KR100345704B1 - A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC - Google Patents

A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC Download PDF

Info

Publication number
KR100345704B1
KR100345704B1 KR1019970062734A KR19970062734A KR100345704B1 KR 100345704 B1 KR100345704 B1 KR 100345704B1 KR 1019970062734 A KR1019970062734 A KR 1019970062734A KR 19970062734 A KR19970062734 A KR 19970062734A KR 100345704 B1 KR100345704 B1 KR 100345704B1
Authority
KR
South Korea
Prior art keywords
less
hydrogen
steel
temperature
rolling
Prior art date
Application number
KR1019970062734A
Other languages
Korean (ko)
Other versions
KR19990042034A (en
Inventor
유호천
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1019970062734A priority Critical patent/KR100345704B1/en
Publication of KR19990042034A publication Critical patent/KR19990042034A/en
Application granted granted Critical
Publication of KR100345704B1 publication Critical patent/KR100345704B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A method of manufacturing high strength hot rolled steel strip with low susceptibility of sulfide stress corrosion cracking (SSCC) suitable for use as pipelines transporting sour oil is provided. CONSTITUTION: The method includes the steps of reheating a steel slab comprising C 0.03 to 0.12 wt.%, 0.50 wt.% or less of Si, Mn 0.5 to 1.50 wt.%, 0.020 wt.% or less of P, 0.005 wt.% or less of S, Ca 0.0010 to 0.0050 wt.%, Cu 0.2 to 2.0 wt.%, Ti 0.01 to 0.07, Nb 0.01 to 0.07 wt.%, one element selected from the group consisting of V 0.01 to 0.07 wt.%, 1.0 wt.% or less of Ni, 1.0 wt.% or less of Cr and 1.0 wt.% or less of Mo, a balance of Fe and incidental impurities at 1100 to 1250°C; hot rolling the steel slab, wherein cumulative reduction ratio at higher than 1000°C is greater than 60 % and finish hot rolling temperature is 900 to 950°C; cooling the hot rolled steel sheet to the temperature range of 550 to 450 at a cooling rate of 6 to 13°C/sec, followed by air cooling; and heat treatment at 550 to 650°C.

Description

내수소유기응력부식균열성이 우수한 고강도 열연강판의 제조방법{A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC}A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC

본 발명은 석유수송용 및 저장용 유정관 또는 압력용기에 사용되는 열연강판의 제조방법에 관한 것으로써, 보다 상세하게는 내수소유기응력부식균열성이 우수한 고강도 열연강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a hot rolled steel sheet used in an oil well pipe or a pressure vessel for oil transportation and storage, and more particularly, to a method for producing a high strength hot rolled steel sheet having excellent resistance to corrosion of hydrogen hydrogen stress.

석유수송용 및 저장용 유정관 또는 압력용기용 강재는 유화물에 의한 균열사고가 모재, 특히 용접부에서 수소균열이 원인이 되어 대형설비사고를 일으켜 경제적으로 막대한 피해를 주고 있는 실정이다. 이에 대한 대비책으로 유화수소에 의한 내수소유기응력부식균열성이 우수한 강의 최적 제조조건의 도출이 절대적으로 필요한 시점에 있다.In the case of oil transportation and storage oil wells or steel for pressure vessels, the accident of cracking caused by the oil causes hydrogen cracking in the base material, especially in the welding part, causing large-scale equipment accidents, causing economic damage. As a countermeasure against this, it is at a time when it is absolutely necessary to derive the optimum manufacturing conditions for steels having excellent resistance to hydrogen organic stress corrosion corrosion by hydrogen sulfide.

지금까지 내수소유기응력부식균열성이 우수한 강재는 압연마무리 온도가 800℃이하인 저온압연과 10℃/sec의 냉각속도로 가속냉각하여 제조하였으나, 인장강도가 대략 60㎏/㎟급 강재밖에 되지 않아 강판의 두께가 두꺼워져야 하는 결점을 안고 있었다. 또한, 저온압연을 하기 위하여 800℃이하까지 공냉대기하고 있다가 열간압연하는 동안에 저온역압연으로 인하여 단위시간당 생산량이 감소되어 압연생산성이 저하하는 단점을 안고 있었다.Until now, steels with excellent resistance to cracking and corrosion of organic stresses were manufactured by cold rolling with a rolling finish temperature of 800 ° C or less and accelerated cooling at a cooling rate of 10 ° C / sec, but the tensile strength is only about 60㎏ / ㎠ grade steel. The steel plate had the drawback that the thickness should be thick. In addition, in order to perform low temperature rolling, air cooling was carried out to 800 ° C. or lower, and during the hot rolling, the yield per unit time was decreased due to the low temperature reverse rolling.

따라서, 강도를 높혀 강판의 두께를 더욱 얇게 하여 값싸게 생산할 수 있는 방법 및 압연생산성을 높일 수 있는 강재의 필요성이 커지고 있다.Therefore, there is an increasing need for a method capable of producing cheaply by increasing the strength to make the thickness of the steel sheet thinner and a steel material capable of increasing the rolling productivity.

이에, 본 발명은 상기 종래문제를 해결하기 위해 안출된 것으로써, 압연생산성이 향상되고 고강도이면서 내수소유기응력부식균열성이 우수한 열연강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present invention has been made in order to solve the above-mentioned conventional problems, to provide a method for producing a hot rolled steel sheet having improved rolling productivity, high strength and excellent corrosion resistance to hydrogen-containing organic stresses, and an object thereof.

상기 목적을 달성하기 위한 본 발명은, 중량%로 C:0.03-0.12%, Si:0.50%이하, Mn:0.5-1.50%, P:0.020%이하, S:0.005%이하, Ca:0.0010-0.0050%, Cu:0.2-2.0%, Ti:0.01-0.07, Nb:0.01-0.07%, V:0.01-0.07%와, Ni:1.0%이하, Cr:1.0%이하 및 Mo:1.0%이하중 선택된 1종을 함유하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1100-1250℃의 온도범위로 가열하여 1000℃이상에서의 누적압하율이 60%이상이고, 900-950℃의 압연마무리 온도조건으로 열간압연한 후 6-13℃/sec의 속도로 550-450℃까지 냉각한 후 공냉한 다음, 550-650℃의 온도에서 열처리하여 구성된다.The present invention for achieving the above object, by weight% C: 0.03-0.12%, Si: 0.50% or less, Mn: 0.5-1.50%, P: 0.020% or less, S: 0.005% or less, Ca: 0.0010-0.0050 %, Cu: 0.2-2.0%, Ti: 0.01-0.07, Nb: 0.01-0.07%, V: 0.01-0.07%, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less Slabs containing species and composed of the remaining Fe and other unavoidable impurities are heated to a temperature range of 1100-1250 ° C., and the cumulative pressure reduction rate at 1000 ° C. or higher is 60% or more, and the rolling finish temperature condition is 900-950 ° C. After hot rolling, it is cooled to 550-450 ° C at a rate of 6-13 ° C / sec, followed by air cooling, and then heat-treated at a temperature of 550-650 ° C.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 상술한 압연생산성과 내수소유기응력부식균열성을 동시에 향상시키기 위해 첫째, 합금원소를 조절하고, 둘째, 열간압연방법을 제어하며, 셋째, 열처리방법을 제어하는 것으로서, 이를 설명하면 다음과 같다.The present invention is to control the alloying elements, second, to control the hot rolling method, and third, to control the heat treatment method to improve the above-described rolling productivity and hydrogen stress stress corrosion cracking at the same time. Same as

첫째, 수소유기응력부식균열은 고강도강에서 비금속개재물에 의한 중심편석과 길게 늘어난 펄라이트조직이 원인이 되어 발생하는 것이므로 적절한 합금성분의 조절이 필요하다.First, hydrogen-organic stress corrosion cracking is caused by the central segregation caused by the non-metallic inclusions and the elongated pearlite structure in the high-strength steel.

즉, 1)합금원소로 P, S와 공편석(共偏析)을 촉진하는 Si와 Mn의 함량을 감소시키고 또한 탄소함량을 줄이며, 추가로 Ca를 첨가하여 비금속개재물에 의한 중심편석을 줄이고 강의 청정도를 높이는 것이다.That is, 1) the alloying elements reduce the content of Si and Mn that promote P, S and co-segregation, and also reduce the carbon content, and additionally add Ca to reduce the central segregation caused by non-metallic inclusions and the cleanliness of steel. To increase.

2) 그리고, 강내부의 기지조직의 강도를 상승시켜 수소흡수량을 저감하도록 강성분계를 설계한다. 수소유기응력부식균열은 흡수수소량이 수소유기응력부식균열 발생 임계량보다 크면 발생한다. 이것을 방지할 수 있는 방법은 흡수수소량을 저감시키고 수소유기응력부식균열을 발생시킬 수 있는 임계 수소량을 증대시켜야 한다. 구체적인 방법으로서 고강도화를 위해 Cu, Ni, Cr, Mo를 적정량 첨가하는 것이다.2) Then, the steel component system is designed to reduce the hydrogen absorption by increasing the strength of the matrix structure inside the steel. Hydrogen organic stress corrosion cracking occurs when the amount of hydrogen absorbed is greater than the threshold amount of hydrogen organic stress corrosion cracking. A way to prevent this should be to reduce the amount of hydrogen absorbed and increase the amount of critical hydrogen that can generate hydrogen organic stress corrosion cracking. As a specific method, an appropriate amount of Cu, Ni, Cr, and Mo is added for high strength.

3)아울러, 모재 및 용접부의 결정립을 미세화시켜 길게 늘어난 펄라이트 조직을 억제시키는 것으로서 Ti, Nb, V을 적정량 첨가하는 것이다.3) In addition, the crystal grains of the base metal and the welded part are refined to suppress the elongated pearlite structure, and an appropriate amount of Ti, Nb and V is added.

둘째, 종래 저온압연역 대신 고온압연을 하여 압연생산을 확보하는 것으로서, 900-950℃의 압연마무리 온도범위에서 열간압연한 다음 가속냉각하는 것이다.Second, to secure the rolling production by hot rolling instead of the conventional low-temperature rolling, hot rolling in the rolling finish temperature range of 900-950 ℃ and then accelerated cooling.

셋째, 가공열응력을 제거해 내수소유기응력부식균열 및 강도를 향상시키기 위해 500-650℃로 열처리하는 것이다. 이와 같은 특징적인 본 발명의 조건에 의해 내수소유기응력부식균열성이 우수한 고강도 열연강판의 제조가 가능하다.Third, heat treatment at 500-650 ℃ to remove the processing thermal stress to improve the corrosion resistance and strength of the hydrogen-organic organic stress. According to the characteristic conditions of the present invention, it is possible to produce a high strength hot rolled steel sheet having excellent resistance to hydrogen organic stress corrosion cracking.

보다 구체적으로 강성분계를 설명하면, 먼저 상기 C는 강도를 확보하기 위해첨가하는데, 이를 위해 0.03%이상 첨가하며, 그 첨가량이 0.15%증가하면 펄라이트조직을 증가시켜 내수소유기응력부식균열성을 감소시키고 용접부와 모재의 경도 및 조직의 차이를 크게 하는 원인으로 작용하므로 0.03-0.15%로 첨가하는 것이 바람직하다.In more detail, when the steel component is described, first, C is added to secure the strength. For this, 0.03% or more is added, and when the amount is increased by 0.15%, the pearlite structure is increased to decrease the hydrogen stress corrosion cracking resistance. In order to increase the hardness and structure of the welded part and the base metal, it is desirable to add 0.03-0.15%.

상기 Si는 강중에서 탈산작용하며 내부식성을 향상시키지만 0.50%이상 첨가되면 강중에서 비금속개재물로 작용되어 수소유기균열성을 해치기 때문에 0.50%이하로 첨가하는 것이 바람직하다.The Si deoxidizes in steel and improves corrosion resistance, but if it is added more than 0.50%, it is preferable to add 0.50% or less because it acts as a non-metallic inclusion in the steel and impairs hydrogen organic cracking.

상기 Mn은 강중에서 탈산작용을 하고 용접성, 열간가공성 및 강도를 향상시키는 유효한 원소이므로 0.5%이상 첨가하지만, 1.50%이상 첨가하면 MnS와 같은 비금속개재물을 형성하여 열간압연시에 길게 늘어나 내수소유기응력균열성을 저해하므로 0.5-1.50%로 첨가하는 것이 바람직하다.The Mn is an effective element that deoxidizes in steel and improves weldability, hot workability, and strength. However, when Mn is added, the Mn forms a non-metallic inclusion such as MnS to increase its length in hot rolling. Since cracking property is inhibited, it is preferable to add 0.5-1.50%.

상기 P은 함유량이 높을 경우 입계에 편석하여 취성균열을 일으키고 모재 및 용접부에 고온균열을 야기시키는 유해한 원소이기 때문에 0.020%이하로 관리할 필요가 있다When P is a high content, it is a harmful element that segregates at grain boundaries and causes brittle cracks and high temperature cracks in the base metal and welds. Therefore, P is required to be controlled at 0.020% or less.

상기 S은 내부식성에 매우 해로운 원소이므로 함유량이 적을수록 좋지만 완전히 제거하는 것이 불가능하므로 최대한 그 함유량을 억제하는 것이 필요하며, 0.005%를 초과하면 MnS 등의 비금속개재물이 강중에 다량으로 존재하여 내수소유기응력부식균열성을 해치기 때문에 함유량을 0.005%이하로 억제할 필요가 있다.S is an element that is very detrimental to corrosion resistance, so the smaller the content, the better, but it is impossible to completely remove it, and it is necessary to suppress the content as much as possible. When it exceeds 0.005%, non-metallic inclusions such as MnS are present in a large amount in hydrogen It is necessary to suppress the content to 0.005% or less because it impairs organic stress corrosion cracking.

상기 Ca은 MnS를 CaS로 바꾸고 구상화시켜 수소유기응력부식균열성을 감소시키는 원소인데, 그 첨가량이 0.0010%이하이면 효과가 없고, 0.0050%이상의 첨가는그 첨가효과가 포화되고 특히, 비금속개재물로 강중에 잔존하여 청정성을 해치기 때문에 0.0010-0.0050%로 첨가하는 것이 바람직하다.Ca is an element that reduces hydrogen organic stress corrosion cracking by converting and spheroidizing MnS into CaS, and when the amount thereof is less than 0.0010%, it is ineffective, and the content of more than 0.0050% is saturated, and in particular, as a nonmetallic inclusion It is preferable to add it at 0.0010-0.0050% because it remains in and impairs cleanliness.

상기 Cu는 기지조직을 강화하여 강중에 수소의 절대량을 억제시켜 용접부 및 모재부에 내수소유기응력부식균열성을 향상시키는 원소로서, 0.20%미만에서는 내수소유기응력부식균열성의 개선효과가 적으며 2.0%를 초과하면 열간압연시 표면결합이 쉽게 발생되고 제관시 용접성을 해치므로 0.2-2.0%의 범위로 첨가하는 것이 바람직하다.The Cu is an element that improves the hydrogen stress stress cracking resistance in the welded portion and the base material by strengthening the matrix structure to suppress the absolute amount of hydrogen in the steel, less than 0.20% has a small effect of improving the resistance to hydrogen stress corrosion cracking If it exceeds 2.0%, it is preferable to add it in the range of 0.2-2.0% because surface bonding occurs easily during hot rolling and damages weldability during steelmaking.

상기 Ti, Nb, V은 미량첨가에 의해 기지조직의 결정립을 미세하하여 탄소당량과 수소유기균열감수성을 높히지 않고 고강도화를 도모할 수 있으므로 첨가하는데, 그 첨가량이 0.01%이하이면 결정립미세화 효과가 없으며 0.07%이상 첨가되면 미세화효과가 포화되어 더 이상의 효과가 나타나지 않기 때문에 0.01-0.07%로 첨가하는 것이 바람직하다.Ti, Nb, and V are added to the microstructure by the micro addition of microstructures to increase the strength without increasing the carbon equivalent and the hydrogen organic cracking sensitivity. However, when the addition amount is 0.01% or less, the effect of grain refinement is achieved. If the addition is more than 0.07%, the micronization effect is saturated and no further effect is observed.

상기 Ni은 강중에서 Cu첨가로 인한 강판의 고온균열을 억제시켜 주는 효과가 있으면서 열간압연후 용접부와 모재부에 강도 및 경도를 크게 상승시키지 않고 내수소유기응력부식균열성 및 저온인성을 크게 향상시키는 원소이지만, 1.0%이상 첨가되면 부식분위기중에서 내수소응력부식균열 감수성을 증가시킬 뿐 아니라 고가이기 때문에 1.0%이하로 첨가하는 것이 바람직하다.The Ni has an effect of suppressing high temperature cracking of the steel sheet due to the addition of Cu in the steel, and greatly improves hydrogen stress corrosion cracking resistance and low temperature toughness without significantly increasing the strength and hardness of the welded portion and the base portion after hot rolling. Although it is an element, the addition of 1.0% or more not only increases the hydrogen stress corrosion cracking susceptibility in the corrosion atmosphere, but is preferably added below 1.0% because it is expensive.

상기 Cr은 강도를 상승시키는 원소로서, 1.0%까지의 첨가에서는 강도는 지속적으로 상승하지만 그 효과가 완만할 뿐만 아니라 경제적인 불이익이 있으므로 1.0%이하로 첨가하는 것이 바람직하다.The Cr is an element that increases the strength, the strength is continuously increased at the addition of up to 1.0%, but since the effect is not only moderate but also economically disadvantageous, it is preferable to add Cr below 1.0%.

상기 Mo은 열간압연후의 열처리에 대한 연화저항을 증대하여 강도향상을 도모할 수 있고, 수소유기응력부식균열 파괴의 기점이 되는 공식을 억제하는 원소이지로서 첨가하는데, 1.0%이상에서는 기지조직의 경화가 심하므로 1.0%이하로 첨가하는 것이 바람직하다.Mo is an element that can increase the softening resistance to heat treatment after hot rolling to improve the strength, and is added as an element that suppresses the formula that is the starting point of hydrogen organic stress corrosion cracking cracking, hardening the matrix structure at 1.0% or more. Since it is severe, it is desirable to add 1.0% or less.

상기와 같이 조성되는 슬라브를 가열하는데, 이때 가열온도가 1100℃ 미만이면 충분히 가열되지 않을 뿐 아니라 열간압연도중 온도가 저하되어 품질특성에 악 영향을 끼친다. 또한 1100℃이상으로 가열하여야만 강중에 분포되어 있는 석출물들이 충분히 재용해하여 고용량증대에 의한 강도상승 효과를 가져오고 수소유기응력부식균열 감수성을 감소시킬 수 있다. 그러나 가열온도가 1250℃를 넘으면 결정립조대화 현상과 표면스케일의 과다생성으로 인하여 결함이 발생되기 쉽기 때문에 1100-1250℃로 가열하는 것이 바람직하다.The slab formed as described above is heated, but if the heating temperature is less than 1100 ° C., the slab is not sufficiently heated and the temperature is reduced during hot rolling, which adversely affects the quality characteristics. In addition, the precipitates distributed in the steel should be re-dissolved only when heated to more than 1100 ℃ to bring about the effect of increasing the strength by increasing the capacity and to reduce the hydrogen organic stress corrosion cracking susceptibility. However, when the heating temperature exceeds 1250 ℃, it is preferable to heat to 1100-1250 ℃ because defects are likely to occur due to grain coarsening and over-production of the surface scale.

상기와 같이 가열한 후 열간압연하는데, 이때의 압연은 생산성 확보를 위해 1000℃이상에서의 누적압하율이 60%이상되도록 하는 것이 좋다. 그리고, 압연마무리 온도는 900-950℃로 하는 것이 바람직하다. 그 이유는 압연마무리온도가 950℃를 넘으면 결정립의 조대화 현상을 기대할 수 없어 결정립미세화에 의한 강도의 상승효과를 가져올 수 없으며, 또한 압연마무리온도가 900℃이하이면 가속냉각에 의한 충분한 소입효과를 가져올 수 없어 결정립미세화 효과가 적어지기 때문이다.After the heating as described above and hot rolling, it is preferable that the rolling at this time is a cumulative reduction of 60% or more at 1000 ° C. or more to ensure productivity. The rolling finish temperature is preferably 900 to 950 ° C. The reason is that when the finish temperature of rolling finish is over 950 ℃, the coarsening of grains cannot be expected, and it is impossible to bring about the synergistic effect of strength due to the grain refinement. This is because the grain refining effect is less because it cannot be imported.

