JP2012117137A - Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank - Google Patents

Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank Download PDF

Info

Publication number
JP2012117137A
JP2012117137A JP2010270553A JP2010270553A JP2012117137A JP 2012117137 A JP2012117137 A JP 2012117137A JP 2010270553 A JP2010270553 A JP 2010270553A JP 2010270553 A JP2010270553 A JP 2010270553A JP 2012117137 A JP2012117137 A JP 2012117137A
Authority
JP
Japan
Prior art keywords
mass
crude oil
steel
oil tank
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010270553A
Other languages
Japanese (ja)
Inventor
Yukio Tsuri
之郎 釣
Masaji Murase
正次 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010270553A priority Critical patent/JP2012117137A/en
Publication of JP2012117137A publication Critical patent/JP2012117137A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a steel for a crude oil tank capable of reducing greatly overall corrosion or local corrosion generated in the crude oil tank, and to provide a welded joint and the crude oil tank.SOLUTION: When manufacturing a crude oil tank by welding a steel containing in mass%, 0.03-0.16% C, 0.05-1.50% Si, 0.1-2.0% Mn, ≤0.025% P, ≤0.010% S, 0.005-0.10% Al, ≤0.008% N, 0.0001-0.01% Hf and 0.03-0.4% Cu, and also containing one or two or more kinds selected from 0.01-1.0% W, 0.01-0.5% Mo, 0.005-0.2% Sn and 0.005-0.4% Sb, a welded joint is formed, in which a welded metal part satisfies following relations: 1<(Cu content in a welded metal/Cu content in a base metal)≤50, and 0.25≤(Cu content in the welded metal/total content of Mo and W in the welded metal)≤3.

Description

本発明は、鋼材を溶接して構成される原油タンカーの油槽や原油を輸送あるいは貯蔵するためのタンク(以下、「原油タンク」と総称する)に関するものであり、具体的には、原油タンクの天井部や側壁部、底部に発生する全面腐食および原油タンクの底板に発生する局部腐食を軽減することができる耐食性に優れる原油タンク用鋼材と、その鋼材を溶接した溶接継手と、それらの鋼材と溶接継手から構成される原油タンクに関するものである。なお、本発明の原油タンクに用いられる鋼材には、厚鋼板、薄鋼板および形鋼が含まれる。   The present invention relates to an oil tank of a crude oil tanker constructed by welding steel materials and a tank for transporting or storing crude oil (hereinafter collectively referred to as “crude oil tank”). Steel materials for crude oil tanks with excellent corrosion resistance that can reduce overall corrosion that occurs on the ceiling, side walls, and bottom and local corrosion that occurs on the bottom plate of crude oil tanks, welded joints welded with these steel materials, and those steel materials The present invention relates to a crude oil tank composed of welded joints. The steel materials used in the crude oil tank of the present invention include thick steel plates, thin steel plates and shaped steels.

タンカーの原油タンクの内面、特に上甲板裏面および側壁上部に用いられている鋼材には、全面腐食が生じることが知られている。この全面腐食が起こる原因としては、2.5年毎に行われる実船のドック検査で、強酸性の結露水中に、硫酸イオンや塩化物イオンが検出されていることから、
(1)昼夜の温度差による鋼板表面への結露と乾燥(乾湿)の繰り返し、
(2)原油タンク内に防爆用に封入されるイナートガス(O約4vol%、CO約13vol%、SO約0.01vol%、残部Nを代表組成とするボイラあるいはエンジンの排ガス等)中のO,CO,SOの結露水への溶け込み、
(3)原油から揮発するHS等腐食性ガスの結露水への溶け込み、
(4)原油タンクの洗浄に使用された海水の残留、
などが考えられている。
It is known that the steel used on the inner surface of a tanker's crude oil tank, particularly on the back of the upper deck and the upper part of the side wall, is totally corroded. The cause of this general corrosion is that sulfate ions and chloride ions are detected in highly acidic condensed water in dock inspections of actual ships every 2.5 years.
(1) Repeated condensation and drying (wet and dry) on the steel sheet surface due to temperature difference between day and night,
(2) Inert gas sealed in the crude oil tank for explosion protection (O 2 about 4 vol%, CO 2 about 13 vol%, SO 2 about 0.01 vol%, boiler N 2 or the exhaust gas of the engine, etc.) Dissolution of O 2 , CO 2 , SO 2 in condensed water,
(3) Dissolution of corrosive gas such as H 2 S volatilized from crude oil into condensed water,
(4) Residual seawater used for cleaning crude oil tanks,
Etc. are considered.

さらに、腐食によって生成した鉄錆を触媒としてHSが酸化されると、固体Sが鉄錆中に層状に生成するが、これらの腐食生成物は、容易に剥離して脱落し、原油タンクの底部に堆積する。そのため、ドック検査では、多大な費用をかけて、タンク上部の補修やタンク底部の堆積物の回収が行われているのが現状である。 Furthermore, when H 2 S is oxidized using iron rust generated by corrosion as a catalyst, solid S is formed in layers in the iron rust, but these corrosion products are easily peeled off and dropped off, resulting in crude oil tanks. Deposit at the bottom of the. For this reason, in the dock inspection, the current situation is that repair of the upper part of the tank and collection of deposits at the bottom of the tank are performed with great expense.

一方、タンカーの原油タンク等の底板に用いられる鋼材には、原油そのものの腐食抑制作用や原油タンク内面に形成される原油由来の保護性コート(オイルコート)の腐食抑制作用によって、腐食は生じないものと考えられていた。しかし、最近の研究によって、タンク底板の鋼材には、お椀型の局部腐食(孔食)が発生することが明らかになってきている。この局部腐食が起こる原因としては、
(1)塩化ナトリウムを代表とする塩類が高濃度に溶解した凝集水の存在、
(2)過剰な洗浄によるオイルコートの離脱、
(3)原油中に含まれる硫化物の高濃度化、
(4)結露水に溶け込んだ防爆用イナートガス中のO、CO、SO等の高濃度化、
などが考えられている。実際、実船のドック検査時では、原油タンク内に滞留した水を分析すると、高濃度の塩化物イオンと硫酸イオンが検出されている。
On the other hand, the steel used for the bottom plate of a tanker's crude oil tank, etc. does not corrode due to the corrosion inhibition effect of the crude oil itself or the corrosion inhibition effect of the protective coat (oil coat) derived from the crude oil formed on the inner surface of the crude oil tank. It was considered a thing. However, recent research has revealed that bowl-shaped local corrosion (pitting corrosion) occurs in the steel plate of the tank bottom plate. As a cause of this local corrosion,
(1) presence of condensed water in which salts represented by sodium chloride are dissolved at a high concentration;
(2) Oil coat detachment due to excessive cleaning,
(3) High concentration of sulfides contained in crude oil,
(4) Increasing the concentration of O 2 , CO 2 , SO 2, etc. in the inert gas for explosion protection dissolved in dew condensation water,
Etc. are considered. In fact, at the time of a dock inspection of an actual ship, when water accumulated in the crude oil tank is analyzed, high concentrations of chloride ions and sulfate ions are detected.

ところで、上記のような全面腐食や局部腐食を防止する最も簡便で有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断することである。しかし、原油タンクの塗装作業は、その塗布する面積が膨大であること、また、塗膜の劣化により、約10年に1度は塗り替えが必要となるため、検査や塗装に膨大な費用が発生する。さらに、重塗装した塗膜が損傷を受けた部分は、原油タンクの腐食環境下では、却って腐食が助長されることが指摘されている。   By the way, the simplest and most effective method for preventing the above-mentioned general corrosion and local corrosion is to apply heavy coating on the surface of the steel material to shield the steel material from the corrosive environment. However, the painting operation of crude oil tanks requires an enormous area to be applied, and the paint film must be repainted once every 10 years due to the deterioration of the coating film. To do. Furthermore, it has been pointed out that corrosion is promoted on the damaged part of the heavy-painted coating film in the corrosive environment of the crude oil tank.

上記のような腐食問題に対しては、鋼材自体の耐食性を改善して、原油タンクの腐食環境下における耐食性を改善する技術が幾つか提案されている。例えば特許文献1には、質量%で、C:0.001〜0.2%、Si:0.01〜2.5%、Mn:0.1〜2%、P:0.03%以下、S:0.02%以下、Cu:0.01〜1.5%、Al:0.001〜0.3%、N:0.001〜0.01%を含有し、さらに、Mo:0.01〜0.5%およびW:0.01〜1%の1種または2種を含有し、残部がFe及び不可避的不純物からなる鋼材同士を溶接して溶接継手を形成するに際して、溶接金属中のCu,Mo,Wの含有量が下記3式を満たすよう溶接継手を形成する技術が開示されている。
0.15≦溶接金属のCu含有量(質量%)/鋼材のCu含有量(質量%)≦3
0.15≦(溶接金属のMo含有量+W含有量(質量%))/(鋼材のMo含有量+W含有量(質量%))≦3
−0.3≦(溶接金属のCu含有量(質量%)−鋼材のCu含有量(質量%))≦0.5
For the corrosion problem as described above, several techniques for improving the corrosion resistance of the steel material itself in the corrosive environment of the crude oil tank have been proposed. For example, in Patent Document 1, in mass%, C: 0.001 to 0.2%, Si: 0.01 to 2.5%, Mn: 0.1 to 2%, P: 0.03% or less, S: 0.02% or less, Cu: 0.01 to 1.5%, Al: 0.001 to 0.3%, N: 0.001 to 0.01%, and Mo: 0.0. When forming a welded joint by welding steel materials containing 01 to 0.5% and W: 0.01 to 1% or two types, the balance being Fe and inevitable impurities, in the weld metal A technique for forming a welded joint so that the contents of Cu, Mo, and W satisfy the following three formulas is disclosed.
0.15 ≦ Cu content of weld metal (mass%) / Cu content of steel (mass%) ≦ 3
0.15 ≦ (Mo content of weld metal + W content (mass%)) / (Mo content of steel + W content (mass%)) ≦ 3
−0.3 ≦ (Cu content of weld metal (mass%) − Cu content of steel (mass%)) ≦ 0.5

また、特許文献2には、質量%で、C:0.001〜0.2%、Si:0.01〜2.5%、Mn:0.1〜2%、P:0.03%以下、S:0.02%以下、Cu:0.01〜1.5%、Al:0.001〜0.3%、N:0.001〜0.01%を含有し、さらに、Mo:0.01〜0.5%およびW:0.01〜1%の1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼材同士を溶接して原油油槽を形成するに際して、溶接金属中のCu,Mo,Wの含有量が下記の2式を満たすよう溶接継手を形成する技術が開示されている。
0.15≦溶接金属のCu含有量(質量%)/鋼材のCu含有量(質量%)≦3
0.15≦(溶接金属のMo含有量+W含有量(質量%))/(鋼材のMo含有量+W含有量(質量%))≦3
Moreover, in patent document 2, in mass%, C: 0.001-0.2%, Si: 0.01-2.5%, Mn: 0.1-2%, P: 0.03% or less , S: 0.02% or less, Cu: 0.01 to 1.5%, Al: 0.001 to 0.3%, N: 0.001 to 0.01%, and Mo: 0 When forming a crude oil tank by welding steel materials containing 0.01 to 0.5% and W: 0.01 to 1% or two of which are composed of Fe and inevitable impurities. A technique for forming a welded joint so that the content of Cu, Mo, W in the inside satisfies the following two formulas is disclosed.
0.15 ≦ Cu content of weld metal (mass%) / Cu content of steel (mass%) ≦ 3
0.15 ≦ (Mo content of weld metal + W content (mass%)) / (Mo content of steel + W content (mass%)) ≦ 3

特開2005−21981号公報Japanese Patent Laid-Open No. 2005-21981 特開2005−23421号公報Japanese Patent Laid-Open No. 2005-23421

しかしながら、特許文献1および特許文献2に記載された技術では、タンカー底板および溶接継手に発生する局部腐食(孔食)を、2.5年間で4mm以下に抑制することは困難である。というのは、近年における実船の腐食調査では、タンカー底板および溶接部に発生する孔食内部の溶液のpHは1.0以下であることが判明している。一般に、酸性液中における鋼材の腐食速度は、水素還元反応に律速され、pHの低下と共に飛躍的に増大することが知られている。したがって、上記特許文献1および2の実施例に記載されているようなpH2.0での浸漬試験では、実船における腐食環境を十分に反映できていないからである。   However, with the techniques described in Patent Document 1 and Patent Document 2, it is difficult to suppress local corrosion (pitting corrosion) generated in the tanker bottom plate and the welded joint to 4 mm or less in 2.5 years. This is because, in recent years, corrosion surveys of actual ships have revealed that the pH of the solution inside the pitting corrosion generated on the tanker bottom plate and the welded portion is 1.0 or less. In general, it is known that the corrosion rate of a steel material in an acidic solution is rate-limited by a hydrogen reduction reaction, and increases dramatically as the pH decreases. Therefore, the immersion test at pH 2.0 as described in the examples of Patent Documents 1 and 2 does not sufficiently reflect the corrosive environment in the actual ship.

そこで、本発明の目的は、タンカー油槽部等の原油タンクの上板における耐全面腐食性と、原油タンクの底板における耐局部腐食性が共に優れる原油タンク用鋼材と、その鋼材を溶接した溶接継手、およびそれらの鋼材と溶接継手から構成される原油タンクを提供することにある。   Accordingly, an object of the present invention is to provide a steel material for a crude oil tank having excellent overall corrosion resistance on the top plate of a crude oil tank such as a tanker oil tank and a local corrosion resistance on the bottom plate of the crude oil tank, and a welded joint obtained by welding the steel material. And to provide a crude oil tank composed of those steel materials and welded joints.

発明者らは、上記課題の解決に向けて鋭意研究を重ねた。その結果、鋼の成分組成を適正範囲に制御することで、鋼材の耐食性を向上できること、また、その成分組成の鋼材を溶接して原油タンクを形成するに際して、溶接継手の溶接金属中に含まれるCu,MoおよびWの含有量を適正範囲に制御することによって、原油タンクを構成する鋼材のみならず、溶接継手に発生する全面腐食や局部腐食をも軽減でき、ひいては原油タンク全体の耐食性を著しく向上し得ることを見出し、本発明を完成させた。   The inventors have intensively studied to solve the above problems. As a result, the corrosion resistance of the steel material can be improved by controlling the component composition of the steel within an appropriate range, and is included in the weld metal of the welded joint when the steel material having the component composition is welded to form a crude oil tank. By controlling the content of Cu, Mo and W within an appropriate range, not only the steel materials constituting the crude oil tank, but also the overall corrosion and local corrosion that occur in the welded joints can be reduced, and the overall corrosion resistance of the crude oil tank is significantly improved. The inventors have found that it can be improved and completed the present invention.

すなわち、本発明は、C:0.03〜0.16mass%、Si:0.05〜1.50mass%、Mn:0.1〜2.0mass%、P:0.025mass%以下、S:0.010mass%以下、Al:0.005〜0.10mass%、N:0.008mass%以下、Hf:0.0001〜0.01mass%、Cu:0.03〜0.4mass%を含有し、かつ、W:0.01〜1.0mass%、Mo:0.01〜0.5mass%、Sn:0.005〜0.2mass%およびSb:0.005〜0.4mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる原油タンク用鋼材である。   That is, the present invention includes C: 0.03-0.16 mass%, Si: 0.05-1.50 mass%, Mn: 0.1-2.0 mass%, P: 0.025 mass% or less, S: 0 0.010 mass% or less, Al: 0.005 to 0.10 mass%, N: 0.008 mass% or less, Hf: 0.0001 to 0.01 mass%, Cu: 0.03 to 0.4 mass%, and , W: 0.01 to 1.0 mass%, Mo: 0.01 to 0.5 mass%, Sn: 0.005 to 0.2 mass%, and Sb: 0.005 to 0.4 mass% It is a steel material for a crude oil tank that contains seeds or two or more kinds, and the balance consists of Fe and inevitable impurities.

本発明の原油タンク用鋼材は、上記成分組成に加えてさらに、下記のA〜E群のうちから選ばれる少なくとも1つの成分を含有することを特徴とする。

A群;Ni:0.005〜0.4mass%、Co:0.01〜0.4mass%およびCr:0.01〜0.3mass%のうちから選ばれる1種または2種以上
B群;Ta:0.001〜0.1mass%、Nb:0.001〜0.1mass%、Ti:0.001〜0.1mass%、Zr:0.001〜0.1mass%およびV:0.002〜0.2mass%のうちから選ばれる1種または2種以上
C群;Ca:0.0002〜0.01mass%、REM:0.0002〜0.015mass%、Y:0.0001〜0.1mass%のうちから選ばれる1種または2種以上
D群;B:0.0002〜0.003mass%
E群;Bi:0.001〜0.1mass%
In addition to the above component composition, the steel material for crude oil tank according to the present invention further includes at least one component selected from the following groups A to E.
Group A; Ni: 0.005 to 0.4 mass%, Co: 0.01 to 0.4 mass%, and Cr: 0.01 to 0.3 mass%, or one or more B groups; Ta: 0.001 to 0.1 mass%, Nb: 0.001 to 0.1 mass%, Ti: 0.001 to 0.1 mass%, Zr: 0.001 to 0.1 mass%, and V: 0.002 One or two or more C groups selected from 0.2 mass%; Ca: 0.0002 to 0.01 mass%, REM: 0.0002 to 0.015 mass%, Y: 0.0001 to 0.1 mass% 1 type or 2 types or more chosen from among D groups; B: 0.0002-0.003 mass%
Group E; Bi: 0.001 to 0.1 mass%

また、本発明は、上記のいずれかの鋼材を母材とする溶接継手であって、溶接金属部の成分組成が下記(1)式および(2)式;
1<(溶接金属中のCu含有量/母材中のCu含有量)≦5 ・・・(1)
0.25≦(溶接金属中のCu含有量/溶接金属中のMo,Wの合計含有量)≦3
・・・(2)
を満たすことを特徴とする溶接継手である。
Moreover, this invention is a welded joint which uses any one of the above steel materials as a base material, and the composition of the weld metal part is the following formulas (1) and (2);
1 <(Cu content in weld metal / Cu content in base material) ≦ 5 (1)
0.25 ≦ (Cu content in weld metal / total content of Mo and W in weld metal) ≦ 3
... (2)
It is the welded joint characterized by satisfy | filling.

また、本発明は、上記の溶接継手を有することを特徴とする原油タンクである。   Moreover, this invention is a crude oil tank characterized by having said weld joint.

本発明によれば、原油タンカーの油槽や原油を輸送あるいは貯蔵するタンク等、溶接して形成される原油タンクに発生する全面腐食や局部腐食を、鋼板のみならず溶接継手を含むすべての部位において抑制することができる。したがって、本発明によれば、船舶の補修負荷の軽減や補修期間の延長が可能となり、ひいては、船舶の耐用年数の大幅な延長を図ることができるので、産業上格段の効果を奏する。   According to the present invention, the overall corrosion and local corrosion generated in a crude oil tank formed by welding, such as an oil tank of a crude oil tanker or a tank for transporting or storing crude oil, can be observed in all parts including not only steel plates but also welded joints. Can be suppressed. Therefore, according to the present invention, it is possible to reduce the repair load of the ship and to extend the repair period, and as a result, the service life of the ship can be greatly extended, so that there is a remarkable industrial effect.

本発明の実施例で、全面腐食試験に用いた試験装置を説明する図である。In the Example of this invention, it is a figure explaining the test apparatus used for the general corrosion test. 本発明の実施例で、孔食試験に用いた試験装置を説明する図である。In the Example of this invention, it is a figure explaining the test apparatus used for the pitting corrosion test.

まず、本発明の原油タンクに用いる鋼材の成分組成について説明する。
C:0.03〜0.16mass%
Cは、鋼の強度を高める元素であり、本発明では、所望の強度を確保するため、0.03mass%以上添加する。一方、0.16mass%を超える添加は、溶接性および溶接熱影響部の靭性を低下させる。よって、Cは0.03〜0.16mass%の範囲とする。
First, the component composition of the steel material used for the crude oil tank of the present invention will be described.
C: 0.03-0.16 mass%
C is an element that enhances the strength of steel. In the present invention, 0.03 mass% or more is added in order to secure a desired strength. On the other hand, addition exceeding 0.16 mass% reduces weldability and toughness of the heat affected zone. Therefore, C is set to a range of 0.03 to 0.16 mass%.

Si:0.05〜1.50mass%
Siは、脱酸剤として添加される元素であるが、鋼の強度を高めるのに有効な元素でもある。そこで、本発明では、所望の強度を確保するため、0.05mass%以上添加する。しかし、1.50mass%を超える添加は、鋼の靭性を低下させる。よって、Siは0.05〜1.50mass%の範囲とする。
Si: 0.05-1.50 mass%
Si is an element added as a deoxidizer, but is also an effective element for increasing the strength of steel. Therefore, in the present invention, 0.05 mass% or more is added in order to ensure a desired strength. However, addition exceeding 1.50 mass% reduces the toughness of steel. Therefore, Si is set to a range of 0.05 to 1.50 mass%.

Mn:0.1〜2.0mass%
Mnは、鋼の強度を高める元素であり、本発明では、所望の強度を得るため、0.1mass%以上添加する。一方、2.0mass%を超える添加は、鋼の靭性および溶接性を低下させる。よって、Mnは0.1〜2.0mass%の範囲とする。
Mn: 0.1 to 2.0 mass%
Mn is an element that increases the strength of steel, and in the present invention, 0.1 mass% or more is added in order to obtain a desired strength. On the other hand, addition exceeding 2.0 mass% reduces the toughness and weldability of steel. Therefore, Mn is in the range of 0.1 to 2.0 mass%.

P:0.025mass%以下
Pは、粒界に偏析して鋼の靭性を低下させる有害な元素であり、できる限り低減するのが望ましい。特に、0.025mass%を超えて添加すると、靭性が大きく低下する。また、Pは0.025mass%を超えて添加すると、タンク油槽内の耐食性にも悪影響を及ぼす。よって、Pは0.025mass%以下とする。好ましくは0.015mass%以下である。
P: 0.025 mass% or less P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, and is desirably reduced as much as possible. In particular, if added over 0.025 mass%, the toughness is greatly reduced. Moreover, when P is added exceeding 0.025 mass%, it will also have a bad influence on the corrosion resistance in a tank oil tank. Therefore, P is set to 0.025 mass% or less. Preferably it is 0.015 mass% or less.

S:0.010mass%以下
Sは、非金属介在物であるMnSを形成して局部腐食の起点となり、耐局部腐食性を低下させる有害な元素であり、できる限り低減するのが望ましい。特に、0.010mass%を超える添加は、耐局部腐食性の顕著な低下を招く。よって、Sの上限は0.010mass%とする。好ましくは、0.005mass%以下である。
S: 0.010 mass% or less S is a harmful element that forms MnS, which is a non-metallic inclusion, and serves as a starting point for local corrosion and reduces local corrosion resistance. It is desirable to reduce it as much as possible. In particular, addition exceeding 0.010 mass% leads to a significant decrease in local corrosion resistance. Therefore, the upper limit of S is 0.010 mass%. Preferably, it is 0.005 mass% or less.

Al:0.005〜0.10mass%
Alは、脱酸剤として添加される元素であり、本発明では0.005mass%以上添加する。しかし、0.10mass%を超えて添加すると、鋼の靭性が低下するので、Alの上限は0.10mass%とする。
Al: 0.005-0.10 mass%
Al is an element added as a deoxidizer, and 0.005 mass% or more is added in the present invention. However, if added in excess of 0.10 mass%, the toughness of the steel decreases, so the upper limit of Al is 0.10 mass%.

N:0.008mass%以下
Nは、靭性を低下させる有害な元素であり、できる限り低減するのが望ましい。特に、0.008mass%を超えて添加すると、靭性の低下が大きくなるので、上限は0.008mass%とする。
N: 0.008 mass% or less N is a harmful element that lowers toughness, and is desirably reduced as much as possible. In particular, if added over 0.008 mass%, the toughness is greatly lowered, so the upper limit is made 0.008 mass%.

Hf:0.0001〜0.01mass%
Hfは、腐食により生成する錆層中に取り込まれ、緻密な錆層を形成して鋼材の全面腐食を抑制する効果のある元素である。このような効果は、0.0001mass%以上の添加で得られる。一方、0.01mass%を超える添加は、低温靭性の低下を招くため好ましくない。よって、Hfは0.0001〜0.01mass%の範囲で添加する。
Hf: 0.0001 to 0.01 mass%
Hf is an element that is taken into the rust layer generated by corrosion and has an effect of suppressing the overall corrosion of the steel material by forming a dense rust layer. Such an effect can be obtained by adding 0.0001 mass% or more. On the other hand, addition exceeding 0.01 mass% is not preferable because it causes a decrease in low-temperature toughness. Therefore, Hf is added in the range of 0.0001 to 0.01 mass%.

Cu:0.03〜0.4mass%
Cuは、鋼の強度を高める元素であるとともに、鋼の腐食によって生成した錆中に存在して耐食性を高める効果がある。これらの効果は、0.03mass%未満の添加では十分に得られず、一方、0.4mass%を超えて添加すると、耐食性向上効果が飽和するほか、熱間加工時に表面割れなどの問題を引き起こす。よって、本発明の鋼材を安定して製造する観点から、Cuは0.03〜0.4mass%の範囲で添加する必要がある。
Cu: 0.03-0.4 mass%
Cu is an element that increases the strength of the steel, and also exists in the rust generated by the corrosion of the steel and has the effect of increasing the corrosion resistance. These effects cannot be sufficiently obtained with addition of less than 0.03 mass%. On the other hand, addition over 0.4 mass% saturates the effect of improving corrosion resistance and causes problems such as surface cracking during hot working. . Therefore, Cu needs to be added in the range of 0.03 to 0.4 mass% from the viewpoint of stably producing the steel material of the present invention.

本発明の鋼材は、上記成分の他に、W,Mo,SnおよびSbのうちから選ばれる1種または2種以上を下記の範囲で含有する必要がある。
W:0.01〜1.0mass%
Wは、タンカー油槽部底板における孔食を抑制する効果があるほか、タンカー上甲板部の全面腐食を抑制する効果がある。上記効果は、0.01mass%以上の添加で発現する。しかし、1.0mass%を超えると、その効果が飽和する。よって、Wは0.01〜1.0mass%の範囲で添加する。好ましくは0.01〜0.5mass%、より好ましくは0.02〜0.3mass%の範囲である。
The steel material of this invention needs to contain 1 type, or 2 or more types chosen from W, Mo, Sn, and Sb other than the said component in the following range.
W: 0.01-1.0 mass%
W has the effect of suppressing pitting corrosion at the tanker tank bottom plate and the effect of suppressing overall corrosion of the tanker upper deck. The above effect is manifested by addition of 0.01 mass% or more. However, if it exceeds 1.0 mass%, the effect is saturated. Therefore, W is added in the range of 0.01 to 1.0 mass%. Preferably it is 0.01-0.5 mass%, More preferably, it is the range of 0.02-0.3 mass%.

なお、Wが上記のような耐食性向上効果を有する理由は、鋼板が腐食するのに伴って生成する錆中にWO 2−が生成し、このWO 2−の存在によって、塩化物イオンが鋼板表面に侵入するのが抑制され、さらに、鋼板表面のアノード部などのpHが下がった部位では、FeWOが生成し、このFeWOの存在によっても塩化物イオンの鋼板表面への侵入が抑制されるからである。また、WO 2−の鋼材表面への吸着によるインヒビター作用によっても、鋼材の腐食が抑制されると考えられる。 The reason why W has the above-described effect of improving corrosion resistance is that WO 4 2− is generated in the rust generated as the steel sheet corrodes, and the presence of this WO 4 2− causes chloride ions to be generated. Intrusion into the steel sheet surface is suppressed, and furthermore, FeWO 4 is generated at the site where the pH is lowered, such as the anode part on the steel sheet surface, and the presence of this FeWO 4 also suppresses the entry of chloride ions into the steel sheet surface. Because it is done. Further, even by the inhibitor effect of adsorption to WO 4 2-steel surfaces, believed to corrosion of the steel material is prevented.

Mo:0.01〜0.5mass%
Moは、タンカー油槽部底板における孔食を抑制するだけでなく、タンカー上甲板裏面部の耐全面腐食性や、バラストタンクのように塩水浸漬と高湿潤を繰り返す腐食環境における塗装後の耐食性を向上させる効果がある。上記Moの効果は0.01mass%以上の添加で発現するが、0.5mass%を超えると、その効果は飽和する。よって、Moは0.01〜0.5mass%の範囲とする。好ましくは0.02〜0.5mass%、より好ましくは0.03〜0.4mass%の範囲である。
なお、Moが上記のような耐食性向上効果を有する理由は、Wと同様、鋼板の腐食に伴い生成する錆中にMoO 2−が生成し、このMoO 2−の存在によって、塩化物イオンの鋼板表面への侵入が抑制されるからと考えられる。
Mo: 0.01-0.5 mass%
Mo not only suppresses pitting corrosion on the bottom plate of the tanker tank, but also improves overall corrosion resistance on the back of the tanker's upper deck and corrosion resistance after painting in a corrosive environment where salt water is repeatedly immersed and highly humid like a ballast tank. There is an effect to make. The effect of Mo is manifested by addition of 0.01 mass% or more, but the effect is saturated when it exceeds 0.5 mass%. Therefore, Mo is set to a range of 0.01 to 0.5 mass%. Preferably it is 0.02-0.5 mass%, More preferably, it is the range of 0.03-0.4 mass%.
The reason why Mo has the above-described effect of improving corrosion resistance is that, like W, MoO 4 2− is generated in the rust generated along with corrosion of the steel sheet, and the presence of MoO 4 2− causes chloride ions. This is thought to be because the penetration of steel into the steel sheet surface is suppressed.

Sn:0.005〜0.2mass%、Sb:0.005〜0.4mass%
SnおよびSbは、タンカー油槽部底板における孔食を抑制する効果を有する他、タンカー上甲板部の全面腐食を抑制する効果がある。上記効果は、Sn:0.005mass%以上、Sb:0.005mass%以上の添加で発現する。一方、Sn:0.2mass%超えおよびSb:0.4mass%超え添加しても、その効果は飽和する。さらに、Snの多量の添加は、Cuによる熱間加工時の表面割れを助長する。よって、SnおよびSbは、それぞれ上記範囲で添加するのが好ましい。
Sn: 0.005-0.2 mass%, Sb: 0.005-0.4 mass%
Sn and Sb have the effect of suppressing pitting corrosion on the tanker tank bottom plate and the effect of suppressing the overall corrosion of the tanker upper deck. The above effects are manifested by the addition of Sn: 0.005 mass% or more and Sb: 0.005 mass% or more. On the other hand, even if Sn: more than 0.2 mass% and Sb: more than 0.4 mass% are added, the effect is saturated. Furthermore, the addition of a large amount of Sn promotes surface cracking during hot working with Cu. Therefore, Sn and Sb are preferably added in the above ranges.

また、本発明の鋼材は、上記必須とする成分の他に、Ni,CoおよびCrのうちから選ばれる1種または2種以上を下記の範囲で含有することが好ましい。
Ni:0.005〜0.4mass%、Co:0.01〜0.4mass%
NiおよびCoは、生成した錆粒子を微細化して、裸状態での耐食性およびジンクプライマーにエポキシ系塗装が施された状態での耐食性を少なからず向上する効果を有する。したがって、これらの元素は、耐食性をより向上したい場合に、補助的に添加するのが好ましい。上記効果は、Ni:0.005mass%以上、Co:0.01mass%以上の添加で発現する。一方、Ni:0.4mass%超え、Co:0.4mass%超え添加しても、その効果が飽和する。また、Niは、CuやSnを含有する鋼において発生する熱間加工時の表面割れを抑制する効果がある。よって、NiおよびCoは、それぞれ上記の範囲で添加するのが好ましい。
Moreover, it is preferable that the steel material of this invention contains the 1 type (s) or 2 or more types chosen from Ni, Co, and Cr other than the said essential component in the following range.
Ni: 0.005-0.4 mass%, Co: 0.01-0.4 mass%
Ni and Co have the effect of refining the generated rust particles to improve the corrosion resistance in the bare state and the corrosion resistance in the state where the epoxy primer is applied to the zinc primer. Therefore, these elements are preferably added in an auxiliary manner when it is desired to further improve the corrosion resistance. The above effects are manifested by adding Ni: 0.005 mass% or more and Co: 0.01 mass% or more. On the other hand, even if Ni is added in excess of 0.4 mass% and Co is added in excess of 0.4 mass%, the effect is saturated. Further, Ni has an effect of suppressing surface cracks during hot working that occur in steel containing Cu or Sn. Therefore, Ni and Co are preferably added within the above ranges.

Cr:0.01〜0.3mass%
Crは、腐食の進行に伴って錆層中に移行し、Clの錆層への侵入を遮断することによって、錆層と地鉄の界面へのClの濃縮を抑制する。また、Zn含有プライマーを塗布したときには、Feを中心としたCrやZnの複合酸化物を形成して、長期間にわたり鋼板表面にZnを存続させることができるため、飛躍的に耐食性を向上することができる。上記効果は、特に、タンカー油槽の底板部のように、原油油分から分離された高濃度の塩分を含む液と接触する部分において顕著であり、Crを含有した上記部分の鋼材にZn含有プライマー処理を施すことにより、Crを含有しない鋼材と比較して、格段に耐食性を向上することができる。上記Crの効果は、0.01mass%未満の添加では十分ではなく、一方、0.3mass%を超える添加は、溶接部の靭性を劣化させる。よって、Crは0.01〜0.3mass%の範囲で添加するのが好ましい。
Cr: 0.01-0.3 mass%
Cr moves into the rust layer with the progress of corrosion and blocks the penetration of Cl − into the rust layer, thereby suppressing the concentration of Cl − at the interface between the rust layer and the ground iron. In addition, when a Zn-containing primer is applied, a complex oxide of Cr or Zn centering on Fe can be formed, and Zn can be kept on the surface of the steel sheet for a long period of time, thus dramatically improving the corrosion resistance. Can do. The above-mentioned effect is particularly remarkable in a portion that comes into contact with a liquid containing a high concentration of salt separated from a crude oil component, such as a bottom plate portion of a tanker oil tank, and a Zn-containing primer treatment is applied to the steel material in the above-mentioned portion containing Cr. As a result, the corrosion resistance can be remarkably improved as compared with a steel material not containing Cr. For the effect of Cr, addition of less than 0.01 mass% is not sufficient. On the other hand, addition of more than 0.3 mass% deteriorates the toughness of the weld. Therefore, Cr is preferably added in a range of 0.01 to 0.3 mass%.

また、本発明の鋼材は、鋼の強度を高める目的で、上記成分に加えてさらに、Ta,Nb,Ti,VおよびZrを下記の範囲で添加することができる。
Ta:0.001〜0.1mass%、Nb:0.001〜0.1mass%、Ti:0.001〜0.1mass%、Zr:0.001〜0.1mass%およびV:0.002〜0.2mass%のうちから選ばれる1種または2種以上
Ta,Nb,Ti,ZrおよびVは、いずれも鋼材強度を高める元素であり、必要とする強度に応じて適宜選択して添加することができる。上記効果を得るためには、Ta,Nb,Ti,Zrはそれぞれ0.001mass%以上、Vは0.002mass%以上添加するのが好ましい。しかし、Ta,Nb,Ti,Zrは0.1mass%を超えて、Vは0.2mass%を超えて添加すると、靭性が低下するため、Ta,Nb,Ti,Zr,Vは、それぞれ上記範囲で添加するのが好ましい。
Further, in the steel material of the present invention, Ta, Nb, Ti, V and Zr can be further added in the following range in addition to the above components for the purpose of increasing the strength of the steel.
Ta: 0.001 to 0.1 mass%, Nb: 0.001 to 0.1 mass%, Ti: 0.001 to 0.1 mass%, Zr: 0.001 to 0.1 mass%, and V: 0.002 One or more selected from 0.2 mass% Ta, Nb, Ti, Zr and V are elements that increase the strength of the steel material, and are appropriately selected and added according to the required strength. Can do. In order to acquire the said effect, it is preferable to add Ta, Nb, Ti, and Zr 0.001 mass% or more, respectively, and V to add 0.002 mass% or more. However, when Ta, Nb, Ti, Zr exceeds 0.1 mass%, and V exceeds 0.2 mass%, toughness decreases, so Ta, Nb, Ti, Zr, V are within the above ranges. Is preferably added.

さらに、本発明の鋼材は、強度を高めたり、靭性を向上させたりするために、上記成分に加えてさらに、Ca,REMおよびYを下記の範囲で添加することができる。
Ca:0.0002〜0.01mass%、REM:0.0002〜0.015mass%およびY:0.0001〜0.1mass%のうちから選ばれる1種または2種以上
Ca,REMおよびYは、いずれも、溶接熱影響部の靭性向上に効果があり、必要に応じて添加することができる。上記効果は、Ca:0.0002mass%以上、REM:0.0002mass%以上、Y:0.0001mass%以上の添加で得られるが、Ca:0.01mass%、REM:0.015mass%、Y:0.1mass%を超えて添加すると、却って靭性の低下を招くので、Ca,REM,Yは、それぞれ上記範囲で添加するのが好ましい。
Furthermore, in order to increase the strength or improve the toughness, the steel material of the present invention can further contain Ca, REM and Y in the following ranges in addition to the above components.
Ca: 0.0002 to 0.01 mass%, REM: 0.0002 to 0.015 mass%, and Y: 0.0001 to 0.1 mass%, or one or more selected from Ca, REM, and Y, Both are effective in improving the toughness of the weld heat affected zone and can be added as necessary. The above effect can be obtained by adding Ca: 0.0002 mass% or more, REM: 0.0002 mass% or more, Y: 0.0001 mass% or more, but Ca: 0.01 mass%, REM: 0.015 mass%, Y: If added in excess of 0.1 mass%, the toughness is reduced, so Ca, REM, and Y are preferably added in the above ranges.

さらに、本発明の鋼材は、上記成分に加えてさらに、Bを下記の範囲で含有することができる。
B:0.0002〜0.003mass%
Bは、鋼材の強度を高める元素であり、必要に応じて添加することができる。上記効果を得るためには、0.0002mass%以上添加するのが好ましい。しかし、0.003mass%を超えて添加すると、靭性が低下する。よって、Bは0.0002〜0.003mass%の範囲で添加するのが好ましい。
Furthermore, the steel material of this invention can contain B in the following range in addition to the said component.
B: 0.0002 to 0.003 mass%
B is an element that increases the strength of the steel material, and can be added as necessary. In order to acquire the said effect, adding 0.0002 mass% or more is preferable. However, when it exceeds 0.003 mass%, toughness will fall. Therefore, it is preferable to add B in the range of 0.0002 to 0.003 mass%.

さらに、本発明の鋼材は、上記成分に加えてさらに、Biを下記の範囲で含有することができる。
Bi:0.001〜0.1mass%
Biは、鋼材の耐局部腐食性を高める元素であり、必要に応じて添加することができる。上記効果を得るためには、0.001mass%以上添加するのが好ましい。しかし、0.1mass%を超えて添加すると、靭性が低下する。よって、Biは0.001〜0.1mass%の範囲で添加するのが好ましい。
Furthermore, in addition to the said component, the steel material of this invention can contain Bi in the following range further.
Bi: 0.001 to 0.1 mass%
Bi is an element that enhances the local corrosion resistance of steel, and can be added as necessary. In order to acquire the said effect, adding 0.001 mass% or more is preferable. However, if added over 0.1 mass%, the toughness decreases. Therefore, Bi is preferably added in the range of 0.001 to 0.1 mass%.

次に、本発明の原油タンクに用いる鋼材は、以下の方法で製造するのが好ましい。
本発明の鋼材は、本発明に適合する成分組成に調整した鋼を、転炉や電気炉、真空脱ガス等、公知の精錬プロセスを用いて溶製し、連続鋳造法あるいは造塊−分塊圧延法で鋼素材(鋼スラブ)とし、次いで、この素材を再加熱してから熱間圧延し、厚鋼板、薄鋼板および形鋼等の鋼材とするのが好ましい。
Next, the steel material used for the crude oil tank of the present invention is preferably produced by the following method.
The steel material of the present invention is prepared by melting a steel adjusted to a component composition suitable for the present invention using a known refining process such as a converter, an electric furnace, vacuum degassing, etc. It is preferable that a steel material (steel slab) is formed by a rolling method, and then the material is reheated and hot-rolled to obtain a steel material such as a thick steel plate, a thin steel plate, and a shaped steel.

上記熱間圧延前の再加熱温度は、900〜1200℃の温度とするのが好ましい。加熱温度が900℃未満では、変形抵抗が大きく、熱間圧延することが難しくなる。一方、加熱温度が1200℃を超えると、オーステナイト粒が粗大化し、靭性の低下を招くほか、酸化によるスケールロスが顕著となって歩留まりが低下するからである。より好ましい加熱温度は1000〜1150℃である。   The reheating temperature before the hot rolling is preferably 900 to 1200 ° C. If heating temperature is less than 900 degreeC, a deformation resistance is large and it will become difficult to hot-roll. On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grains become coarse, leading to a decrease in toughness, and a scale loss due to oxidation becomes remarkable, resulting in a decrease in yield. A more preferable heating temperature is 1000 to 1150 ° C.

また、熱間圧延で所望の形状、寸法の鋼材に圧延するに当たっては、仕上圧延終了温度は750℃以上とするのが好ましい。750℃未満では、鋼の変形抵抗が大きくなって圧延負荷が増大し、圧延することが難しくなったり、圧延材が所定の圧延温度に達するまでの待ち時間が発生するため、圧延能率が低下したりするからである。   Further, when rolling into a steel material having a desired shape and size by hot rolling, the finish rolling finishing temperature is preferably 750 ° C. or higher. If the temperature is lower than 750 ° C., the deformation resistance of the steel increases, the rolling load increases, it becomes difficult to roll, and a waiting time occurs until the rolled material reaches a predetermined rolling temperature, so the rolling efficiency decreases. It is because.

熱間圧延後の鋼材の冷却は、空冷、加速冷却のいずれの方法でもよいが、より高強度を得たい場合には、加速冷却するのが好ましい。なお、加速冷却を行う場合には、冷却速度を2〜80℃/sec、冷却停止温度を650〜300℃の範囲とするのが好ましい。冷却速度が2℃/sec未満、冷却停止温度が650℃超えでは、加速冷却の効果が小さく、十分な高強度化が達成されない。一方、冷却速度が80℃/sec超え、冷却停止温度が300℃未満では、得られる鋼材の靭性が低下したり、鋼材の形状に歪が発生したりすることがあるからである。   The steel material after hot rolling may be cooled by either air cooling or accelerated cooling. However, when higher strength is desired, accelerated cooling is preferable. In addition, when performing accelerated cooling, it is preferable to make a cooling rate into the range of 2-80 degree-C / sec and the cooling stop temperature in the range of 650-300 degreeC. When the cooling rate is less than 2 ° C./sec and the cooling stop temperature exceeds 650 ° C., the effect of accelerated cooling is small and sufficient strength cannot be achieved. On the other hand, if the cooling rate exceeds 80 ° C./sec and the cooling stop temperature is less than 300 ° C., the toughness of the obtained steel material may be reduced, or the shape of the steel material may be distorted.

次に、本発明の鋼材を溶接して形成した原油タンクの溶接継手について説明する。
上記適正成分に調整して製造した鋼板同士を溶接して形成した原油タンクの溶接継手は、溶接金属中のCuおよび母材(鋼材)中のCuが下記(1)式;
1<(溶接金属中のCu含有量/母材中のCu含有量)≦5 ・・・(1)
を満たして含有していることが好ましい。
溶接金属の耐食性が母材(鋼材)の耐食性より劣る場合には、後述するタンカー底板の孔食内部を模擬した酸浸漬試験では、溶接部の金属の溶解が促進されてしまう。ここで、溶接金属の耐食性を母材(鋼材)並みに高めるため、溶接金属中にSnやSbを添加すると、溶接継手の低温靭性を確保できなくなる。そのため、溶接金属にSnやSbを含有させることなく、溶接金属の耐食性を母材(鋼材)並みに向上させることが必要となる。そこで、本発明は、溶接金属の耐食性向上手段として、(溶接金属中のCu含有量/母材中のCu含有量)の値を上記(1)式で規定した範囲に制限することが好ましい。
Next, a weld joint of a crude oil tank formed by welding the steel material of the present invention will be described.
In the welded joint of the crude oil tank formed by welding steel plates manufactured by adjusting to the above-mentioned proper components, Cu in the weld metal and Cu in the base material (steel material) are represented by the following formula (1):
1 <(Cu content in weld metal / Cu content in base material) ≦ 5 (1)
It is preferable to contain and satisfy.
When the corrosion resistance of the weld metal is inferior to the corrosion resistance of the base material (steel material), in the acid immersion test that simulates the inside of the pitting corrosion of the tanker bottom plate described later, the dissolution of the metal in the welded portion is promoted. Here, if Sn or Sb is added to the weld metal in order to improve the corrosion resistance of the weld metal to the same level as the base material (steel material), the low temperature toughness of the welded joint cannot be secured. Therefore, it is necessary to improve the corrosion resistance of the weld metal to the same level as the base material (steel material) without containing Sn or Sb in the weld metal. Therefore, in the present invention, as means for improving the corrosion resistance of the weld metal, it is preferable to limit the value of (Cu content in the weld metal / Cu content in the base metal) to the range defined by the above formula (1).

(溶接金属中のCu含有量/母材中のCu含有量)が1以下の場合には、溶接金属の耐食性が母材(鋼材)のそれより劣るため、後述するタンカー底板の孔食内部を模擬した酸浸漬試験において、溶接部の金属の溶解が促進されてしまう。一方、(溶接金属中のCu含有量/母材中のCu含有量)が5を超える場合には、必要以上のCu添加によって、溶接材料(溶接ワイヤ)のコストが上昇するだけでなく、溶接金属の耐食性が母材のそれを大きく上回るようになるため、実腐食環境下において母材の選択腐食が生ずるようになる。よって、溶接金属中のCuおよび母材(鋼材)中のCuは上記(1)式を満たすことが好ましい。   When (Cu content in the weld metal / Cu content in the base metal) is 1 or less, the corrosion resistance of the weld metal is inferior to that of the base material (steel material). In the simulated acid immersion test, the dissolution of the metal in the welded portion is promoted. On the other hand, when (Cu content in the weld metal / Cu content in the base metal) exceeds 5, not only the cost of the welding material (welding wire) is increased by adding more Cu than necessary, but also welding. Since the corrosion resistance of the metal greatly exceeds that of the base material, selective corrosion of the base material occurs in an actual corrosive environment. Therefore, it is preferable that Cu in the weld metal and Cu in the base material (steel material) satisfy the above formula (1).

また、本発明の原油タンクの溶接継手は、溶接金属中のCu,MoおよびWが下記(2)式;
0.25≦(溶接金属中のCu含有量/溶接金属中のMo,Wの合計含有量)≦3
・・・(2)
を満たして含有していることが好ましい。
発明者らは、CuとMoあるいはWを併用して添加すると、それらの元素の相乗効果によって、溶接継手の耐食性が大幅に向上することを見出した。しかし、(2)式中の(溶接金属中のCu含有量/溶接金属中のMo,Wの合計含有量)が0.25未満の場合には、溶接金属中のMoあるいはWの含有量に比してCuの含有量が低すぎて上記相乗効果が期待できないため、溶接継手の耐食性が低下する。一方、(2)式中の(溶接金属中のCu含有量/溶接金属中のMo,Wの合計含有量)が3を超える場合には、溶接金属中のCu含有量に比してMoあるいはWの含有量が低すぎて、やはり上記相乗効果が期待できないため、溶接継手の耐食性が低下してしまう。よって、溶接金属中のCu,MoおよびWは上記(2)式を満たすことが好ましい。なお、溶接金属中におけるMoおよびWの含有量は、その合計含有量が上記式を満たす範囲内であれば、MoおよびWのうちのいずれか一方を含まなくても構わない。
In the weld joint of the crude oil tank of the present invention, Cu, Mo and W in the weld metal are represented by the following formula (2):
0.25 ≦ (Cu content in weld metal / total content of Mo and W in weld metal) ≦ 3
... (2)
It is preferable to contain and satisfy.
The inventors have found that when Cu and Mo or W are added in combination, the corrosion resistance of the welded joint is greatly improved by the synergistic effect of these elements. However, when (Cu content in weld metal / total content of Mo and W in weld metal) in the formula (2) is less than 0.25, the content of Mo or W in the weld metal On the other hand, since the content of Cu is too low and the above synergistic effect cannot be expected, the corrosion resistance of the welded joint is lowered. On the other hand, when (Cu content in the weld metal / total content of Mo and W in the weld metal) in the formula (2) exceeds 3, Mo or Mo compared to the Cu content in the weld metal Since the W content is too low and the above synergistic effect cannot be expected, the corrosion resistance of the welded joint is lowered. Therefore, it is preferable that Cu, Mo, and W in the weld metal satisfy the above formula (2). In addition, as long as the content of Mo and W in a weld metal is in the range with which the said content satisfy | fills the said Formula, it does not need to contain any one of Mo and W.

なお、上記溶接金属中のCu,MoおよびWの含有量を上記範囲に制御するには、鋼材(母材)の成分組成および溶接条件に応じて、溶接に用いる溶接材料(溶接ワイヤ)を適宜選択するのが好ましい。例えば、溶接金属中のCu,MoおよびWの目標組成を母材希釈率で割り戻して求めた組成を有する溶接ワイヤを作製し、これを用いて溶接する方法である。   In order to control the contents of Cu, Mo and W in the weld metal within the above range, a welding material (welding wire) used for welding is appropriately selected according to the component composition of the steel (base material) and welding conditions. It is preferable to select. For example, a welding wire having a composition obtained by dividing the target composition of Cu, Mo and W in the weld metal by the base material dilution rate is produced and welded using this.

また、本発明の原油タンクの溶接に用いる溶接方法は、片面1パスのサブマージアーク溶接法であるFAB溶接やFCB溶接、RF溶接のような大入熱溶接や、炭酸ガスアーク溶接(CO溶接)のような小入熱溶接などを用いることができるが、溶接金属の化学成分組成を適正範囲に制御する場合には、溶接ワイヤを用いる溶接方法であることが好ましい。 The welding method used for welding the crude oil tank according to the present invention is a single-sided one-pass submerged arc welding method such as FAB welding, FCB welding, RF welding, carbon dioxide arc welding (CO 2 welding), or the like. However, when the chemical component composition of the weld metal is controlled within an appropriate range, a welding method using a welding wire is preferable.

表1−1、表1−2に示したNo.1〜41の異なる成分組成を有する鋼を真空溶解炉で溶製して鋼塊とし、または転炉で溶製し、連続鋳造して鋼スラブとし、これらを1150℃に再加熱後、仕上圧延終了温度を800℃とする熱間圧延を施して、板厚25mmの厚鋼板とした。   No. shown in Table 1-1 and Table 1-2. Steel having different component compositions of 1-41 is melted in a vacuum melting furnace to form a steel ingot, or melted in a converter, continuously cast into a steel slab, these are reheated to 1150 ° C., and then finish-rolled Hot rolling with an end temperature of 800 ° C. was performed to obtain a thick steel plate having a thickness of 25 mm.

Figure 2012117137
Figure 2012117137

Figure 2012117137
Figure 2012117137

斯くして得られたNo.1〜41の厚鋼板を、下記の上甲板裏を模擬した全面腐食試験(結露試験)と、タンカー底板環境を模擬した局部耐食試験(耐酸試験)に供した。
(1)タンカー上甲板環境を模擬した全面腐食試験(結露試験)
タンカー上甲板裏面における全面腐食に対する耐食性を評価するため、上記No.1〜41の厚鋼板から、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その表面を600番手のエメリー紙で研磨し、裏面および端面は腐食しないよう、テープでシールして耐食性試験片を作製し、図1に示した腐食試験装置を用いて全面腐食試験を行った。
この腐食試験装置は、腐食試験槽2と温度制御プレート3とから構成されており、腐食試験槽2には温度が36℃に保持された水6が注入されており、また、その水6中には、12vol%CO、4vol%O、0.01vol%SO、0.05vol%HS、残部Nからなる混合ガス(導入ガス4)を導入して腐食試験槽2内を過飽和の水蒸気で充満し、原油タンク上甲板裏の腐食環境を再現したものである。そして、この試験槽の上裏面にセットした腐食試験片1に、ヒーターと冷却装置を内蔵した温度制御プレート3を介して25℃×3時間+50℃×21時間を1サイクルとする温度変化を180日間繰り返して付与し、試験片1の表面に結露水を生じさせて、全面腐食を起こさせるようにしたものである。図1中、5は試験槽からの排出ガスを示す。
上記試験後、各試験片表面の錆を除去し、試験前後の質量変化から、腐食による質量の減少量を求め、この値から1年当たりの板厚減量(片面の腐食速度)に換算した。その結果、腐食速度が0.08mm/y以下でかつ母材部および溶接部のいずれにも局部腐食が認められない場合を耐全面腐食性が良好(○)、0.08mm/y超、あるいは、母材部か溶接部のいずれか一方にでも局部腐食が目視で認められる場合を耐全面腐食性が不良(×)と評価した。
No. obtained in this way. Thick steel plates 1 to 41 were subjected to a general corrosion test (condensation test) simulating the back of the upper deck below and a local corrosion test (acid resistance test) simulating the tanker bottom plate environment.
(1) Full corrosion test (condensation test) simulating the tanker upper deck environment
In order to evaluate the corrosion resistance against general corrosion on the back of the upper tanker, Cut a rectangular piece of width 25mm x length 60mm x thickness 5mm from thick steel plates 1 to 41, polish the surface with 600th emery paper and seal it with tape so that the back and end faces do not corrode. A corrosion resistance test piece was prepared, and a full surface corrosion test was performed using the corrosion test apparatus shown in FIG.
This corrosion test apparatus is composed of a corrosion test tank 2 and a temperature control plate 3. Water 6 having a temperature of 36 ° C. is injected into the corrosion test tank 2, and the water 6 Into the corrosion test tank 2, a mixed gas (introduction gas 4) consisting of 12 vol% CO 2 , 4 vol% O 2 , 0.01 vol% SO 2 , 0.05 vol% H 2 S and the balance N 2 is introduced. It is filled with supersaturated water vapor and reproduces the corrosive environment behind the upper deck of a crude oil tank. Then, a temperature change with a cycle of 25 ° C. × 3 hours + 50 ° C. × 21 hours is applied to the corrosion test piece 1 set on the upper and rear surfaces of the test tank via a temperature control plate 3 incorporating a heater and a cooling device. It is repeatedly applied for one day to cause dew condensation water on the surface of the test piece 1 to cause overall corrosion. In FIG. 1, 5 indicates the exhaust gas from the test tank.
After the above test, the rust on the surface of each test piece was removed, the amount of mass decrease due to corrosion was determined from the change in mass before and after the test, and this value was converted into a reduction in sheet thickness (corrosion rate on one side) per year. As a result, when the corrosion rate is 0.08 mm / y or less and no local corrosion is observed in either the base metal part or the welded part, the overall corrosion resistance is good (O), more than 0.08 mm / y, or When the local corrosion was visually recognized in either the base metal part or the welded part, the overall corrosion resistance was evaluated as poor (x).

(2)タンカー油槽部底板環境を模擬した局部腐食試験(耐酸試験)
タンカー油槽部底板における孔食に対する耐孔食性を評価するため、上記No.1〜41の厚鋼板から、溶接金属が試験片の幅方向と並行かつ中央に位置するよう、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その全面を600番手のエメリー紙で研磨して耐食性試験片を作製した。
次いで、10mass%NaCl水溶液を、濃塩酸を用いてClイオン濃度10mass%、pH0.85に調製した試験溶液を作製し、試験片の上部に開けた3mmφの孔にテグスを通して吊るし、1試験片につき2Lの試験溶液中に168時間浸漬する腐食試験を行った。なお、試験溶液は、予め30℃に加温・保持し、24時間毎に新しい試験溶液と交換した。
上記腐食試験に用いた装置を図2に示す。この腐食試験装置は、腐食試験槽8、恒温槽9の二重型の装置で、腐食試験槽8には上記試験溶液10が入れられ、その中に試験片7がテグス11で吊るされて浸漬されている。試験溶液10の温度は、恒温槽9に入れた水12の温度を調整することで保持している。
上記腐食試験後、試験片表面に生成した錆を除去した後、試験前後の質量差を求め、この差を全表面積で割り戻し、1年当たりの板厚減少量(両面の腐食速度)を求めた。その結果、腐食速度が1.0mm/y以下でかつ母材部および溶接部に局部腐食が目視で認められない場合を耐局部腐食性が良好(○)、腐食速度が1.0mm/y超え、あるいは、母材部および溶接部のいずれかにでも局部腐食が目視で認められる場合を耐局部腐食性が不良(×)と評価した。
(2) Local corrosion test (acid resistance test) simulating the tanker tank bottom plate environment
In order to evaluate pitting corrosion resistance against pitting corrosion in the bottom plate of the tanker oil tank part, Cut out a rectangular piece of width 25 mm x length 60 mm x thickness 5 mm from the thick steel plates 1 to 41 so that the weld metal is parallel to the center of the test piece in the width direction and the entire surface is 600 emery paper. A corrosion resistance test piece was prepared by polishing.
Next, a 10 mass% NaCl aqueous solution was prepared using concentrated hydrochloric acid to prepare a test solution having a Cl ion concentration of 10 mass% and a pH of 0.85. The test solution was suspended in a 3 mmφ hole opened in the upper part of the test piece, and suspended per test piece. A corrosion test was conducted by immersing in 2 L of test solution for 168 hours. The test solution was preheated and maintained at 30 ° C. and replaced with a new test solution every 24 hours.
The apparatus used for the corrosion test is shown in FIG. This corrosion test apparatus is a double-type apparatus of a corrosion test tank 8 and a thermostatic tank 9, and the test solution 10 is put in the corrosion test tank 8, and the test piece 7 is suspended and immersed in the tegs 11 therein. ing. The temperature of the test solution 10 is maintained by adjusting the temperature of the water 12 placed in the thermostatic chamber 9.
After removing the rust generated on the surface of the test piece after the corrosion test, the mass difference before and after the test is calculated, the difference is divided by the total surface area, and the reduction in thickness (corrosion rate on both sides) per year is calculated. It was. As a result, when the corrosion rate is 1.0 mm / y or less and local corrosion is not visually recognized in the base metal part and the welded part, the local corrosion resistance is good (◯), and the corrosion rate exceeds 1.0 mm / y. Alternatively, the case where local corrosion was visually observed in either the base metal part or the welded part was evaluated as poor (×) local corrosion resistance.

上記磁粉探傷試験の結果および耐食性試験の結果を、表1−1,表1−2中に併記した。これらの表から、本発明の条件を満たすNo.1〜33の厚鋼板は、上甲板裏を模擬した結露試験およびタンカー底板環境を模擬した耐酸試験のいずれにおいても良好な耐食性を示しているのに対し、本発明の条件を満たさないNo.34〜41の厚鋼板は、いずれの耐食性試験においても良好な結果が得られていないことがわかる。   The results of the magnetic particle flaw detection test and the corrosion resistance test are also shown in Tables 1-1 and 1-2. From these tables, No. satisfying the conditions of the present invention is obtained. The thick steel plates 1 to 33 exhibit good corrosion resistance in both the dew condensation test simulating the upper deck back and the acid resistance test simulating the tanker bottom plate environment, while the No. 1 does not satisfy the conditions of the present invention. It can be seen that the 34 to 41 thick steel plates have not obtained good results in any of the corrosion resistance tests.

表1−1に記載されたNo.2の厚鋼板同士および表2−2に記載されたNo.22の厚鋼板同士を、表2に記載の各種溶接方法で溶接してNo.1〜10の溶接継手を作製した。なお、各溶接方法の入熱量は、FCB溶接は146kJ/cm、FAB溶接は180kJ/cm、CO溶接は1.5kJ/cmとし、開先は全てV開先とした。また、各溶接継手の溶接金属中のCu,MoおよびWの組成制御は、Cu,MoおよびWの目標組成を母材希釈率(CO溶接11%程度、FAB溶接47%程度、FCB溶接67%程度)で割り戻して求めた組成を有する溶接ワイヤを作製し、これを用いて溶接することで行った。また、FCB溶接には、フラックス(PF−I55E/(株)神戸製鋼所製)と裏フラックス(PF−I50R/(株)神戸製鋼所製)、FAB溶接には、フラックス(PF−I52E/(株)神戸製鋼所製)、充填剤(RR−2/(株)神戸製鋼所製)および裏当て材(FA−B1/(株)神戸製鋼所製)をそれぞれ用いた。 No. described in Table 1-1. No. 2 described in Table 2-2. No. 22 steel plates were welded together by various welding methods described in Table 2 1 to 10 welded joints were produced. In addition, the heat input of each welding method was 146 kJ / cm for FCB welding, 180 kJ / cm for FAB welding, 1.5 kJ / cm for CO 2 welding, and all the grooves were V grooves. Further, the composition control of Cu, Mo and W in the weld metal of each welded joint is performed by setting the target composition of Cu, Mo and W to the base material dilution ratio (CO 2 welding is about 11%, FAB welding is about 47%, FCB welding 67 is A welding wire having a composition obtained by rebating by about%) was prepared, and welding was performed using this. Also, for FCB welding, flux (PF-I55E / manufactured by Kobe Steel) and reverse flux (PF-I50R / manufactured by Kobe Steel), and for FAB welding, flux (PF-I52E / ( Kobe Steel, Ltd.), filler (RR-2 / Kobe Steel) and backing material (FA-B1 / Kobe) were used.

Figure 2012117137
Figure 2012117137

上記ようにして作製した溶接継手について、溶接金属中のCu,MoおよびWの含有量を、原子吸光分析法を用いて測定した後、下記の、上甲板裏を模擬した全面腐食試験(結露試験)と、タンカー底板環境を模擬した局部耐食試験(耐酸試験)に供した。
(1)タンカー上甲板環境を模擬した全面腐食試験(結露試験)
No.1〜10の厚鋼板溶接継手の板厚1/4の位置から、溶接金属が試験片の幅方向と平行かつ中央に位置するよう、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その表面を600番手のエメリー紙で研磨した後、裏面および端面は腐食しないよう、テープでシールして試験片を作製し、図1に示した腐食試験装置を用いて、実施例1と同じ条件で全面腐食試験(結露試験)を行い、同じ基準で耐食性を評価した。
(2)タンカー油槽部底板環境を模擬した局部腐食試験(耐酸試験)
No.1〜10の厚鋼板溶接継手の板厚1/4の位置から、溶接金属が試験片の幅方向と並行かつ中央に位置するよう、幅25mm×長さ60mm×厚さ5mmの矩形の小片を切り出し、その全面を600番手のエメリー紙で研磨して試験片を作製し、図2に示した腐食試験装置を用いて、実施例1と同じ条件で局部腐食試験(耐酸試験)を行い、同じ基準で耐食性を評価した。
After measuring the contents of Cu, Mo and W in the weld metal using the atomic absorption analysis method for the welded joint produced as described above, the following full corrosion test (condensation test) simulating the back of the upper deck ) And a local corrosion resistance test (acid resistance test) simulating the tanker bottom plate environment.
(1) Full corrosion test (condensation test) simulating the tanker upper deck environment
No. A rectangular piece of width 25 mm × length 60 mm × thickness 5 mm so that the weld metal is located in the center in parallel with the width direction of the test piece from the position of the plate thickness ¼ of the thick steel plate welded joint of 1-10. After cutting out and polishing the surface with 600th emery paper, a test piece was prepared by sealing with a tape so that the back surface and the end surface were not corroded. Using the corrosion test apparatus shown in FIG. A general corrosion test (condensation test) was performed under the same conditions, and the corrosion resistance was evaluated according to the same criteria.
(2) Local corrosion test (acid resistance test) simulating the tanker tank bottom plate environment
No. A rectangular piece of width 25 mm × length 60 mm × thickness 5 mm so that the weld metal is located in parallel with the width direction of the test piece from the position of the thickness 1/4 of the thick steel plate welded joint of 1-10. Cut out and polished the entire surface with 600th emery paper to produce a test piece. Using the corrosion test apparatus shown in FIG. 2, a local corrosion test (acid resistance test) was performed under the same conditions as in Example 1. Corrosion resistance was evaluated on the basis.

上記耐食性試験の結果を、表2中に併記した。表2から、本発明の条件を満たすNo.1〜4,7および8の溶接継手は、上甲板裏を模擬した結露試験およびタンカー底板環境を模擬した耐酸試験のいずれにおいても良好な耐食性を示しているのに対し、本発明の条件を満たさないNo.5,6,9および10の厚鋼板は、いずれの耐食性試験においても良好な結果が得られていないことがわかる。   The results of the corrosion resistance test are also shown in Table 2. From Table 2, No. satisfying the conditions of the present invention is obtained. The welded joints 1 to 4, 7 and 8 satisfy the conditions of the present invention while exhibiting good corrosion resistance in both the dew condensation test simulating the upper deck back and the acid resistance test simulating the tanker bottom plate environment. No. It can be seen that the thick steel plates of 5, 6, 9 and 10 do not give good results in any of the corrosion resistance tests.

1、7:試験片
2、8:腐食試験槽
3:温度制御プレート
4:導入ガス
5:排出ガス
6、12:水
9:恒温槽
10:試験液
11:テグス
DESCRIPTION OF SYMBOLS 1, 7: Test piece 2, 8: Corrosion test tank 3: Temperature control plate 4: Introducing gas 5: Exhaust gas 6, 12: Water 9: Thermostatic bath 10: Test liquid 11: Tegus

Claims (8)

C:0.03〜0.16mass%、
Si:0.05〜1.50mass%、
Mn:0.1〜2.0mass%、
P:0.025mass%以下、
S:0.010mass%以下、
Al:0.005〜0.10mass%、
N:0.008mass%以下、
Hf:0.0001〜0.01mass%、
Cu:0.03〜0.4mass%を含有し、かつ、
W:0.01〜1.0mass%、
Mo:0.01〜0.5mass%、
Sn:0.005〜0.2mass%および
Sb:0.005〜0.4mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる原油タンク用鋼材。
C: 0.03-0.16 mass%,
Si: 0.05-1.50 mass%,
Mn: 0.1 to 2.0 mass%,
P: 0.025 mass% or less,
S: 0.010 mass% or less,
Al: 0.005 to 0.10 mass%,
N: 0.008 mass% or less,
Hf: 0.0001 to 0.01 mass%,
Cu: 0.03-0.4mass% is contained, and
W: 0.01 to 1.0 mass%,
Mo: 0.01-0.5 mass%,
A steel material for a crude oil tank containing one or more selected from Sn: 0.005-0.2 mass% and Sb: 0.005-0.4 mass%, the balance being Fe and inevitable impurities.
上記鋼材は、上記成分組成に加えてさらに、
Ni:0.005〜0.4mass%、
Co:0.01〜0.4mass%および
Cr:0.01〜0.3mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の原油タンク用鋼材。
In addition to the above component composition, the steel material further includes:
Ni: 0.005 to 0.4 mass%,
The steel material for a crude oil tank according to claim 1, comprising one or more selected from Co: 0.01 to 0.4 mass% and Cr: 0.01 to 0.3 mass%. .
上記鋼材は、上記成分組成に加えてさらに、
Ta:0.001〜0.1mass%、
Nb:0.001〜0.1mass%、
Ti:0.001〜0.1mass%、
Zr:0.001〜0.1mass%および
V:0.002〜0.2mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の原油タンク用鋼材。
In addition to the above component composition, the steel material further includes:
Ta: 0.001 to 0.1 mass%,
Nb: 0.001 to 0.1 mass%,
Ti: 0.001 to 0.1 mass%,
The crude oil tank according to claim 1 or 2, comprising one or more selected from Zr: 0.001 to 0.1 mass% and V: 0.002 to 0.2 mass%. Steel material.
上記鋼材は、上記成分組成に加えてさらに、
Ca:0.0002〜0.01mass%、
REM:0.0002〜0.015mass%、
Y:0.0001〜0.1mass%、
のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の原油タンク用鋼材。
In addition to the above component composition, the steel material further includes:
Ca: 0.0002 to 0.01 mass%,
REM: 0.0002 to 0.015 mass%,
Y: 0.0001 to 0.1 mass%,
The steel material for a crude oil tank according to any one of claims 1 to 3, comprising one or more selected from among the above.
上記鋼材は、上記成分組成に加えてさらに、B:0.0002〜0.003mass%を含有することを特徴とする請求項1〜4のいずれか1項に記載の原油タンク用鋼材。 The steel material according to any one of claims 1 to 4, wherein the steel material further contains B: 0.0002 to 0.003 mass% in addition to the component composition. 上記鋼材は、上記成分組成に加えてさらに、Bi:0.001〜0.1mass%を含有することを特徴とする請求項1〜5のいずれか1項に記載の原油タンク用鋼材。 The said steel materials contain Bi: 0.001-0.1mass% further in addition to the said component composition, The steel materials for crude oil tanks of any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載の鋼材を母材とする溶接継手であって、溶接金属部の成分組成が下記(1)式および(2)式を満たすことを特徴とする溶接継手。

1<(溶接金属中のCu含有量/母材中のCu含有量)≦5 ・・・(1)
0.25≦(溶接金属中のCu含有量/溶接金属中のMo,Wの合計含有量)≦3
・・・(2)
It is a welded joint which uses the steel material of any one of Claims 1-6 as a base material, Comprising: The component composition of a weld metal part satisfy | fills following (1) Formula and (2) Formula, Fittings.
1 <(Cu content in weld metal / Cu content in base metal) ≦ 5 (1)
0.25 ≦ (Cu content in weld metal / total content of Mo and W in weld metal) ≦ 3
... (2)
請求項7に記載の溶接継手を有することを特徴とする原油タンク。 A crude oil tank comprising the welded joint according to claim 7.
JP2010270553A 2010-12-03 2010-12-03 Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank Pending JP2012117137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010270553A JP2012117137A (en) 2010-12-03 2010-12-03 Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270553A JP2012117137A (en) 2010-12-03 2010-12-03 Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank

Publications (1)

Publication Number Publication Date
JP2012117137A true JP2012117137A (en) 2012-06-21

Family

ID=46500321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270553A Pending JP2012117137A (en) 2010-12-03 2010-12-03 Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank

Country Status (1)

Country Link
JP (1) JP2012117137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180546A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Sulfuric acid dew point corrosion resistant steel and exhaust gas flow-path constructional element
RU2530611C1 (en) * 2013-04-08 2014-10-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Welding wire for automatic welding of heat-resistance pearlitic steels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180546A (en) * 2011-02-28 2012-09-20 Nisshin Steel Co Ltd Sulfuric acid dew point corrosion resistant steel and exhaust gas flow-path constructional element
RU2530611C1 (en) * 2013-04-08 2014-10-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Welding wire for automatic welding of heat-resistance pearlitic steels

Similar Documents

Publication Publication Date Title
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4968394B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP4968395B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP6048385B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP5526859B2 (en) Steel for crude oil tankers
JP6064888B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP2014201759A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP6149943B2 (en) Steel for crude oil tank and crude oil tank
JP2014201758A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP4968393B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP2014201755A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2012117137A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank
JP2012117138A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank
JP6409963B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP6201376B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance
JP2012117139A (en) Steel for crude oil tank having excellent corrosion resistance, welded joint, and crude oil tank
JP2014201757A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP2014201756A (en) Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank
JP6409962B2 (en) Steel for crude oil tanks and crude oil tanks with excellent corrosion resistance