JPH1068019A - Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment - Google Patents

Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment

Info

Publication number
JPH1068019A
JPH1068019A JP22529997A JP22529997A JPH1068019A JP H1068019 A JPH1068019 A JP H1068019A JP 22529997 A JP22529997 A JP 22529997A JP 22529997 A JP22529997 A JP 22529997A JP H1068019 A JPH1068019 A JP H1068019A
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
crack growth
cooling
steel
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22529997A
Other languages
Japanese (ja)
Other versions
JP3085253B2 (en
Inventor
Takahiro Kushida
隆弘 櫛田
Noboru Yoda
登 誉田
Hideaki Yuki
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09225299A priority Critical patent/JP3085253B2/en
Publication of JPH1068019A publication Critical patent/JPH1068019A/en
Application granted granted Critical
Publication of JP3085253B2 publication Critical patent/JP3085253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a steel sheet having characteristics that fatigue cracks are hard to progress in the case of being used in a wet hydrogen sulfide environment in a crude oil tanker. SOLUTION: In a continuously cast slab or ingot having a compsn. contg., by weight, 0.01 to 0.2% C, 0.2 to 0.6% Si, 0.3 to 2.0% Mn, 0.01 to 0.1% sol.Al, >0.003 to 0.020% S, and the balance Fe with inevitable impurities, hot forging or hot rolling is finished in the temp. range of (the Ar3 point-30 deg.C) or above, without reheating, it is subjected to accelerated cooling from the temp. of (the Ar3 point-30 deg.C) or above to the temp. range of 400 to 600 deg.C at a cooling rate of 5 to 25 deg.C/s and is thereafter subjected to air cooling or slow cooling. The slab may contain one or more kinds of elements selected from either or both of the following elemental groups: the primary group: Nb, Ti and V respectively by 0.01 to 0.1% and the secondary group: 0.1 to 1.0% Cu and 0.1 to 2.0% Cr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、硫化水素を含む原
油タンカー用の鋼板として好適な湿潤硫化水素環境下で
疲労亀裂進展特性に優れる鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet having excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment suitable as a steel sheet for a crude oil tanker containing hydrogen sulfide.

【0002】[0002]

【従来の技術】湿潤硫化水素環境で用いられる鋼材にお
いて水素誘起割れ(HIC) あるいは硫化物応力割れ(SSC)
が問題となることは既に衆知の事実であり、その防止に
関しては数多くの研究がなされ、幾多の対策が提案され
ている。
2. Description of the Related Art Hydrogen-induced cracking (HIC) or sulfide stress cracking (SSC) in steel used in a wet hydrogen sulfide environment
It is already well known that this is a problem, and a number of studies have been made on its prevention, and a number of measures have been proposed.

【0003】HIC は外部応力のない状態で鋼材に生じる
割れであり、SSC は静的な応力下での割れである。HIC
やSSC は、湿潤硫化水素環境で鋼が腐食したときに発生
する水素が鋼中に侵入することによって生じる水素脆化
であり、鋼の脆化現象の1つである。
[0003] HIC is a crack that occurs in steel without external stress, and SSC is a crack under static stress. HIC
And SSC are hydrogen embrittlement caused by the penetration of hydrogen generated when steel corrodes in a wet hydrogen sulfide environment into steel, and is one of the embrittlement phenomena of steel.

【0004】上記のHIC やSSCを抑制するためには、極
低S化し、かつCa処理をすることが有効であるとされ
ている。しかし、極低S化およびCa処理は精錬コスト
を上昇させ、かつ、Ca処理は次に述べる疲労亀裂の進
展抑制にはかえって逆効果になる場合が多い。
[0004] In order to suppress the above-mentioned HIC and SSC, it is said that it is effective to make the S extremely low and to perform Ca treatment. However, the extremely low S and the Ca treatment increase the refining cost, and the Ca treatment often has an adverse effect on the suppression of the growth of fatigue cracks described below.

【0005】一方、繰り返し応力のかかる状態で生じる
疲労破壊および腐食疲労破壊も、鋼のもう1つの大きな
脆化現象である。波浪による繰り返し応力がかかる船舶
あるいは海洋構造物、自動車のホイールやクランク軸、
さらには歯車用材料等の疲労および腐食疲労についても
また数多くの研究例がある。
[0005] On the other hand, fatigue fracture and corrosion fatigue fracture that occur under the condition of repeated stress are another major embrittlement phenomenon of steel. Ships or marine structures that are subject to repeated stress from waves, automobile wheels and crankshafts,
Further, there have been many studies on fatigue and corrosion fatigue of gear materials and the like.

【0006】最近、原油タンカー等では大型化やコスト
ダウンの観点から、高張力鋼の使用が広がって来てい
る。その場合、鋼材にはこれまで以上の応力がかかるこ
とになり、疲労、さらには湿潤硫化水素環境での疲労の
問題が懸念されるようになってきた。ところが、先に述
べたような湿潤硫化水素環境に曝される原油タンカー用
鋼板の波浪に起因する疲労挙動を調査した例はなく、も
ちろん材料因子について研究した例はない。
Recently, high-strength steel has been widely used in crude oil tankers and the like from the viewpoint of increasing the size and cost. In such a case, a higher stress is applied to the steel material, and the problem of fatigue, and furthermore, fatigue in a wet hydrogen sulfide environment has become a concern. However, there is no example of investigating the fatigue behavior of a steel plate for a crude oil tanker exposed to a wet hydrogen sulfide environment as described above due to waves, and of course, there is no example of studying material factors.

【0007】Corrosion NACE、vol.32、No.12 (Decemb
er、1976) のO.VOSHIKOVSKI による「Fatigue Crack Gr
owth in an X65 Line-Pipe Steel in Sour Crude Oil」
と題する報告には、硫化水素濃度が高くなると疲労亀裂
進展速度が著しく加速することが明らかにされており、
湿潤硫化水素環境下の疲労に及ぼす環境効果は決して無
視できない問題であると考えられる。上記文献の内容は
ラインパイプ用鋼を対象とした湿潤硫化水素環境での疲
労に限定される。この硫化水素によると思われる亀裂進
展速度の加速は、水素脆性と重畳したためと考察されて
いる。しかしながら、湿潤硫化水素環境下の疲労に及ぼ
す材料因子について詳細に研究した例は少なく、具体的
な対策も見出されていない。
Corrosion NACE, vol. 32, No. 12 (Decemb
er, 1976) by O.VOSHIKOVSKI on `` Fatigue Crack Gr
owth in an X65 Line-Pipe Steel in Sour Crude Oil ''
The report entitled "The higher the concentration of hydrogen sulfide, the faster the rate of fatigue crack growth accelerated.
The environmental effects on fatigue in a wet hydrogen sulfide environment are considered to be issues that cannot be ignored. The content of the above document is limited to fatigue in a wet hydrogen sulfide environment for line pipe steel. It is considered that the acceleration of the crack growth rate presumed to be caused by hydrogen sulfide is superimposed on hydrogen embrittlement. However, there are few examples of detailed studies on the material factors affecting fatigue in a wet hydrogen sulfide environment, and no specific countermeasures have been found.

