JP2967889B2 - Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment - Google Patents

Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Info

Publication number
JP2967889B2
JP2967889B2 JP3295681A JP29568191A JP2967889B2 JP 2967889 B2 JP2967889 B2 JP 2967889B2 JP 3295681 A JP3295681 A JP 3295681A JP 29568191 A JP29568191 A JP 29568191A JP 2967889 B2 JP2967889 B2 JP 2967889B2
Authority
JP
Japan
Prior art keywords
steel
hydrogen sulfide
crack growth
wet hydrogen
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3295681A
Other languages
Japanese (ja)
Other versions
JPH05132715A (en
Inventor
隆弘 櫛田
登 誉田
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3295681A priority Critical patent/JP2967889B2/en
Publication of JPH05132715A publication Critical patent/JPH05132715A/en
Application granted granted Critical
Publication of JP2967889B2 publication Critical patent/JP2967889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素を含む原
油の輸送に用いられる原油タンカー用の鋼板として好適
な湿潤硫化水素環境下で疲労亀裂進展特性に優れる鋼の
製造方法に関する
The present invention relates to a method for producing steel excellent in fatigue crack growth characteristics in a wet hydrogen sulfide environment suitable as a steel plate for a crude oil tanker used for transporting crude oil containing hydrogen sulfide.

【0002】[0002]

【従来の技術】上記のような用途に用いられる鋼材にお
いて水素誘起割れ(HIC)あるいは硫化物応力割れ
(SSC)が問題となることは既に衆知の事実であり、
その防止に関しては数多くの研究がなされ、幾多の対策
が提案されている。
2. Description of the Related Art It is already well known that hydrogen-induced cracking (HIC) or sulfide stress cracking (SSC) poses a problem in steel materials used for the above applications.
Numerous studies have been made on the prevention, and many countermeasures have been proposed.

【0003】HICは外部応力のない状態で鋼材に生じ
る割れであり、SSCは静的な応力下での割れである。
HICやSSCは、湿潤硫化水素環境で鋼が腐食したと
きに発生する水素が鋼中に侵入することによって生じる
水素脆化であり、鋼の脆化現象の1つである。
[0003] HIC is a crack generated in a steel material without external stress, and SSC is a crack under static stress.
HIC and SSC are hydrogen embrittlement caused by the penetration of hydrogen generated when steel corrodes in a wet hydrogen sulfide environment into steel, and is one of the embrittlement phenomena of steel.

【0004】一方、繰り返し応力のかかる状態で生じる
疲労破壊および腐食疲労破壊も、鋼のもう一つの大きな
脆化現象である。
[0004] On the other hand, fatigue fracture and corrosion fatigue fracture that occur under the condition of repeated stress are another major embrittlement phenomenon of steel.

【0005】波浪による繰り返し応力がかかる船舶ある
いは海洋構造物、自動車のホイールやクランク軸、さら
には歯車用材料等の疲労および腐食疲労についてもまた
数多くの研究例がある。
[0005] There have also been many studies on fatigue and corrosion fatigue of marine or marine structures, automobile wheels and crankshafts, and gear materials, etc., which are subjected to repeated stresses due to waves.

【0006】最近、原油タンカー等では大型化やコスト
ダウンの観点から、高張力鋼の使用が広がって来てい
る。その場合、鋼材にはこれまで以上の応力がかかるこ
とになり、割れ以外に疲労の問題が懸念されるようにな
ってきた。ところが、先に述べたような湿潤硫化水素環
境に曝される原油タンカー、ラインパイプ、石油精製装
置などに用いられる鋼について、湿潤硫化水素環境下の
疲労挙動を調査した例は少ない。
Recently, high-strength steel has been widely used in crude oil tankers and the like from the viewpoint of increasing the size and cost. In this case, the steel material is subjected to more stress than before, and there has been a concern about fatigue other than cracking. However, there are few examples of investigating the fatigue behavior of a steel used in a crude oil tanker, a line pipe, a petroleum refining apparatus, and the like exposed to a wet hydrogen sulfide environment as described above in a wet hydrogen sulfide environment.

【0007】Corrosion NACE、vol.
32、No.12(December)1976)の
O.VOSHIKOVSKIによる「Fatigue
Crack Growth in an X65 Li
ne−Pipe Steelin Sour Crud
e Oil」と題する報告には、硫化水素濃度が高くな
ると疲労亀裂進展速度が著しく加速することが明らかに
されており、湿潤硫化水素環境下の疲労に及ぼす環境効
果は決して無視できない問題であると考えられる。この
硫化水素によると思われる亀裂進展速度の加速は、水素
脆性と重畳したためと考察されている。しかしながら、
湿潤硫化水素環境下の疲労に及ぼす材料因子について詳
細に研究した例は少なく、具体的な対策も見出されてい
ない。
[0007] Corrosion NACE, vol.
32, no. 12 (December) 1976). "Fatigue" by VOSHKOVSKI
Crack Growth in an X65 Li
ne-Pipe Steelin Sour Cloud
The report entitled “e Oil” shows that the fatigue crack growth rate is significantly accelerated when the concentration of hydrogen sulfide increases, and that the environmental effects on fatigue in a wet hydrogen sulfide environment cannot be ignored. Conceivable. It is considered that the acceleration of the crack growth rate presumed to be caused by hydrogen sulfide is superimposed on hydrogen embrittlement. However,
There are few examples of detailed studies on the material factors that affect fatigue in a wet hydrogen sulfide environment, and no specific countermeasures have been found.

【0008】図1は、従来鋼の大気中および湿潤硫化水
素環境における疲労試験結果である。縦軸のda/dN
は亀裂進展速度で、応力サイクル1回当たりの進展距離
(mm)で表している。横軸のΔKは最大応力拡大係数
(Kmax)と最小応力拡大係数(Kmin)の差であ
る。即ち、ΔK=Kmax−Kminである。一般に、
亀裂進展速度(da/dN)は、ΔKに対してda/d
N=C(ΔK)mの関係が広く認められることから、横
軸にΔKを取った。なお、応力拡大係数とは、亀裂(欠
陥あるいは割れ)が存在するときの亀裂の寸法・形状、
材料の寸法・形状、荷重条件などの力学的境界条件を標
準化して取り扱う破壊力学において、応力として取り扱
われるものである。疲労亀裂の進展を標準化して取り扱
う場合にも応力拡大係数は有益である。
FIG. 1 shows the results of a fatigue test of conventional steel in air and in a wet hydrogen sulfide environment. Da / dN on the vertical axis
Is a crack growth rate, which is represented by a growth distance (mm) per one stress cycle. ΔK on the horizontal axis is the difference between the maximum stress intensity factor (Kmax) and the minimum stress intensity factor (Kmin). That is, ΔK = Kmax−Kmin. In general,
The crack growth rate (da / dN) is expressed as da / d with respect to ΔK.
Since the relationship of N = C (ΔK) m is widely recognized, ΔK is plotted on the horizontal axis. The stress intensity factor is the size and shape of a crack when a crack (defect or crack) is present,
It is treated as stress in fracture mechanics, which standardizes mechanical boundary conditions such as dimensions and shapes of materials and load conditions. The stress intensity factor is also useful when dealing with fatigue crack growth standardized.

【0009】図1から明かなように、大気中に比べ湿潤
硫化水素環境中では亀裂進展速度が大きい。特に、ΔK
の大きい領域(約20ksi(in)1/2以上)で亀
裂進展が加速されている。
As apparent from FIG. 1, the crack growth rate is higher in a wet hydrogen sulfide environment than in the atmosphere. In particular, ΔK
The crack growth is accelerated in a region having a large value (about 20 ksi (in) 1/2 or more).

【0010】[0010]

【発明が解決しようとする課題】本発明は、鋼材の高強
度化に伴って頻発することが予想される原油タンカー内
の湿潤硫化水素環境下での疲労破壊に対処することを課
題としてなされたものである。
SUMMARY OF THE INVENTION It is an object of the present invention to cope with fatigue fracture in a wet hydrogen sulfide environment in a crude oil tanker, which is expected to frequently occur with the strengthening of steel materials. Things.

【0011】本発明の具体的な目的は、原油タンカーに
使用されるYS(降伏応力)20〜45kgf/mm
2、TS(引張強さ)35〜60kgf/mm2級の鋼
材であって、湿潤硫化水素環境下で使用されたときに疲
労亀裂が進展しにくい性質をもった鋼の製造方法を提供
することにある。さらに詳しくは、従来の普通鋼または
高張力鋼を用いてもHICやSSCを生じることはない
が、従来の高張力鋼を用いたのでは疲労亀裂進展速度が
促進される湿潤硫化水素環境下において耐疲労亀裂進展
特性に優れる原油タンカー用鋼の製造方法の提供にあ
る。
A specific object of the present invention is to provide a YS (yield stress) of 20 to 45 kgf / mm used for a crude oil tanker.
2. To provide a method for producing a steel material having a TS (tensile strength) of 35 to 60 kgf / mm2 and having a property that a fatigue crack does not easily propagate when used in a wet hydrogen sulfide environment. is there. More specifically, HIC or SSC does not occur even if conventional ordinary steel or high-tensile steel is used, but in a wet hydrogen sulfide environment where the fatigue crack growth rate is accelerated using conventional high-tensile steel. It is an object of the present invention to provide a method for producing a crude oil tanker steel having excellent fatigue crack propagation resistance.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、下記の
製造方法にある。
The gist of the present invention resides in the following manufacturing method.

【0013】(1)重量%で、C:0.01〜0.2
%、Si:0.2〜0.6%、Mn:0.3〜2.0
%、sol.Al:0.01〜0.1%を含み、残部は
不可避不純物(但し、Sの0.003%以下を除く)と
Feからなる連続鋳造スラブまたはインゴットを熱間鍛
造または熱間圧延した後、(Ar3点−30℃)以上の
温度域に再加熱し、(Ar3点−30℃)以上から冷却
速度5〜25℃/sで400〜600℃の温度域まで加
速冷却し、その後放冷または徐冷する湿潤硫化水素環境
において耐疲労亀裂進展特性に優れる原油タンカー用鋼
の製造方法。
(1) C: 0.01-0.2% by weight
%, Si: 0.2 to 0.6%, Mn: 0.3 to 2.0
%, Sol. Al: contains 0.01 to 0.1%, the remainder is inevitable impurities (however, excluding 0.003% or less of S) and a continuous cast slab or ingot made of Fe and hot forged or hot rolled, Reheat to a temperature range of (Ar 3 points -30 ° C.) or more, accelerate cooling from (Ar 3 points -30 ° C.) or more to a temperature range of 400 to 600 ° C. at a cooling rate of 5 to 25 ° C./s, and then allow to cool or A method for producing a crude oil tanker steel having excellent fatigue crack growth resistance in a slowly cooled wet hydrogen sulfide environment.

【0014】(2)上記(1)に記載の合金成分に加え
て更に、重量%で、Nb:0.01〜0.1%、Ti:
0.01〜0.1%およびV:0.01〜0.1%の中
の1種以上を含み、残部は不可避不純物とFeからなる
連続鋳造スラブまたはインゴットを(1)と同じ工程で
処理する湿潤硫化水素環境において耐疲労亀裂進展特性
に優れる原油タンカー用鋼の製造方法。
(2) In addition to the alloy components described in the above (1), Nb: 0.01-0.1%, Ti:
A continuous cast slab or ingot containing at least one of 0.01 to 0.1% and V: 0.01 to 0.1%, with the balance being unavoidable impurities and Fe, is treated in the same step as (1). For producing crude oil tanker steel having excellent fatigue crack propagation resistance in a wet hydrogen sulfide environment.

【0015】(3)上記(1)に記載の合金成分に加え
て更に、重量%で、Cu:0.1〜1.0%とCr:
0.1〜2.0%の1種または2種を含み、残部は不可
避不純物とFeからなる連続鋳造スラブまたはインゴッ
トを(1)と同じ工程で処理する湿潤硫化水素環境にお
いて耐疲労亀裂進展特性に優れる原油タンカー用鋼の製
造方法。
(3) In addition to the alloy components described in the above (1), further, by weight%, Cu: 0.1 to 1.0% and Cr:
Fatigue crack growth resistance in a wet hydrogen sulfide environment in which a continuous cast slab or ingot containing 0.1 to 2.0% of one or two kinds and the balance is composed of unavoidable impurities and Fe is treated in the same step as (1). Method for producing crude oil tanker steel.

【0016】(4)上記(1)に記載の合金成分に加え
て更に、重量%で、Cu:0.1〜1.0%とCr:
0.1〜2.0%の1種または2種、ならびにNb:
0.01〜0.1%、Ti:0.01〜0.1%および
V:0.01〜0.1%の中の1種以上を含み、残部は
不可避不純物とFeからなる連続鋳造スラブまたはイン
ゴットを(1)と同じ工程で処理する湿潤硫化水素環境
において耐疲労亀裂進展特性に優れる原油タンカー用鋼
の製造方法。
(4) In addition to the alloy components described in the above (1), further, by weight%, Cu: 0.1 to 1.0% and Cr:
0.1 to 2.0% of one or two, and Nb:
Continuous cast slab containing at least one of 0.01 to 0.1%, Ti: 0.01 to 0.1% and V: 0.01 to 0.1%, with the balance being unavoidable impurities and Fe Alternatively, a method for producing a crude oil tanker steel having excellent fatigue crack propagation resistance in a wet hydrogen sulfide environment in which an ingot is treated in the same step as (1).

【0017】[0017]

【発明の実施の形態】本発明は、従来ほとんど検討のな
されていなかった湿潤硫化水素環境下の疲労挙動に及ぼ
す材料因子について検討した結果に基づいてなされたも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been made based on the results of a study on material factors affecting the fatigue behavior in a wet hydrogen sulfide environment, which has hardly been studied hitherto.

【0018】後の実施例でも明らかにするが、湿潤硫化
水素環境下の疲労挙動を観察すると、ΔKの大きい、即
ち、塑性変形域が広くなる応力状態で亀裂進展が著しく
加速されている。また、湿潤硫化水素環境下の疲労で
は、硫化水素濃度が高いほど亀裂進展が大きい。硫化水
素濃度が高いほど腐食に伴って発生する水素原子が鋼中
に侵入して固溶する量が多くなるからであると考えられ
る。また、塑性変形域が広くなる応力状態で亀裂進展が
加速されることから、この疲労破壊挙動には水素脆性が
大きく関与していると推定される。
As will be apparent from the examples below, when the fatigue behavior in a wet hydrogen sulfide environment is observed, crack growth is remarkably accelerated in a stress state where ΔK is large, that is, the plastic deformation region is widened. In fatigue in a wet hydrogen sulfide environment, the crack growth increases as the hydrogen sulfide concentration increases. It is considered that the higher the concentration of hydrogen sulfide, the greater the amount of hydrogen atoms generated due to corrosion that enter the steel and form a solid solution. Further, since crack growth is accelerated in a stress state in which the plastic deformation region is widened, it is presumed that hydrogen embrittlement is greatly involved in this fatigue fracture behavior.

【0019】更に、この疲労破壊が主にフェライト粒内
を進展し、塑性変形の大きい領域で亀裂進展速度が大き
いことに注目すると、フェライト粒の塑性変形挙動がこ
の疲労破壊挙動に密接に関係していると考えられる。
Furthermore, focusing on the fact that this fatigue fracture mainly propagates in the ferrite grains, and that the crack growth rate is high in a region where the plastic deformation is large, the plastic deformation behavior of the ferrite grains is closely related to the fatigue fracture behavior. It is thought that it is.

【0020】本発明は、鋼の化学組成と製造条件を適正
に選べば、フェライト粒の強度を上げ、従来の鋼に較べ
て繰り返し応力下でフェライト粒の受ける塑性変形を小
さくすることができ、疲労亀裂の進展速度を低下させる
ことができるという新しい知見に基づいてなされたもの
である。
According to the present invention, if the chemical composition of steel and the manufacturing conditions are properly selected, the strength of ferrite grains can be increased, and the plastic deformation of ferrite grains under repeated stress can be reduced as compared with conventional steels. This is based on the new finding that the growth rate of fatigue cracks can be reduced.

【0021】化学組成の面から言えば、Nb、Tiおよ
びVの中の1種以上を添加することによってフェライト
結晶粒を細粒化し、かつ炭化物の生成によってフェライ
ト自体を強化することができ、亀裂の進展速度を一層小
さくすることができる。また、CuとCrの一方または
両方の添加により、硫化水素を含む雰囲気での鋼の耐食
性を向上させ、腐食速度を低下させ、その結果、鋼の固
溶水素の量を減らして亀裂進展速度を小さくすることが
できる。
In terms of chemical composition, the addition of one or more of Nb, Ti and V can refine the ferrite crystal grains and strengthen the ferrite itself by the formation of carbides. Can be further reduced. Also, by adding one or both of Cu and Cr, the corrosion resistance of the steel in an atmosphere containing hydrogen sulfide is improved, and the corrosion rate is reduced. As a result, the amount of solid solution hydrogen in the steel is reduced, and the crack growth rate is reduced. Can be smaller.

【0022】以下、本発明の製造方法の素材となる鋼の
化学組成の選定理由と、製造条件の選定理由を詳しく説
明する。
Hereinafter, the reasons for selecting the chemical composition of the steel used as the material of the production method of the present invention and the reasons for selecting the production conditions will be described in detail.

【0023】1)鋼の化学組成について Cは、鋼の強度を高める成分である。本発明では、前記
の強度レベルを保持するためにCの含有量を0.01%
(以下、合金成分に関する%は重量%を意味する)以上
とした。これを下回ると本発明方法で製造される鋼(以
下、便宜的に本発明鋼と記す)の用途に必要な鋼の強度
を確保するのが困難である。一方、鋼の溶接性を良好に
保つために、C含有量の上限は0.2%とした。本発明
鋼の主要な用途では、溶接施工を受けることが多い。C
含有量が0.2%を上回ると、溶接時に鋼中に溶け込ん
だ水素が原因で、溶接熱影響部の硬化部に溶接後しばら
くして割れを生じる、いわゆる溶接割れが発生しやす
い。溶接割れには溶接熱影響部の硬さが大きく影響し硬
いほど割れやすくなる。Cの高い材料ほど硬化しやすい
から、これを防ぐにはCが低い方がよい。望ましいC含
有量は0.03〜0.18%である。
1) Chemical composition of steel C is a component that increases the strength of steel. In the present invention, in order to maintain the above strength level, the content of C is set to 0.01%.
(Hereinafter,% relating to alloy components means weight%). If it is less than this, it is difficult to secure the strength of the steel required for use of the steel produced by the method of the present invention (hereinafter referred to as the present invention steel for convenience). On the other hand, in order to maintain good weldability of steel, the upper limit of the C content is set to 0.2%. The main use of the steel according to the invention is often subjected to welding. C
If the content is more than 0.2%, so-called weld cracks are liable to occur, that is, cracks occur a short time after welding in the hardened portion of the weld heat affected zone due to hydrogen dissolved in the steel during welding. Welding cracks are greatly affected by the hardness of the heat affected zone, and the harder they are, the more likely they are to crack. Since a material having a higher C is easily cured, a lower C is better to prevent this. Desirable C content is 0.03-0.18%.

【0024】Siは、鋼の脱酸剤として有用であり、そ
の外に本発明では湿潤硫化水素環境での疲労亀裂進展特
性の改善のために積極的に利用する。Siの含有量が
0.2%未満では、これらの効果が期待できない。一
方、Siが0.6%を超えると鋼の靭性が損なわれる。
Siの望ましい含有量は0.25〜0.5%である。
[0024] Si is useful as a deoxidizing agent for steel, and is also actively used in the present invention for improving fatigue crack growth characteristics in a wet hydrogen sulfide environment. If the Si content is less than 0.2%, these effects cannot be expected. On the other hand, if Si exceeds 0.6%, the toughness of the steel is impaired.
Desirable content of Si is 0.25 to 0.5%.

【0025】Mnも、鋼の強度を向上させる成分であ
る。0.3%未満では本発明鋼の意図する用途に必要な
強度を確保するのが困難である。しかし、MnもCと同
様、溶接熱影響部を硬化させ溶接割れ惹起する成分であ
るから、その含有量には上限がある。即ち、2.0%を
上回ると溶接割れが発生しやすくなる。望ましいMnの
含有量は0.5〜1.8%である。
Mn is also a component that improves the strength of steel. If it is less than 0.3%, it is difficult to secure the strength required for the intended use of the steel of the present invention. However, Mn, like C, is a component that hardens the weld heat affected zone and induces welding cracks, and therefore has an upper limit on its content. That is, if it exceeds 2.0%, welding cracks are likely to occur. Desirable Mn content is 0.5 to 1.8%.

【0026】Alは、鋼の脱酸のために使用するもので
あり、sol.Alとして0.01%の含有量となるよ
うに添加する必要がある。ただし、sol.Alの含有
量が0.1%を上回ると鋼の清浄度および靭性が損なわ
れる。望ましいsol.Al含有量の範囲は0.01〜
0.05%である。
Al is used for deoxidizing steel, and sol. It is necessary to add Al so as to have a content of 0.01%. However, sol. If the Al content exceeds 0.1%, the cleanliness and toughness of the steel are impaired. Desirable sol. The range of the Al content is 0.01 to
0.05%.

【0027】本発明方法の素材となる鋼の一つは、上記
の成分の外、残部がFeと不可避の不純物からなるもの
である。不純物の中、PとSはそれぞれ0.025%以
下、0.020%以下に抑えるのが望ましい。
One of the steels used as the raw material of the method of the present invention comprises the above components and the balance of Fe and inevitable impurities. Among impurities, P and S are desirably suppressed to 0.025% or less and 0.020% or less, respectively.

【0028】但し、Sについては精錬コストを犠牲にし
て0.003%以下にする必要はない。原油タンカーで
はSを0.003%以下に低く抑えなくてもHICやS
SCは発生しないからである。これは従来より普通鋼ま
たは高張力鋼を原油タンカーに用いてもHICやSSC
を全く発生しなかったことからも明らかである。したが
って、当然のことであるが、硫化物の形態制御のために
Caを含む必要はない。すなわち、本発明方法によって
製造された鋼が用いられる部位では、耐HICや耐SS
Cの対策をとった高価な鋼を用いる必要はない。Ca処
理をすると処理条件によっては粗大なCaの硫化物と酸
化物の複合化合物を生成し、疲労強度をかえって低下す
る場合も生じる。
However, it is not necessary to reduce S to 0.003% or less at the expense of refining costs. In a crude oil tanker, HIC and S can be obtained even if S is not suppressed to 0.003% or less.
This is because SC does not occur. This is because even if conventional steel or high-tensile steel is used for crude oil tankers, HIC or SSC
It is also evident from the fact that no was generated. Therefore, it is needless to say that Ca need not be included for sulfide morphology control. That is, in the part where the steel produced by the method of the present invention is used, the HIC resistance and the SS resistance
There is no need to use expensive steel that takes measures against C. When the Ca treatment is performed, a coarse compound compound of Ca sulfide and oxide is generated depending on the treatment conditions, and the fatigue strength may be lowered instead.

【0029】本発明方法の素材となる鋼は、上記の成分
に加えてさらに次の2群の元素の中の1種以上を含むも
のであってもよい。
The steel used as the material of the method of the present invention may further contain one or more of the following two elements in addition to the above components.

【0030】 第1群・・・それぞれ0.01〜0.1%のNb、Ti
およびV 第2群・・・0.1〜1.0%のCuおよび0.1〜
2.0%のCr 第1群の元素は、フェライト粒の細粒化およびその強化
によって亀裂進展特性を改善する作用をもつ。
First group: 0.01 to 0.1% of Nb and Ti respectively
And V 2nd group: 0.1-1.0% Cu and 0.1-
2.0% Cr element of the first group has the effect of improving the crack growth characteristics by refining and strengthening the ferrite grains.

【0031】Nb、Ti、Vのいずれも0.01%未満
では湿潤硫化水素環境での疲労亀裂進展特性の改善の効
果が乏しい。一方、それぞれの含有量が0.1%を超え
ると効果が飽和するばかりか、鋼の強度が上がりすぎて
靭性を損なう。いずれも望ましい含有量は0.02〜
0.05%である。
If all of Nb, Ti and V are less than 0.01%, the effect of improving the fatigue crack growth characteristics in a wet hydrogen sulfide environment is poor. On the other hand, if the content of each exceeds 0.1%, not only the effect is saturated, but also the strength of the steel becomes too high and the toughness is impaired. In any case, the desirable content is 0.02-
0.05%.

【0032】第2群の元素は、前記のように鋼の耐食性
を向上させるものである。ただし、Cuは0.1%未満
では添加の効果が小さい。一方、Cuは溶接割れを誘発
し、また、高温で融解し鋼の粒界強度を下げて熱間圧延
途中に割れや傷を発生させやすくするから、その含有量
は1.0%までにとどめるべきである。望ましいCuの
含有量は0.2〜0.5%である。
The elements of the second group improve the corrosion resistance of the steel as described above. However, if Cu is less than 0.1%, the effect of addition is small. On the other hand, Cu induces welding cracks and melts at a high temperature to lower the grain boundary strength of the steel to easily generate cracks and scratches during hot rolling, so the content is limited to 1.0%. Should. Desirable Cu content is 0.2 to 0.5%.

【0033】Crは、0.1%以上の含有量で湿潤硫化
水素環境での疲労亀裂進展特性の一層の改善に有効であ
る。ただし、CrもC、Mnと同様、溶接熱影響部を硬
化させ溶接割れを惹起する成分であるから、添加する場
合は含有量の上限を2.0%とすべきである。Crの望
ましい含有量は0.5〜1.5%である。
[0033] Cr at a content of 0.1% or more is effective for further improving the fatigue crack growth characteristics in a wet hydrogen sulfide environment. However, like Cr and Mn, Cr is a component that hardens the weld heat affected zone and causes welding cracks. Therefore, when Cr is added, the upper limit of the content should be 2.0%. The desirable content of Cr is 0.5 to 1.5%.

【0034】前記の第1群および第2群の一方または双
方から1種以上の元素を選んで添加することができる。
One or more elements can be selected from one or both of the first and second groups and added.

【0035】2)製造方法について 上記の化学組成をもつ鋼は、通常の溶製、鋳造(連続鋳
造またはインゴット鋳造)の後、熱間鍛造または熱間圧
延(以下、まとめて熱間加工という)されて、板、管、
フランジ等の製品となる。
2) Manufacturing Method Steel having the above-mentioned chemical composition is prepared by ordinary smelting and casting (continuous casting or ingot casting), followed by hot forging or hot rolling (hereinafter collectively referred to as hot working). Being, boards, tubes,
Products such as flanges.

【0036】連続鋳造スラブまたはインゴットを熱間加
工する際の加熱温度には特に制約はない。次の熱間鍛造
または熱間圧延が可能な温度域に加熱すればよい。熱間
鍛造または熱間圧延の仕上温度は(Ar3−30℃)未
満が望ましいが、(Ar3−30℃)未満でなくてもよ
い。その後、(Ar3−30℃)以上に再加熱して仕上
げ温度以上の温度としてから冷却を開始する。仕上げの
際に変態を十分進行させ、その後再加熱して変態を繰り
返すことにより組織を鋼材全体にわたって微細にする。
There is no particular limitation on the heating temperature when hot working a continuously cast slab or ingot. What is necessary is just to heat to the temperature range in which the next hot forging or hot rolling is possible. The finishing temperature of the hot forging or hot rolling is preferably lower than (Ar3-30 ° C), but need not be lower than (Ar3-30 ° C). Thereafter, reheating to (Ar3-30 ° C.) or more is performed, and the cooling is started after the temperature is increased to the finishing temperature or more. At the time of finishing, the transformation is sufficiently advanced, then reheated and the transformation is repeated to make the structure finer throughout the steel material.

【0037】重要なのは熱間加工後の冷却条件である。
この冷却は、(Ar3点−30℃)以上の温度からの加
速冷却でなければならない。冷却開始温度が(Ar3−
30℃)よりも低いと、初析フェライトが多く形成さ
れ、そのフェライトは加速冷却によっても強化されずに
疲労亀裂進展特性の改善効果がないばかりか、ブロック
状のベイナイトおよびマルテンサイトが生成し亀裂進展
がむしろ加速される。望ましい冷却開始温度はAr3点
以上の温度である。
What is important is the cooling condition after hot working.
This cooling must be accelerated cooling from a temperature of (Ar 3 point−30 ° C.) or higher. The cooling start temperature is (Ar3-
If the temperature is lower than 30 ° C.), a large amount of pro-eutectoid ferrite is formed, and the ferrite is not strengthened by accelerated cooling and has no effect of improving fatigue crack growth characteristics. Progress is rather accelerated. Desirable cooling start temperature is a temperature of Ar 3 or more.

【0038】冷却速度は、5℃/sから25℃/sまで
の範囲とする。5℃/sより遅い冷却速度では加速冷却
の効果がなく、本発明の目的とする湿潤硫化水素環境で
の疲労亀裂進展特性の改善効果がない。一方、25℃/
sを上回る冷却速度では、鋼の強度が上がりすぎるばか
りか、前記のブロック状のベイナイトおよびマルテンサ
イトが生成し亀裂進展が加速される。
The cooling rate is in the range from 5 ° C./s to 25 ° C./s. At a cooling rate lower than 5 ° C./s, there is no effect of accelerated cooling, and there is no effect of improving fatigue crack growth characteristics in a wet hydrogen sulfide environment, which is the object of the present invention. On the other hand, 25 ° C /
If the cooling rate exceeds s, not only the strength of the steel becomes too high, but also the above-mentioned block-like bainite and martensite are formed, and the crack growth is accelerated.

【0039】上記の加速冷却の停止温度は、400〜6
00℃の範囲が適当である。400℃よりも低温では、
冷却速度が大きすぎる場合と同様に、鋼の強度が上がり
すぎ、またブロック状のベイナイトおよびマルテンサイ
トの生成によって亀裂進展が加速される。加速冷却の停
止温度が600℃を上回るとフェライトが強化されず加
速冷却の効果が乏しい。加速冷却の終了後は、放冷また
は徐冷を行う。このようにして得られた鋼材(製品)
は、そのままで使用できる。
The stop temperature of the above-mentioned accelerated cooling is 400 to 6
A range of 00 ° C is appropriate. At temperatures lower than 400 ° C,
As in the case where the cooling rate is too high, the strength of the steel becomes too high, and the formation of block-like bainite and martensite accelerates the crack growth. If the stop temperature of the accelerated cooling exceeds 600 ° C., the ferrite is not strengthened and the effect of the accelerated cooling is poor. After the completion of the accelerated cooling, cooling or slow cooling is performed. Steel material (product) obtained in this way
Can be used as is.

【0040】[0040]

【実施例】以下に、本発明を実施例について説明する。The present invention will be described below with reference to examples.

【0041】表1に、供試鋼の化学組成を示す。これら
の鋼を溶製し、連続鋳造で240mm厚のスラブとし、
これを1150℃に加熱して15mm厚の板に圧延し
た。
Table 1 shows the chemical composition of the test steel. These steels were melted and continuously cast into 240mm thick slabs.
This was heated to 1150 ° C. and rolled into a 15 mm thick plate.

【0042】[0042]

【表1】 [Table 1]

【0043】仕上温度は、(Ar3点−30℃)未満と
し、表2に示す温度に再加熱した後、次いで、同じく表
2に示す加速冷却開始温度から冷却を行った。冷却速
度、加速冷却停止温度を表2に示す。
The finishing temperature was lower than (Ar 3 point-30 ° C.), and after reheating to the temperature shown in Table 2, cooling was performed from the accelerated cooling start temperature also shown in Table 2. Table 2 shows the cooling rate and the accelerated cooling stop temperature.

【0044】[0044]

【表2】 [Table 2]

【0045】以上によって得られた鋼板から、図4の
(b)に示す試験片を採取し、同図(a)に示す装置で
湿潤硫化水素環境における疲労試験を行った。即ち、図
4の(a)に示すように、試験溶液槽2中で試験片1に
油圧シリンダー5により繰り返し応力を負荷した。3は
溶液循環ポンプ、4はロードセル、6は油圧源、7はサ
ーボバルブ、8は波形発生器、9は負荷制御器である。
疲労試験条件は以下のとおりである。
From the steel sheet obtained as described above, a test piece shown in FIG. 4 (b) was sampled and subjected to a fatigue test in a wet hydrogen sulfide environment using an apparatus shown in FIG. 4 (a). That is, as shown in FIG. 4A, the test piece 1 was repeatedly subjected to stress by the hydraulic cylinder 5 in the test solution tank 2. 3 is a solution circulation pump, 4 is a load cell, 6 is a hydraulic pressure source, 7 is a servo valve, 8 is a waveform generator, and 9 is a load controller.
The fatigue test conditions are as follows.

【0046】 f(繰り返し速度)=30Hz R(応力比)=0.1 T(試験温度)=室温 表2に、湿潤硫化水素環境下で、ΔK=20ksi(i
n)1/2における亀裂進展速度(da/dN)および
その値と大気中でΔK=20ksi(in)1/2にお
ける亀裂進展速度(da/dN)との比を示す。なお、
亀裂進展速度としてΔK=20ksi(in)1/2
時の値を採用した理由は、以下に説明する図1に示すよ
うに、この領域で亀裂進展速度が大気中のそれと大きく
差がつくからである。湿潤硫化水素環境は、水を10%
含む懸濁させた原油に、硫化水素濃度1vol.%(残
りは窒素)の混合ガスを試験期間中常時吹き込むという
ものである。
F (repetition rate) = 30 Hz R (stress ratio) = 0.1 T (test temperature) = room temperature Table 2 shows that in a wet hydrogen sulfide environment, ΔK = 20 ksi (i
n) The ratio of the crack growth rate (da / dN) at 1/2 and its value to the crack growth rate (da / dN) at ΔK = 20 ksi (in) 1/2 in the atmosphere. In addition,
The reason why the value at ΔK = 20 ksi (in) 1/2 was adopted as the crack growth rate is that, as shown in FIG. 1 described below, the crack growth rate greatly differs from that in the atmosphere in this region. It is. 10% water for wet hydrogen sulfide environment
The suspended crude oil containing hydrogen sulfide concentration of 1 vol. % (The remainder is nitrogen) is continuously blown during the test.

【0047】図1に圧延後放冷した炭素鋼(従来例)の
大気中および湿潤硫化水素環境における亀裂進展速度の
比較を示す。図1から明らかなように大気中に比べ湿潤
硫化水素環境中では亀裂進展速度が大きい。特に、ΔK
の大きい領域(約20ksi(in)1/2以上)で湿
潤硫化水素環境中での亀裂進展が加速されている。
FIG. 1 shows a comparison of the crack growth rates of the carbon steel (conventional example) that has been cooled after rolling, in the atmosphere and in a wet hydrogen sulfide environment. As is clear from FIG. 1, the crack growth rate is higher in a wet hydrogen sulfide environment than in the atmosphere. In particular, ΔK
The crack growth in a wet hydrogen sulfide environment is accelerated in a region having a large value (about 20 ksi (in) 1/2 or more).

【0048】図2は、同じく圧延後放冷した炭素鋼(従
来例)を用いて、鋼に固溶した水素濃度の疲労亀裂進展
速度に及ぼす影響を調査した結果を示す。この実験で
は、硫化水素濃度1vol.%と10vol.%の混合
ガスおよび純粋の硫化水素ガスを用いて、それぞれ固溶
水素濃度を変えた。硫化水素濃度が高いほど、鋼に固溶
する水素濃度は高くなる。従って、図2から明らかなよ
うに、硫化水素濃度が高いほど、すなわち、固溶水素濃
度が高いほど亀裂進展速度が大きい。
FIG. 2 shows the results of investigating the effect of the concentration of hydrogen dissolved in the steel on the fatigue crack growth rate using a carbon steel (conventional example) which was also cooled after rolling. In this experiment, a hydrogen sulfide concentration of 1 vol. % And 10 vol. % Mixed gas and pure hydrogen sulfide gas were used to vary the concentration of dissolved hydrogen. The higher the concentration of hydrogen sulfide, the higher the concentration of hydrogen dissolved in steel. Therefore, as is clear from FIG. 2, the higher the concentration of hydrogen sulfide, that is, the higher the concentration of solid solution hydrogen, the higher the crack growth rate.

【0049】図3は、湿潤硫化水素環境下における亀裂
進展速度と大気中のそれとの比に及ぼす加速冷却停止温
度の影響を示したものであり、冷却停止温度が600〜
400℃の範囲で亀裂進展速度が大気中のそれの3倍以
内に抑えられている。図3に用いた鋼は、再加熱をしな
かった鋼であるが、加速冷却停止温度の影響は、(Ar
3−30℃)以上に再加熱して加速冷却する場合にもそ
のままあてはまる。
FIG. 3 shows the effect of the accelerated cooling stop temperature on the ratio of the crack growth rate in a wet hydrogen sulfide environment to that in the atmosphere.
In the range of 400 ° C., the crack growth rate is suppressed to within three times that in the atmosphere. Although the steel used in FIG. 3 was not reheated, the effect of the accelerated cooling stop temperature was (Ar
The same applies to the case of accelerated cooling by reheating above 3-30 ° C).

【0050】表2における試番A−1、B−1、C−1
およびD−1は、前記第1群元素も第2群元素も添加さ
れていない鋼を素材とし、かつ加速冷却を行わなかった
例である。これらの例で得られた鋼の湿潤硫化水素環境
における亀裂進展速度は大気中のそれの5倍以上であ
る。これらに対して、本発明で定める条件を全て満たす
試番L−1の湿潤硫化水素環境における亀裂進展速度は
大気中のそれの2〜3倍以内と大きく改善される結果が
得られた。しかし、Nb、Tiを含んでも試番L−2の
ように加速冷却停止温度が低い場合には改善が認められ
なかった。
Test numbers A-1, B-1, and C-1 in Table 2
And D-1 are examples in which a steel to which neither the first group element nor the second group element was added was used as a raw material, and no accelerated cooling was performed. The crack growth rate in the wet hydrogen sulfide environment of the steel obtained in these examples is more than 5 times that in the atmosphere. On the other hand, the crack growth rate in the wet hydrogen sulfide environment of sample No. L-1 which satisfies all the conditions defined in the present invention was significantly improved to within 2 to 3 times that of the atmosphere. However, even when Nb and Ti were contained, no improvement was observed when the accelerated cooling stop temperature was low as in test sample L-2.

【0051】[0051]

【発明の効果】実施例に示したように、本発明方法で製
造される鋼は、湿潤硫化水素環境での疲労亀裂進展速度
が著しく小さく、大気中における疲労亀裂進展速度の2
〜3倍以内におさまる。即ち、この鋼は亀裂進展特性に
おいて著しく優れており、湿潤硫化水素環境に曝され、
かつ繰り返し応力を受ける原油タンカーの素材として極
めて実用性が高い。
As shown in the Examples, the steel produced by the method of the present invention has a remarkably low fatigue crack growth rate in a wet hydrogen sulfide environment, and has a fatigue crack growth rate of 2% in the atmosphere.
Fits within ~ 3 times. That is, this steel has remarkably excellent crack growth characteristics, is exposed to a wet hydrogen sulfide environment,
It is extremely practical as a material for crude oil tankers that are subjected to repeated stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来鋼の大気中および湿潤硫化水素環境におけ
る疲労試験結果である。
FIG. 1 shows the results of a fatigue test of a conventional steel in air and in a wet hydrogen sulfide environment.

【図2】従来鋼の疲労亀裂進展速度に及ぼす硫化水素濃
度の影響を示す図である。
FIG. 2 is a graph showing the effect of hydrogen sulfide concentration on the fatigue crack growth rate of conventional steel.

【図3】湿潤硫化水素環境下(硫化水素濃度1vol.
%)における亀裂進展速度と大気中の亀裂進展速度との
比に及ぼす熱間圧延後の加速冷却停止温度の影響を示す
図である。
FIG. 3 shows a wet hydrogen sulfide environment (hydrogen sulfide concentration of 1 vol.
FIG. 3 is a graph showing the effect of the accelerated cooling stop temperature after hot rolling on the ratio of the crack growth rate to the crack growth rate in the atmosphere in%).

【図4】(a)は疲労試験装置の概要を示す図、(b)
は試験片の形状と寸法を示す図である。
FIG. 4A is a diagram showing an outline of a fatigue test apparatus, and FIG.
FIG. 3 is a view showing the shape and dimensions of a test piece.

フロントページの続き (72)発明者 幸 英昭 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平2−263918(JP,A) 特開 昭63−38519(JP,A) 特開 昭58−77530(JP,A) 特開 昭57−85928(JP,A)Continuation of front page (72) Inventor Hideaki Yuki 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (56) References JP-A-2-263918 (JP, A) JP-A-63 JP-A-38519 (JP, A) JP-A-58-77530 (JP, A) JP-A-57-85928 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、C:0.01〜0.2%、S
i:0.2〜0.6%、Mn:0.3〜2.0%、so
l.Al:0.01〜0.1%を含み、残部は不可避不
純物(但し、Sの0.003%以下を除く)とFeから
なる連続鋳造スラブまたはインゴットを熱間鍛造または
熱間圧延した後、(Ar3点−30℃)以上の温度域に
再加熱し、(Ar3点−30℃)以上から冷却速度5〜
25℃/sで400〜600℃の温度域まで加速冷却
し、その後放冷または徐冷することを特徴とする湿潤硫
化水素環境において耐疲労亀裂進展特性に優れる原油タ
ンカー用鋼の製造方法。
(1) C: 0.01 to 0.2% by weight, S:
i: 0.2 to 0.6%, Mn: 0.3 to 2.0%, so
l. Al: contains 0.01 to 0.1%, the remainder is inevitable impurities (however, excluding 0.003% or less of S) and a continuous cast slab or ingot made of Fe and hot forged or hot rolled, Reheat to a temperature range of (Ar 3 points -30 ° C.) or higher, and a cooling rate of
A method for producing a crude oil tanker steel having excellent fatigue crack propagation resistance in a wet hydrogen sulfide environment, wherein the steel is acceleratedly cooled at a rate of 25 ° C./s to a temperature range of 400 to 600 ° C., and then cooled or gradually cooled.
【請求項2】重量%で、C:0.01〜0.2%、S
i:0.2〜0.6%、Mn:0.3〜2.0%、so
l.Al:0.01〜0.1%を含み、さらに、Nb:
0.01〜0.1%、Ti:0.01〜0.1%および
V:0.01〜0.1%の中の1種以上を含み、残部は
不可避不純物(但し、Sの0.003%以下を除く)と
Feからなる連続鋳造スラブまたはインゴットを熱間鍛
造または熱間圧延した後、(Ar3点−30℃)以上の
温度域に再加熱し(Ar3点−30℃)以上から冷却速
度5〜25℃/sで400〜600℃の温度域まで加速
冷却し、その後放冷または徐冷することを特徴とする湿
潤硫化水素環境において耐疲労亀裂進展特性に優れる原
油タンカー用鋼の製造方法。
2. C: 0.01-0.2% by weight, S
i: 0.2 to 0.6%, Mn: 0.3 to 2.0%, so
l. Al: 0.01 to 0.1%, and further Nb:
0.01 to 0.1%, one or more of Ti: 0.01 to 0.1%, and V: 0.01 to 0.1%, and the remainder is inevitable impurities (however, S.O. (Excluding 003% or less) and a continuous cast slab or ingot made of Fe and hot-rolled or hot-rolled, and then reheated to a temperature range of (Ar 3 point-30 ° C.) or more (Ar 3 point-30 ° C.) or more. A crude oil tanker steel excellent in fatigue crack propagation resistance in a wet hydrogen sulfide environment characterized by accelerated cooling to a temperature range of 400 to 600 ° C. at a cooling rate of 5 to 25 ° C./s and then allowing it to be cooled or gradually cooled. Production method.
【請求項3】重量%で、C:0.01〜0.2%、S
i:0.2〜0.6%、Mn:0.3〜2.0%、so
l.Al:0.01〜0.1%を含み、さらに、Cu:
0.1〜1.0%とCr:0.1〜2.0%の1種また
は2種を含み、残部は不可避不純物(但し、Sの0.0
03%以下を除く)とFeからなる連続鋳造スラブまた
はインゴットを熱間鍛造または熱間圧延した後、(Ar
3点−30℃)以上の温度域に再加熱し(Ar3点−3
0℃)以上から冷却速度5〜25℃/sで400〜60
0℃の温度域まで加速冷却し、その後放冷または徐冷す
ることを特徴とする湿潤硫化水素環境において耐疲労亀
裂進展特性に優れる原油タンカー用鋼の製造方法。
3. C: 0.01 to 0.2% by weight, S
i: 0.2 to 0.6%, Mn: 0.3 to 2.0%, so
l. Al: 0.01 to 0.1%, and further, Cu:
One or two of 0.1 to 1.0% and Cr: 0.1 to 2.0%, and the remainder is inevitable impurities (however, 0.0% of S
After extruding a continuous cast slab or ingot made of Fe and hot forged or hot rolled (Ar
(3 points −30 ° C.) or higher temperature range (Ar 3 points −3 ° C.)
0 ° C) or more and 400 to 60 at a cooling rate of 5 to 25 ° C / s.
A method for producing a steel for a crude oil tanker having excellent fatigue crack propagation resistance in a wet hydrogen sulfide environment, wherein the steel is accelerated and cooled to a temperature range of 0 ° C. and then cooled or gradually cooled.
【請求項4】重量%で、C:0.01〜0.2%、S
i:0.2〜0.6%、Mn:0.3〜2.0%、so
l.Al:0.01〜0.1%を含み、さらに、Cu:
0.1〜1.0%とCr:0.1〜2.0.%の1種ま
たは2種、ならびにNb:0.01〜0.1%、Ti:
0.01〜0.1%およびV:0.01〜0.1%の1
種以上を含み、残部は不可避不純物(但し、Sの0.0
03%以下を除く)とFeからなる連続鋳造スラブまた
はインゴットを熱間鍛造または熱間圧延した後、(Ar
3点−30℃)以上の温度域に再加熱し(Ar3点−3
0℃)以上から冷却速度5〜25℃/sで400〜60
0℃の温度域まで加速冷却し、その後放冷または徐冷す
ることを特徴とする湿潤硫化水素環境において耐疲労亀
裂進展特性に優れる原油タンカー用鋼の製造方法。
4. C: 0.01-0.2% by weight, S
i: 0.2 to 0.6%, Mn: 0.3 to 2.0%, so
l. Al: 0.01 to 0.1%, and further, Cu:
0.1-1.0% and Cr: 0.1-2.0. % Or Nb: 0.01 to 0.1%, Ti:
0.01 to 0.1% and V: 1 of 0.01 to 0.1%
Species or more, and the balance is inevitable impurities (however, 0.0 of S
After extruding a continuous cast slab or ingot made of Fe and hot forged or hot rolled (Ar
(3 points −30 ° C.) or higher temperature range (Ar 3 points −3)
0 ° C) or more and 400-60 at a cooling rate of 5-25 ° C / s.
A method for producing a steel for a crude oil tanker having excellent fatigue crack propagation resistance in a wet hydrogen sulfide environment, wherein the steel is accelerated and cooled to a temperature range of 0 ° C. and then cooled or gradually cooled.
JP3295681A 1991-11-12 1991-11-12 Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment Expired - Fee Related JP2967889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295681A JP2967889B2 (en) 1991-11-12 1991-11-12 Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3295681A JP2967889B2 (en) 1991-11-12 1991-11-12 Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP09225299A Division JP3085253B2 (en) 1997-08-21 1997-08-21 Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Publications (2)

Publication Number Publication Date
JPH05132715A JPH05132715A (en) 1993-05-28
JP2967889B2 true JP2967889B2 (en) 1999-10-25

Family

ID=17823811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295681A Expired - Fee Related JP2967889B2 (en) 1991-11-12 1991-11-12 Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Country Status (1)

Country Link
JP (1) JP2967889B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483521A (en) * 2015-12-21 2016-04-13 中国石油天然气集团公司 High-chrome corrosion-resisting high-strength pipeline steel and manufacturing method thereof
CN107974613B (en) * 2017-11-23 2019-12-27 武汉钢铁有限公司 Production method of sulfide stress corrosion cracking resistant X80 grade pipeline steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785928A (en) * 1980-11-14 1982-05-28 Nippon Kokan Kk <Nkk> Manufactue of nonrefined high tensile steel with superior sulfide corrosion cracking resistance
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide
JPS6338519A (en) * 1986-08-01 1988-02-19 Sumitomo Metal Ind Ltd Production of steel plate having excellent hydrogen induced cracking resistance
JP2781000B2 (en) * 1989-04-03 1998-07-30 新日本製鐵株式会社 Method for producing high-strength steel sheet excellent in HIC resistance and SSC resistance

Also Published As

Publication number Publication date
JPH05132715A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP4294854B2 (en) Ultra-high strength, weldable steel with excellent ultra-low temperature toughness
RU2215813C2 (en) Low-alloyed practically boron-free steel
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP2785643B2 (en) Steel plate for tanker with excellent fatigue crack growth resistance in wet hydrogen sulfide environment
JPH0931536A (en) Production of ultrahigh strength steel plate excellent in low temperature toughness
JPH10298707A (en) High toughness and high tensile strength steel and its production
JP4985086B2 (en) High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP2967889B2 (en) Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JPH05195057A (en) Production of high cr steel type uoe steel sheet and high cr type atmosphere corrosion resisting steel sheet both excellent in ys characteristic in l direction
JPH0941080A (en) Weldability high strength steel having low yield ratio and excellent in low temperature toughness
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JPH08144019A (en) Bainitic steel material reduced in material dispersion and its production
JP3244987B2 (en) High strength linepipe steel with low yield ratio
JPH08311548A (en) Production of steel sheet for ultrahigh strength steel pipe excellent in toughness in weld zone
JPH08311550A (en) Production of steel sheet for ultrahigh strength steel pipe
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees