WO2015087531A1 - Steel for crude oil tank and crude oil tank - Google Patents

Steel for crude oil tank and crude oil tank Download PDF

Info

Publication number
WO2015087531A1
WO2015087531A1 PCT/JP2014/006097 JP2014006097W WO2015087531A1 WO 2015087531 A1 WO2015087531 A1 WO 2015087531A1 JP 2014006097 W JP2014006097 W JP 2014006097W WO 2015087531 A1 WO2015087531 A1 WO 2015087531A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
corrosion
crude oil
oil tank
steel material
Prior art date
Application number
PCT/JP2014/006097
Other languages
French (fr)
Japanese (ja)
Inventor
釣 之郎
務 小森
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167013834A priority Critical patent/KR101786409B1/en
Priority to JP2015552331A priority patent/JP6149943B2/en
Priority to CN201480062745.9A priority patent/CN105745347B/en
Publication of WO2015087531A1 publication Critical patent/WO2015087531A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to an oil tank of a crude oil tanker formed by welding steel materials and a tank for transporting or storing crude oil (hereinafter collectively referred to as “crude oil tank”).
  • the present invention relates to a steel material for a crude oil tank that reduces the overall corrosion that occurs at the ceiling and side walls of the crude oil tank and the local corrosion that occurs at the bottom of the crude oil tank, and a crude oil tank that includes the steel material.
  • the steel material for crude oil tanks of the present invention includes thick steel plates, thin steel plates, and shaped steels.
  • the most effective method for preventing the above-described general corrosion and local corrosion is to apply heavy coating on the surface of the steel material to shield the steel material from the corrosive environment.
  • the painting operation of the crude oil tank not only has an enormous application area, but also requires repainting once every 10 years due to the deterioration of the coating film, resulting in an enormous cost for inspection and painting.
  • corrosion is promoted in the damaged part of the heavy-painted coating film in the corrosive environment of the crude oil tank.
  • Patent Document 1 For the corrosion problem as described above, several techniques for improving the corrosion resistance of the steel material itself in the corrosive environment of the crude oil tank have been proposed.
  • Patent Document 1 in mass%, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.02% or less, Cu: 0.01 to 1.5% , Al: 0.001 to 0.3%, N: 0.001 to 0.01%, Mo: 0.01 to 0.5% and W: 0.01 to 1%, one or two, with the balance being Fe and inevitable impurities
  • a technique for forming a welded joint so that the contents of Cu, Mo, and W in the weld metal satisfy the following three expressions when welding the steel materials to form a welded joint is disclosed.
  • Patent Document 2 by mass, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.02% or less, Cu: 0.01 to 1.5 %, Al: 0.001 to 0.3%, N: 0.001 to 0.01%, Mo: 0.01 to 0.5%, and W: 0.01 to 1%, one or two, with the balance being Fe and inevitable impurities
  • a technique for forming a welded joint so that the contents of Cu, Mo, and W in the weld metal satisfy the following two equations when welding a steel material made of the above to form a crude oil tank is disclosed.
  • the suppression of the overall corrosion generated on the upper plate of the tanker it is about 0.11 mm / y even in the case of the lowest corrosion rate among the invention examples described in Patent Documents 1 and 2.
  • the actual crude oil tanker has a service life of 25 years, and the design corrosion allowance of the tanker upper plate is about 2 mm on one side. y or less is required.
  • longages welded to the tanker upper plate are exposed to the corrosive environment inside the tanker, so repair is required when applying corrosion-resistant steel with a corrosion rate exceeding 0.1 mm / y. Therefore, the techniques described in Patent Documents 1 and 2 cannot be desired to omit the painting.
  • the present invention was developed in view of the above situation, and a steel material for a crude oil tank that is excellent in both general corrosion resistance in a top plate of a crude oil tank such as a tanker oil tank portion and local corrosion resistance in a bottom plate of a crude oil tank, It aims at providing with the crude oil tank comprised from this steel material.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.03-0.18% Si: 0.03-1.50%, Mn: 0.1-2.0% P: 0.025% or less, S: 0.010% or less, Al: 0.005-0.10%, N: 0.008% or less and Cu: 0.05-0.4%
  • a steel material for crude oil tanks, the balance of which is composed of Fe and inevitable impurities, and the dislocation density ⁇ of the steel material satisfies the following formula (1) in relation to the Cu content. ⁇ ⁇ 4 ⁇ 10 16 ⁇ [% Cu] 2.8 --- (1)
  • [% Cu] is the Cu content (% by mass) in the steel.
  • the steel material is further in mass%, Sn: 0.005-0.4%
  • Sn 0.005-0.4%
  • [% Cu] and [% Sn] are the Cu and Sn contents (% by mass) in the steel materials, respectively.
  • the steel material is further in mass%, Ni: 0.005-0.4%, Cr: 0.01-0.2% Mo: 0.005-0.5% W: 0.005-0.5% Sb: 0.005 to 0.4%, Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, V: 0.002 to 0.2% Ca: 0.0002 to 0.01%, Mg: 0.0002 to 0.01% and REM: 0.0002 to 0.015%
  • W 0.005-0.5%
  • Sb 0.005 to 0.4%
  • Nb 0.001 to 0.1%
  • Ti 0.001 to 0.1%
  • V 0.002 to 0.2%
  • Ca 0.0002 to 0.01%
  • Mg 0.0002 to 0.01%
  • REM 0.0002 to 0.015%
  • the steel material for crude oil tanks according to 1 or 2 above which contains one or more selected from among the above.
  • Example of this invention it is a figure explaining the test apparatus used for the general corrosion test. In the Example of this invention, it is a figure explaining the test apparatus used for the pitting corrosion test.
  • C 0.03-0.18%
  • C is an element that increases the strength of steel.
  • C is added in an amount of 0.03% or more to ensure a desired strength (490 to 620 MPa).
  • the C content is in the range of 0.03 to 0.18%.
  • it is 0.06 to 0.16% of range.
  • Si 0.03-1.50%
  • Si is an element added as a deoxidizer, but is also an effective element for increasing the strength of steel. Therefore, in the present invention, 0.03% or more of Si is added to ensure a desired strength. However, addition of Si exceeding 1.50% reduces the toughness of the steel. Therefore, the Si content is in the range of 0.03 to 1.50%. Preferably it is 0.05 to 0.40% of range.
  • Mn 0.1-2.0%
  • Mn is an element that increases the strength of steel.
  • Mn is added in an amount of 0.1% or more in order to obtain a desired strength.
  • Mn addition exceeding 2.0% decreases the toughness and weldability of steel. Therefore, the Mn content is in the range of 0.1 to 2.0%. Preferably it is 0.80 to 1.60% of range.
  • P 0.025% or less
  • P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, so it is desirable to reduce it as much as possible.
  • the toughness is greatly reduced.
  • the P content is 0.025% or less.
  • it is 0.015% or less.
  • S 0.010% or less
  • S is a harmful element that forms MnS, which is a non-metallic inclusion, and serves as a starting point for local corrosion and reduces local corrosion resistance. Therefore, it is desirable to reduce S as much as possible. In particular, when S exceeds 0.010%, the local corrosion resistance is significantly reduced. Therefore, the allowable upper limit of the S amount is 0.010%. Preferably it is 0.005% or less.
  • Al 0.005-0.10%
  • Al is an element added as a deoxidizer, and 0.005% or more is added in the present invention. However, if Al is added in excess of 0.10%, the toughness of the steel decreases, so the upper limit of Al content is 0.10%.
  • N 0.008% or less Since N is a harmful element that lowers toughness, it is desirable to reduce it as much as possible. In particular, if N is contained in excess of 0.008%, the toughness is greatly reduced, so the upper limit of N content is 0.008%.
  • Cu 0.05-0.4%
  • Cu is an essential additive element that not only increases the strength of the steel but also exists in the rust generated by the corrosion of the steel, and suppresses the diffusion of Cl- ions that promote the corrosion, thus improving the corrosion resistance. These effects cannot be fully obtained with Cu addition of less than 0.05%.
  • addition of Cu exceeding 0.4% saturates the effect of improving corrosion resistance and may cause problems such as surface cracking during hot working. is there. Therefore, the Cu content is set in the range of 0.05 to 0.4%. Preferably it is 0.06 to 0.35% of range.
  • Sn 0.005-0.4%
  • Sn is a useful element that contributes to the suppression of local corrosion and overall corrosion of steel by being taken into the rust layer during corrosion and forming a dense rust layer. This effect is manifested when Sn is added in an amount of 0.005% or more. However, when Sn is added in excess of 0.4%, not only the low-temperature toughness is lowered, but also defects are generated during welding. Therefore, the Sn content is set in the range of 0.005 to 0.4%. Preferably it is in the range of 0.01 to 0.2%, more preferably in the range of 0.01 to 0.1%.
  • Cr 0.01-0.2% Cr is with the progress of corrosion proceeds to rust layer, Cl - of by blocking entry into rust layers, Cl to interface rust layer and base iron - suppressing concentration of, whereby corrosion resistance It contributes to the improvement.
  • a Zn-containing primer when applied to the steel surface, it can form a complex oxide of Cr and Zn centering on Fe, and can keep Zn on the surface of the steel sheet for a long period of time. Can be improved.
  • the above-mentioned effect is remarkable especially in a portion that comes into contact with a liquid containing high-concentration salinity separated from crude oil, such as a bottom plate portion of a tanker oil tank, and a Zn-containing primer treatment is applied to the steel material in the above-mentioned portion containing Cr.
  • a Zn-containing primer treatment is applied to the steel material in the above-mentioned portion containing Cr.
  • the effect of Cr is not sufficient if the Cr content is less than 0.01%, while if it exceeds 0.2%, the toughness of the weld is deteriorated. Therefore, the Cr content is in the range of 0.01 to 0.2%. Preferably it is 0.05 to 0.20% of range.
  • Mg 0.0002 to 0.01% Mg not only contributes to improving the toughness of the weld heat-affected zone, but also has an effect of increasing the corrosion resistance by being present in rust generated by corrosion of steel. These effects cannot be obtained sufficiently if the Mg content is less than 0.0002%, while if added over 0.01%, the toughness is reduced, so the Mg content is in the range of 0.0002 to 0.01%.
  • Ni 0.005-0.4%
  • Ni has the effect of refining the generated rust particles to improve the corrosion resistance in the bare state and the corrosion resistance in the state where the epoxy primer is applied to the zinc primer. Therefore, Ni is added when it is desired to further improve the corrosion resistance. The above effect is manifested by adding 0.005% or more of Ni. On the other hand, even if Ni exceeds 0.4%, the effect is saturated. Therefore, Ni is preferably added in the range of 0.005 to 0.4%. Preferably it is 0.08 to 0.35% of range.
  • Sb 0.005-0.4% Sb not only suppresses pitting corrosion at the tanker tank bottom plate, but also has the effect of suppressing overall corrosion at the tanker upper deck. The above effect is manifested when 0.005% or more of Sb is added, but the effect is saturated even if Sb is added in excess of 0.4%. Therefore, Sb is preferably added in the range of 0.005 to 0.4%.
  • Nb 0.001 to 0.1%
  • Ti 0.001 to 0.1%
  • V 0.002 to 0.2%
  • Nb, Ti and V are all elements that increase the strength of the steel material, and can be appropriately selected and added according to the required strength.
  • Nb and Ti it is preferable to add Nb and Ti to 0.001% or more and V to 0.002% or more, respectively.
  • Nb and Ti are added in excess of 0.1% and V is added in excess of 0.2%, the toughness decreases. Therefore, it is preferable to add Nb, Ti and V within the above ranges.
  • Ca 0.0002 to 0.01%
  • REM 0.0002 to 0.015%
  • Both Ca and REM are effective in improving the toughness of the weld heat-affected zone, and can be added as necessary.
  • the above effects can be obtained by adding Ca: 0.0002% or more and REM: 0.0002% or more.
  • Ca and REM are preferably added within the above ranges.
  • W: 0.005-0.5% Mo and W not only suppress pitting corrosion in the tanker tank bottom plate, but also have an effect of suppressing overall corrosion of the tanker upper deck.
  • the effects of Mo and W are manifested when 0.005% or more is added, but when the content exceeds 0.5%, the effect reaches saturation. Therefore, the Mo and W contents are each preferably in the range of 0.005 to 0.5%. More preferably, it is 0.01 to 0.3%, and still more preferably 0.02 to 0.2%.
  • Mo and W have the effect of improving the corrosion resistance as described above is that MoO 4 2- and WO 4 2- are generated in the rust generated as the steel sheet corrodes, and this MoO 4 2- and This is because the presence of WO 4 2- suppresses chloride ions from entering the steel sheet surface. Further, it is considered that corrosion of the steel material is also suppressed by the inhibitor action by adsorption of MoO 4 2- and WO 4 2- on the steel material surface.
  • the transition density of the steel material defined in the present invention will be described.
  • the various corrosion resistant elements are concentrated in the rust layer on the steel material surface formed in the corrosive environment of the tanker tank bottom plate and top plate. It suppresses the diffusion of various corrosion factors and reduces the corrosion rate of steel materials.
  • the formation of a transition derived from the manufacturing process cannot be avoided. However, since this transition is thermodynamically unstable, it functions as an anode site in which iron dissolves in a corrosive environment.
  • the rust layer formed on the surface of the corrosion-resistant steel is protective and has the effect of reducing the corrosion rate of the steel material, but its function is not perfect, and the density of the transition on the steel surface under the rust layer is large In this case, sufficient protection of the rust layer, and hence satisfactory corrosion resistance, cannot be obtained.
  • the protection of the rust layer is mainly determined by the Cu concentration in the steel, or the concentration of Cu and Sn when Sn is contained. The higher the Cu and Sn concentration, the better the protection. For this reason, the allowable dislocation density also changes according to the amount of Cu and the amount of Sn. Therefore, the inventors investigated the relationship between the protection of the rust layer and the amount of Cu and Sn.
  • the dislocation density ⁇ was determined according to the following formulas (1) and (2) according to the amount of Cu and Sn in the steel. Thus, it has been determined that good protection of the rust layer can be obtained by controlling to the range given by.
  • the steel material for crude oil tank of the present invention is preferably produced by the following method. That is, the steel material of the present invention is obtained by melting steel adjusted to the above-described component composition using a known refining process such as a converter, electric furnace, vacuum degassing, etc., and continuously casting or ingot-bundling rolling. It is preferable to use a steel material (slab) by the method, and then reheat this material and then hot-roll it to obtain a thick steel plate, a thin steel plate, a shaped steel, and the like.
  • the reheating temperature before hot rolling is preferably 900 to 1200 ° C. If the heating temperature is less than 900 ° C, the deformation resistance is large and it is difficult to perform hot rolling.On the other hand, if the heating temperature exceeds 1200 ° C, the austenite grains are coarsened and the toughness is reduced. This is because the above becomes remarkable and the yield decreases.
  • a more preferable heating temperature is in the range of 1000 to 1150 ° C.
  • the finish rolling finish temperature is preferably 700 ° C. or higher. If the finish rolling finish temperature is less than 700 ° C, the deformation resistance of the steel increases, the rolling load increases and rolling becomes difficult, or there is a waiting time until the rolled material reaches a predetermined rolling temperature. This is because the efficiency is lowered.
  • the steel material after hot rolling may be cooled by either air cooling or accelerated cooling, but accelerated cooling is preferable when higher strength is desired.
  • accelerated cooling it is preferable that the cooling rate is 2 to 80 ° C./s and the cooling stop temperature is 650 to 400 ° C. If the cooling rate is less than 2 ° C / s and the cooling stop temperature exceeds 650 ° C, the effect of accelerated cooling is small and sufficient strength cannot be achieved, while the cooling rate exceeds 80 ° C / s and the cooling stop temperature is 400 This is because if the temperature is lower than 0 ° C., the toughness of the obtained steel material is lowered or the shape of the steel material is distorted.
  • This corrosion test apparatus is composed of a corrosion test tank 2 and a temperature control plate 3, and water 6 having a temperature maintained at 30 ° C. is injected into the corrosion test tank 2, and Introduces a mixed gas consisting of 13 vol% CO 2 , 4 vol% O 2 , 0.01 vol% SO 2 , 0.05 vol% H 2 S and the balance N 2 through the introduction gas pipe 4 and enters the inside of the corrosion test tank 2. Filled with supersaturated steam, the corrosive environment on the upper deck of the crude oil tank is reproduced. And the corrosion test piece 1 is set on the upper and lower surfaces of this test tank, and 25 ° C. ⁇ 1.5 hours + 50 ° C.
  • the corrosion amount is 2 mm or less, the general corrosion resistance is good ( ⁇ ), and when it exceeds 2 mm, the general corrosion resistance is poor ( X).
  • This corrosion test apparatus is a dual structure apparatus consisting of a corrosion test tank 8 and a constant temperature bath 9, and the test solution 10 is put in the corrosion test tank 8, and the test piece 7 is suspended and immersed in the teg 11 therein. Has been. The temperature of the test solution 10 is maintained by adjusting the temperature of the water 12 placed in the thermostatic chamber 9.
  • represents the X-ray wavelength of 1.789 mm
  • represents the true half-value width of the diffraction peak, and was obtained from the measured half-value width ⁇ m and the unstrained half-value width ⁇ s by the equation (3).
  • a Si powder standard sample was used as the unstrained standard sample ( ⁇ s at the peak position was obtained from interpolation calculation by parabolic approximation).
  • ( ⁇ m 2 - ⁇ s 2 ) 0.5 --- (3)
  • An approximate curve was drawn from the three points of the above plot by the least square method, strain ⁇ was determined from the slope as shown in equation (4), and dislocation density ⁇ was determined from equation (5).
  • the thick steel plates Nos. 1 to 4, 7 to 10, and 13 to 36 that satisfy the conditions of the present invention are subjected to the full corrosion test that simulates the upper deck and the local corrosion test that simulates the tanker bottom plate environment. In any case, good corrosion resistance was exhibited.
  • the thick steel plates No. 5, 6, 11, 12, and 37 that do not satisfy the conditions of the present invention could not obtain good results in any corrosion resistance test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Steel for crude oil tanks such as tanker oil tanks excelling in both resistance to uniform corrosion on the upper plate of the crude oil tank and resistance to local corrosion on the bottom plate of the crude oil tank is provided by: the steel having a component composition containing, in mass%, C: 0.03-0.18%, Si: 0.03-1.50%, Mn: 0.1-2.0%, P: 0.025% or less, S: 0.010% or less, Al: 0.005-0.10%, N: 0.008% or less and Cu: 0.05-0.4% with the remainder being obtained from Fe and unavoidable impurities; and the steel dislocation density being in a range that satisfies formula (1) in relation to Cu content α ≤ 4 × 1016 × [%Cu]2.8 (1) wherein [%Cu] is the Cu content (mass%) in the steel.

Description

原油タンク用鋼材および原油タンクSteel for crude oil tank and crude oil tank
 本発明は、鋼材を溶接して形成される原油タンカーの油槽や原油を輸送あるいは貯蔵するためのタンク(以下、「原油タンク」と総称する)に関するものである。具体的には、原油タンクの天井部や側壁部に発生する全面腐食および原油タンクの底部に発生する局部腐食を軽減した原油タンク用鋼材と、その鋼材から構成される原油タンクに関するものである。
 なお、本発明の原油タンク用鋼材には、厚鋼板、薄鋼板および形鋼が含まれる。
The present invention relates to an oil tank of a crude oil tanker formed by welding steel materials and a tank for transporting or storing crude oil (hereinafter collectively referred to as “crude oil tank”). Specifically, the present invention relates to a steel material for a crude oil tank that reduces the overall corrosion that occurs at the ceiling and side walls of the crude oil tank and the local corrosion that occurs at the bottom of the crude oil tank, and a crude oil tank that includes the steel material.
In addition, the steel material for crude oil tanks of the present invention includes thick steel plates, thin steel plates, and shaped steels.
 タンカーの原油タンクの内面、特に上甲板裏面および側壁上部に用いられている鋼材には、全面腐食が生じることが知られている。この全面腐食が起こる原因としては、
(1) 昼夜の温度差による鋼板表面への結露と乾燥(乾湿)の繰り返し、
(2) 原油タンク内に防爆用に封入されるイナートガス(O2約4vol%、CO2約13vol%、SO2約0.01vol%、残部N2を代表組成とするボイラあるいはエンジンの排ガス等)中のO2,CO2,SO2の結露水への溶け込み、
(3) 原油から揮発するH2S等腐食性ガスの結露水への溶け込み、
(4) 原油タンクの洗浄に使用された海水の残留
などが挙げられる。
 これらは、通常、2.5年毎に行われる実船のドック検査で、強酸性の結露水中に、硫酸イオンや塩化物イオンが検出されていることからも窺い知ることができる。
It is known that the steel used on the inner surface of a tanker's crude oil tank, particularly on the back of the upper deck and the upper part of the side wall, is totally corroded. As a cause of this total corrosion,
(1) Repeated condensation and drying (wet and dry) on the steel sheet surface due to temperature difference between day and night,
(2) Inert gas enclosed in crude oil tanks for explosion protection (O 2 approx. 4 vol%, CO 2 approx. 13 vol%, SO 2 approx. 0.01 vol%, remaining N 2 as representative composition boiler or engine exhaust gas, etc.) Of O 2 , CO 2 , SO 2 into condensed water,
(3) Dissolution of corrosive gas such as H 2 S volatilized from crude oil into condensed water,
(4) Residual seawater used for cleaning crude oil tanks.
These can be recognized from the fact that sulfate ions and chloride ions are detected in strongly acidic condensed water during dock inspections of actual ships that are usually conducted every 2.5 years.
 また、腐食によって生成した鉄錆を触媒としてH2Sが酸化されると、固体Sが鉄錆中に層状に生成するが、これらの腐食生成物は、容易に剥離して脱落し、原油タンクの底部に堆積する。そのため、ドック検査では、多大な費用をかけて、タンク上部の補修やタンク底部の堆積物の回収が行われているのが現状である。 In addition, when H 2 S is oxidized using iron rust generated by corrosion as a catalyst, solid S is formed in layers in the iron rust, but these corrosion products easily peel off and fall off, and the crude oil tank Deposit at the bottom of the. For this reason, in the dock inspection, the current situation is that repair of the upper part of the tank and collection of deposits at the bottom of the tank are performed with great expense.
 一方、タンカーの原油タンク等の底板として用いられる鋼材には、従来、原油そのものの腐食抑制作用や原油タンク内面に形成される原油由来の保護性コート(オイルコート)の腐食抑制作用により、腐食は生じないものと考えられていた。しかしながら、最近の研究によって、タンク底板の鋼材には、お椀型の局部腐食(孔食)が発生することが明らかになった。
 かような局部腐食が起こる原因としては、
(1) 塩化ナトリウムを代表とする塩類が高濃度に溶解した凝集水の存在、
(2) 過剰な洗浄によるオイルコートの離脱、
(3) 原油中に含まれる硫化物の高濃度化、
(4) 結露水に溶け込んだ防爆用イナートガス中のO2、CO2、SO2等の高濃度化、
などが挙げられる。
 実際、実船のドック検査時に、原油タンク内に滞留した水を分析した結果では、高濃度の塩化物イオンと硫酸イオンが検出されている。
On the other hand, steel materials used as bottom plates for tankers' crude oil tanks, etc., have been affected by the corrosion of the crude oil itself and the protective action of oil-derived protective coat (oil coat) formed on the inner surface of the crude oil tank. It was thought not to occur. However, recent research has revealed that bowl-shaped local corrosion (pitting corrosion) occurs in the steel of the tank bottom plate.
As a cause of such local corrosion,
(1) Presence of condensed water in which salts represented by sodium chloride are dissolved at a high concentration,
(2) Oil coat detachment due to excessive cleaning,
(3) Increase the concentration of sulfides contained in crude oil,
(4) High concentration of O 2 , CO 2 , SO 2, etc. in the explosion-proof inert gas dissolved in the condensed water
Etc.
Actually, when the water stayed in the crude oil tank was analyzed during the dock inspection of the actual ship, high concentrations of chloride ions and sulfate ions were detected.
 ところで、上記したような全面腐食や局部腐食を防止する最も有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断することである。しかしながら、原油タンクの塗装作業は、その塗布面積が膨大であるだけでなく、塗膜の劣化により、約10年に一度は塗り替えが必要となるため、検査や塗装に膨大な費用が発生する。さらに、重塗装した塗膜が損傷を受けた部分は、原油タンクの腐食環境下では、かえって腐食が助長されることが指摘されている。 By the way, the most effective method for preventing the above-described general corrosion and local corrosion is to apply heavy coating on the surface of the steel material to shield the steel material from the corrosive environment. However, the painting operation of the crude oil tank not only has an enormous application area, but also requires repainting once every 10 years due to the deterioration of the coating film, resulting in an enormous cost for inspection and painting. Furthermore, it has been pointed out that corrosion is promoted in the damaged part of the heavy-painted coating film in the corrosive environment of the crude oil tank.
 上記のような腐食問題に対しては、鋼材自体の耐食性を改善して、原油タンクの腐食環境下における耐食性を改善する技術が幾つか提案されている。
 例えば特許文献1には、質量%で、C:0.001~0.2%、Si:0.01~2.5%、Mn:0.1~2%、P:0.03%以下、S:0.02%以下、Cu:0.01~1.5%、Al:0.001~0.3%、N:0.001~0.01%を含有し、さらにMo:0.01~0.5%およびW:0.01~1%の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼材同士を、溶接して溶接継手を形成するに際し、溶接金属中のCu,Mo,Wの含有量が次の3つの式を満たすように溶接継手を形成する技術が開示されている。
 3≧溶接金属のCu含有量(質量%)/鋼材のCu含有量(質量%)≧0.15
 3≧(溶接金属のMo含有量+W含有量(質量%))/(鋼材のMo含有量+W含有量(質量%))≧0.15
 -0.3≦溶接金属のCu含有量(質量%)-鋼材のCu含有量(質量%)≦0.5
For the corrosion problem as described above, several techniques for improving the corrosion resistance of the steel material itself in the corrosive environment of the crude oil tank have been proposed.
For example, in Patent Document 1, in mass%, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.02% or less, Cu: 0.01 to 1.5% , Al: 0.001 to 0.3%, N: 0.001 to 0.01%, Mo: 0.01 to 0.5% and W: 0.01 to 1%, one or two, with the balance being Fe and inevitable impurities A technique for forming a welded joint so that the contents of Cu, Mo, and W in the weld metal satisfy the following three expressions when welding the steel materials to form a welded joint is disclosed.
3 ≧ Cu content of weld metal (mass%) / Cu content of steel (mass%) ≧ 0.15
3 ≧ (Mo content of weld metal + W content (mass%)) / (Mo content of steel + W content (mass%)) ≧ 0.15
−0.3 ≦ Cu content of weld metal (mass%) − Cu content of steel (mass%) ≦ 0.5
 また、特許文献2には、質量%で、C:0.001~0.2%、Si:0.01~2.5%、Mn:0.1~2%、P:0.03%以下、S:0.02%以下、Cu:0.01~1.5%、Al:0.001~0.3%、N:0.001~0.01%を含有し、さらにMo:0.01~0.5%およびW:0.01~1%の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼材同士を、溶接して原油油槽を形成するに際し、溶接金属中のCu,Mo,Wの含有量が次の2つの式を満たすように溶接継手を形成する技術が開示されている。
 3≧溶接金属のCu含有量(質量%)/鋼材のCu含有量(質量%)≧0.15
 3≧(溶接金属のMo含有量+W含有量(質量%))/(鋼材のMo含有量+W含有量(質量%))≧0.15
Further, in Patent Document 2, by mass, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.02% or less, Cu: 0.01 to 1.5 %, Al: 0.001 to 0.3%, N: 0.001 to 0.01%, Mo: 0.01 to 0.5%, and W: 0.01 to 1%, one or two, with the balance being Fe and inevitable impurities A technique for forming a welded joint so that the contents of Cu, Mo, and W in the weld metal satisfy the following two equations when welding a steel material made of the above to form a crude oil tank is disclosed.
3 ≧ Cu content of weld metal (mass%) / Cu content of steel (mass%) ≧ 0.15
3 ≧ (Mo content of weld metal + W content (mass%)) / (Mo content of steel material + W content (mass%)) ≧ 0.15
特開2005-21981号公報JP 2005-21981 特開2005-23421号公報Japanese Unexamined Patent Publication No. 2005-23421
 海洋環境を保全し、かつ、原油タンカーを安全に運航させるためには、原油タンクから原油が漏洩しないよう管理することが重要であり、原油タンクにおける腐食による貫通孔の発生を防止しなければならない。そのため、2.5年毎のドック入りの際に原油タンクの底板の腐食状況を調査し、深さ4mm超の孔食については補修を施すことになっており、原油タンカーの維持管理費を削減する上で、深さ4mm超の孔食発生を抑制する手段の一つとしてタンカーへの耐食鋼の適用が提案されてきた。 In order to protect the marine environment and operate the crude oil tanker safely, it is important to manage the crude oil tank so that it does not leak, and it is necessary to prevent the occurrence of through holes due to corrosion in the crude oil tank. . Therefore, when the docking is done every 2.5 years, the corrosion status of the bottom plate of the crude oil tank is investigated, and pitting corrosion over 4 mm deep is repaired, in order to reduce the maintenance cost of the crude oil tanker. Thus, the application of corrosion resistant steel to tankers has been proposed as one of the means for suppressing the occurrence of pitting corrosion with a depth of more than 4 mm.
 しかしながら、特許文献1および2に記載された技術では、タンカー底板および溶接継手に発生する局部腐食(孔食)を、2.5年間で4mm以下に抑制することは困難である。というのは、近年における実船の腐食調査では、タンカー底板および溶接部に発生する孔食内部の溶液のpHは1.0以下であることが判明している。一般に、酸性液中における鋼材腐食は、水素還元反応に律速されており、pHの低下と共に飛躍的に腐食速度が大きくなることはよく知られている。従って、上記特許文献1および2の実施例に記載されているようなpH2.0での浸漬試験では、実船における腐食環境を十分に反映しているとは言えないからである。 However, with the techniques described in Patent Documents 1 and 2, it is difficult to suppress local corrosion (pitting corrosion) generated on the tanker bottom plate and the welded joint to 4 mm or less in 2.5 years. This is because, in recent years, corrosion surveys of actual ships have revealed that the pH of the solution inside the pitting corrosion generated on the tanker bottom plate and welds is 1.0 or less. In general, steel material corrosion in an acidic solution is rate-determined by a hydrogen reduction reaction, and it is well known that the corrosion rate dramatically increases as the pH decreases. Therefore, the immersion test at pH 2.0 as described in the examples of Patent Documents 1 and 2 cannot be said to sufficiently reflect the corrosive environment in an actual ship.
 一方、タンカー上板に発生する全面腐食の抑止についてであるが、特許文献1および2記載の発明例中、最も腐食速度の低い場合でも0.11mm/y程度である。これに対し、実際の原油タンカーでは、その耐用年数が25年であること、タンカー上板の設計腐食代が片面2mm程度であることから、上板に適用する耐食鋼の腐食速度は0.08mm/y以下が求められる。特に、タンカー上板に溶接されているロンジについては、両面がタンカー内部の腐食環境に曝されるので、0.1mm/y超の腐食速度を有する耐食鋼を適用した場合には、補修が必要となるため、特許文献1および2に記載された技術では塗装の省略化は望むべくもない。 On the other hand, regarding the suppression of the overall corrosion generated on the upper plate of the tanker, it is about 0.11 mm / y even in the case of the lowest corrosion rate among the invention examples described in Patent Documents 1 and 2. On the other hand, the actual crude oil tanker has a service life of 25 years, and the design corrosion allowance of the tanker upper plate is about 2 mm on one side. y or less is required. In particular, longages welded to the tanker upper plate are exposed to the corrosive environment inside the tanker, so repair is required when applying corrosion-resistant steel with a corrosion rate exceeding 0.1 mm / y. Therefore, the techniques described in Patent Documents 1 and 2 cannot be desired to omit the painting.
 本発明は、上記の現状に鑑み開発されたもので、タンカー油槽部等の原油タンクの上板における耐全面腐食性ならびに原油タンクの底板における耐局部腐食性の両者に優れる原油タンク用鋼材を、かかる鋼材から構成される原油タンクと共に提供することを目的とする。 The present invention was developed in view of the above situation, and a steel material for a crude oil tank that is excellent in both general corrosion resistance in a top plate of a crude oil tank such as a tanker oil tank portion and local corrosion resistance in a bottom plate of a crude oil tank, It aims at providing with the crude oil tank comprised from this steel material.
 さて、発明者らは、上記課題の解決に向けて鋭意研究を重ねた。
 その結果、鋼の成分組成と鋼の転位密度、特にCu量やSn量との関係で転位密度を適正に制御することによって、上記した全面腐食や局部腐食を著しく軽減できるとの知見を得た。
 本発明は、上記の知見に立脚するものである。
Now, the inventors have intensively studied to solve the above problems.
As a result, we obtained knowledge that the overall corrosion and local corrosion described above can be significantly reduced by appropriately controlling the dislocation density in relation to the steel component composition and the dislocation density of the steel, especially the Cu content and Sn content. .
The present invention is based on the above findings.
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
  C:0.03~0.18%、
  Si:0.03~1.50%、
  Mn:0.1~2.0%、
  P:0.025%以下、
  S:0.010%以下、
  Al:0.005~0.10%、
  N:0.008%以下および
  Cu:0.05~0.4%
を含有し、残部がFeおよび不可避的不純物からなる鋼材であって、該鋼材の転位密度αが、Cu含有量との関係で、次式(1)を満たす原油タンク用鋼材。
  α≦4×1016×〔%Cu〕2.8                           --- (1)
  ただし、〔%Cu〕は鋼材中におけるCu含有量(質量%)
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.03-0.18%
Si: 0.03-1.50%,
Mn: 0.1-2.0%
P: 0.025% or less,
S: 0.010% or less,
Al: 0.005-0.10%,
N: 0.008% or less and Cu: 0.05-0.4%
A steel material for crude oil tanks, the balance of which is composed of Fe and inevitable impurities, and the dislocation density α of the steel material satisfies the following formula (1) in relation to the Cu content.
α ≦ 4 × 10 16 × [% Cu] 2.8 --- (1)
However, [% Cu] is the Cu content (% by mass) in the steel.
2.前記鋼材が、質量%でさらに、
  Sn:0.005~0.4%
を含有し、かつ鋼材の転位密度αが、CuおよびSn含有量との関係で、次式(2)を満たす前記1に記載の原油タンク用鋼材。
  α≦4×1016×(〔%Cu〕+〔%Sn〕)2.8             --- (2)
  ただし、〔%Cu〕、〔%Sn〕はそれぞれ鋼材中におけるCu,Sn含有量(質量%)
2. The steel material is further in mass%,
Sn: 0.005-0.4%
The steel material for a crude oil tank according to 1 above, wherein the dislocation density α of the steel material satisfies the following formula (2) in relation to the Cu and Sn contents.
α ≦ 4 × 10 16 × ([% Cu] + [% Sn]) 2.8 --- (2)
However, [% Cu] and [% Sn] are the Cu and Sn contents (% by mass) in the steel materials, respectively.
3.前記鋼材が、質量%でさらに、
  Ni:0.005~0.4%、
  Cr:0.01~0.2%、
  Mo:0.005~0.5%、
  W:0.005~0.5%、
  Sb:0.005~0.4%、
  Nb:0.001~0.1%、
  Ti:0.001~0.1%、
  V:0.002~0.2%、
  Ca:0.0002~0.01%、
  Mg:0.0002~0.01%および
  REM:0.0002~0.015%
のうちから選ばれる1種または2種以上を含有する前記1または2に記載の原油タンク用鋼材。
3. The steel material is further in mass%,
Ni: 0.005-0.4%,
Cr: 0.01-0.2%
Mo: 0.005-0.5%
W: 0.005-0.5%
Sb: 0.005 to 0.4%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
V: 0.002 to 0.2%
Ca: 0.0002 to 0.01%,
Mg: 0.0002 to 0.01% and REM: 0.0002 to 0.015%
The steel material for crude oil tanks according to 1 or 2 above, which contains one or more selected from among the above.
4.前記1~3のいずれかに記載の原油タンク用鋼材を用いて製造した原油タンク。 4). A crude oil tank manufactured using the steel material for a crude oil tank as described in any one of 1 to 3 above.
 本発明によれば、原油タンカーの油槽や原油を輸送あるいは貯蔵するタンク等に発生する全面腐食や局部腐食を効果的に抑制することができ、産業上極めて有用である。 According to the present invention, it is possible to effectively suppress the general corrosion and local corrosion generated in an oil tank of a crude oil tanker, a tank for transporting or storing crude oil, and the like, which is extremely useful industrially.
本発明の実施例で、全面腐食試験に用いた試験装置を説明する図である。In the Example of this invention, it is a figure explaining the test apparatus used for the general corrosion test. 本発明の実施例で、孔食試験に用いた試験装置を説明する図である。In the Example of this invention, it is a figure explaining the test apparatus used for the pitting corrosion test.
 以下、本発明を具体的に説明する。
 まず、本発明の原油タンク用鋼材の成分組成を前記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.03~0.18%
 Cは、鋼の強度を高める元素であり、本発明では、所望の強度(490~620MPa)を確保するために0.03%以上添加する。しかしながら、0.18%を超えるC添加は、溶接性および溶接熱影響部の靭性を低下させる。よって、C量は0.03~0.18%の範囲とする。好ましくは0.06~0.16%の範囲である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel material for crude oil tank of the present invention is limited to the above range will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.03-0.18%
C is an element that increases the strength of steel. In the present invention, C is added in an amount of 0.03% or more to ensure a desired strength (490 to 620 MPa). However, addition of C exceeding 0.18% lowers the weldability and the toughness of the heat affected zone. Therefore, the C content is in the range of 0.03 to 0.18%. Preferably it is 0.06 to 0.16% of range.
Si:0.03~1.50%
 Siは、脱酸剤として添加される元素であるが、鋼の強度を高めるのに有効な元素でもある。そこで、本発明では、所望の強度を確保するためにSiを0.03%以上添加する。しかしながら、1.50%を超えるSi添加は、鋼の靭性を低下させる。よって、Si量は0.03~1.50%の範囲とする。好ましくは0.05~0.40%の範囲である。
Si: 0.03-1.50%
Si is an element added as a deoxidizer, but is also an effective element for increasing the strength of steel. Therefore, in the present invention, 0.03% or more of Si is added to ensure a desired strength. However, addition of Si exceeding 1.50% reduces the toughness of the steel. Therefore, the Si content is in the range of 0.03 to 1.50%. Preferably it is 0.05 to 0.40% of range.
Mn:0.1~2.0%
 Mnは、鋼の強度を高める元素であり、本発明では、所望の強度を得るためにMnを0.1%以上添加する。しかしながら、2.0%を超えるMn添加は、鋼の靭性および溶接性を低下させる。よって、Mn量は0.1~2.0%の範囲とする。好ましくは0.80~1.60%の範囲である。
Mn: 0.1-2.0%
Mn is an element that increases the strength of steel. In the present invention, Mn is added in an amount of 0.1% or more in order to obtain a desired strength. However, Mn addition exceeding 2.0% decreases the toughness and weldability of steel. Therefore, the Mn content is in the range of 0.1 to 2.0%. Preferably it is 0.80 to 1.60% of range.
P:0.025%以下
 Pは、粒界に偏析して鋼の靭性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Pが0.025%を超えて含有されると、靭性が大きく低下する。また、Pが0.025%を超えて含有されると、タンク油槽内の耐食性にも悪影響を及ぼす。よって、P量は0.025%以下とする。好ましくは0.015%以下である。
P: 0.025% or less P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, so it is desirable to reduce it as much as possible. In particular, when P exceeds 0.025%, the toughness is greatly reduced. Moreover, when P is contained exceeding 0.025%, it will also have a bad influence on the corrosion resistance in a tank oil tank. Therefore, the P content is 0.025% or less. Preferably it is 0.015% or less.
S:0.010%以下
 Sは、非金属介在物であるMnSを形成して局部腐食の起点となり、耐局部腐食性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Sが0.010%を超えて含有されると、耐局部腐食性の顕著な低下を招く。よって、S量の許容上限は0.010%とする。好ましくは0.005%以下である。
S: 0.010% or less S is a harmful element that forms MnS, which is a non-metallic inclusion, and serves as a starting point for local corrosion and reduces local corrosion resistance. Therefore, it is desirable to reduce S as much as possible. In particular, when S exceeds 0.010%, the local corrosion resistance is significantly reduced. Therefore, the allowable upper limit of the S amount is 0.010%. Preferably it is 0.005% or less.
Al:0.005~0.10%
 Alは、脱酸剤として添加される元素であり、本発明では0.005%以上添加する。しかしながら、0.10%を超えてAlを添加すると、鋼の靭性が低下するので、Al量の上限は0.10%とする。
Al: 0.005-0.10%
Al is an element added as a deoxidizer, and 0.005% or more is added in the present invention. However, if Al is added in excess of 0.10%, the toughness of the steel decreases, so the upper limit of Al content is 0.10%.
N:0.008%以下
 Nは、靭性を低下させる有害な元素であるので、極力低減させることが望ましい。特に、Nが0.008%を超えて含有されると、靭性の低下が大きくなるので、N量の上限は0.008%とする。
N: 0.008% or less Since N is a harmful element that lowers toughness, it is desirable to reduce it as much as possible. In particular, if N is contained in excess of 0.008%, the toughness is greatly reduced, so the upper limit of N content is 0.008%.
Cu:0.05~0.4%
 Cuは、鋼の強度を高めるだけでなく、鋼の腐食によって生成した錆中に存在し、腐食を促進させるCl-イオンの拡散を抑制するため、耐食性を高める効果がある必須添加元素である。これらの効果は、0.05%未満のCu添加では十分に得られず、一方0.4%を超えてCuを添加すると耐食性の向上効果が飽和する他、熱間加工時に表面割れなどの問題を引き起こすおそれがある。よって、Cu量は0.05~0.4%の範囲とする。好ましくは0.06~0.35%の範囲である。
Cu: 0.05-0.4%
Cu is an essential additive element that not only increases the strength of the steel but also exists in the rust generated by the corrosion of the steel, and suppresses the diffusion of Cl- ions that promote the corrosion, thus improving the corrosion resistance. These effects cannot be fully obtained with Cu addition of less than 0.05%. On the other hand, addition of Cu exceeding 0.4% saturates the effect of improving corrosion resistance and may cause problems such as surface cracking during hot working. is there. Therefore, the Cu content is set in the range of 0.05 to 0.4%. Preferably it is 0.06 to 0.35% of range.
Sn:0.005~0.4%
 Snは、腐食時に錆層中に取り込まれ、緻密な錆層を形成することにより、鋼材の局部腐食および全面腐食の抑制に寄与する有用元素である。この効果は、0.005%以上のSn添加で発現するが、0.4%を超えてSnを添加した場合には低温靭性が低下するだけでなく、溶接時に欠陥の発生を招く。従って、Sn量は0.005~0.4%の範囲とする。好ましくは0.01~0.2%の範囲、より好ましくは0.01~0.1%の範囲である。
Sn: 0.005-0.4%
Sn is a useful element that contributes to the suppression of local corrosion and overall corrosion of steel by being taken into the rust layer during corrosion and forming a dense rust layer. This effect is manifested when Sn is added in an amount of 0.005% or more. However, when Sn is added in excess of 0.4%, not only the low-temperature toughness is lowered, but also defects are generated during welding. Therefore, the Sn content is set in the range of 0.005 to 0.4%. Preferably it is in the range of 0.01 to 0.2%, more preferably in the range of 0.01 to 0.1%.
 以上、基本成分について説明したが、本発明では、上記した成分の他、次に述べる元素を適宜含有させることができる。
Cr:0.01~0.2%
 Crは、腐食の進行に伴って錆層中に移行し、Cl-の錆層への侵入を遮断することで、錆層と地鉄の界面へのCl-の濃縮を抑制し、これによって耐食性の向上に寄与する。また、Zn含有プライマーを鋼材表面に塗布したときには、Feを中心としたCrやZnの複合酸化物を形成して、長期間にわたり鋼板表面にZnを存続させることができ、これにより飛躍的に耐食性を向上させることができる。上記の効果は、特にタンカー油槽の底板部のように、原油油分から分離された高濃度の塩分を含む液と接触する部分において顕著であり、Crを含有した上記部分の鋼材にZn含有プライマー処理を施すことにより、Crを含有しない鋼材と比較して、格段に耐食性を向上させることができる。このCrの効果は、Cr量が0.01%未満では十分ではなく、一方0.2%を超えると溶接部の靭性を劣化させる。よって、Cr量は0.01~0.2%の範囲とする。好ましくは0.05~0.20%の範囲である。
Although the basic components have been described above, in the present invention, the following elements can be appropriately contained in addition to the above-described components.
Cr: 0.01-0.2%
Cr is with the progress of corrosion proceeds to rust layer, Cl - of by blocking entry into rust layers, Cl to interface rust layer and base iron - suppressing concentration of, whereby corrosion resistance It contributes to the improvement. In addition, when a Zn-containing primer is applied to the steel surface, it can form a complex oxide of Cr and Zn centering on Fe, and can keep Zn on the surface of the steel sheet for a long period of time. Can be improved. The above-mentioned effect is remarkable especially in a portion that comes into contact with a liquid containing high-concentration salinity separated from crude oil, such as a bottom plate portion of a tanker oil tank, and a Zn-containing primer treatment is applied to the steel material in the above-mentioned portion containing Cr. As a result, the corrosion resistance can be remarkably improved as compared with a steel material not containing Cr. The effect of Cr is not sufficient if the Cr content is less than 0.01%, while if it exceeds 0.2%, the toughness of the weld is deteriorated. Therefore, the Cr content is in the range of 0.01 to 0.2%. Preferably it is 0.05 to 0.20% of range.
Mg:0.0002~0.01%
 Mgは、溶接熱影響部の靭性向上に寄与するだけでなく、鋼の腐食によって生成した錆中に存在して耐食性を高める効果がある。これらの効果は、Mg量が0.0002%未満では十分に得られず、一方0.01%を超えて添加すると、かえって靱性の低下を招くので、Mg量は0.0002~0.01%の範囲とする。
Mg: 0.0002 to 0.01%
Mg not only contributes to improving the toughness of the weld heat-affected zone, but also has an effect of increasing the corrosion resistance by being present in rust generated by corrosion of steel. These effects cannot be obtained sufficiently if the Mg content is less than 0.0002%, while if added over 0.01%, the toughness is reduced, so the Mg content is in the range of 0.0002 to 0.01%.
Ni:0.005~0.4%
 Niは、生成した錆粒子を微細化して、裸状態での耐食性およびジンクプライマーにエポキシ系塗装が施された状態での耐食性を向上させる効果を有する。従って、Niは、耐食性をより向上させたい場合に添加する。上記の効果は、0.005%以上のNi添加で発現する。一方、0.4%超えてNiを添加してもその効果は飽和する。よって、Niは0.005~0.4%の範囲で添加するのが好ましい。好ましくは0.08~0.35%の範囲である。
Ni: 0.005-0.4%
Ni has the effect of refining the generated rust particles to improve the corrosion resistance in the bare state and the corrosion resistance in the state where the epoxy primer is applied to the zinc primer. Therefore, Ni is added when it is desired to further improve the corrosion resistance. The above effect is manifested by adding 0.005% or more of Ni. On the other hand, even if Ni exceeds 0.4%, the effect is saturated. Therefore, Ni is preferably added in the range of 0.005 to 0.4%. Preferably it is 0.08 to 0.35% of range.
Sb:0.005~0.4%
 Sbは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板部における全面腐食を抑制する効果がある。上記の効果は、0.005%以上のSb添加で発現するが、0.4%を超えてSbを添加してもその効果は飽和する。よって、Sbは0.005~0.4%の範囲で添加するのが好ましい。
Sb: 0.005-0.4%
Sb not only suppresses pitting corrosion at the tanker tank bottom plate, but also has the effect of suppressing overall corrosion at the tanker upper deck. The above effect is manifested when 0.005% or more of Sb is added, but the effect is saturated even if Sb is added in excess of 0.4%. Therefore, Sb is preferably added in the range of 0.005 to 0.4%.
Nb:0.001~0.1%、Ti:0.001~0.1%、V:0.002~0.2%
 Nb,TiおよびVはいずれも、鋼材強度を高める元素であり、必要とする強度に応じて適宜選択して添加することができる。上記の効果を得るためには、Nb,Tiはそれぞれ0.001%以上、Vは0.002%以上添加するのが好ましい。しかしながら、Nb,Tiはそれぞれ0.1%を超えて、Vは0.2%を超えて添加すると、靭性が低下する。よって、Nb,TiおよびVはそれぞれ上記の範囲で添加するのが好ましい。
Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%, V: 0.002 to 0.2%
Nb, Ti and V are all elements that increase the strength of the steel material, and can be appropriately selected and added according to the required strength. In order to obtain the above effects, it is preferable to add Nb and Ti to 0.001% or more and V to 0.002% or more, respectively. However, when Nb and Ti are added in excess of 0.1% and V is added in excess of 0.2%, the toughness decreases. Therefore, it is preferable to add Nb, Ti and V within the above ranges.
Ca:0.0002~0.01%、REM:0.0002~0.015%
 CaおよびREMはいずれも、溶接熱影響部の靭性向上に効果があり、必要に応じて添加することができる。上記の効果は、Ca:0.0002%以上、REM:0.0002%以上の添加で得られるが、Caは0.01%を超えて、またREMは0.015%を超えて添加すると、かえって靭性の低下を招く。よって、CaおよびREMはそれぞれ上記の範囲で添加するのが好ましい。
Ca: 0.0002 to 0.01%, REM: 0.0002 to 0.015%
Both Ca and REM are effective in improving the toughness of the weld heat-affected zone, and can be added as necessary. The above effects can be obtained by adding Ca: 0.0002% or more and REM: 0.0002% or more. However, if Ca is added in excess of 0.01% and REM is added in excess of 0.015%, the toughness is reduced. Therefore, Ca and REM are preferably added within the above ranges.
Mo:0.005~0.5%、W:0.005~0.5%
 MoおよびWは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板部の全面腐食を抑制する効果もある。このMoおよびWの効果はそれぞれ0.005%以上の添加で発現するが、0.5%を超えるとその効果は飽和に達する。よって、MoおよびW量はそれぞれ0.005~0.5%の範囲とすることが好ましい。より好ましくは0.01~0.3%、さらに好ましくは0.02~0.2%の範囲である。
 なお、MoおよびWが上記のような耐食性向上効果を有する理由は、鋼板が腐食するのに伴って生成する錆中にMoO4 2-およびWO4 2-が生成し、このMoO4 2-およびWO4 2-の存在によって、塩化物イオンが鋼板表面に侵入するのが抑制されるからである。また、MoO4 2-およびWO4 2-の鋼材表面への吸着によるインヒビター作用によっても、鋼材の腐食が抑制されると考えられる。
Mo: 0.005-0.5%, W: 0.005-0.5%
Mo and W not only suppress pitting corrosion in the tanker tank bottom plate, but also have an effect of suppressing overall corrosion of the tanker upper deck. The effects of Mo and W are manifested when 0.005% or more is added, but when the content exceeds 0.5%, the effect reaches saturation. Therefore, the Mo and W contents are each preferably in the range of 0.005 to 0.5%. More preferably, it is 0.01 to 0.3%, and still more preferably 0.02 to 0.2%.
The reason why Mo and W have the effect of improving the corrosion resistance as described above is that MoO 4 2- and WO 4 2- are generated in the rust generated as the steel sheet corrodes, and this MoO 4 2- and This is because the presence of WO 4 2- suppresses chloride ions from entering the steel sheet surface. Further, it is considered that corrosion of the steel material is also suppressed by the inhibitor action by adsorption of MoO 4 2- and WO 4 2- on the steel material surface.
 次に、本発明で規定した鋼材の転移密度について説明する。
 本発明の耐食鋼は、上記したように各種耐食性元素を所定量鋼材に添加することにより、タンカー油槽部底板および上板における腐食環境において形成された鋼材表面の錆層に各種耐食性元素が濃縮し、各種腐食因子の拡散を抑制して、鋼材の腐食速度を減じるものである。
 一方、鋼材には、その製造過程に由来する転移の形成を避けることができないが、この転移は熱力学的に不安定であるため、腐食環境においては鉄が溶解するアノードサイトとして機能する。耐食鋼の表面に形成された錆層は保護性を有し、鋼材の腐食速度を減じる効果があるものの、その機能は完全なものではなく、錆層下の鋼材表面における転移の密度が大きい場合には、充分な錆層の保護性、ひいては満足のいく耐食性が得られない。
Next, the transition density of the steel material defined in the present invention will be described.
In the corrosion resistant steel of the present invention, as described above, by adding a predetermined amount of various corrosion resistant elements to the steel material, the various corrosion resistant elements are concentrated in the rust layer on the steel material surface formed in the corrosive environment of the tanker tank bottom plate and top plate. It suppresses the diffusion of various corrosion factors and reduces the corrosion rate of steel materials.
On the other hand, in steel materials, the formation of a transition derived from the manufacturing process cannot be avoided. However, since this transition is thermodynamically unstable, it functions as an anode site in which iron dissolves in a corrosive environment. The rust layer formed on the surface of the corrosion-resistant steel is protective and has the effect of reducing the corrosion rate of the steel material, but its function is not perfect, and the density of the transition on the steel surface under the rust layer is large In this case, sufficient protection of the rust layer, and hence satisfactory corrosion resistance, cannot be obtained.
 錆層の保護性は、主に鋼中のCu濃度、あるいはSnを含有する場合にはCuとSnの濃度で決まり、CuおよびSn濃度が高いほど良好な保護性が得られる。このため、許容される転位密度もCu量やSn量に応じて変化する。
 そこで発明者らは、錆層の保護性とCu量やSn量との関係について調査したところ、転位密度αを鋼中のCu量やSn量に応じて、次式(1),(2)で与えられる範囲に制御することによって、良好な錆層の保護性が得られることが究明されたのである。
  α ≦ 4×1016×〔%Cu〕2.8                         --- (1)
  α ≦ 4×1016×(〔%Cu〕+〔%Sn〕)2.8           --- (2)
  ただし、〔%Cu〕、〔%Sn〕はそれぞれ鋼材中におけるCu,Sn含有量(質量%)
The protection of the rust layer is mainly determined by the Cu concentration in the steel, or the concentration of Cu and Sn when Sn is contained. The higher the Cu and Sn concentration, the better the protection. For this reason, the allowable dislocation density also changes according to the amount of Cu and the amount of Sn.
Therefore, the inventors investigated the relationship between the protection of the rust layer and the amount of Cu and Sn. The dislocation density α was determined according to the following formulas (1) and (2) according to the amount of Cu and Sn in the steel. Thus, it has been determined that good protection of the rust layer can be obtained by controlling to the range given by.
α ≤ 4 × 10 16 × [% Cu] 2.8 --- (1)
α ≦ 4 × 10 16 × ([% Cu] + [% Sn]) 2.8 --- (2)
However, [% Cu] and [% Sn] are the Cu and Sn contents (% by mass) in the steel materials, respectively.
 本発明の原油タンク用鋼材は、以下の方法で製造するのが好ましい。
 すなわち、本発明の鋼材は、上記した成分組成に調整した鋼を、転炉や電気炉、真空脱ガス等、公知の精錬プロセスを用いて溶製し、連続鋳造法あるいは造塊-分塊圧延法で鋼素材(スラブ)とし、ついでこの素材を再加熱してから熱間圧延することにより、厚鋼板、薄鋼板および形鋼等とすることが好ましい。
The steel material for crude oil tank of the present invention is preferably produced by the following method.
That is, the steel material of the present invention is obtained by melting steel adjusted to the above-described component composition using a known refining process such as a converter, electric furnace, vacuum degassing, etc., and continuously casting or ingot-bundling rolling. It is preferable to use a steel material (slab) by the method, and then reheat this material and then hot-roll it to obtain a thick steel plate, a thin steel plate, a shaped steel, and the like.
 熱間圧延前の再加熱温度は、900~1200℃の温度とするのが好ましい。加熱温度が900℃に満たないと変形抵抗が大きく、熱間圧延することが難しくなり、一方加熱温度が1200℃を超えると、オーステナイト粒が粗大化して靭性の低下を招く他、酸化によるスケールロスが顕著となって歩留りが低下するからである。より好ましい加熱温度は1000~1150℃の範囲である。 The reheating temperature before hot rolling is preferably 900 to 1200 ° C. If the heating temperature is less than 900 ° C, the deformation resistance is large and it is difficult to perform hot rolling.On the other hand, if the heating temperature exceeds 1200 ° C, the austenite grains are coarsened and the toughness is reduced. This is because the above becomes remarkable and the yield decreases. A more preferable heating temperature is in the range of 1000 to 1150 ° C.
 また、熱間圧延で所望の形状、寸法の鋼材に圧延するに当たっては、仕上圧延終了温度は700℃以上とするのが好ましい。仕上圧延終了温度が700℃未満では、鋼の変形抵抗が大きくなり、圧延負荷が増大して圧延が困難になったり、圧延材が所定の圧延温度に達するまでの待ち時間が発生するため、圧延能率が低下するからである。 Also, when rolling into a steel material having a desired shape and size by hot rolling, the finish rolling finish temperature is preferably 700 ° C. or higher. If the finish rolling finish temperature is less than 700 ° C, the deformation resistance of the steel increases, the rolling load increases and rolling becomes difficult, or there is a waiting time until the rolled material reaches a predetermined rolling temperature. This is because the efficiency is lowered.
 熱間圧延後の鋼材の冷却は、空冷、加速冷却のいずれの方法でもよいが、より高強度を得たい場合には、加速冷却を行うことが好ましい。なお、加速冷却を行う場合には、冷却速度を2~80℃/s、冷却停止温度を650~400℃とするのが好ましい。冷却速度が2℃/s未満、冷却停止温度が650℃超えでは、加速冷却の効果が小さく、十分な高強度化が達成されず、一方冷却速度が80℃/s超え、冷却停止温度が400℃未満では、得られる鋼材の靭性が低下したり、鋼材の形状に歪が発生するからである。 The steel material after hot rolling may be cooled by either air cooling or accelerated cooling, but accelerated cooling is preferable when higher strength is desired. When accelerated cooling is performed, it is preferable that the cooling rate is 2 to 80 ° C./s and the cooling stop temperature is 650 to 400 ° C. If the cooling rate is less than 2 ° C / s and the cooling stop temperature exceeds 650 ° C, the effect of accelerated cooling is small and sufficient strength cannot be achieved, while the cooling rate exceeds 80 ° C / s and the cooling stop temperature is 400 This is because if the temperature is lower than 0 ° C., the toughness of the obtained steel material is lowered or the shape of the steel material is distorted.
 表1にNo.1~37で示した種々の成分組成になる鋼を、真空溶解炉で溶製して鋼塊とするか、または転炉で溶製して連続鋳造により鋼スラブとし、これらを1150℃に再加熱後、表2に示す仕上圧延終了温度で熱間圧延を施して板厚:25mmの厚鋼板とした後に、表2に示す冷却停止温度まで水冷速度10℃/sで冷却した。
 かくして得られたNo.1~37の厚鋼板について、結露試験および耐酸試験を行って、その耐食性を評価した。併せて鋼材の転位密度も測定した。
Steels with various compositions shown in Tables 1 to 37 in Table 1 are melted in a vacuum melting furnace into steel ingots, or melted in a converter and continuously cast into steel slabs. After reheating to 1150 ° C, hot rolling was performed at the finish rolling finish temperature shown in Table 2 to obtain a steel plate with a thickness of 25 mm, and then cooled to the cooling stop temperature shown in Table 2 at a water cooling rate of 10 ° C / s. did.
The thick steel plates No. 1 to 37 thus obtained were subjected to a dew condensation test and an acid resistance test to evaluate their corrosion resistance. In addition, the dislocation density of the steel was also measured.
 すなわち、以下の要領で、上甲板裏を模擬した全面腐食試験(結露試験)とタンカー底板環境を模擬した局部耐食試験(耐酸試験)をそれぞれ行った。
(1) タンカー上甲板環境を模擬した全面腐食試験(結露試験)
 タンカー上甲板裏面における全面腐食に対する耐食性を評価するため、上記No.1~37の厚鋼板それぞれについて、表面1mmの位置から、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その表面を600番手のエメリー紙で研磨した。ついで、裏面および端面は腐食しないようにテープでシールし、図1に示す腐食試験装置を用いて全面腐食試験を行った。
That is, in the following manner, a general corrosion test (condensation test) simulating the back of the upper deck and a local corrosion test (acid resistance test) simulating the tanker bottom plate environment were performed.
(1) Full-surface corrosion test (condensation test) simulating the tanker upper deck environment
In order to evaluate the corrosion resistance against the overall corrosion on the back of the tanker upper deck, a rectangular piece of width 25mm x length 60mm x thickness 5mm was cut out from each of the thick steel plates No. 1 to 37 above the surface 1mm. The surface was polished with 600th emery paper. Next, the back surface and the end surface were sealed with tape so as not to corrode, and a full surface corrosion test was conducted using a corrosion test apparatus shown in FIG.
 この腐食試験装置は、腐食試験槽2と温度制御プレート3とから構成されていて、腐食試験槽2には温度が30℃に保持された水6が注入されており、またその水6中には、導入ガス管4を介して、13vol%CO2、4vol%O2、0.01vol%SO2、0.05vol%H2S、残部N2からなる混合ガスを導入して腐食試験槽2内を過飽和の水蒸気で充満し、原油タンク上甲板裏の腐食環境が再現されている。そして、この試験槽の上裏面に腐食試験片1をセットし、この腐食試験片1に対して、ヒーターと冷却装置を内蔵した温度制御プレート3を介して25℃×1.5時間+50℃×22.5時間を1サイクルとする温度変化を21、49、77および98日間繰り返して付与し、試験片1の表面に結露水を生じさせて、全面腐食を起こさせるようにした。図1中、5は試験槽からの排出ガス管を示す。 This corrosion test apparatus is composed of a corrosion test tank 2 and a temperature control plate 3, and water 6 having a temperature maintained at 30 ° C. is injected into the corrosion test tank 2, and Introduces a mixed gas consisting of 13 vol% CO 2 , 4 vol% O 2 , 0.01 vol% SO 2 , 0.05 vol% H 2 S and the balance N 2 through the introduction gas pipe 4 and enters the inside of the corrosion test tank 2. Filled with supersaturated steam, the corrosive environment on the upper deck of the crude oil tank is reproduced. And the corrosion test piece 1 is set on the upper and lower surfaces of this test tank, and 25 ° C. × 1.5 hours + 50 ° C. × 22.5 hours with respect to the corrosion test piece 1 through the temperature control plate 3 incorporating a heater and a cooling device. Was repeatedly applied for 21, 49, 77, and 98 days to generate condensed water on the surface of the test piece 1 to cause general corrosion. In FIG. 1, 5 indicates an exhaust gas pipe from the test tank.
 上記の腐食試験後、各試験片表面の錆を除去し、試験前後の質量変化から腐食による質量減を求め、この値から1年当たりの板厚減少量(片面の腐食速度)に換算した。そして、4試験期間の値から25年後の予測損耗量を求め、腐食量が2mm以下の場合には耐全面腐食性が良好(○)、2mm超の場合には耐全面腐食性が不良(×)と評価した。 After the above corrosion test, the rust on the surface of each test piece was removed, the mass loss due to corrosion was determined from the mass change before and after the test, and this value was converted into a reduction in sheet thickness per year (corrosion rate on one side). Then, the predicted amount of wear after 25 years is calculated from the values of the four test periods. When the corrosion amount is 2 mm or less, the general corrosion resistance is good (○), and when it exceeds 2 mm, the general corrosion resistance is poor ( X).
(2) タンカー油槽部底板環境を模擬した局部腐食試験(耐酸試験)
 タンカー油槽部底板における孔食に対する耐食性を評価するため、上記No.1~37の厚鋼板についてそれぞれ、表面1mmの位置から、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その表面を600番手のエメリー紙で研磨した。
 ついで、10%NaCl水溶液を、濃塩酸を用いてClイオン濃度:10%、pH:0.85に調製した試験溶液を作製し、試験片の上部に開けた3mmφの孔にテグスを通して吊るし、各試験片について2Lの試験溶液中に168時間浸漬する腐食試験を行った。なお、試験溶液は、予め30℃に加温・保持し、24時間毎に新しい試験溶液と交換した。
 上記腐食試験に用いた装置を図2に示す。この腐食試験装置は、腐食試験槽8、恒温槽9の二重構造の装置で、腐食試験槽8には上記試験溶液10が入れられ、その中に試験片7がテグス11で吊るされて浸漬されている。試験溶液10の温度は、恒温槽9に入れた水12の温度を調整することで保持している。
(2) Local corrosion test (acid resistance test) simulating the tanker tank bottom plate environment
In order to evaluate the corrosion resistance against pitting corrosion in the bottom plate of the tanker oil tank part, rectangular pieces each having a width of 25 mm, a length of 60 mm and a thickness of 5 mm were cut out from the position of the surface of 1 mm of the thick steel plates No. 1 to 37 The surface was polished with 600th emery paper.
Next, a test solution prepared with a 10% NaCl aqueous solution using concentrated hydrochloric acid to have a Cl ion concentration of 10% and pH of 0.85 was prepared, suspended through a 3 mmφ hole in the upper part of the test piece, and suspended from each test piece. Was subjected to a corrosion test by immersing in a 2 L test solution for 168 hours. The test solution was preheated and maintained at 30 ° C. and replaced with a new test solution every 24 hours.
The apparatus used for the corrosion test is shown in FIG. This corrosion test apparatus is a dual structure apparatus consisting of a corrosion test tank 8 and a constant temperature bath 9, and the test solution 10 is put in the corrosion test tank 8, and the test piece 7 is suspended and immersed in the teg 11 therein. Has been. The temperature of the test solution 10 is maintained by adjusting the temperature of the water 12 placed in the thermostatic chamber 9.
 上記の腐食試験後、試験片表面に生成した錆を除去した後、試験前後の質量差を求め、この差を全表面積で割り戻し、1年当たりの板厚減少量(両面の腐食速度)を求めた。その結果、腐食速度が1.0mm/y以下の場合を耐局部腐食性が良好(○)、腐食速度が1.0mm/y超の場合を耐局部腐食性が不良(×)と評価した。 After removing the rust generated on the surface of the test piece after the above corrosion test, obtain the mass difference before and after the test, divide this difference by the total surface area, and calculate the reduction in thickness (corrosion rate on both sides) per year. Asked. As a result, when the corrosion rate was 1.0 mm / y or less, the local corrosion resistance was evaluated as good (◯), and when the corrosion rate was higher than 1.0 mm / y, the local corrosion resistance was evaluated as poor (×).
(3) 鋼材の転位密度の測定
 耐酸試験を行った後のNo.1~37の試験片から、20×20×5mmtの試験片を切り出し、元の鋼材の表面1mm側の面を測定面とした。X線回折測定装置を用いて、鋼材の(110)、(211)および(220)面の回折ピークを測定し、それぞれの回折角2θと半価幅βmを各試験片についてそれぞれ求めた。
 横軸にsinθ/λ、縦軸にβcosθ/λをとり、上記の各結晶面の測定結果をプロットした。
 ただし、λはX線波長1.789Å、βは真の回折ピーク半価幅をそれぞれ示し、実測半価幅βmおよび無歪半価幅βsから(3)式により求めた。
 なお,無歪標準試料としてSi粉末標準試料を使用した(ピーク位置でのβsは放物線近似による補間計算から求めた)。
 β=(βm2-βs2)0.5                             --- (3)
 上記のプロット3点に対し最小二乗法により近似曲線を引き、(4)式に示すようにその傾きから歪εを求め、(5)式より転位密度αを求めた。
 β・cosθ/λ=0.9/D+2ε・sinθ/λ    --- (4)
 α=14.4 ε2/b2                                --- (5)
 ただし、bはバーガースベクトル 0.25nm、
     Dは結晶子サイズを表す。
 得られた結果を、表2に併記する。
(3) Measurement of dislocation density of steel material Cut out a 20 × 20 × 5mmt test piece from No.1-37 test pieces after the acid resistance test, and use the surface on the 1mm side of the original steel as the measurement surface. did. The diffraction peaks of the (110), (211) and (220) planes of the steel material were measured using an X-ray diffractometer, and the diffraction angle 2θ and the half width βm were determined for each test piece.
The horizontal axis represents sin θ / λ, and the vertical axis represents β cos θ / λ, and the measurement results of the above crystal planes are plotted.
Here, λ represents the X-ray wavelength of 1.789 mm, β represents the true half-value width of the diffraction peak, and was obtained from the measured half-value width βm and the unstrained half-value width βs by the equation (3).
Note that a Si powder standard sample was used as the unstrained standard sample (βs at the peak position was obtained from interpolation calculation by parabolic approximation).
β = (βm 2 -βs 2 ) 0.5 --- (3)
An approximate curve was drawn from the three points of the above plot by the least square method, strain ε was determined from the slope as shown in equation (4), and dislocation density α was determined from equation (5).
β ・ cosθ / λ = 0.9 / D + 2ε ・ sinθ / λ --- (4)
α = 14.4 ε 2 / b 2 --- (5)
Where b is Burgers vector 0.25nm,
D represents the crystallite size.
The obtained results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、本発明の条件を満たす厚鋼板No.1~4、7~10、13~36は、上甲板裏を模擬した全面腐食試験およびタンカー底板環境を模擬した局部腐食試験のいずれにおいても良好な耐食性を示した。
 これに対し、本発明の条件を満たさない厚鋼板No.5、6、11、12、37は、いずれの耐食性試験においても良好な結果を得ることができなかった。
As shown in Table 2, the thick steel plates Nos. 1 to 4, 7 to 10, and 13 to 36 that satisfy the conditions of the present invention are subjected to the full corrosion test that simulates the upper deck and the local corrosion test that simulates the tanker bottom plate environment. In any case, good corrosion resistance was exhibited.
On the other hand, the thick steel plates No. 5, 6, 11, 12, and 37 that do not satisfy the conditions of the present invention could not obtain good results in any corrosion resistance test.
 1,7 腐食試験片
 2,8 腐食試験槽
 3 温度制御プレート
 4 導入ガス管
 5 排出ガス管
 6,12 水
 9 恒温槽
 10 試験溶液
 11 テグス
DESCRIPTION OF SYMBOLS 1,7 Corrosion test piece 2,8 Corrosion test tank 3 Temperature control plate 4 Introducing gas pipe 5 Exhaust gas pipe 6,12 Water 9 Thermostatic bath 10 Test solution 11 Tegs

Claims (4)

  1.  質量%で、
      C:0.03~0.18%、
      Si:0.03~1.50%、
      Mn:0.1~2.0%、
      P:0.025%以下、
      S:0.010%以下、
      Al:0.005~0.10%、
      N:0.008%以下および
      Cu:0.05~0.4%
    を含有し、残部がFeおよび不可避的不純物からなる鋼材であって、該鋼材の転位密度αが、Cu含有量との関係で、次式(1)を満たす原油タンク用鋼材。
      α ≦ 4×1016×〔%Cu〕2.8                         --- (1)
      ただし、〔%Cu〕は鋼材中におけるCu含有量(質量%)
    % By mass
    C: 0.03-0.18%
    Si: 0.03-1.50%,
    Mn: 0.1-2.0%
    P: 0.025% or less,
    S: 0.010% or less,
    Al: 0.005-0.10%,
    N: 0.008% or less and Cu: 0.05-0.4%
    A steel material for crude oil tanks, the balance of which is composed of Fe and inevitable impurities, and the dislocation density α of the steel material satisfies the following formula (1) in relation to the Cu content.
    α ≤ 4 × 10 16 × [% Cu] 2.8 --- (1)
    However, [% Cu] is the Cu content (% by mass) in the steel.
  2.  前記鋼材が、質量%でさらに、
      Sn:0.005~0.4%
    を含有し、かつ鋼材の転位密度αが、CuおよびSn含有量との関係で、次式(2)を満たす請求項1に記載の原油タンク用鋼材。
      α ≦ 4×1016×(〔%Cu〕+〔%Sn〕)2.8           --- (2)
      ただし、〔%Cu〕、〔%Sn〕はそれぞれ鋼材中におけるCu,Sn含有量(質量%)
    The steel material is further in mass%,
    Sn: 0.005-0.4%
    The steel material for a crude oil tank according to claim 1, wherein the dislocation density α of the steel material satisfies the following formula (2) in relation to the Cu and Sn contents.
    α ≦ 4 × 10 16 × ([% Cu] + [% Sn]) 2.8 --- (2)
    However, [% Cu] and [% Sn] are the Cu and Sn contents (% by mass) in the steel materials, respectively.
  3.  前記鋼材が、質量%でさらに、
      Ni:0.005~0.4%、
      Cr:0.01~0.2%、
      Mo:0.005~0.5%、
      W:0.005~0.5%、
      Sb:0.005~0.4%、
      Nb:0.001~0.1%、
      Ti:0.001~0.1%、
      V:0.002~0.2%、
      Ca:0.0002~0.01%、
      Mg:0.0002~0.01%および
      REM:0.0002~0.015%
    のうちから選ばれる1種または2種以上を含有する請求項1または2に記載の原油タンク用鋼材。
    The steel material is further in mass%,
    Ni: 0.005-0.4%,
    Cr: 0.01-0.2%
    Mo: 0.005-0.5%
    W: 0.005-0.5%
    Sb: 0.005 to 0.4%,
    Nb: 0.001 to 0.1%,
    Ti: 0.001 to 0.1%,
    V: 0.002 to 0.2%
    Ca: 0.0002 to 0.01%,
    Mg: 0.0002 to 0.01% and REM: 0.0002 to 0.015%
    The steel material for crude oil tanks of Claim 1 or 2 containing 1 type, or 2 or more types chosen from these.
  4.  請求項1~3のいずれかに記載の原油タンク用鋼材を用いて製造した原油タンク。 A crude oil tank produced using the steel material for a crude oil tank according to any one of claims 1 to 3.
PCT/JP2014/006097 2013-12-12 2014-12-05 Steel for crude oil tank and crude oil tank WO2015087531A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167013834A KR101786409B1 (en) 2013-12-12 2014-12-05 Steel for crude oil tank and crude oil tank
JP2015552331A JP6149943B2 (en) 2013-12-12 2014-12-05 Steel for crude oil tank and crude oil tank
CN201480062745.9A CN105745347B (en) 2013-12-12 2014-12-05 Petroleum tank steel and petroleum tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-257385 2013-12-12
JP2013257385 2013-12-12

Publications (1)

Publication Number Publication Date
WO2015087531A1 true WO2015087531A1 (en) 2015-06-18

Family

ID=53370860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006097 WO2015087531A1 (en) 2013-12-12 2014-12-05 Steel for crude oil tank and crude oil tank

Country Status (5)

Country Link
JP (1) JP6149943B2 (en)
KR (1) KR101786409B1 (en)
CN (1) CN105745347B (en)
TW (1) TW201529865A (en)
WO (1) WO2015087531A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098701A1 (en) * 2015-12-09 2017-06-15 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
WO2017098700A1 (en) * 2015-12-09 2017-06-15 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
KR20200080315A (en) 2017-11-24 2020-07-06 제이에프이 스틸 가부시키가이샤 Crude oil tanker Corrosion resistant steel for upper and bottom plates, and crude oil tanker
WO2023181895A1 (en) * 2022-03-22 2023-09-28 Jfeスチール株式会社 Microorganism-corrosion-resistant low-alloy steel material and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068019A (en) * 1997-08-21 1998-03-10 Sumitomo Metal Ind Ltd Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment
JP2005290479A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2007277615A (en) * 2006-04-04 2007-10-25 Kobe Steel Ltd Steel material for vessel having excellent corrosion resistance
WO2010074307A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3996727B2 (en) * 2000-01-31 2007-10-24 新日本製鐵株式会社 Corrosion resistant steel for double hull oil tanker storage
JP4088231B2 (en) 2003-02-26 2008-05-21 新日本製鐵株式会社 Welded joints for crude oil tanks with excellent corrosion resistance
JP4771651B2 (en) 2003-02-26 2011-09-14 新日本製鐵株式会社 Crude oil tank with welded joints with excellent corrosion resistance and sludge resistance
CN101415852B (en) * 2006-03-30 2011-09-07 杰富意钢铁株式会社 Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
WO2010087509A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068019A (en) * 1997-08-21 1998-03-10 Sumitomo Metal Ind Ltd Production of steel sheet for crude oil tanker excellent in fatigue crack progressing characteristics in wet hydrogen slufide environment
JP2005290479A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2007277615A (en) * 2006-04-04 2007-10-25 Kobe Steel Ltd Steel material for vessel having excellent corrosion resistance
WO2010074307A1 (en) * 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098701A1 (en) * 2015-12-09 2017-06-15 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
WO2017098700A1 (en) * 2015-12-09 2017-06-15 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JPWO2017098700A1 (en) * 2015-12-09 2017-12-07 Jfeスチール株式会社 Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JPWO2017098701A1 (en) * 2015-12-09 2017-12-07 Jfeスチール株式会社 Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
CN108368578A (en) * 2015-12-09 2018-08-03 杰富意钢铁株式会社 The petroleum tank steel and petroleum tank of excellent corrosion resistance
CN108368578B (en) * 2015-12-09 2020-12-04 杰富意钢铁株式会社 Steel material for crude oil tank having excellent corrosion resistance, and crude oil tank
KR20200080315A (en) 2017-11-24 2020-07-06 제이에프이 스틸 가부시키가이샤 Crude oil tanker Corrosion resistant steel for upper and bottom plates, and crude oil tanker
WO2023181895A1 (en) * 2022-03-22 2023-09-28 Jfeスチール株式会社 Microorganism-corrosion-resistant low-alloy steel material and method for producing same

Also Published As

Publication number Publication date
TWI563100B (en) 2016-12-21
CN105745347A (en) 2016-07-06
JP6149943B2 (en) 2017-06-21
TW201529865A (en) 2015-08-01
KR20160075717A (en) 2016-06-29
CN105745347B (en) 2018-01-12
KR101786409B1 (en) 2017-10-16
JPWO2015087531A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP6048385B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
WO2010074307A1 (en) Corrosion-resistant steel material for crude oil tanker
JP4968394B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP4968395B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP6064888B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP6149943B2 (en) Steel for crude oil tank and crude oil tank
JP2014201759A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2010222701A (en) Steel for crude oil tanker
JP2014201755A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2014201758A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP6409963B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP6409962B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP2012117137A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank
JP2012117138A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank
JP6201376B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP2014201756A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2014201757A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2012117139A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552331

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167013834

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869888

Country of ref document: EP

Kind code of ref document: A1