【0008】図1は、後述する実施例において試験した
従来鋼の大気中および湿潤硫化水素環境における疲労試
験結果である。縦軸のda/dN は亀裂進展速度であり、応
力サイクル1回当たりの進展距離(mm)で表している。
横軸のΔKは最大応力拡大係数(Kmax)と最小応力拡大
係数(Kmin)の差である。即ち、ΔK=Kmax −Kmin
である。一般に、亀裂進展速度(da/dN)は、ΔKとの間
に da/dN=C(ΔK)mの関係が広く認められることか
ら、横軸にΔKを取った。なお、応力拡大係数とは、亀
裂 (欠陥あるいは割れ) が存在するときの亀裂の寸法・
形状、材料の寸法・形状、荷重条件などの力学的境界条
件を標準化して取り扱う破壊力学において、応力として
取り扱われるものである。腐食疲労現象においても疲労
亀裂を標準化して取り扱う上で有用である。
FIG. 1 shows the results of a fatigue test of a conventional steel tested in Examples described later in the atmosphere and in a wet hydrogen sulfide environment. Da / dN on the vertical axis is a crack growth rate, which is expressed as a growth distance (mm) per one stress cycle.
ΔK on the horizontal axis is the difference between the maximum stress intensity factor (Kmax) and the minimum stress intensity factor (Kmin). That is, ΔK = Kmax−Kmin
It is. In general, the abscissa represents ΔK on the crack growth rate (da / dN) because the relationship of da / dN = C (ΔK) m is widely recognized between ΔK and ΔK. The stress intensity factor is defined as the size of a crack when a crack (defect or crack) exists.
It is treated as stress in fracture mechanics, which standardizes mechanical boundary conditions such as shape, dimensions and shape of materials, and load conditions. It is also useful in standardizing and handling fatigue cracks in corrosion fatigue phenomena.

【0009】図1から明かなように、大気中に比べ湿潤
硫化水素環境中では亀裂進展速度が大きい。特に、ΔK
の大きい領域(約 20ksi(in)1/2 以上) で亀裂進展が加
速されている。
As apparent from FIG. 1, the crack growth rate is higher in a wet hydrogen sulfide environment than in the atmosphere. In particular, ΔK
The crack growth is accelerated in the region with large (approximately 20 ksi (in) 1/2 or more).

【0010】[0010]

【発明が解決しようとする課題】本発明は、鋼材の高張
力化に伴って頻発することが予想される湿潤硫化水素環
境下での疲労破壊に対処することを課題としてなされた
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to cope with fatigue fracture in a wet hydrogen sulfide environment, which is expected to frequently occur with increasing tensile strength of a steel material.

【0011】本発明の具体的な目的は、精錬コストを高
めることなく、原油タンカーに使用されるYS (降伏応力
)20〜45kgf/mm2 、TS (引張強さ) 35〜60kgf/mm2 級の
鋼材であって、湿潤硫化水素環境下で使用されたときに
疲労亀裂が進展しにくい性質をもった鋼板製造方法を提
供することにある。さらに詳しくは、従来の普通鋼また
は高張力鋼を用いてもHICやSSCを生じることはな
いが、従来の高張力鋼を用いたのでは疲労亀裂進展速度
が促進される湿潤硫化水素環境において耐疲労亀裂進展
特性の優れた鋼板も製造方法を提供することにある。
A specific object of the present invention is to provide a YS (yield stress) used for crude oil tankers without increasing refining costs.
) 20-45kgf / mm2, TS (tensile strength) 35-60kgf / mm2 grade steel material that has the property that fatigue cracks do not easily propagate when used in a wet hydrogen sulfide environment. To provide. More specifically, the use of conventional ordinary steel or high-strength steel does not cause HIC or SSC, but the use of conventional high-strength steel is resistant to wet hydrogen sulfide environments where the fatigue crack growth rate is accelerated. Another object of the present invention is to provide a method for manufacturing a steel sheet having excellent fatigue crack growth characteristics.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、下記の
製造方法にある。
The gist of the present invention resides in the following manufacturing method.

【0013】(1) 重量%で、C: 0.01〜0.2 %、Si:0.2
〜0.6 %、Mn:0.3〜2.0 %、sol.Al:0.01〜0.1 %を含
み、残部はS:0.003%超え0.020%以下および不可避不
純物とFeからなる連続鋳造スラブまたはインゴットを熱
間鍛造または熱間圧延を(Ar3点−30℃) 以上の温度域で
終了させ、再加熱することなく(Ar3点−30℃) 以上の温
度から冷却速度5〜25℃/sで 400〜600 ℃の温度域まで
加速冷却し、その後放冷または徐冷することを特徴とす
る湿潤硫化水素環境で疲労亀裂進展特性に優れる原油タ
ンカー用鋼板の製造方法。
(1) By weight%, C: 0.01-0.2%, Si: 0.2
~ 0.6%, Mn: 0.3 ~ 2.0%, sol.Al:0.01~0.1%, balance is S: more than 0.003% and less than 0.020% and continuous casting slab or ingot made of Fe and unavoidable impurities and hot forged or hot Cold rolling is completed in the temperature range of (Ar3 point -30 ° C) or higher, and the temperature range of (Ar3 point -30 ° C) or higher and the cooling range of 5 to 25 ° C / s in the temperature range of 400 to 600 ° C without reheating. A method for producing a steel plate for a crude oil tanker having excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment, wherein the steel plate is accelerated and cooled and then cooled or slowly cooled.

【0014】(2) 上記(1) に記載の合金成分に加えて更
に、重量%で、Nb: 0.01〜0.1 %、Ti: 0.01〜0.1 %お
よびV: 0.01〜0.1 %の中の1種以上を含み、残部は
S:0.003%超え0.020%以下および不可避不純物とFeか
らなる連続鋳造スラブまたはインゴットを (1)と同じ工
程で処理する湿潤硫化水素環境で疲労亀裂進展特性に優
れる原油タンカー用鋼板の製造方法。
(2) In addition to the alloy components described in (1) above, one or more of Nb: 0.01-0.1%, Ti: 0.01-0.1% and V: 0.01-0.1% by weight. The remaining balance is S: more than 0.003% and less than 0.020%, and a continuous cast slab or ingot composed of unavoidable impurities and Fe is treated in the same process as in (1), and is excellent in fatigue crack growth characteristics in a wet hydrogen sulfide environment. Manufacturing method.

【0015】(3) 上記(1) に記載の合金成分に加えて更
に、重量%で、Cu:0.1〜1.0 %とCr:0.1〜2.0 %の1種
または2種を含み、残部はS:0.003%超え0.020%以下
および不可避不純物とFeからなる連続鋳造スラブまたは
インゴットを (1)と同じ工程で処理する湿潤硫化水素環
境で疲労亀裂進展特性に優れる原油タンカー用鋼板の製
造方法。
(3) In addition to the alloy components described in the above (1), one or more of Cu: 0.1-1.0% and Cr: 0.1-2.0% by weight are further contained, and the balance is S: A method for producing a steel plate for a crude oil tanker having excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment in which a continuous cast slab or ingot comprising Fe and 0.0020% or less and unavoidable impurities and Fe is treated in the same process as (1).

【0016】(4) 上記(1)に記載の合金成分に加えて更
に、重量%で、Cu:0.1〜1.0 %とCr:0.1〜2.0 %の1種
または2種、ならびにNb: 0.01〜0.1 %、Ti:0.01〜0.1
%およびV: 0.01〜0.1 %の中の1種以上を含み、残
部はS:0.003%超え0.020%以下および不可避不純物と
Feからなる連続鋳造スラブまたはインゴットを (1)と同
じ工程で処理する湿潤硫化水素環境で疲労亀裂進展特性
に優れる原油タンカー用鋼板の製造方法。
(4) In addition to the alloy components described in (1) above, one or two types of Cu: 0.1-1.0% and Cr: 0.1-2.0% by weight, and Nb: 0.01-0.1%. %, Ti: 0.01-0.1
% And V: one or more of 0.01 to 0.1%, and the balance is S: more than 0.003% and not more than 0.020% and unavoidable impurities.
A method for producing a steel plate for a crude oil tanker having excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment in which a continuously cast slab or ingot made of Fe is treated in the same process as in (1).

【0017】[0017]

【発明の実施の形態】本発明は、従来ほとんど検討のな
されていなかった湿潤硫化水素環境下の疲労挙動に及ぼ
す材料因子について検討した結果に基づいてなされたも
のである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been made based on the results of a study on material factors affecting the fatigue behavior in a wet hydrogen sulfide environment, which has hardly been studied hitherto.

【0018】後の実施例でも明らかにするが、湿潤硫化
水素環境下の疲労挙動を観察すると、ΔKの大きい、即
ち、塑性変形域が広くなる応力状態で亀裂進展が著しく
加速されている。また、湿潤硫化水素環境下の疲労で
は、硫化水素濃度が高いほど亀裂進展が大きい。硫化水
素濃度が高いほど腐食に伴って発生する水素原子が鋼中
に侵入して固溶する量が多くなるからであると考えられ
る。また、塑性変形域が広くなる応力状態で亀裂進展が
加速されることから、この疲労破壊挙動には水素脆性が
大きく関与していると推定される。
As will be clarified in the examples below, when the fatigue behavior in a wet hydrogen sulfide environment is observed, crack growth is remarkably accelerated under a stress state where ΔK is large, that is, the plastic deformation region is widened. In fatigue in a wet hydrogen sulfide environment, the crack growth increases as the hydrogen sulfide concentration increases. It is considered that the higher the concentration of hydrogen sulfide, the greater the amount of hydrogen atoms generated due to corrosion that enter the steel and form a solid solution. Further, since crack growth is accelerated in a stress state in which the plastic deformation region is widened, it is presumed that hydrogen embrittlement is greatly involved in this fatigue fracture behavior.

【0019】更に、この疲労破壊が主にフェライト粒内
を進展し、かつ塑性変形の大きい領域で亀裂進展速度が
大きいことに注目すると、フェライト粒の塑性変形挙動
がこの疲労破壊挙動に密接に関係していると考えられ
る。
Further, noting that the fatigue fracture mainly propagates in the ferrite grains and that the crack growth rate is large in a region where the plastic deformation is large, the plastic deformation behavior of the ferrite grains is closely related to the fatigue fracture behavior. it seems to do.

【0020】本発明は、鋼の化学組成と製造条件を適正
に選ぶことによる、フェライト粒自体の強度上昇、又は
微細フェライトと微細ベイナイト等の混合組織生成(ブ
ロック状のベイナイトおよびマルテンサイトの生成防
止)による疲労亀裂進展速度の抑制機構に基づいてい
る。すなわち、上記の金属組織においては従来の鋼に較
べて繰り返し応力下でフェライト粒の受ける塑性変形を
小さくすることができ、疲労亀裂の進展速度を低下させ
ることができるという新しい知見に基づいてなされたも
のである。
According to the present invention, by appropriately selecting the chemical composition of steel and the manufacturing conditions, it is possible to increase the strength of ferrite grains themselves or to form a mixed structure of fine ferrite and fine bainite (prevention of formation of block-like bainite and martensite). ) Based on the mechanism of suppressing the fatigue crack growth rate. That is, based on the new finding that in the above metal structure, plastic deformation received by ferrite grains under repeated stress can be reduced as compared with conventional steel, and the growth rate of fatigue crack can be reduced. Things.

【0021】化学組成の面から言えば、Nb、TiおよびV
の中の1種以上を添加することによってフェライト結晶
粒を細粒化し、したがってベイナイトを微細化し、かつ
炭化物の生成によってフェライト自体を強化することが
でき、亀裂の進展速度を一層小さくすることができる。
また、CuとCrの一方または両方の添加により、硫化水素
を含む雰囲気での鋼の耐食性を向上させ、腐食速度を低
下させ、その結果、鋼の固溶水素の量を減らして亀裂進
展速度を小さくすることができる。
In terms of chemical composition, Nb, Ti and V
By adding one or more of the above, the ferrite crystal grains can be refined, and thus the bainite can be refined, and the ferrite itself can be strengthened by the formation of carbides, and the crack growth rate can be further reduced. .
In addition, the addition of one or both of Cu and Cr improves the corrosion resistance of the steel in an atmosphere containing hydrogen sulfide, reduces the corrosion rate, and consequently reduces the amount of solute hydrogen in the steel to increase the crack growth rate. Can be smaller.

【0022】以下、本発明の製造方法の素材となる鋼の
化学組成の選定理由と、製造条件の選定理由を詳しく説
明する。
Hereinafter, the reasons for selecting the chemical composition of the steel used as the material of the production method of the present invention and the reasons for selecting the production conditions will be described in detail.

【0023】1)鋼の化学組成について Cは、鋼の強度を高める成分である。本発明では、前記
の強度レベルを保持するためにCの含有量を0.01%(以
下、合金成分に関する%は重量%を意味する)以上とし
た。これを下回ると本発明方法で製造される鋼(以下、
便宜的に本発明鋼と記す)の用途に必要な鋼の強度を確
保するのが困難である。一方、鋼の溶接性を良好に保つ
ために、C含有量の上限は 0.2%とした。本発明鋼の対
象とする原油タンカーでは、溶接施工を受ける。C含有
量が 0.2%を上回ると、溶接時に鋼中に溶け込んだ水素
が原因で、溶接熱影響部の硬化部に溶接後しばらくして
割れを生じる、いわゆる溶接割れが発生しやすい。溶接
割れには溶接熱影響部の硬さが大きく影響し硬いほど割
れやすくなる。Cの高い材料ほど硬化しやすいから、こ
れを防ぐにはCが低い方がよい。望ましいC含有量は0.
03〜0.18%である。
1) Chemical composition of steel C is a component that increases the strength of steel. In the present invention, in order to maintain the above-mentioned strength level, the content of C is set to 0.01% or more (hereinafter,% relating to the alloy component means wt%). If less than this, the steel produced by the method of the present invention (hereinafter, referred to as
It is difficult to secure the strength of the steel necessary for the use of the steel of the present invention for convenience). On the other hand, in order to maintain good weldability of steel, the upper limit of the C content is set to 0.2%. The crude oil tanker targeted by the steel of the present invention undergoes welding. When the C content exceeds 0.2%, so-called weld cracking is liable to occur, that is, cracks occur a short time after welding in the hardened portion of the weld heat-affected zone due to hydrogen dissolved in the steel during welding. Welding cracks are greatly affected by the hardness of the heat affected zone, and the harder they are, the more likely they are to crack. Since a material having a higher C is easily cured, a lower C is better to prevent this. Desirable C content is 0.
03-0.18%.

【0024】Siは、鋼の脱酸剤として有用であり、その
外に本発明では湿潤硫化水素環境での疲労亀裂進展特性
の改善のために積極的に利用する。Siの含有量が 0.2%
未満では、これらの効果が期待できない。一方、Siが
0.6%を超えると鋼の靱性が損なわれる。Siの望ましい
含有量は0.25〜0.5 %である。
[0024] Si is useful as a deoxidizing agent for steel, and is also actively used in the present invention for improving fatigue crack growth characteristics in a wet hydrogen sulfide environment. 0.2% Si content
Below, these effects cannot be expected. On the other hand, Si
If it exceeds 0.6%, the toughness of the steel is impaired. The desirable content of Si is 0.25 to 0.5%.

【0025】Mnも、鋼の強度を向上させる成分である。
0.3 %未満では本発明鋼の意図する用途に必要な強度を
確保するのが困難である。しかし、MnもCと同様、溶接
熱影響部を硬化させ溶接割れ惹起する成分であるから、
その含有量には上限がある。即ち、2.0 %を上回ると溶
接割れが発生しやすくなる。望ましいMnの含有量は0.5
〜1.8 %である。
Mn is also a component that improves the strength of steel.
If it is less than 0.3%, it is difficult to secure the strength required for the intended use of the steel of the present invention. However, like Mn, Mn is a component that hardens the heat affected zone and induces welding cracks.
Its content has an upper limit. That is, if it exceeds 2.0%, welding cracks are likely to occur. Desirable Mn content is 0.5
~ 1.8%.

【0026】Alは、鋼の脱酸のために使用するものであ
り、sol.Alとして0.01%の含有量となるように添加する
必要がある。ただし、sol.Alの含有量が 0.1%を上回る
と鋼の清浄度および靱性が損なわれる。望ましいsol.Al
含有量の範囲は0.01〜0.05%である。
Al is used for deoxidizing steel, and must be added so that the content of sol.Al is 0.01%. However, if the sol.Al content exceeds 0.1%, the cleanliness and toughness of the steel are impaired. Desirable sol.Al
The content range is 0.01-0.05%.

【0027】本発明方法の素材となる鋼の一つは、上記
の成分の外、残部がFeと不可避の不純物からなるもので
ある。不純物の中、PとSはそれぞれ 0.025%以下、0.
020%以下に抑えるのが望ましい。
One of the steels used as the raw material of the method of the present invention comprises the above components and the balance consisting of Fe and inevitable impurities. Of the impurities, P and S are 0.025% or less, respectively.
It is desirable to keep it below 020%.

【0028】但し、Sについては精錬コストを犠牲にし
て0.003 %以下にする必要はない。原油タンカーではS
を0.003 %以下に低く抑えなくてもHICやSSCは発生しな
いからである。これは、従来より普通鋼または高張力鋼
を原油タンカーに用いてもHICやSSCを全く発生しなかっ
たことからも明らかである。したがって、当然ながら硫
化物の形状制御のためにCaを含む必要はない。すなわ
ち、本発明方法によって製造された鋼板が用いられる部
位では、耐HICや耐SSCの対策をとった高価な鋼板を用い
る必要はない。Ca処理をすると処理条件によっては粗
大なCaの硫化物と酸化物との複合化合物を生成し、疲
労強度をかえって低下する場合も生じる。一方、Sが0.
020 %を超えると、溶接時にラメラー割れを発生するの
で0.020%以下とする。
However, it is not necessary to reduce S to 0.003% or less at the expense of refining costs. S for crude oil tankers
This is because HIC and SSC do not occur even if the content is not kept below 0.003%. This is clear from the fact that HIC and SSC were not generated at all even when ordinary steel or high-tensile steel was used for crude oil tankers. Therefore, it is not necessary to include Ca for controlling the shape of the sulfide. That is, it is not necessary to use an expensive steel plate taking measures against HIC resistance or SSC resistance in a portion where the steel plate manufactured by the method of the present invention is used. When the Ca treatment is performed, a coarse compound compound of Ca sulfide and oxide is generated depending on the treatment condition, and the fatigue strength may be lowered instead. On the other hand, S is 0.
If it exceeds 020%, lamella cracking will occur during welding, so the content should be 0.020% or less.

【0029】本発明方法の素材となる鋼は、上記の成分
に加えてさらに次の2群の元素の中の1種以上を含むも
のであってもよい。
The steel used as the material of the method of the present invention may further contain one or more of the following two elements in addition to the above components.

【0030】 第1群・・・それぞれ0.01〜0.1 %のNb、TiおよびV 第2群・・・ 0.1〜1.0 %のCuおよび 0.1〜2.0 %のCr 第1群の元素は、フェライト粒の細粒化、したがってベ
イナイトの微細化およびその強化によって亀裂進展特性
を改善する作用をもつ。
First group: 0.01 to 0.1% of Nb, Ti and V respectively Second group: 0.1 to 1.0% of Cu and 0.1 to 2.0% of Cr The first group elements are fine ferrite grains. It has the effect of improving the crack growth properties by graining and thus the refinement of bainite and its strengthening.

【0031】Nb、Ti、Vのいずれも0.01%未満では湿潤
硫化水素環境での疲労亀裂進展特性の改善の効果が乏し
い。一方、それぞれの含有量が 0.1%を超えると効果が
飽和するばかりか、鋼の強度が上がりすぎて靱性を損な
う。いずれも望ましい含有量は0.02〜0.05%である。
If any of Nb, Ti, and V is less than 0.01%, the effect of improving the fatigue crack growth characteristics in a wet hydrogen sulfide environment is poor. On the other hand, if the content of each exceeds 0.1%, not only the effect is saturated, but also the strength of the steel is excessively increased and the toughness is impaired. In each case, the desirable content is 0.02 to 0.05%.

【0032】第2群の元素は、前記のように鋼の耐食性
を向上させるものである。ただし、Cuは 0.1%未満では
添加の効果が小さい。一方、Cuは溶接割れを誘発し、ま
た、高温で融解し鋼の粒界強度を下げて熱間圧延途中に
割れや傷を発生させやすくするから、その含有量は 1.0
%までにとどめるべきである。望ましいCuの含有量は0.
2〜0.5 %である。
The elements of the second group improve the corrosion resistance of the steel as described above. However, if Cu is less than 0.1%, the effect of addition is small. On the other hand, Cu induces welding cracks and also melts at high temperatures, lowering the grain boundary strength of the steel and making cracks and scratches more likely to occur during hot rolling.
Should be up to%. Desirable Cu content is 0.
2 to 0.5%.

【0033】Crは、0.1 %以上の含有量で湿潤硫化水素
環境での疲労亀裂進展特性の一層の改善に有効である。
ただし、CrもC、Mnと同様、溶接熱影響部を硬化させ溶
接割れを惹起する成分であるから、添加する場合は含有
量の上限を 2.0%とすべきである。Crの望ましい含有量
は 0.5〜1.5 %である。
[0033] Cr at a content of 0.1% or more is effective for further improving the fatigue crack growth characteristics in a wet hydrogen sulfide environment.
However, like Cr and Mn, Cr is a component that hardens the weld heat affected zone and causes weld cracking. Therefore, when Cr is added, the upper limit of the content should be 2.0%. The desirable content of Cr is 0.5-1.5%.

【0034】前記の第1群および第2群の一方または双
方から1種以上の元素を選んで添加することができる。
One or more elements can be selected from one or both of the first and second groups and added.

【0035】2)製造方法について 上記の化学組成をもつ鋼は、通常の溶製、鋳造(連続鋳
造またはインゴット鋳造)の後、熱間鍛造または熱間圧
延(以下、まとめて熱間加工という)されて、板の製品
となる。
2) Manufacturing Method Steel having the above-mentioned chemical composition is prepared by ordinary smelting and casting (continuous casting or ingot casting), followed by hot forging or hot rolling (hereinafter collectively referred to as hot working). Being a board product.

【0036】連続鋳造スラブまたはインゴットを熱間加
工する際の加熱温度には特に制約はない。次の熱間加工
および加速冷却が可能な温度域に加熱すればよい。
There is no particular limitation on the heating temperature when hot working a continuously cast slab or ingot. What is necessary is just to heat to the temperature range in which the next hot working and accelerated cooling are possible.

【0037】重要なのは熱間加工後の冷却条件である。
この冷却は、(Ar3点−30℃) 以上の温度からの加速冷却
でなければならない。冷却開始温度が(Ar3−30℃) より
も低いと、粗大な初析フェライトが多く形成され、その
フェライトは加速冷却によっても強化されずに疲労亀裂
進展特性の改善効果がないばかりか、ブロック状のベイ
ナイトおよびマルテンサイトが生成し亀裂進展がむしろ
加速される。望ましい冷却開始温度はAr3 点以上の温度
である。
What is important is the cooling condition after hot working.
This cooling must be accelerated cooling from a temperature of (Ar3 point-30 ° C) or higher. If the cooling start temperature is lower than (Ar3-30 ° C), a large amount of coarse pro-eutectoid ferrite is formed, and the ferrite is not strengthened even by accelerated cooling and has no effect of improving the fatigue crack growth characteristics, but also has a block-like shape. The formation of bainite and martensite is accelerated rather than accelerated. A desirable cooling start temperature is a temperature not lower than the Ar3 point.

【0038】冷却速度は、5℃/sから25℃/sまでの
範囲とする。5℃/sより遅い冷却速度では加速冷却の
効果がなく、本発明の目的とする湿潤硫化水素環境での
疲労亀裂進展特性の改善効果がない。一方、25℃/sを
上回る冷却速度では、鋼の強度が上がりすぎるばかり
か、前記のブロック状のベイナイトおよびマルテンサイ
トが生成し亀裂進展が加速される。
The cooling rate is in the range from 5 ° C./s to 25 ° C./s. At a cooling rate lower than 5 ° C./s, there is no effect of accelerated cooling, and there is no effect of improving fatigue crack growth characteristics in a wet hydrogen sulfide environment, which is the object of the present invention. On the other hand, if the cooling rate exceeds 25 ° C./s, not only does the strength of the steel become too high, but also the above-mentioned block-like bainite and martensite are formed and the crack growth is accelerated.

【0039】上記の加速冷却の停止温度は、400 〜600
℃の範囲が適当である。400 ℃よりも低温では、冷却速
度が大きすぎる場合と同様に、鋼の強度が上がりすぎ、
またブロック状のベイナイトおよびマルテンサイトの生
成によって亀裂進展が加速される。加速冷却の停止温度
が 600℃を上回るとフェライト、ベイナイト等が微細化
されず、かつフェライトが強化されず加速冷却の効果が
乏しい。加速冷却の終了後は、放冷または徐冷を行う。
このようにして得られた鋼材 (製品) は、そのままで使
用できる。
The stop temperature of the above-mentioned accelerated cooling is 400 to 600
A range of ° C is appropriate. At temperatures below 400 ° C, the steel becomes too strong, just as if the cooling rate was too high.
The formation of block-like bainite and martensite accelerates crack growth. If the stop temperature of accelerated cooling exceeds 600 ° C., ferrite and bainite are not miniaturized, and ferrite is not strengthened and the effect of accelerated cooling is poor. After the completion of the accelerated cooling, cooling or slow cooling is performed.
The steel material (product) thus obtained can be used as it is.

【0040】[0040]

【実施例】以下に、本発明を実施例について説明する。The present invention will be described below with reference to examples.

【0041】表1に、供試鋼の化学組成を示す。これら
の鋼を溶製し、連続鋳造で 240mm厚のスラブとし、これ
を1150℃に加熱して 15 mm厚の板に圧延した。その仕上
温度を表2〜表4に示す。次いで、同じく表2〜表4に
示す加速冷却開始温度から冷却を行った。冷却速度、加
速冷却停止温度も表2〜表4に示す。
Table 1 shows the chemical composition of the test steel. These steels were melted and continuously cast into 240 mm thick slabs, which were heated to 1150 ° C and rolled into 15 mm thick plates. Tables 2 to 4 show the finishing temperatures. Next, cooling was performed from the accelerated cooling start temperature also shown in Tables 2 to 4. Tables 2 to 4 also show the cooling rate and accelerated cooling stop temperature.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】以上によって得られた鋼板から、図4の
(b) に示す試験片を採取し、同図 (a)に示す装置で湿潤
硫化水素環境における疲労試験を行った。即ち、図4の
(a)に示すように、試験溶液槽2中で試験片1に油圧シ
リンダー5により繰り返し応力を負荷した。3は溶液循
環ポンプ、4はロードセル、6は油圧源、7はサーボバ
ルブ、8は波形発生器、9は負荷制御器である。疲労試
験条件は以下のとおりである。
From the steel sheet obtained as described above, FIG.
A test piece shown in (b) was collected and subjected to a fatigue test in a wet hydrogen sulfide environment using the apparatus shown in FIG. That is, in FIG.
As shown in (a), the test piece 1 was repeatedly subjected to stress by the hydraulic cylinder 5 in the test solution tank 2. 3 is a solution circulation pump, 4 is a load cell, 6 is a hydraulic pressure source, 7 is a servo valve, 8 is a waveform generator, and 9 is a load controller. The fatigue test conditions are as follows.

【0047】f(繰り返し速度)=30 Hz R(応力比)=0.1 T(試験温度)=室温 表2〜表4に、湿潤硫化水素環境下で、ΔK= 20ksi(i
n)1/2 における亀裂進展速度(da/dN)およびその値と大
気中でΔK= 20ksi(in)1/2 における亀裂進展速度(da
/dN)との比を示す。なお、亀裂進展速度としてΔK= 2
0ksi(in)1/2 の時の値を採用した理由は、以下に説明す
る図1に示すように、この領域で亀裂進展速度が大気中
のそれと大きく差がつくからである。湿潤硫化水素環境
は、水を10%含む懸濁させた原油に、硫化水素濃度1vo
l.% (残りは窒素) の混合ガスを試験期間中常時吹き込
むというものである。
F (repetition rate) = 30 Hz R (stress ratio) = 0.1 T (test temperature) = room temperature Tables 2 to 4 show that ΔK = 20 ksi (i) in a wet hydrogen sulfide environment.
n) 1/2 crack growth rate (da / dN) and its value and the crack growth rate at ΔK = 20 ksi (in) 1/2 in the atmosphere (da
/ dN). Note that the crack growth rate is ΔK = 2
The reason why the value at the time of 0 ksi (in) 1/2 was adopted is that, as shown in FIG. 1 described below, the crack growth rate in this region is significantly different from that in the atmosphere. Wet hydrogen sulphide environment is obtained by adding hydrogen sulfide concentration of 1 vo
A mixture of l.% (the rest is nitrogen) is constantly blown during the test.

【0048】図1に従来例(表2の試番A−1)の鋼の
大気中および湿潤硫化水素環境における亀裂進展速度の
比較を示す。図1から明らかなように大気中に比べ湿潤
硫化水素環境中では亀裂進展速度が大きい。特に、ΔK
の大きい領域(約 20ksi(in)1/2以上) で湿潤硫化水素
環境中での亀裂進展が加速されている。
FIG. 1 shows a comparison of the crack growth rate of the conventional steel (test number A-1 in Table 2) in the atmosphere and in a wet hydrogen sulfide environment. As is clear from FIG. 1, the crack growth rate is higher in a wet hydrogen sulfide environment than in the atmosphere. In particular, ΔK
Crack growth in a wet hydrogen sulfide environment is accelerated in a large region (more than about 20 ksi (in) 1/2).

【0049】図2は、同じく従来例(表2の試番A−
1)の鋼を用いて、鋼に固溶した水素濃度の疲労亀裂進
展速度に及ぼす影響を調査した結果を示す。この実験で
は、硫化水素濃度1vol.%と10vol.%の混合ガスおよび
純粋の硫化水素ガスを用いて、それぞれ固溶水素濃度を
変えた。硫化水素濃度が高いほど、鋼に固溶する水素濃
度は高くなる。従って、図2から明らかなように、硫化
水素濃度が高いほど、すなわち、固溶水素濃度が高いほ
ど亀裂進展速度が大きい。
FIG. 2 shows a conventional example (test number A-
The result of investigating the effect of the concentration of hydrogen dissolved in the steel on the fatigue crack growth rate using the steel of 1) is shown. In this experiment, the concentration of dissolved hydrogen was changed using a mixed gas having a hydrogen sulfide concentration of 1 vol.% And 10 vol.% And a pure hydrogen sulfide gas. The higher the concentration of hydrogen sulfide, the higher the concentration of hydrogen dissolved in steel. Therefore, as is clear from FIG. 2, the higher the concentration of hydrogen sulfide, that is, the higher the concentration of solid solution hydrogen, the higher the crack growth rate.

【0050】図3は、試番E−1〜F−6の湿潤硫化水
素環境下における亀裂進展速度と大気中のそれとの比に
及ぼす加速冷却停止温度の影響を示したものであり、冷
却停止温度が 600〜400 ℃の範囲で亀裂進展速度が大気
中のそれの3倍以内に抑えられている。
FIG. 3 shows the effect of the accelerated cooling stop temperature on the ratio of the crack growth rate of test samples E-1 to F-6 in a wet hydrogen sulfide environment to that in the atmosphere. At a temperature in the range of 600 to 400 ° C, the crack growth rate is suppressed to within three times that of the atmosphere.

【0051】表2における試番A−1、B−1、C−1
およびD−1は、前記第1群元素も第2群元素も添加さ
れていない鋼を素材とし、かつ加速冷却を行わなかった
例である。これらの例で得られた鋼の湿潤硫化水素環境
における亀裂進展速度は大気中のそれの5倍以上であ
る。
Test numbers A-1, B-1, C-1 in Table 2
And D-1 are examples in which a steel to which neither the first group element nor the second group element was added was used as a raw material, and no accelerated cooling was performed. The crack growth rate in the wet hydrogen sulfide environment of the steel obtained in these examples is more than 5 times that in the atmosphere.

【0052】試番E−1〜E−8は、同じく第1群元素
も第2群元素も添加されていない鋼を素材とするが、加
速冷却を行ってその冷却停止温度の影響を調べたもので
ある。E−1は従来法と同じ自然放冷であり、湿潤硫化
水素環境における亀裂進展速度は大気中のそれの5倍以
上と何ら改善されていない。
Test Nos. E-1 to E-8 are made of steel to which neither the first group element nor the second group element is added, and accelerated cooling was performed to examine the effect of the cooling stop temperature. Things. E-1 is naturally cooled as in the conventional method, and the crack growth rate in a wet hydrogen sulfide environment is not improved at least five times that in the atmosphere.

【0053】一方、試番E−3〜E−7は加速冷却停止
温度が本発明で定める 600〜400 ℃の範囲にあり、亀裂
進展速度は大気中のそれの3倍以内に改善されている。
しかし、試番E−2は加速冷却停止温度が高すぎ、ま
た、E−8は加速冷却停止温度が低すぎて、いずれも、
湿潤硫化水素環境における亀裂進展速度は従来例に比べ
て殆ど改善されていない。
On the other hand, in test numbers E-3 to E-7, the accelerated cooling stop temperature is in the range of 600 to 400 ° C. defined in the present invention, and the crack growth rate is improved within three times that in the atmosphere. .
However, the test number E-2 has an accelerated cooling stop temperature that is too high, and the E-8 has an accelerated cooling stop temperature that is too low.
The crack growth rate in a wet hydrogen sulfide environment is hardly improved as compared with the conventional example.

【0054】表3に示す試番F−1〜F−6は第1群元
素の中のNbを添加した鋼を使用し、加速冷却条件の中で
冷却停止温度の影響を調べたものである。F−1は従来
法と同じ自然放冷であり、湿潤硫化水素環境における亀
裂進展速度は大気中の8倍にも達する。一方、試番F−
3〜F−5は加速冷却停止温度が 600〜400 ℃の範囲に
あり、亀裂進展速度は大気中の2倍以内と改善が認めら
れる。しかし、試番F−2は加速冷却停止温度が高す
ぎ、また、F−6は加速冷却停止温度が低くすぎて、い
ずれも湿潤硫化水素環境における亀裂進展速度は従来例
に比べて殆ど改善されていない。
Test numbers F-1 to F-6 shown in Table 3 were obtained by examining the effect of the cooling stop temperature under accelerated cooling conditions using steel to which Nb was added in the first group elements. . F-1 is naturally cooled as in the conventional method, and the crack growth rate in a wet hydrogen sulfide environment reaches eight times that in the atmosphere. On the other hand, trial number F-
For samples 3 to F-5, the accelerated cooling stop temperature is in the range of 600 to 400 ° C., and the crack growth rate is improved to within twice that of the atmosphere. However, in test No. F-2, the accelerated cooling stop temperature was too high, and in F-6, the accelerated cooling stop temperature was too low, and the crack growth rate in the wet hydrogen sulfide environment was almost improved as compared with the conventional example. Not.

【0055】表3中の試番G−1〜G−4は第2群元素
の中のCuを添加した鋼を用いて、加速冷却条件の中で加
速冷却開始温度と停止温度の影響を調べたものである。
試番G−1〜G−3は加速冷却停止温度が 600〜400 ℃
の範囲にあり、冷却速度が6℃/sであっても亀裂進展
速度は大気中の2倍以内におさまっている。しかし、G
−4は加速冷却開始温度が低すぎて、湿潤硫化水素環境
における亀裂進展速度は従来例に比べてあまり小さくな
っていない。
The test numbers G-1 to G-4 in Table 3 were obtained by examining the effects of the accelerated cooling start temperature and the accelerated cooling temperature under accelerated cooling conditions using steel to which Cu in the second group elements was added. It is a thing.
Test numbers G-1 to G-3 have an accelerated cooling stop temperature of 600 to 400 ° C.
And the crack growth rate is less than twice that in the atmosphere even when the cooling rate is 6 ° C./s. But G
In No. -4, the accelerated cooling start temperature was too low, and the crack growth rate in a wet hydrogen sulfide environment was not so small as compared with the conventional example.

【0056】表3および表4に示す試番H−1〜H−5
は前記第1群および第2群の元素の全て添加した鋼を素
材として、加速冷却条件の中で加速冷却開始温度と冷却
速度の影響を調べたものである。試番H−1とH−4は
加速冷却停止温度が 600〜400 ℃の範囲にあり、冷却速
度がそれぞれ25℃/s、12℃/sであるから亀裂進展速
度は大気中の2倍以内と大きな改善が認められる。しか
し、試番H−2は加速冷却開始温度が低すぎるため、湿
潤硫化水素環境における亀裂進展速度は従来例に比べて
殆ど改善されていない。試番H−3は冷却速度が小さ
く、H−5は冷却速度が大き過ぎ、これらも改善の効果
が乏しい。試番I−1も同様に、冷却速度が小さすぎて
湿潤硫化水素環境における亀裂進展特性の改善が小さ
い。
Test numbers H-1 to H-5 shown in Tables 3 and 4
The results of examining the effects of the accelerated cooling start temperature and the cooling rate under accelerated cooling conditions using a steel to which all the elements of the first and second groups are added as a material. Test Nos. H-1 and H-4 have accelerated cooling stop temperatures in the range of 600 to 400 ° C. and cooling rates of 25 ° C./s and 12 ° C./s, respectively. And a big improvement is recognized. However, in Test No. H-2, since the accelerated cooling start temperature is too low, the crack growth rate in a wet hydrogen sulfide environment is hardly improved as compared with the conventional example. Sample No. H-3 has a low cooling rate, and H-5 has a too high cooling rate, and these have poor improvement effects. Similarly, in sample No. I-1, the cooling rate was too low, and the improvement in crack growth characteristics in a wet hydrogen sulfide environment was small.

【0057】試番I−2、J−1、K−1、M−1、N
−1およびO−1は、本発明で定める条件を全て満たす
例である。いずれも湿潤硫化水素環境における亀裂進展
速度は大気中それの2〜3倍以内と大きく改善されてい
る。
Test numbers I-2, J-1, K-1, M-1, N
-1 and O-1 are examples satisfying all the conditions defined in the present invention. In any case, the crack growth rate in a wet hydrogen sulfide environment is greatly improved to within 2 to 3 times that in the atmosphere.

【0058】[0058]

【発明の効果】実施例に示したように、本発明方法で製
造される鋼板は、湿潤硫化水素環境での疲労亀裂進展速
度が著しく小さく、大気中における疲労亀裂進展速度の
2〜3倍以内におさまる。即ち、この鋼板は亀裂進展特
性において著しく優れており、湿潤硫化水素環境に曝さ
れ、かつ繰り返し応力を受ける原油タンカー用鋼板とし
て極めて実用性が高い。
As shown in the examples, the steel sheet produced by the method of the present invention has a remarkably low fatigue crack growth rate in a wet hydrogen sulfide environment, and is within 2-3 times the fatigue crack growth rate in the atmosphere. Subsides. That is, this steel sheet is remarkably excellent in crack propagation characteristics, and is extremely practical as a steel sheet for a crude oil tanker which is exposed to a wet hydrogen sulfide environment and subjected to repeated stress.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来鋼の大気中および湿潤硫化水素環境におけ
る疲労試験結果である。
FIG. 1 shows the results of a fatigue test of a conventional steel in air and in a wet hydrogen sulfide environment.

【図2】従来鋼の疲労亀裂進展速度に及ぼす硫化水素濃
度の影響を示す図である。
FIG. 2 is a graph showing the effect of hydrogen sulfide concentration on the fatigue crack growth rate of conventional steel.

【図3】湿潤硫化水素環境下(硫化水素濃度1vol.%)
における亀裂進展速度と大気中の亀裂進展速度との比に
及ぼす熱間圧延後の加速冷却停止温度の影響を示す図で
ある。
Fig. 3 In a wet hydrogen sulfide environment (hydrogen sulfide concentration 1 vol.%)
FIG. 4 is a diagram showing the effect of the accelerated cooling stop temperature after hot rolling on the ratio of the crack growth rate to the crack growth rate in the atmosphere in Example 1.

【図4】(a)は疲労試験装置の概要を示す図、(b) は試
験片の形状と寸法を示す図である。
FIG. 4A is a diagram showing an outline of a fatigue test apparatus, and FIG. 4B is a diagram showing the shape and dimensions of a test piece.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.01〜0.2 %、Si:0.2 〜
0.6 %、Mn:0.3 〜2.0 %、sol.Al:0.01〜0.1 %を含
み、残部はS:0.003%超え0.020%以下および不可避不
純物とFeからなる連続鋳造スラブまたはインゴットを熱
間鍛造または熱間圧延を(Ar3点−30℃) 以上の温度域で
終了させ、再加熱することなく(Ar3点−30℃) 以上の温
度から冷却速度5〜25℃/sで 400〜600 ℃の温度域まで
加速冷却し、その後放冷または徐冷することを特徴とす
る湿潤硫化水素環境で疲労亀裂進展特性に優れる原油タ
ンカー用鋼板の製造方法。
C .: 0.01 to 0.2% by weight, Si: 0.2 to 0.2% by weight.
0.6%, Mn: 0.3-2.0%, sol.Al: 0.01-0.1%, the balance is S: more than 0.003% and less than 0.020%, and continuous casting slab or ingot made of Fe and unavoidable impurities and hot forged or hot Rolling is completed in the temperature range of (Ar3 point -30 ° C) or higher, and without reheating from the temperature of (Ar3 point -30 ° C) or higher to the temperature range of 400 to 600 ° C at a cooling rate of 5 to 25 ° C / s. A method for producing a steel plate for a crude oil tanker having excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment, wherein the steel plate is subjected to accelerated cooling and then cooled or gradually cooled.
【請求項2】重量%で、C: 0.01〜0.2 %、Si:0.2 〜
0.6 %、Mn:0.3 〜2.0 %、sol.Al:0.01〜0.1 %を含
み、さらに、Nb: 0.01〜0.1 %、Ti: 0.01〜0.1 %およ
びV:0.01〜0.1 %の中の1種以上を含み、残部はS:
0.003%超え0.020%以下および不可避不純物とFeからな
る連続鋳造スラブまたはインゴットを熱間鍛造または熱
間圧延を(Ar3点−30℃) 以上の温度域で終了させ、再加
熱することなく(Ar3点−30℃) 以上の温度から冷却速度
5〜25℃/sで 400〜600 ℃の温度域まで加速冷却し、そ
の後放冷または徐冷することを特徴とする湿潤硫化水素
環境で疲労亀裂進展特性に優れる原油タンカー用鋼板の
製造方法。
2. C: 0.01 to 0.2% by weight, Si: 0.2 to 0.2% by weight
0.6%, Mn: 0.3-2.0%, sol. Al: 0.01-0.1%, and Nb: 0.01-0.1%, Ti: 0.01-0.1% and V: 0.01-0.1% Including the rest S:
Hot forging or hot rolling of continuous casting slabs or ingots containing 0.003% or more and 0.020% or less and inevitable impurities and Fe is completed in a temperature range of (Ar3 point -30 ° C) or more, and without reheating (Ar3 point Fatigue crack growth characteristics in a wet hydrogen sulfide environment characterized by accelerated cooling from the above temperature to a temperature range of 400 to 600 ° C at a cooling rate of 5 to 25 ° C / s, followed by cooling or slow cooling Method of manufacturing steel plate for crude oil tanker with excellent quality.
【請求項3】重量%で、C: 0.01〜0.2 %、Si:0.2 〜
0.6 %、Mn:0.3 〜2.0 %、sol.Al:0.01〜0.1 %を含
み、さらに、Cu:0.1〜1.0 %とCr:0.1〜2.0 %の1種ま
たは2種を含み、残部はS:0.003%超え0.020%以下お
よび不可避不純物とFeからなる連続鋳造スラブまたはイ
ンゴットを熱間鍛造または熱間圧延を(Ar3点−30℃)以
上の温度域で終了させ、再加熱することなく(Ar3点−30
℃) 以上の温度から冷却速度5〜25℃/sで 400〜600 ℃
の温度域まで加速冷却し、その後放冷または徐冷するこ
とを特徴とする湿潤硫化水素環境で疲労亀裂進展特性に
優れる原油タンカー用鋼板の製造方法。
(3) By weight%, C: 0.01 to 0.2%, Si: 0.2 to 0.2%
0.6%, Mn: 0.3-2.0%, sol. Al: 0.01-0.1%, further contains one or two of Cu: 0.1-1.0% and Cr: 0.1-2.0%, and the balance S: 0.003 % Or more and 0.020% or less and continually cast slabs or ingots composed of Fe and unavoidable impurities are subjected to hot forging or hot rolling at a temperature range of (Ar3 point −30 ° C.) or higher and without reheating (Ar3 point − 30
℃) 400-600 ℃ at a cooling rate of 5-25 ℃ / s from the above temperature
A method for producing a steel plate for a crude oil tanker, which has excellent fatigue crack growth characteristics in a wet hydrogen sulfide environment, wherein the steel plate is accelerated and cooled to a temperature range described above and then cooled or slowly cooled.
【請求項4】重量%で、C: 0.01〜0.2 %、Si:0.2 〜
0.6 %、Mn:0.3 〜2.0 %、sol.Al:0.01〜0.1 %を含
み、さらに、Cu:0.1〜1.0 %とCr:0.1〜2.0.%の1種ま
たは2種、ならびにNb: 0.01〜0.1 %、Ti: 0.01〜0.1
%およびV: 0.01〜0.1 %の1種以上を含み、残部は
S:0.003%超え0.020%以下および不可避不純物とFeか
らなる連続鋳造スラブまたはインゴットを熱間鍛造また
は熱間圧延を(Ar3点−30℃) 以上の温度域で終了させ、
再加熱することなく(Ar3点−30℃) 以上の温度から冷却
速度5〜25℃/sで 400〜600 ℃の温度域まで加速冷却
し、その後放冷または徐冷することを特徴とする湿潤硫
化水素環境で疲労亀裂進展特性に優れる原油タンカー用
鋼板の製造方法。
4. C .: 0.01 to 0.2% by weight, Si: 0.2 to 0.2% by weight
0.6%, Mn: 0.3-2.0%, sol. Al: 0.01-0.1%, and one or two of Cu: 0.1-1.0% and Cr: 0.1-2.0.%, And Nb: 0.01-0.1 %, Ti: 0.01-0.1
% And V: one or more of 0.01 to 0.1%, the balance being S: more than 0.003% and 0.020% or less and continuous casting slab or ingot made of unavoidable impurities and Fe is subjected to hot forging or hot rolling (Ar3 point- 30 ° C)
Wetting characterized by accelerated cooling from a temperature above (Ar3 point -30 ° C) to a temperature range of 400 to 600 ° C at a cooling rate of 5 to 25 ° C / s without reheating, and then allowing to cool or slowly cool A method for producing a steel plate for a crude oil tanker having excellent fatigue crack growth characteristics in a hydrogen sulfide environment.
JP09225299A 1997-08-21 1997-08-21 Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment Expired - Lifetime JP3085253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09225299A JP3085253B2 (en) 1997-08-21 1997-08-21 Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09225299A JP3085253B2 (en) 1997-08-21 1997-08-21 Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3295681A Division JP2967889B2 (en) 1991-11-12 1991-11-12 Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Publications (2)

Publication Number Publication Date
JPH1068019A true JPH1068019A (en) 1998-03-10
JP3085253B2 JP3085253B2 (en) 2000-09-04

Family

ID=16827170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09225299A Expired - Lifetime JP3085253B2 (en) 1997-08-21 1997-08-21 Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment

Country Status (1)

Country Link
JP (1) JP3085253B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399231B1 (en) * 1998-12-14 2004-02-14 주식회사 포스코 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance
WO2015087531A1 (en) * 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel for crude oil tank and crude oil tank
WO2015087532A1 (en) * 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel for crude oil tank and crude oil tank
JP2015113506A (en) * 2013-12-12 2015-06-22 Jfeスチール株式会社 Steel material for crude oil tank excellent in corrosion resistance and crude oil tank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399231B1 (en) * 1998-12-14 2004-02-14 주식회사 포스코 Steel plate manufacturing method with excellent corrosion resistance fatigue resistance
WO2015087531A1 (en) * 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel for crude oil tank and crude oil tank
WO2015087532A1 (en) * 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel for crude oil tank and crude oil tank
JP2015113506A (en) * 2013-12-12 2015-06-22 Jfeスチール株式会社 Steel material for crude oil tank excellent in corrosion resistance and crude oil tank
JP2015113507A (en) * 2013-12-12 2015-06-22 Jfeスチール株式会社 Steel material for crude oil tank excellent in corrosion resistance and crude oil tank
CN105793454A (en) * 2013-12-12 2016-07-20 杰富意钢铁株式会社 Steel for crude oil tank and crude oil tank
JPWO2015087531A1 (en) * 2013-12-12 2017-03-16 Jfeスチール株式会社 Steel for crude oil tank and crude oil tank

Also Published As

Publication number Publication date
JP3085253B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP4857583B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction
JPS63241114A (en) Manufacture of high toughness and high tension steel having superior resistance to stress corrosion cracking
JPH0748621A (en) Production of steel for pressure vessel excellent in ssc resistance and hic resistance
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JP7070814B1 (en) Thick steel plate and its manufacturing method
JP5796369B2 (en) Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP4660363B2 (en) Manufacturing method of thick steel plate with excellent toughness
JP2688312B2 (en) High strength and high toughness steel plate
CA3093397C (en) Low alloy third generation advanced high strength steel and process for making
JPH1161250A (en) Manufacture of steel plate for crude oil tanker, excellent in fatigue crack propagation characteristic under wet hydrogen sulfide environment
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JPH08225882A (en) Ferrite-bainite two-phase steel
KR20150124811A (en) Steel sheet for line pipe and method of manufacturing the same
JP2967889B2 (en) Method for producing steel with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JPS61272316A (en) Manufacture of high tension steel having more than 100kgf/mm2 yield strength and superior in stress corrosion cracking resistance
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
JP5278502B2 (en) Steel manufacturing method with excellent fatigue crack propagation characteristics with small strength difference in the thickness direction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070707

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080707

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090707

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100707

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120707