상기와 같이 열간압연한 후 가속냉각하는데, 이때 가속냉각개시온도는 열간압연마무리 온도와 직접적으로 관련이 되어 자동적으로 결정되기 때문에 그 온도를 한정하는 것이 의미가 없으며 실제 조업에서는 열간압연마무리 온도에서 약 15-30℃ 아래온도에서 가속냉각을 개시하게 된다. 그리고, 가속냉각속도는 강조직에 영향이 가장 큰 인자로서 가속냉각속도가 6℃/sec이하가 되면 충분히 경화되지 않아 강도가 저하하며 13℃/sec이상이 되면 마르텐사이트 경화조직이 발생되어 수소유기응력부식균열성을 해치기 때문에 6-13℃/sec의 속도로 가속냉각하는 것이 바람직하다. 상기와 같이 가속냉각할 때의 가속냉각 종료온도는 오스테나이트 조직이 거의 없는 완전한 페라이트 조직이 나타날 수 있는 온도로 하여야 한다. 즉, 550℃이상에서는 오스테나이트조직이 남아 있어 불완전소입이 될 가능성이 많고, 450℃가 되면 충분한 가속냉각 효과가 이루어진다. 그러나 450℃이하가 되면 과잉의 물과 시간을 소비하기 때문에 550-450℃의 온도에서 가속냉각을 종료하는 것이 바람직하다. 상기의 온도에서 가속냉각을 종료한 다음에는 상온까지 공냉하면 된다.Accelerated cooling after hot rolling as described above, in which the accelerated cooling start temperature is directly related to the hot rolling temperature and is automatically determined, so it is not meaningful to limit the temperature. Accelerated cooling will begin at temperatures below 15-30 ° C. In addition, the accelerated cooling rate is the biggest factor affecting the stressed weave, the strength is not sufficiently hardened when the accelerated cooling rate is less than 6 ℃ / sec, the strength decreases, and martensite hardened structure is generated when the accelerated cooling rate is more than 13 ℃ / sec hydrogen hydrogen Accelerated cooling at a rate of 6-13 ° C./sec is desirable because it impairs stress corrosion cracking. As described above, the accelerated cooling end temperature at the time of accelerated cooling should be such that a complete ferrite structure with little austenite structure can be shown. That is, above 550 ° C, austenite structure remains, which is likely to result in incomplete quenching, and when it reaches 450 ° C, sufficient accelerated cooling effect is achieved. However, when it is below 450 ° C., since excess water and time are consumed, it is preferable to terminate accelerated cooling at a temperature of 550-450 ° C. After completion of the accelerated cooling at the temperature described above, air cooling may be performed at room temperature.

상기와 같이 공냉한 후 가공열응력을 제거하기 위해 열처리하는데, 이 열처리온도가 550℃이하이면 가공열응력이 완전히 제거되지 않아 수소유기응력부식균열이 발생하기 쉽고, 650℃이상이면 결정립조대화 현상이 발생하여 강도가 저하하기 때문에 열처리는 550-650℃에서 하는 것이 바람직하다. 이때의 열처리시간은 열처리온도에 비해서 내수소유기응력부식성과 강도에 민감하게 영향을 미치지 않을 뿐만 아니라 강판두께에 따라 열처리시간을 제한하는 것은 의미가 없으므로 열처리시간을 한정하지 않는다.After the air-cooled as described above, the heat treatment to remove the processing thermal stress, if the heat treatment temperature is less than 550 ℃ processing heat stress is not completely removed, hydrogen organic stress corrosion cracking is easy to occur, if the above 650 ℃ grain coarsening phenomenon Since this occurs and the strength decreases, the heat treatment is preferably performed at 550-650 ° C. The heat treatment time does not limit the heat treatment time because it does not have a significant influence on the hydrogen stress resistance and strength compared to the heat treatment temperature as well as limiting the heat treatment time according to the thickness of the steel sheet.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

진공용해로에서 하기 표 1의 성분으로된 강종들을 단중이 25kg이 되게 용해하여 두께 120mm의 강괴를 제조하고, 이 강괴를 1250℃에서 2시간 동안 가열한 다음 조압연하여 두께 80mm의 최종스라브를 얻었다.In the vacuum melting furnace, steel grades having the components shown in Table 1 below were dissolved in a weight of 25 kg to prepare a steel ingot having a thickness of 120 mm. The steel ingot was heated at 1250 ° C. for 2 hours, and then rough-rolled to obtain a final slab having a thickness of 80 mm.

화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS CaCa CuCu TiTi NbNb VV NiNi CrCr MoMo 비교강Comparative steel 1One 0.160.16 0.300.30 1.411.41 0.0150.015 0.0030.003 -- -- 0.0150.015 0.040.04 0.050.05 -- -- -- 22 0.090.09 0.290.29 2.002.00 0.0140.014 0.0030.003 0.00230.0023 0.290.29 -- -- -- 0.150.15 0.130.13 -- 발명강Invention steel 1One 0.090.09 0.310.31 0.700.70 0.0130.013 0.0030.003 0.00200.0020 0.280.28 0.0140.014 0.040.04 0.050.05 0.160.16 -- -- 22 0.090.09 0.320.32 0.700.70 0.0150.015 0.0030.003 0.00240.0024 0.350.35 0.0140.014 0.040.04 0.050.05 -- 0.250.25 -- 33 0.090.09 0.300.30 0.700.70 0.0180.018 0.0020.002 0.00200.0020 0.240.24 0.0130.013 0.020.02 0.020.02 -- -- 0.300.30 44 0.090.09 0.320.32 0.900.90 0.0150.015 0.0020.002 0.00240.0024 0.700.70 0.0130.013 0.040.04 0.030.03 0.160.16 0.240.24 -- 55 0.090.09 0.290.29 0.900.90 0.0150.015 0.0020.002 0.00230.0023 0.670.67 0.0120.012 0.020.02 0.030.03 0.150.15 -- 0.290.29 66 0.090.09 0.250.25 0.900.90 0.0150.015 0.0030.003 0.00240.0024 1.401.40 0.0170.017 0.040.04 0.050.05 -- 0.240.24 0.500.50 77 0.090.09 0.250.25 0.900.90 0.0140.014 0.0020.002 0.00240.0024 1.441.44 0.0140.014 0.030.03 0.050.05 0.150.15 0.600.60 0.400.40 88 0.050.05 0.250.25 1.401.40 0.0090.009 0.0030.003 0.00240.0024 0.260.26 0.0150.015 0.040.04 0.050.05 0.160.16 0.00240.0024 0.500.50

이와 같이 얻어진 두께 80mm의 슬라브를 하기 표 2와 같이 6패스 열간압연하여 두께 17mm의 열연판을 얻었다.The slab having a thickness of 80 mm thus obtained was hot rolled in six passes as shown in Table 2 to obtain a hot rolled sheet having a thickness of 17 mm.

압연패스Rolling pass 1One 22 33 44 55 66 압연개시온도(℃)Rolling Start Temperature (℃) 11501150 11101110 10701070 10201020 970970 925925 누적압하율(%)Cumulative reduction rate (%) 18.618.6 37.537.5 53.853.8 65.065.0 73.873.8 78.878.8 압연후 두께(mm)Thickness after rolling (mm) 6565 5050 3737 2828 2121 1717

상기 표 2에서 알 수 있듯이, 1000℃이상에서의 누적압하율은 65%로(1020℃일 경우)로 하였으며, 열간압연직후 바로 유냉하였다. 상기와 같이 열간압연할 때의 가열온도, 압연마무리 온도 및 압연후의 가속냉각방법, 그리고 후열처리는 하기표 3에 나타난 조건으로 하였다. 참고로, 가속냉각개시온도는 압연마무리 온도에서 20℃만큼 하강한 온도로 하였다. 이와같이 하여 얻은 열간압연판의 인장강도와 수소유기응력부식균열성을 시험하고 그 결과를 하기 표 3에 나타내었다.As can be seen in Table 2, the cumulative reduction rate at 1000 ℃ or more was set to 65% (in the case of 1020 ℃), it was oil-cooled immediately after hot rolling. As described above, the heating temperature at the time of hot rolling, the rolling finish temperature, the accelerated cooling method after rolling, and the post-heat treatment were the conditions shown in Table 3 below. For reference, the accelerated cooling start temperature was lowered by 20 ° C from the rolling finish temperature. The tensile strength and hydrogen organic stress corrosion cracking of the hot rolled sheet thus obtained were tested and the results are shown in Table 3 below.

이때, 내수소유기부식균열성은 그 값을 정량적으로 표현하기 위하여 폭 15mm, 길이 100mm의 시편을 원점에서 최대강점까지의 50%길이까지 1차로 굴곡한 후에 NACE Standard TM-02-84용액(유화수소포화 5% NaCl-0.5%초산(CH3COOH), pH=3용액)에 96시간 침지하였다. 그 다음, 부식되지 않은 시편이 다시 최대강도점에서 파단시까지 거리의 50%까지로 한정하여 부식된 시험편을 다시 2차로 굴곡하여 응력-변형곡선을 구하여 일정한 길이만큼 연신된 후에 굴곡하중(kgf)을 측정하여 정량적인 값으로 비교분석하였다.At this time, in order to quantitatively express the value of hydrogen-hydrogen organic corrosion cracking, NACE Standard TM-02-84 solution (hydrogen sulfide) after first bending a specimen having a width of 15 mm and a length of 100 mm to 50% of the length from the origin to the maximum strength It was immersed in saturated 5% NaCl-0.5% acetic acid (CH 3 COOH), pH = 3 solution) for 96 hours. Then, the non-corroded specimen is again limited to 50% of the distance from the maximum strength point to the break, and the corroded specimen is secondarily bent to obtain a stress-strain curve and stretched to a certain length before bending. Was measured and compared with quantitative values.

강종Steel grade 제조조건Manufacture conditions 실험결과Experiment result 종합결론Conclusion 가열온도(℃)Heating temperature (℃) 압연마무리온도(℃)Rolling Finish Temperature (℃) 가속냉각개시온도(℃)Accelerated cooling start temperature (℃) 가속냉각종료온도(℃)Accelerated cooling end temperature (℃) 가속냉각속도( ℃/sec)Accelerated Cooling Speed (℃ / sec) 열처리온도(℃)Heat treatment temperature (℃) 인장강도(kg/㎟)Tensile Strength (kg / ㎡) 굴곡하중*(kgf)Flexural Load * (kgf) 비교재Comparative material 1One 비교강1Comparative Steel 1 11501150 925925 905905 500500 1010 620620 64.564.5 820820 ×× 22 11501150 905905 500500 1010 -- 63.363.3 104104 ×× 33 비교강2Comparative Steel 2 12001200 905905 500500 1010 620620 62.262.2 213213 ×× 44 12001200 905905 500500 1616 620620 64.764.7 00 ×× 발명재Invention 1One 발명강1Inventive Steel 1 11501150 910910 890890 500500 1010 620620 65.265.2 31243124 22 발명강2Inventive Steel 2 11501150 925925 905905 500500 1010 620620 65.965.9 30993099 33 발명강3Invention Steel 3 11501150 940940 920920 500500 1010 620620 66.866.8 29842984 44 발명강4Inventive Steel 4 11501150 925925 905905 540540 1010 620620 67.367.3 35113511 55 발명강5Inventive Steel 5 11501150 905905 500500 1010 620620 68.468.4 36943694 66 발명강6Inventive Steel 6 11501150 905905 465465 1010 620620 71.171.1 38203820 77 발명강7Inventive Steel 7 12001200 905905 500500 77 620620 77.477.4 32193219 88 발명강7Inventive Steel 7 12001200 905905 500500 99 620620 75.275.2 34203420 99 발명강7Inventive Steel 7 12001200 905905 500500 1111 620620 72.472.4 31283128 1010 발명강8Inventive Steel 8 12001200 905905 500500 1010 570570 71.971.9 27512751 1111 발명강8Inventive Steel 8 12001200 905905 500500 1010 620620 72.172.1 26392639 1212 발명강8Inventive Steel 8 12001200 905905 500500 1010 645645 75.275.2 28692869 *굴곡하중은 내수소유기응력부식균열에 대한 정량적인 값* The flexural load is a quantitative value for the hydrogen organic stress corrosion cracking

상기 표 3에 나타난 바와 같이, 본 발명의 강성분계를 벗어나 합금원소의 함량이 과잉이거나 부족한 비교강(1-2)를 열간압연후 열처리하지 않은 비교재(2)와 제조조건만 본 발명의 조건으로 제조한 비교재(1, 3-4)의 경우 수소유기응력부식균열성 시험에 의한 굴곡하중값이 낮아 수소유기응력부식균열을 방지하기에는 부족하였다.As shown in Table 3, only the comparative material (2) and the manufacturing conditions not subjected to heat treatment after hot rolling the comparative steel (1-2) that is excessive or insufficient content of alloying elements outside the steel component system of the present invention In case of the comparative materials (1, 3-4) prepared by the low flexural load value by the hydrogen organic stress corrosion cracking test was insufficient to prevent the hydrogen organic stress corrosion cracking.

이에 반해, 본 발명강을 본 발명강(1-8)을 압연마무리온도와 가속냉각개시온도를 변화시키면서 제조한 발명재(1-3), 가속냉각종료온도를 변화시키면서 제조한발명재(4-6), 가속냉각속도를 변화시키면서 제조한 발명재(7-9), 열간압연후 열처리온도를 변화시켜 제조한 발명재(10-12)의 경우 양호한 인장강도값과 우수한 내수소유기응력부식균열성을 나타내었다. 이때 인장강도의 값은 65kg/㎟이상이었으며, 수소유기응력부식균열시험값은 2700kgf이상이 값을 보여주었다.On the contrary, the invention steel (1-3) produced by the invention steel (1-8) while the rolling finish temperature and the accelerated cooling start temperature were changed, and the invention material produced by changing the accelerated cooling end temperature (4-). 6) Invention material (7-9) manufactured by changing the accelerated cooling rate, and invention material (10-12) manufactured by changing the heat treatment temperature after hot rolling have good tensile strength value and excellent resistance to organic stress stress corrosion. Sex. At this time, the tensile strength value was over 65kg / mm2, and the hydrogen organic stress corrosion cracking test value was over 2700kgf.

상술한 바와 같이, 본 발명은 종래의 저온압연-가속냉각형 후고장력강판과 는 달리, 900℃이상의 고온역 강압연으로 오스테나이트의 반복재결정에 의한 입도 미세화가 가능하며 공냉대기없이 짧은 시간에 압연함으로써 압연생산성 및 내수소유기응력부식균열성을 향상 시킬 수 있는 효과가 있는 것이다. 따라서, 본 발명에 의해 제공되는 강재는 석유, 천연가스 및 석유정제품의 저장조 또는 수송파이프에 적용되어 설비의 사용수명연장과 대형사고를 미리 예방할 수 있는 것이다.As described above, the present invention, unlike the conventional low-temperature-accelerated cooling type high tensile steel sheet, can be refined in the grain size by repeated recrystallization of austenite by high temperature zone cold rolling of more than 900 ℃ and rolling in a short time without air cooling atmosphere By doing so, there is an effect that can improve the rolling productivity and the corrosion resistance of hydrogen hydrogen stress. Therefore, the steel provided by the present invention is applied to the storage tank or the transportation pipe of petroleum, natural gas and petroleum refinery, and can prevent the long service life of the facility and large accidents in advance.

Claims (1)

중량%로,C:0.03-0.12%, Si:0.50%이하, Mn:0.5-1.50%, P:0.020%이하, S:0.005%이하 , Ca:0.0010-0.0050%, Cu:0.2-2.0%, Ti:0.01-0.07, Nb:0.01-0.07%, V:0.01-0.07% 와, Ni:1.0%이하, Cr:1.0%이하 및 Mo:1.0%이하중 선택된 1종을 함유하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1100-1250℃의 온도범위로 가열하여 1000℃이상에서의 누적압하율이 60%이상이고, 900-950℃의 압연마무리 온도조건으로 열간압연한 후 6-13℃/sec의 속도로 550-450℃까지 냉각한 후 공냉한 다음, 550-650℃의 온도에서 열처리하여 이루어짐을 특징으로 하는 내수소유기응력부식균열성이 우수한 고장도강의 제조방법.By weight%, C: 0.03-0.12%, Si: 0.50% or less, Mn: 0.5-1.50%, P: 0.020% or less, S: 0.005% or less, Ca: 0.0010-0.0050%, Cu: 0.2-2.0%, Ti: 0.01-0.07, Nb: 0.01-0.07%, V: 0.01-0.07% and Ni: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, and the other Fe and other The slab composed of unavoidable impurities is heated to a temperature range of 1100-1250 ° C, and the cumulative reduction ratio at 1000 ° C or higher is 60% or more and hot-rolled at a rolling finishing temperature condition of 900-950 ° C, then 6-13 ° C /. Cooling down to 550-450 ℃ at the rate of sec and then air-cooled, heat-resistant at a temperature of 550-650 ℃ characterized in that the hydrogen-resistant organic stress corrosion cracking excellent manufacturing method.
KR1019970062734A 1997-11-25 1997-11-25 A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC KR100345704B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970062734A KR100345704B1 (en) 1997-11-25 1997-11-25 A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970062734A KR100345704B1 (en) 1997-11-25 1997-11-25 A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC

Publications (2)

Publication Number Publication Date
KR19990042034A KR19990042034A (en) 1999-06-15
KR100345704B1 true KR100345704B1 (en) 2002-09-18

Family

ID=37488611

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970062734A KR100345704B1 (en) 1997-11-25 1997-11-25 A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC

Country Status (1)

Country Link
KR (1) KR100345704B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185271B1 (en) 2010-10-27 2012-09-21 현대제철 주식회사 High strength steel sheet for line pipe with excellent resistance to hydrogen induced cracking properties and method of manufacturing the same
KR20200121693A (en) 2019-04-16 2020-10-26 주식회사 베스트마킹 An apparatus for preserving ink by selectively sealing the head of a cartridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010056228A (en) * 1999-12-06 2001-07-04 이구택 A method for manufacturing high strength hot rolled steel sheet for pressure vessel using pattern cooling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185271B1 (en) 2010-10-27 2012-09-21 현대제철 주식회사 High strength steel sheet for line pipe with excellent resistance to hydrogen induced cracking properties and method of manufacturing the same
KR20200121693A (en) 2019-04-16 2020-10-26 주식회사 베스트마킹 An apparatus for preserving ink by selectively sealing the head of a cartridge

Also Published As

Publication number Publication date
KR19990042034A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP6573059B1 (en) Nickel-containing steel sheet
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
KR20150074944A (en) High strength and toughness hot rolled steel sheet having excellent hic resistance, steel pipe produced by the same and method for manufacturing thereof
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
JPS631369B2 (en)
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
KR20200047926A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
KR101746971B1 (en) Steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof
KR20160078573A (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
KR101889189B1 (en) Ts 450mpa grade heavy guage steel sheet having excellent resistance to hydrogen induced cracking and method of manufacturing the same
JP3085253B2 (en) Method for producing steel plate for crude oil tanker with excellent fatigue crack growth characteristics in wet hydrogen sulfide environment
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH02263918A (en) Production of high-tensile steel plate excellent in hic resistance and ssc resistance
KR100544722B1 (en) Method for Manufacturing No-Heat Treated Steel with High Weldability, High Toughness and High Strength
JP3260056B2 (en) Method for producing steel with excellent sour resistance and hot workability
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP2005163055A (en) Method for producing high workability and extra-high strength cold-rolled steel sheet excellent in delayed fracture resistant characteristic after forming
CN114761599B (en) Steel material excellent in sulfide stress corrosion cracking resistance and method for producing same
KR100340543B1 (en) A manufacturing method of ferritic steel with low susceptibility of corrosion

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150703

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160707

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee