strength after SR" are contradictory properties.

つまり、耐SR脆化特性を改善するには低C化が効果的
であるが、低C化が図られるとSR後の強度を確保する
ことが困難となり、強度確保のために少なからぬ合金元
素の添加が必要となる。しかし、このような合金元素の
多量添加はSR後の強度上昇には有効であるが溶接性を
阻害する要因となるので、圧力容器用鋼の場合には回避
すべき手段と言える。
In other words, lowering C is effective in improving SR embrittlement resistance, but lowering C makes it difficult to ensure strength after SR, and it takes a considerable amount of alloying elements to ensure strength. It is necessary to add However, although the addition of a large amount of such alloying elements is effective in increasing the strength after SR, it becomes a factor that impedes weldability, so it can be said to be a measure that should be avoided in the case of steel for pressure vessels.

そこで、上記相反する各特性を兼備した圧力容器用鋼を
提供すべく、低C化したB添加クロムモリブデン鋼を用
い、規準と特定テンパーリング・パラメータのSRによ
って主組織を〔フェライト+ベイナイト〕混合組磯とす
ることでSR後強度を確保しようとの提案がなされた(
特公昭63−12935号)。
Therefore, in order to provide a steel for pressure vessels that has the above-mentioned contradictory properties, we used a low-C B-added chromium-molybdenum steel, and mixed the main structure with [ferrite + bainite] according to the standard and SR of specific tempering parameters. A proposal was made to ensure strength after SR by making it a group rock (
Special Publication No. 63-12935).

しかし、このような方策を講じたとしても、得られる鋼
の強度並びに溶接性は、要求性能に益々厳しさが増して
きている中・高温域用圧力容器鋼としでは十分に満足で
きるものとは言えなかった。
However, even if such measures are taken, the strength and weldability of the resulting steel will not be sufficiently satisfactory for pressure vessel steel for medium- and high-temperature applications, where the required performance is becoming increasingly strict. I could not say it.

このようなことから、本発明の目的は、優れた溶接性を
有していて耐SR脆化特性に優れ、しかもSR処理後も
引張強度、 53kgf/−以上を示すところの、中・
高温圧力容器用として好適な鋼材を提供することに置か
れた。
For these reasons, the object of the present invention is to provide a medium- to medium-sized steel that has excellent weldability, excellent SR embrittlement resistance, and exhibits a tensile strength of 53 kgf/- or more even after SR treatment.
The aim was to provide a steel material suitable for use in high temperature pressure vessels.

く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく、圧力容器用鋼に
上述した如く互いに相反する“優れた耐SR脆化特性”
と“SR後の高強度”とを同時に実現し得る効果的な方
策を求めて種々検討を重ねた結果、次に示すような知見
を得るに至った。即ち、 fal  中・高温圧力容器用鋼に必要強度を確保する
ためにはクロムモリブデン鋼をベースとするのが効果的
であり、その耐SR脆化特性の改善には、まずC含有量
を0.11%未満(以降、成分割合を表わす%は重量基
準とする)に抑えることが欠かせないこと。
Means for Solving the Problems> In order to achieve the above object, the present inventors have developed pressure vessel steel with "excellent SR embrittlement resistance", which are contradictory to each other as described above.
As a result of various studies in search of effective measures that can simultaneously achieve both "high strength after SR", we have come to the following knowledge. In other words, it is effective to use chromium-molybdenum steel as a base to ensure the necessary strength for steel for medium- and high-temperature pressure vessels, and to improve its SR embrittlement resistance, first reduce the C content to zero. It is essential to keep the content to less than 11% (hereinafter, percentages representing component proportions are based on weight).

(b)  C含有量を低減したとしても、Bの焼入れ性
向上効果を活用し、かつP9,4が0.21%を超える
ように成分設計して、ベイナイト組織或いは〔ベイナイ
ト中マルテンサイト〕の混合組織を実現し得るようにす
ればSR後の強度確保には問題がないこと。
(b) Even if the C content is reduced, the hardenability improving effect of B is utilized and the composition is designed so that P9,4 exceeds 0.21% to form a bainite structure or [martensite in bainite]. If a mixed structure can be realized, there will be no problem in securing strength after SR.

即ち、低Cクロムモリブデン鋼の強度は、Ti添加でフ
リーなNの固定を図って固溶Bを確保することにより効
果的に発揮させ得る“Bの焼入れ性向上効果”によって
著しく向上するが、通常はSR後脆化防止のために低く
することが必要であるとされている“PCMの低減”を
行い過ぎるとB添加によってもSR後の強度を確保する
ことができず、SR後の強度53kgf/−を確保する
ためにはBの焼入れ性向上効果を活用すると同時にPC
Mが0.21%を超えるように成分設計をし、また〔フ
ェライト+ベイナイト〕混合組織ではなくてベイナイト
vILm或いは〔ベイナイト中マルテンサイト〕の混合
組織が得られるように配慮する必要がある。
In other words, the strength of low C chromium molybdenum steel is significantly improved by the "hardenability improving effect of B" which can be effectively achieved by fixing free N by adding Ti and securing solid solution B. Normally, it is necessary to reduce PCM to prevent embrittlement after SR, but if PCM is excessively reduced, even with B addition, the strength after SR cannot be ensured, and the strength after SR In order to secure 53kgf/-, the hardenability improvement effect of B should be utilized and at the same time, PC
It is necessary to design the components so that M exceeds 0.21%, and to obtain a mixed structure of bainite vILm or [martensite in bainite] rather than a mixed structure of [ferrite + bainite].

(C)  ただ、PCMが0.21%を超えるように成
分設計を行うと、耐SR脆化特性等が低下して所望靭性
を満足しなくなるすると青う弊害が生じることが予想さ
れるが、これらの弊害は鋼中のS含有量を特定値以下に
まで低減すると共に、網中P量をも低減することにより
効果的に抑え得ること。
(C) However, if the composition is designed so that PCM exceeds 0.21%, it is expected that negative effects will occur if the SR embrittlement resistance etc. deteriorate and the desired toughness is no longer satisfied. These adverse effects can be effectively suppressed by reducing the S content in the steel to below a specific value and also reducing the P content in the mesh.

即ち、不純物元素であるSは鋼の靭性を低下させる悪影
響に加えて、溶接割れ感受性を高める作用を有しており
、また同じく不純物元素であるPは、本用途のように厳
しいSR条件下で使用される場合にはSR時に著しい粒
界脆化を生ぜしめて靭性を著しく低下させる作用を有す
るが、これら2種の不純物元素を共に特定の値以下にま
で低減するとこれらの悪影響が目立って低減され、pc
、4を高めに設定したことにより生じる弊害が相殺され
て、要求強度と要求耐5R1ffl化特性との両立が可
能になる訳である。
In other words, S, which is an impurity element, has the effect of increasing weld cracking susceptibility in addition to reducing the toughness of steel, and P, which is also an impurity element, has the effect of increasing weld cracking susceptibility under severe SR conditions such as in this application. When used, it has the effect of causing significant grain boundary embrittlement during SR and significantly reducing toughness, but when these two types of impurity elements are both reduced to below a specific value, these negative effects are significantly reduced. , pc
, 4 are offset, thereby making it possible to achieve both the required strength and the required 5R1ffl resistance characteristics.

(d)  なお、上記低Cクロムモリブデン鋼は、通常
、焼準処理して使用に供されるが、適用する板厚が厚く
なると焼準処理ではフェライトの生成を抑制しつつ板厚
中心部までベイナイト組織或いは〔ベイナイト中マルテ
ンサイト〕の混合組織とすることができない恐れがある
。しかし、熱間加工(例えば圧延)直後の保有熱を活用
してAr3変態点以上の温度から加速冷却を行えば板厚
中心部まで安定してベイナイト組織或いは〔ベイナイト
中マルテンサイト〕の混合組織とすることができ、SR
後の強度低下防止を図り得る。そして、上記成分組成の
綱であれば、該組織の実現にも何ら支障はない。
(d) The above-mentioned low C chromium molybdenum steel is normally used after normalizing treatment, but when the plate thickness to be applied becomes thick, normalizing treatment suppresses the formation of ferrite while reducing the thickness to the center of the plate thickness. There is a possibility that a bainite structure or a mixed structure of [bainite and martensite] cannot be obtained. However, if accelerated cooling is performed from a temperature above the Ar3 transformation point by utilizing the retained heat immediately after hot working (e.g. rolling), a bainite structure or a mixed structure of [martensite in bainite] can be formed stably up to the center of the plate thickness. can, SR
It is possible to prevent the strength from decreasing later. As long as the above-mentioned component composition is followed, there will be no problem in realizing the structure.

本発明は、上記知見等に基づいてなされたものであり、 [クロムモリブデン鋼を、 C: 0.03%以上0.11%未満。The present invention has been made based on the above findings, etc. [Chromium molybdenum steel, C: 0.03% or more and less than 0.11%.

Si : 0.10〜0.90%、   Mn : 0
.50〜2.00%。
Si: 0.10-0.90%, Mn: 0
.. 50-2.00%.

Cr : 0.40〜2.50%、   Mo s 0
.10〜1.00%。
Cr: 0.40-2.50%, Mos 0
.. 10-1.00%.

B : 0.00015〜0.0030%。B: 0.00015-0.0030%.

sol、 Al : 0.005〜0.10%。sol, Al: 0.005-0.10%.

Ti:0゜002〜0.06%、  N : 0.01
%以下。
Ti: 0°002~0.06%, N: 0.01
%below.

P : 0.010%以下、   S : 0.005
0%以下を余有するか、或いは更に Cu : 0.5%以下、   Ni : 0.5%以
下。
P: 0.010% or less, S: 0.005
Cu: 0.5% or less, Ni: 0.5% or less.

Nb j 0.1%以下、   V:0.1%以下の1
種以上をも含むと共に、残部がFe及び不可避的不純物
から成り、かつ溶接割れ感受性指数PCl4が0.21
%を超え0.35%以下である成分組成に構成すること
によって、優れた強度、溶接性、耐SR脆化特性を兼備
し得るようにした点」 に特徴を有し、更には rc:0.03%以上0.11%未満。
Nb j 0.1% or less, V: 0.1% or less 1
In addition, the remainder consists of Fe and unavoidable impurities, and the weld cracking susceptibility index PCl4 is 0.21.
% and 0.35% or less, it is characterized by having excellent strength, weldability, and SR embrittlement resistance, and furthermore, rc: 0 .03% or more and less than 0.11%.

St : 0.10〜0.90%、   Mn : 0
.50〜2.00%。
St: 0.10-0.90%, Mn: 0
.. 50-2.00%.

Cr : 0.40〜2.50%、   Mo : 0
.10〜1.00%。
Cr: 0.40-2.50%, Mo: 0
.. 10-1.00%.

B : 0.00015〜0.0030%。B: 0.00015-0.0030%.

sol、 Aj! : 0.005〜0.10%。Sol, Aj! : 0.005-0.10%.

Ti : 0.002〜0.06%、  N : 0.
01%以下。
Ti: 0.002-0.06%, N: 0.
01% or less.

P : 0.010%以下、    S : 0.00
50%以下。
P: 0.010% or less, S: 0.00
Less than 50%.

を含有するか、或いは更に Cu : 0.5%以下、   Ni:0.5%以下。or further contains Cu: 0.5% or less, Ni: 0.5% or less.

Nb:0.1%以下、    V:0,1%以下の1種
以上をも含むと共に、残部がFe及び不可避的不純物か
ら成り、かつ溶接割れ感受性指数PcMが0.21%を
超え0.35%以下である成分組成の鋼を1000〜1
250℃の温度域に加熱後、Arz変態点以上の温度域
で熱間加工して所定の寸法とし、次いで更にAcl変態
点〜1000℃の温度域に加熱後空冷して焼串すること
により主要m織をベイナイト組織或いは〔ベイナイト士
マルテンサイト〕の混合組織とするか、或いは前記熱間
加工の終了後直ちに600℃以下の温度まで空冷以上の
冷却速度で冷却することにより主要組織をベイナイト組
織或いは〔ベイナイト士マルテンサイト〕の混合組織と
することにより、優れた強度、溶接性。
It also contains one or more of Nb: 0.1% or less, V: 0.1% or less, and the remainder consists of Fe and unavoidable impurities, and the weld cracking susceptibility index PcM exceeds 0.21% and is 0.35. % or less of steel with a composition of 1000 to 1
After heating to a temperature range of 250°C, hot working at a temperature range above the Arz transformation point to obtain the specified dimensions, then further heating to a temperature range from the Acl transformation point to 1000°C, air cooling, and skewering to obtain the main m The main structure can be changed to a bainite structure or a mixed structure of [bainitic martensite], or the main structure can be changed to a bainite structure or [ Excellent strength and weldability due to the mixed structure of bainite and martensite.

耐SR脆化特性を兼備した低Cクロムモリブデン鋼を安
定して提供できるようにした点」に特徴を有するもので
ある。
It is characterized by being able to stably provide a low C chromium molybdenum steel that also has SR embrittlement resistance.

このように、本発明は、合金元素を多量に添加する手段
によらずに、溶接性に大きな悪影響を及ぼすことがなく
しかも微量で焼入れ性向上効果を発揮するBの作用を利
用すると共に、PCMの値を高めに設定し、ベイナイト
組織或いは〔ベイナイト士マルテンサイト〕の混合組織
として低Cクロムモリブデン鋼のSR時における強度低
下を抑えた上で、同時にP及びS含有量を低減すること
によって十分な耐SR脆化特性をも確保した鋼材を実現
し得るようにしたものであり、更には該特性を具備した
高強度低Cクロムモリブデン鋼を熱間加工・焼串処理手
段又は熱間加工・加速冷却手段にて安定に製造し得るよ
うにもしたものであるが、以下、本発明において鋼の成
分組成又は処理条件を前記の如くに限定した理由をその
作用と共に詳述する。
As described above, the present invention utilizes the effect of B, which does not have a large adverse effect on weldability and exhibits the effect of improving hardenability even in a small amount, without adding a large amount of alloying elements. By setting a high value of , suppressing the decrease in strength during SR of low C chromium molybdenum steel as a bainitic structure or a mixed structure of [bainitic martensite], and simultaneously reducing the P and S contents, it is possible to This makes it possible to realize a steel material that also ensures good SR embrittlement resistance, and furthermore, high-strength, low-C chromium-molybdenum steel with these characteristics can be heated by hot working and skewering, or by hot working and acceleration. Although it is possible to stably produce the steel by cooling means, the reason why the composition or processing conditions of the steel are limited as described above in the present invention will be explained in detail below along with their effects.

く作用〉 ^)成分組成 (a)  C Cは鋼に所望強度を確保するのに必要な元素であるが、
その含有量が0.03%未満であると十分な強度が得ら
れず、一方、0.11%以上を含有させると溶接硬化性
や溶接割れ感受性が許容限度以上に高くなることから、
C含有量は0.03%以上0.11%未満と定めた。た
だ、C含有量はSR後の特性を大きく左右するので、溶
接割れ感受性を低減しつつSR後の強度: 53kgf
/−以上をより安定に確保するためには0.06〜0.
10%に調整するのが好ましい。
Effect〉 ^) Composition (a) C C is an element necessary to ensure the desired strength of steel,
If the content is less than 0.03%, sufficient strength will not be obtained, while if the content is 0.11% or more, weld hardenability and weld cracking susceptibility will become higher than the allowable limit.
The C content was determined to be 0.03% or more and less than 0.11%. However, since the C content greatly affects the properties after SR, the strength after SR: 53 kgf while reducing the susceptibility to weld cracking.
0.06 to 0.0.
It is preferable to adjust it to 10%.

巾)  5t Stは製鋼時の脱酸剤として使用されるだけでなく、常
温及び高温における強度を確保するのに必要な成分であ
り、そのためには0.10%以上含有させる必要がある
。しかし、0.90%を超えて含有させると靭性の大幅
な低下を招くことから、Si含有量は0.10〜0.9
0%と定めた。
Width) 5t St is not only used as a deoxidizing agent during steel manufacturing, but is also a necessary component to ensure strength at room temperature and high temperature, and for that purpose, it must be contained in an amount of 0.10% or more. However, if the Si content exceeds 0.90%, the toughness will be significantly reduced, so the Si content should be 0.10 to 0.9%.
It was set as 0%.

(C)   Mn Mn成分には鋼の強度・靭性を高める作用があるが、そ
の含有量が0.50%未満では前記作用による所望の効
果が得られず、一方、2.00%を超えて含有させると
強度・靭性の向上効果が飽和するのに対し溶接割れ感受
性は著しく高くなることから、Mn含有量は0.50〜
2.00%と定めた。
(C) Mn The Mn component has the effect of increasing the strength and toughness of steel, but if the content is less than 0.50%, the desired effect due to the above effect cannot be obtained, while on the other hand, if the content exceeds 2.00%, If Mn is included, the strength and toughness improvement effect is saturated, but the weld cracking susceptibility becomes significantly high, so the Mn content should be 0.50 to
It was set at 2.00%.

(d)  Cr Cr成分には鋼の強度を高めると共に高温における耐食
性を確保する作用があるが、その含有量が0.40%未
満では前記作用による所望の効果が得られず、一方、2
゜50%を超えて含有させると該効果が飽和するばかり
でなく製造コストの上昇を招くようになることから、C
r含有量は0.40〜2.50%と定めた。
(d) Cr The Cr component has the effect of increasing the strength of steel and ensuring corrosion resistance at high temperatures, but if its content is less than 0.40%, the desired effect due to the above effect cannot be obtained;
If the content exceeds 50%, the effect not only becomes saturated but also increases the manufacturing cost.
The r content was determined to be 0.40 to 2.50%.

(el  M。(el M.

Moには焼入れ性及び焼戻し軟化抵抗を高める作用があ
るため、高温における強度を向上させる目的で0.10
%以上添加するが、1.00%を超えて含有させると焼
戻し脆化感受性が増大し、靭性が低下するよになること
から、Mo含有量は0.10〜i、ooと定めた。
Since Mo has the effect of increasing hardenability and resistance to temper softening, 0.10% Mo is used to improve strength at high temperatures.
% or more, but if the content exceeds 1.00%, the susceptibility to tempering embrittlement increases and the toughness decreases, so the Mo content was determined to be 0.10 to i,oo.

(「)B Bは、鋼の溶接性を大きく劣化させることな(SR後の
強度を確保するのに重要な成分である。
(') B B is an important component that does not significantly deteriorate the weldability of steel (to ensure strength after SR).

そして、Bの焼入れ性向上効果を活用して鋼の強度確保
を図るためにはS含有量: 0.00015%以上を確
保する必要があり、一方、0.0030%を超えてBを
含有させると、本発明鋼のような低C鋼であってもSR
時に炭硼化物を形成し靭性の低下が著しくなることから
、S含有量は0.00015〜0.0030%と定めた
In order to ensure the strength of steel by utilizing the hardenability improvement effect of B, it is necessary to ensure an S content of 0.00015% or more, and on the other hand, B content exceeding 0.0030% is required. Even with low C steel such as the steel of the present invention, the SR
The S content was determined to be 0.00015 to 0.0030% because sometimes carborides are formed and the toughness is significantly reduced.

(川 sol.Al 5of、Aj!は製鋼時に脱酸剤として使用されると共
に、組織の細粒化を通じた靭性改善のために添加される
が、そのためにはo、oos%以上の含有量を確保する
ことが必要である。しかし、0.10%を超えて含有さ
せても前記効果が飽和するばかりか、(コストアップに
つながることから、so7.Af含有量は0.005〜
0.10%と定めた。
(Kawa sol.Al 5of, Aj! is used as a deoxidizing agent during steel manufacturing and is added to improve toughness through grain refinement of the structure, but for this purpose, the content of o, oos% or more is required. However, even if the content exceeds 0.10%, the above effect will not only be saturated, but also lead to an increase in cost.
It was set at 0.10%.

(h)  Ti Ti成分には、フリーNをTiNとして捕らえることに
よって固溶BがBNとしてロスされるのを防ぎ、これに
より本発明に係るB添加鋼の焼入れ性を向上させマトリ
ックスをベイナイト(+マルテンサイト)組織化してS
R後の強度を確保する作用があるが、その含有量が0.
002%未満では前記作用による所望の効果が得られず
、一方、0.06%を超えて含有させると靭性を著しく
害するら になることから、Ti含有量は0.002〜
0.06%と定めた。
(h) Ti The Ti component prevents solid solution B from being lost as BN by capturing free N as TiN, thereby improving the hardenability of the B-added steel according to the present invention and converting the matrix into bainite (+ martensite) organized S
It has the effect of ensuring strength after R, but if the content is 0.
If the Ti content is less than 0.002%, the desired effect by the above action cannot be obtained, while if the Ti content is more than 0.06%, the toughness will be significantly impaired. Therefore, the Ti content should be from 0.002 to
It was set at 0.06%.

(1)   N Nは、so7.Aj!及びTiで固定される以上に含有
されるとB−t−B Nとして捕らえてBの焼入れ性向
上効果を消失させる不純物元素であるが、その含有量を
0.10%以下に抑えることによって上記弊害を許容し
得る範囲にまで低減できることから、N含有量は0.1
0%以下と限定した。
(1) N N is so7. Aj! It is an impurity element that is captured as B-t-BN and eliminates the hardenability improvement effect of B when it is contained in an amount exceeding that fixed by Ti, but by suppressing its content to 0.10% or less, the above Since the negative effects can be reduced to an acceptable range, the N content is 0.1.
It was limited to 0% or less.

1  P Pは鋼中に不可避的に混入する不純物元素であり、粒界
脆化を招くので極力低減することが重要である。特に、
厳しいSR条件下で使用される鋼の場合にはSR時に著
しい粒界脆化を生じ、靭性を激しく低下させるように作
用する。従って、鋼に所望特性を確保するためにはS含
有量を0.010%以下に抑える必要があるが、好まし
くは0.005%以下の領域にまで低減するのが良い。
1 P P is an impurity element that inevitably mixes into steel and causes grain boundary embrittlement, so it is important to reduce it as much as possible. especially,
In the case of steel used under severe SR conditions, significant grain boundary embrittlement occurs during SR, which acts to severely reduce toughness. Therefore, in order to ensure desired properties in steel, it is necessary to suppress the S content to 0.010% or less, and preferably to a range of 0.005% or less.

(k)  S Sも鋼中に不可避的に侵入する不純物元素であり、鋼の
靭性を低下させるほか、溶接割れ感受性を高める悪影響
を及ぼす。そこで、このような悪影響を回避するために
は、S含有量を0.005%以下に抑える必要があるが
、出来ればO,003%以下の領域にまで低減するのが
望ましい。
(k) S S is also an impurity element that inevitably enters steel, which not only reduces the toughness of steel but also has an adverse effect of increasing weld cracking susceptibility. Therefore, in order to avoid such adverse effects, it is necessary to suppress the S content to 0.005% or less, but it is desirable to reduce it to the region of 0.003% or less if possible.

(1)  Pew PCMは溶接割れ感受性を示す指数であり、式3式% で示される値であるが、この値が低いほど溶接予熱温度
を低くして割れを生せしめることなく溶接することが可
能となる。例えば、溶接予熱温度を150℃以下とする
ためにはPCMを0.35%以下とする必要があり、溶
接割れ防止のためにはこの値が低いほど良い。しかし、
PCMを低くし過ぎるとSR後の強度を確保することが
できず、S、R後も53kgf/−以上の強度を確保す
るためにはPCMが0.21%を超えるように成分設計
をしておく必要がある。従って、Pいは0.21%を超
え0.35%以下と定めた。
(1) Pew PCM is an index indicating weld cracking susceptibility, and is the value shown by formula 3, %.The lower this value is, the lower the welding preheating temperature can be to weld without causing cracks. becomes. For example, in order to set the welding preheating temperature to 150° C. or lower, it is necessary to set the PCM to 0.35% or lower, and the lower this value is, the better in order to prevent weld cracking. but,
If the PCM is too low, it will not be possible to secure the strength after SR, and in order to ensure strength of 53 kgf/- or more even after S and R, the components must be designed so that the PCM exceeds 0.21%. It is necessary to keep it. Therefore, P was determined to be more than 0.21% and less than 0.35%.

(m)  Cu、 Ni+ Nb+及び■これらの成分
には、何れも鋼の強靭性を改善させる作用があるので、
より高い強度が必要な場合に必要により1種以上が添加
されるが、次の理由によりそれぞの含有量割合が定めら
れた。
(m) Cu, Ni+ Nb+ and ■These components all have the effect of improving the toughness of steel,
When higher strength is required, one or more types are added as necessary, and the content ratio of each element was determined for the following reasons.

Cu、及びNi Cu、 Niは何れも鋼の高温強度を向上させるのに特
に有効であるが、それぞれの含有量が0.5%を超える
と表面割れを生じて溶接割れを助長する傾向があるため
、高温強度向上を図るための添加はそれぞれ0.5%ま
でとした。
Cu and Ni Both Cu and Ni are particularly effective in improving the high-temperature strength of steel, but if their content exceeds 0.5%, they tend to cause surface cracks and promote weld cracking. Therefore, in order to improve high-temperature strength, the amount of each addition was limited to 0.5%.

坦L」υL兄 Nb、  Vは何れもSR時に析出して強度低下を防ぐ
ため特に焼戻し軟化抵抗を高めるのに有効であるが、そ
れぞれの含有量が0.1%を超えると低温靭性の低下及
び溶接性の劣化を招くようになるため、強化を図るため
の添加はそれぞれ0.1%までとした。
Both Nb and V precipitate during SR and are particularly effective in increasing temper softening resistance to prevent strength loss, but if their content exceeds 0.1%, low-temperature toughness decreases. Since this leads to deterioration of weldability, the amount of addition for reinforcement is limited to 0.1% or less.

B)熱間加工・熱処理条件 (al  加熱温度 熱間加工(例えば熱間圧延)に先立つ加熱温度が100
0℃未満であるとNb、 V等の炭窒化物の固溶が図れ
ないため、これらの析出強化を利用することができなく
なる。一方、1250″Cを超える温度域に加熱しても
Nb、 V等の炭窒化物の固溶は飽和傾向を示すので意
味が無くなるばかりでなく、圧延初期の1粒の粗大化に
つながって圧延材の靭性を損なうことになるため、熱間
加工に先立つ加熱温度は1000〜1250℃と定めた
B) Hot working/heat treatment conditions (al heating temperature The heating temperature prior to hot working (e.g. hot rolling) is 100%
If the temperature is below 0°C, solid solution of carbonitrides such as Nb and V cannot be achieved, making it impossible to utilize their precipitation strengthening. On the other hand, even if heated to a temperature range exceeding 1250"C, the solid solution of carbonitrides such as Nb and V tends to be saturated, so it is not only meaningless, but also leads to coarsening of single grains in the early stage of rolling. Since this would impair the toughness of the material, the heating temperature prior to hot working was set at 1000 to 1250°C.

(bl  熱間加工温度域 Ar3点よりも低い温度域で加工を行うことは、フェラ
イトが生成した温度域においても加工を行うことを意味
している。このような場合は、明瞭なフェライトバンド
を形成する組織となり、成分偏析の著しいマトリックス
となるので、圧力容器として使用する場合には応力集中
を受けて比較的早期に腐食が進行し、寿命の低下につな
がることから、焼串する場合は比較的高温域で行う必要
がでてくる。
(bl) Processing in a temperature range lower than Ar3 in the hot processing temperature range means processing in the temperature range where ferrite is generated.In such a case, a clear ferrite band may be formed. When used as a pressure vessel, corrosion progresses relatively quickly due to stress concentration, leading to a reduction in service life. It will be necessary to perform this in a high temperature range.

また、加工後Ac3変態点以上の温度に加熱されないで
使用される場合(例えば、加工後空冷以上の冷却速度で
冷却される場合)には、既にフェライトが形成されてい
るためマトリックスをベイナイト組織化或いは〔ベイナ
イト+マルテンサイト〕組織化することができなくなる
。従って、Ar3変態温度以上の温度域での熱間加工に
より所定の寸法に仕上げることと定めた。
In addition, if it is used without being heated to a temperature higher than the Ac3 transformation point after processing (for example, if it is cooled at a cooling rate higher than air cooling after processing), the matrix becomes a bainite structure because ferrite has already been formed. Or [bainite + martensite] cannot be organized. Therefore, it was decided that the predetermined dimensions would be finished by hot working in a temperature range equal to or higher than the Ar3 transformation temperature.

なお、Ar=変態点は、鋼材厚をt(m)とすると次式
によって算出される。
Note that Ar=transformation point is calculated by the following formula, where t (m) is the thickness of the steel material.

(C)  主要組織 鋼の低C化により耐SR脆化特性を改善するのが本発明
の一つのポイントであるが、低C化は逆にSR後の強度
低下が著しいことを意味する。そして、この場合、鋼中
に特にフェライトが生成しているとSR後の強度を53
kgf/−以上とすることは不可能であることから、主
要組織としてはベイナイト組織或いは〔ベイナイト+マ
ルテンサイト〕混合組織としておく必要がある。
(C) One of the points of the present invention is to improve the SR embrittlement resistance by lowering the carbon content of the main structure steel, but lowering the carbon content conversely means that the strength decreases significantly after SR. In this case, if ferrite is generated in the steel, the strength after SR will be 53
Since it is impossible to achieve a value of kgf/- or more, the main structure must be a bainite structure or a [bainite + martensite] mixed structure.

(d)  焼準処理 焼準処理に際しての加熱温度がAc3変態点未満の場合
には、鋼の組織を完全にオーステナイト化することがで
きないので、もしも熱間加工後の冷却時にフェライトが
形成されたとすると主要組織をベイナイト組織或いは〔
ベイナイト+マルテンサイト〕混合組織とすることがで
きない。一方、1000℃以上に加熱するとオーステナ
イト粒が粗大となって靭性が劣化する。従って、焼準処
理に際しての加熱温度はAc3変態点〜1000℃と限
定した。
(d) Normalizing treatment If the heating temperature during normalizing treatment is below the Ac3 transformation point, the structure of the steel cannot be completely austenitized, so if ferrite is formed during cooling after hot working. Then, the main structure is changed to bainite structure or [
Bainite + martensite] cannot be formed into a mixed structure. On the other hand, when heated to 1000° C. or higher, austenite grains become coarse and toughness deteriorates. Therefore, the heating temperature during the normalizing treatment was limited to the Ac3 transformation point to 1000°C.

le)  熱間加工後の冷却条件 前述したように、鋼の寸法が厚い場合には焼準処理によ
っては板厚中心部までベイナイ)M織成いは〔ベイナイ
ト+マルテンサイト〕混合組織とできない恐れがあり、
鋼寸法が厚くなった場合でも低C化したクロムモリブデ
ン鋼においてSR後高強度を安定して確保するためには
、熱間加工後に焼準処理を行うのではなく、直ちに特定
条件で加速冷却するのが効果的である。
le) Cooling conditions after hot working As mentioned above, if the steel is thick, there is a risk that normalizing may not result in a bainitic (M) texture or [bainite + martensite] mixed structure up to the center of the plate thickness. There is,
In order to stably secure high strength after SR in low C chromium molybdenum steel even when the steel size becomes thicker, accelerated cooling under specific conditions is performed immediately instead of normalizing treatment after hot working. is effective.

この場合、熱間加工後にAr、変態点以上の温度域から
冷却を開始しないとフェライト生成を抑制することがで
きず、またその際に空冷以上の冷却速度で600℃以下
まで冷却しないと主要組織をベイナイト組織或いは〔ベ
イナイト+マルテンサイト〕混合組織とすることができ
ないことから、熱間加工に引き続いて加速冷却を行う場
合には、冷却速度を空冷以上とし、かつ600℃以下に
まで加速冷却することと定めた。
In this case, ferrite formation cannot be suppressed unless cooling is started from a temperature range above the Ar transformation point after hot working, and the main structure must be cooled to below 600°C at a cooling rate faster than air cooling. Since it is not possible to form a bainite structure or a [bainite + martensite] mixed structure, when accelerated cooling is performed following hot working, the cooling rate is set to air cooling or higher, and accelerated cooling is performed to 600°C or lower. It was decided that

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、第1表に示す如き成分組成の各鋼を溶製し、これ
らに第2表で示す条件の熱間圧延、熱処理を施して鋼板
を製造した。
<Example> First, steels having the compositions shown in Table 1 were melted and subjected to hot rolling and heat treatment under the conditions shown in Table 2 to produce steel plates.

次に得られた各鋼板の機械的特性を調査すると共に、溶
接性評価の観点からY開先拘束割れ試験をも実施し、そ
の結果を第2表に併せて示した。
Next, the mechanical properties of each of the obtained steel plates were investigated, and a Y-groove restraint cracking test was also carried out from the viewpoint of weldability evaluation, and the results are also shown in Table 2.

ここで、Y開先拘束割れ試験は、各鋼板より斜めY開先
拘束割れ試験片(板厚25fi)を採取し、入熱量: 
17 kJ/cmで手溶接(電流:17OA 、電圧:
25V。
Here, in the Y-groove restraint cracking test, a diagonal Y-groove restraint cracking test piece (plate thickness 25fi) was taken from each steel plate, and the heat input:
Manual welding at 17 kJ/cm (current: 17OA, voltage:
25V.

速度:15cm/s+in) シたときの“表面割れ”
及び“ルート割れ”の有無を調査する方法によった。そ
して、この試験での判定基準は、予熱温度:150℃以
下の溶接でも上記割れが発生しなかった場合を「○」と
し、150℃を超える予熱温度としなければ割れ発生を
抑えることができなかうた場合を「×」とした。
Speed: 15cm/s+in) “Surface crack” when struck
and by a method of investigating the presence or absence of "root cracks". The criteria for this test is that if the above cracking does not occur even when welding at a preheating temperature of 150°C or less, it is marked as "○", and if the preheating temperature does not exceed 150°C, cracking cannot be suppressed. If the song was sung, it was marked as “×”.

第2表に示される結果からも明らかなように、を得られ
た鋼板が本発明で規定する条件を満たしている場合には
強度、靭性が共に高い上、予熱温度が150℃以下であ
っても溶接割れが認められず、母材性能、溶接性共に良
好であることが分かる。
As is clear from the results shown in Table 2, when the obtained steel plate satisfies the conditions specified in the present invention, it has high strength and toughness, and the preheating temperature is 150°C or less. It can be seen that no weld cracks were observed in either case, indicating that both the base metal performance and weldability were good.

これに対して、試験番号11は熱間圧延時の加熱温度が
本発明で規定する条件より低い980℃加熱のため、A
r、変態点より高い温度で仕上げ圧延することができな
かった例である。このような場合でも、本発明で規定し
たようにAc3変態点〜1000℃の温度域で焼準処理
を行って圧延時に形成されたフェライトを完全にオース
テナイト化し、規準後の組織をフェライトの生成が抑制
されたベイナイト組織としておけば試験番号1と同等の
結果が得られる筈であるが、850℃と言う低い温度で
の焼準処理のためフェライトが残存し、目標とする強度
レベルに至っていない。
On the other hand, in test number 11, A
r, this is an example in which finish rolling could not be performed at a temperature higher than the transformation point. Even in such a case, as specified in the present invention, the ferrite formed during rolling is completely austenitized by normalizing treatment in the temperature range from the Ac3 transformation point to 1000°C, and the structure after normalization is changed to prevent the formation of ferrite. If the bainite structure was suppressed, the same results as Test No. 1 would have been obtained, but due to the normalization treatment at a low temperature of 850°C, ferrite remained and the target strength level was not achieved.

同様の例を試験番号12と13に示すが、前者は加熱温
度を高くしているが仕上げ温度がAr+点より低い90
0℃仕上げのためフェライトの生成が抑制できなかった
場合であり、このような高温加熱の場合でも焼増温度を
Ac3点以上の温度域としなければ目標の強度レベルを
満足することはできない。更に、後者のようにArz点
より低い815℃仕上げ圧延後水冷を行ってフェライト
とマルテンサイト(一部ペイナイト)の組織として強度
上昇を図っても、フェライトが残存するような組織では
20、1 x 10”と言う厳しいSR処理がなされる
と強度確保はできず、本発明の目標強度を確保すること
はできない。
Similar examples are shown in test numbers 12 and 13, but in the former, the heating temperature is higher but the finishing temperature is lower than the Ar+ point.
This is a case where the formation of ferrite could not be suppressed due to the 0°C finishing, and even in the case of such high-temperature heating, the target strength level cannot be satisfied unless the annealing temperature is set to a temperature range of Ac 3 or higher. Furthermore, even if water cooling is performed after finish rolling at 815°C, which is lower than the Arz point, to increase the strength of the structure of ferrite and martensite (partially payinite), the structure in which ferrite remains will have a strength of 20.1 x. If a severe SR treatment of 10" is applied, the strength cannot be ensured, and the target strength of the present invention cannot be ensured.

試験番号14乃至18は、本発明で規定する製造工程の
条件を満足するが、鋼の成分組成条件が本発明の規定を
満足しなかった場合の例である。このように、製造工程
条件を満足しても成分組成条件が本発明の規定を満足し
ていないと、試験番号14゜16及び17のように目標
強度を得ることができないか、或いはPCl4が0.3
5%を超える試験番号15及び18のように目標強度を
満足しても溶接予熱温度を150°C以下にすることが
できず、圧力容器等に組み立てる場合、施工上の大きな
障害となっり適用は不可能となる。
Test numbers 14 to 18 are examples in which the conditions of the manufacturing process specified by the present invention were satisfied, but the chemical composition conditions of the steel did not satisfy the conditions of the present invention. In this way, even if the manufacturing process conditions are satisfied, if the component composition conditions do not satisfy the provisions of the present invention, the target strength cannot be obtained as in test numbers 14°16 and 17, or PCl4 is 0. .3
Even if the target strength is satisfied, as in test numbers 15 and 18, which exceed 5%, the welding preheating temperature cannot be lowered to 150°C or less, and when assembling into a pressure vessel, etc., this becomes a major obstacle in construction. becomes impossible.

なお、試験番号17からは、PCllを0.276%と
した場合でもSの含有量が高いとやはり溶接予熱温度を
150℃以下にすることができないことが分かる。
In addition, from Test No. 17, it can be seen that even when PCll is 0.276%, if the S content is high, the welding preheating temperature cannot be lowered to 150° C. or less.

また、Pの含有量の高い試験番号16と18は衝撃特性
が著しく劣っており、Pの低減化は必須であることが分
かる。
Furthermore, test numbers 16 and 18, which had a high P content, had significantly poor impact properties, indicating that reduction of P is essential.

このように、本発明における成分範囲は単にSR後の強
度を確保するためだけでなく、靭性及び溶接性も兼ね備
えた意味を持ち、その重要性が確認される。
As described above, the component range in the present invention is not only intended to ensure strength after SR, but also has the meaning of having toughness and weldability, and its importance is confirmed.

く効果の総括) 以上詳述したように、この発明によれば、耐SR脆化特
性に優れると共に、SR後も引張強度が53kgf/−
以上である低炭素クロムモリブデン鋼を提供することが
可能となり、原子力発電設備用中・高温圧力容器の材料
等として幅広い用途が期待できるなど、産業上極めて有
用な効果がもたらされる。
(Summary of Effects) As detailed above, the present invention has excellent SR embrittlement resistance and maintains a tensile strength of 53 kgf/- even after SR.
It has become possible to provide the above-mentioned low carbon chromium molybdenum steel, and it will bring extremely useful effects industrially, such as being expected to have a wide range of uses, such as as a material for medium- and high-temperature pressure vessels for nuclear power generation equipment.

Claims (1)

【特許請求の範囲】 (1)重量割合にて C:0.03%以上0.11%未満、 Si:0.10〜0.90%、Mn:0.50〜2.0
0%、Cr:0.40〜2.50%、Mo:0.10〜
1.00%、B:0.00015〜0.0030%、 sol.Al:0.005〜0.10%、 Ti:0.002〜0.06%、N:0.01%以下、
P:0.010%以下、S:0.0050%以下、を含
むと共に、残部がFe及び不可避的不純物から、成り、
かつ溶接割れ感受性指数P_C_Mが0.21%を超え
0.35%以下であることを特徴とする、耐SR脆化性
に優れた高強度低炭素クロムモリブデン鋼。 2)重量割合にて C:0.03%以上0.11%未満、 Si:0.10〜0.90%、Mn:0.50〜2.0
0%、Cr:0.40〜2.50%、Mo:0.10〜
1.00%、B:0.00015〜0.0030%、 sol.Al:0.005〜0.10%、 Ti:0.002〜0.06%、N:0.01%以下、
P:0.010%以下、S:0.0050%以下、を含
有し、更に Cu:0.5%以下、Ni:0.5%以下、Nb:0.
1%以下、V:0.1%以下 の1種以上をも含むと共に、残部がFe及び不可避的不
純物から成り、かつ溶接割れ感受性指数P_C_Mが0
.21%を超え0.35%以下であることを特徴とする
、耐SR脆化性に優れた高強度低炭素クロムモリブデン
鋼。 (3)成分組成が請求項1又は請求項2記載の鋼を10
00〜1250℃の温度域に加熱後、Ar_3変態点以
上の温度域で熱間加工して所定の寸法とし、次いで更に
Ac_3変態点〜1000℃の温度域に加熱後空冷して
焼準することにより主要組織をベイナイト組織或いは〔
ベイナイト+マルテンサイト〕の混合組織とすることを
特徴とする、請求項1又は請求項2記載の高強度低炭素
クロムモリブデン鋼の製造方法。 (4)成分組成が請求項1又は請求項2記載の鋼を10
00〜1250℃の温度域に加熱後、Ar_3変態点以
上の温度域で熱間加工して所定の寸法に仕上げ、仕上げ
後直ちに600℃以下の温度まで空冷以上の冷却速度で
冷却することにより主要組織をベイナイト組織或いは〔
ベイナイト+マルテンサイト〕の混合組織とすることを
特徴とする、請求項1又は請求項2記載の高強度低炭素
クロムモリブデン鋼の製造方法。
[Claims] (1) In terms of weight percentage, C: 0.03% or more and less than 0.11%, Si: 0.10-0.90%, Mn: 0.50-2.0
0%, Cr: 0.40~2.50%, Mo: 0.10~
1.00%, B: 0.00015-0.0030%, sol. Al: 0.005-0.10%, Ti: 0.002-0.06%, N: 0.01% or less,
Contains P: 0.010% or less, S: 0.0050% or less, and the remainder consists of Fe and inevitable impurities,
A high-strength, low-carbon chromium-molybdenum steel having excellent SR embrittlement resistance, and having a weld cracking susceptibility index P_C_M of more than 0.21% and less than 0.35%. 2) In terms of weight percentage, C: 0.03% or more and less than 0.11%, Si: 0.10-0.90%, Mn: 0.50-2.0
0%, Cr: 0.40~2.50%, Mo: 0.10~
1.00%, B: 0.00015-0.0030%, sol. Al: 0.005-0.10%, Ti: 0.002-0.06%, N: 0.01% or less,
Contains P: 0.010% or less, S: 0.0050% or less, Cu: 0.5% or less, Ni: 0.5% or less, Nb: 0.
1% or less, V: 0.1% or less, the remainder consists of Fe and unavoidable impurities, and the weld cracking susceptibility index P_C_M is 0.
.. A high-strength, low-carbon chromium-molybdenum steel with excellent SR embrittlement resistance, characterized by a content of more than 21% and less than 0.35%. (3) The steel according to claim 1 or claim 2 has a composition of 10
After heating to a temperature range of 00 to 1250°C, hot working in a temperature range of Ar_3 transformation point or higher to obtain the specified dimensions, then further heating to a temperature range of Ac_3 transformation point to 1000°C, air cooling, and normalizing. The main structure is bainitic structure or [
3. The method for producing a high-strength, low-carbon chromium-molybdenum steel according to claim 1 or 2, characterized in that it has a mixed structure of bainite + martensite. (4) The steel according to claim 1 or claim 2 has a composition of 10
After heating to a temperature range of 00 to 1250℃, hot working in a temperature range of Ar_3 transformation point or higher to finish to the specified dimensions, and immediately cooling to a temperature of 600℃ or less at a cooling rate faster than air cooling. The structure can be changed to bainite structure or [
3. The method for producing a high-strength, low-carbon chromium-molybdenum steel according to claim 1 or 2, characterized in that it has a mixed structure of bainite + martensite.
JP7218089A 1989-03-24 1989-03-24 Low carbon chromium-molybdenum steel and its manufacture Pending JPH02250941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7218089A JPH02250941A (en) 1989-03-24 1989-03-24 Low carbon chromium-molybdenum steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218089A JPH02250941A (en) 1989-03-24 1989-03-24 Low carbon chromium-molybdenum steel and its manufacture

Publications (1)

Publication Number Publication Date
JPH02250941A true JPH02250941A (en) 1990-10-08

Family

ID=13481769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218089A Pending JPH02250941A (en) 1989-03-24 1989-03-24 Low carbon chromium-molybdenum steel and its manufacture

Country Status (1)

Country Link
JP (1) JPH02250941A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023083A1 (en) * 1995-01-26 1996-08-01 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
WO1999002747A1 (en) * 1997-07-08 1999-01-21 Exxon Research And Engineering Company Ultra high strength, secondary hardening steels with superior toughness and weldability
EP1015651A1 (en) * 1997-07-28 2000-07-05 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
EP1025271A1 (en) * 1997-07-28 2000-08-09 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
EP1277848A1 (en) * 2001-07-19 2003-01-22 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel, process for producing the same, and process for producing high-strength heat-restistant pipe
EP1746175A1 (en) * 2004-05-11 2007-01-24 Sumitomo Metal Industries, Ltd. Super high strength uoe steel pipe and method for production thereof
WO2012060405A1 (en) * 2010-11-05 2012-05-10 新日本製鐵株式会社 High-strength steel sheet and method for producing same
CN103215512A (en) * 2013-03-16 2013-07-24 南阳汉冶特钢有限公司 Pressure vessel steel 12Cr2Mo1R and production technology of 150mm thick pressure vessel steel 12Cr2Mo1R plate
EP3293280A1 (en) * 2016-09-09 2018-03-14 Hyundai Motor Company High strength special steel
CN110079736A (en) * 2019-05-23 2019-08-02 攀钢集团攀枝花钢铁研究院有限公司 Uniform low carbon low silicon welding steel of structure property and preparation method thereof
US10487380B2 (en) 2016-08-17 2019-11-26 Hyundai Motor Company High-strength special steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110915A (en) * 1978-02-20 1979-08-30 Sumitomo Metal Ind Ltd Untempered high strength steel having excellent weldability
JPS57143467A (en) * 1981-02-27 1982-09-04 Kawasaki Steel Corp Low c-low si-cr-mo steel used in wet vapor
JPS5943846A (en) * 1982-09-03 1984-03-12 Nippon Kokan Kk <Nkk> Cr-mo steel with superior hardenability and toughness
JPS59211555A (en) * 1983-05-16 1984-11-30 Nippon Kokan Kk <Nkk> Steel for pressure vessel with high toughness
JPS61166917A (en) * 1985-01-19 1986-07-28 Nippon Kokan Kk <Nkk> Manufacture of cr-mo steel for pressure vessel excelling in weldability and in creep strength
JPS63241145A (en) * 1987-03-27 1988-10-06 Kawasaki Steel Corp High-strength cr-mo steel excellent in weldability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110915A (en) * 1978-02-20 1979-08-30 Sumitomo Metal Ind Ltd Untempered high strength steel having excellent weldability
JPS57143467A (en) * 1981-02-27 1982-09-04 Kawasaki Steel Corp Low c-low si-cr-mo steel used in wet vapor
JPS5943846A (en) * 1982-09-03 1984-03-12 Nippon Kokan Kk <Nkk> Cr-mo steel with superior hardenability and toughness
JPS59211555A (en) * 1983-05-16 1984-11-30 Nippon Kokan Kk <Nkk> Steel for pressure vessel with high toughness
JPS61166917A (en) * 1985-01-19 1986-07-28 Nippon Kokan Kk <Nkk> Manufacture of cr-mo steel for pressure vessel excelling in weldability and in creep strength
JPS63241145A (en) * 1987-03-27 1988-10-06 Kawasaki Steel Corp High-strength cr-mo steel excellent in weldability

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023083A1 (en) * 1995-01-26 1996-08-01 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
EP0753596A1 (en) * 1995-01-26 1997-01-15 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
AU680590B2 (en) * 1995-01-26 1997-07-31 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
EP0753596A4 (en) * 1995-01-26 1998-05-20 Nippon Steel Corp Weldable high-tensile steel excellent in low-temperature toughness
US5798004A (en) * 1995-01-26 1998-08-25 Nippon Steel Corporation Weldable high strength steel having excellent low temperature toughness
WO1999002747A1 (en) * 1997-07-08 1999-01-21 Exxon Research And Engineering Company Ultra high strength, secondary hardening steels with superior toughness and weldability
EP1015651A1 (en) * 1997-07-28 2000-07-05 Exxonmobil Upstream Research Company Ultra-high strength, weldable, boron-containing steels with superior toughness
EP1025271A1 (en) * 1997-07-28 2000-08-09 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
EP1015651A4 (en) * 1997-07-28 2001-07-18 Exxonmobil Upstream Res Co Ultra-high strength, weldable, boron-containing steels with superior toughness
EP1025271A4 (en) * 1997-07-28 2001-07-18 Exxonmobil Upstream Res Co Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
EP1277848A1 (en) * 2001-07-19 2003-01-22 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel, process for producing the same, and process for producing high-strength heat-restistant pipe
US6818072B2 (en) 2001-07-19 2004-11-16 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel, process for producing the same, and process for producing high-strength heat-resistant pipe
EP1746175A1 (en) * 2004-05-11 2007-01-24 Sumitomo Metal Industries, Ltd. Super high strength uoe steel pipe and method for production thereof
EP1746175A4 (en) * 2004-05-11 2007-07-04 Sumitomo Metal Ind Super high strength uoe steel pipe and method for production thereof
WO2012060405A1 (en) * 2010-11-05 2012-05-10 新日本製鐵株式会社 High-strength steel sheet and method for producing same
JP5037744B2 (en) * 2010-11-05 2012-10-03 新日本製鐵株式会社 High strength steel plate and manufacturing method thereof
KR101374422B1 (en) * 2010-11-05 2014-03-17 신닛테츠스미킨 카부시키카이샤 High-strength steel sheet and method for producing same
CN103215512A (en) * 2013-03-16 2013-07-24 南阳汉冶特钢有限公司 Pressure vessel steel 12Cr2Mo1R and production technology of 150mm thick pressure vessel steel 12Cr2Mo1R plate
US10487380B2 (en) 2016-08-17 2019-11-26 Hyundai Motor Company High-strength special steel
EP3293280A1 (en) * 2016-09-09 2018-03-14 Hyundai Motor Company High strength special steel
US10487382B2 (en) 2016-09-09 2019-11-26 Hyundai Motor Company High strength special steel
CN110079736A (en) * 2019-05-23 2019-08-02 攀钢集团攀枝花钢铁研究院有限公司 Uniform low carbon low silicon welding steel of structure property and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JP6798557B2 (en) steel
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP6277679B2 (en) High-tensile steel plate with excellent gas cut cracking resistance and high heat input weld toughness
JPS59129724A (en) Production of thick walled ultra high tension steel
JP2002241837A (en) Method for producing high toughness and high tensile strength steel
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JPH0247526B2 (en)
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JPH03188240A (en) High strength martensitic stainless steel and its manufacture
JPH04228536A (en) Steel excellent in wear resistance
JPS61174326A (en) Production of machine structural steel having superior delayed fracture resistance
JP2551251B2 (en) Steel for bolts and nuts with excellent fire resistance
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
JPH04110422A (en) Production of 70kgf/mm2 class steel plate having superior weldability and low yield ratio
JPH06240407A (en) Clad steel with high corrosion resistance and high strength and its production
JP2669220B2 (en) Steel for bolts and nuts with excellent fire resistance