KR100340543B1 - A manufacturing method of ferritic steel with low susceptibility of corrosion - Google Patents

A manufacturing method of ferritic steel with low susceptibility of corrosion Download PDF

Info

Publication number
KR100340543B1
KR100340543B1 KR1019970062735A KR19970062735A KR100340543B1 KR 100340543 B1 KR100340543 B1 KR 100340543B1 KR 1019970062735 A KR1019970062735 A KR 1019970062735A KR 19970062735 A KR19970062735 A KR 19970062735A KR 100340543 B1 KR100340543 B1 KR 100340543B1
Authority
KR
South Korea
Prior art keywords
rolling
steel
temperature
less
hydrogen
Prior art date
Application number
KR1019970062735A
Other languages
Korean (ko)
Other versions
KR19990042035A (en
Inventor
유호천
Original Assignee
이구택
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 주식회사 포스코 filed Critical 이구택
Priority to KR1019970062735A priority Critical patent/KR100340543B1/en
Publication of KR19990042035A publication Critical patent/KR19990042035A/en
Application granted granted Critical
Publication of KR100340543B1 publication Critical patent/KR100340543B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: A manufacturing method of ferrite steel with low susceptibility of corrosion is provided to ensure the strength and the rolling productivity by the hot rolling while ensuring the good hydrogen resistant organic stress corrosion cracking property and flexing processability. CONSTITUTION: The manufacturing method of ferrite steel with low susceptibility of corrosion and flexing processability comprises: heating the slab composed of not more than 0.05 wt.% of C, not more than 0.050 wt.% of Si, 0.10 to 0.50 wt.% of Mn, not more than 0.020 wt.% of P, not more than 0.005 wt.% of S, 0.01 to 0.05 wt.% of Al, 0.0020 to 0.015 wt.% of N, 0.0010 to 0.0050 wt.% of Ca, 0.01 to 0.05 wt.% of Ti, 0.01 to 0.05 wt.% of Nb, 0.01 to 0.05 wt.% of V, the rest of Fe, and the other inevitable impurities at the temperature of 1100 to 1250 deg.C, followed by hot rolling using the condition having at least 60% of the cumulative pressing proportion at the temperature of not more than 1000 deg.C and the rolling finishing temperature of 900 to 950 deg.C; cooling in the rate of 6 to 13 deg.C/sec to 550 to 450 deg.C; and then air cooling.

Description

내수소유기응력부식균열성 및 굴곡가공성이 우수한 페라이트 열연강판의 제조방법{A manufacturing method of ferritic steel with low susceptibility of corrosion}A manufacturing method of ferritic steel with low susceptibility of corrosion}

본 발명은 석유수송용 및 저장용 유정관 또는 압력용기에 사용되는 열연강판의 제조방법에 관한 것으로써, 보다 상세하게는 내수소유기응력부식균열성 및 굴곡가공성이 우수한 페라이트 열연강판의 제조방법에 관한 것이다.The present invention relates to a method for producing a hot rolled steel sheet used in oil well pipes or pressure vessels for oil transportation and storage, and more particularly to a method for producing ferritic hot rolled steel sheet having excellent corrosion resistance and cracking resistance of hydrogen organic stress. It is about.

석유수송용 및 저장용 유정관 또는 압력용기용 강재에 있어서 유화물에 의한 균열사고가 모재와 용접부의 굴곡지점에서 황화수소균열이 원인이 되어 발생하게 되는데, 이러한 균열사고는 대형설비사고를 일으켜 경제적으로 막대한 피해를 주고 있는 실정이다. 이에 대한 대비책으로 황화수소에 의한 내수소유기응력부식균열성 및 굴곡가공성이 우수한 강재의 공급이 절실히 요구되고 있으며, 또한, 이러한 강재에 대한 제조기술의 개발이 절대적으로 필요한 시점에 있다.In the case of oil transportation and storage oil wells or steel for pressure vessels, the cracking caused by the emulsion is caused by hydrogen sulfide cracking at the bending point of the base metal and the welding part. The situation is doing damage. As a countermeasure against this, there is an urgent need for supplying steel materials having excellent resistance to hydrogen stress, organic stress cracking and bending by hydrogen sulfide, and at the time of developing a manufacturing technology for such steels.

지금까지 내수소유기응력부식균열성이 우수한 강재는 통상 900℃이상의 고온압연과 공냉을 하여 제조하거나 또는 압연마무리 온도가 800℃이하인 저온압연과 10℃/sec의 냉각속도로 가속냉각하여 제조하였다. 이러한 종래의 강재중에서 고온압연과 공냉을 한 것은 결정립의 조대화로 강도가 저하된다는 단점이 있다. 또한 종래의 강중에서 저온압연과 가속냉각한 강재는 제조시에 저온압연을 하기 위하여 800℃이하까지 공냉대기하고 있다가 열간압연하는 동안에 저온역압연으로 인하여 단위시간당 생산량이 감소되어 압연생산성이 저하하는 단점을 안고 있었다.Until now, steel materials with excellent resistance to cracking of hydrogen-containing organic stresses were generally manufactured by hot rolling at 900 ° C. or higher and air cooling, or by cold cooling at a cooling rate of 10 ° C./sec and cold rolling having a rolling finishing temperature of 800 ° C. or lower. High temperature rolling and air cooling in such conventional steels have a disadvantage in that the strength is reduced by coarsening of grains. In addition, low-temperature rolling and accelerated-cooling steels in conventional steels are air-cooled up to 800 ° C or lower for low-temperature rolling at the time of manufacture. Had a downside.

이에, 본 발명은 상술한 종래문제를 해결하기 위해 안출된 것으로써, 강도와 고온압연에 의한 압연생산성을 동시에 확보하면서 내수소유기응력부식균열성 및 굴곡가공성을 확보할 수 있는 열연강판의 제조방법을 제공하는데, 그 목적이 있다.Accordingly, the present invention has been made in order to solve the above-described conventional problems, the method of manufacturing a hot rolled steel sheet which can ensure the hydrogen resistance stress cracking and bending processability while ensuring strength and rolling productivity by high temperature rolling at the same time To provide, for that purpose.

상기 목적을 달성하기 위한 본 발명은 중량%로, C:0.06%이하, Si:0.50%이하, Mn:0.10-0.50%, P:0.020%이하, S:0.005%이하 Al:0.01-0.05%, N:0.0020-0.015%, Ca:0.0010-0.0050%, Ti:0.01-0.05%, Nb:0.01-0.07%, V:0.01-0.07% 및 나머지 Fe와 기타 불가피한 불순물로 조성되는 슬라브를 1100-1250℃의 온도범위로 가열하고, 이어 1000℃이하에서의 누적압하율이 60%이상이고, 900-950℃의 압연마무리 온도조건으로 열간압연한 후 6-13℃/sec의 속도로 550-450℃까지 냉각한 다음 공냉하여 구성된다.The present invention for achieving the above object by weight, C: 0.06% or less, Si: 0.50% or less, Mn: 0.10-0.50%, P: 0.020% or less, S: 0.005% or less Al: 0.01-0.05%, Slabs composed of N: 0.0020-0.015%, Ca: 0.0010-0.0050%, Ti: 0.01-0.05%, Nb: 0.01-0.07%, V: 0.01-0.07% and the remaining Fe and other unavoidable impurities are 1100-1250 ° C. After heating to the temperature range of and then the cumulative reduction rate below 1000 ℃ 60% or more, hot-rolled under the rolling finish temperature conditions of 900-950 ℃ and then to 550-450 ℃ at a rate of 6-13 ℃ / sec It is cooled and then air cooled.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 내수소유기응력부식균열성 및 굴곡가공성을 동시에 향상시키도록 대부분의 조직을 페라이트 단상조직으로 하고, 그 조직을 미세화함과 동시에 강의 청정도를 높이고, 그리고, 압연생산성을 향상시키기 위해 고온역압연을 행하는데,그 특징이 있다.The present invention is a ferrite single-phase structure to make most of the structure of the organic stress stress corrosion cracking and bendability at the same time, to refine the structure and at the same time to increase the cleanliness of the steel, and to improve the rolling productivity, high temperature zone Although rolling is carried out, it has the characteristics.

본 발명에 의하면, 수소유기응력부식균열은 길게 늘어난 펄라이트조직과 고강도강에서 비금속개재물에 의한 중심편석이 원인이 되어 발생한다는 사실을 알게 되었다.According to the present invention, it has been found that hydrogen organic stress corrosion cracking is caused by the central segregation caused by nonmetallic inclusions in the elongated pearlite structure and the high strength steel.

따라서, 1)탄소함량을 낮추어 펄라이트 조직의 양을 최대한 억제시켜 대부분의 조직을 페라이트 단상조직으로 하는 것이다.Therefore, 1) by lowering the carbon content to suppress the amount of the pearlite structure as much as possible to make most of the structure as a ferrite single-phase structure.

2) 그리고, 합금원소로 P, S와 공편석(共偏析)을 촉진하는 Si와 Mn의 함량을 감소시키고 추가로 Ca를 첨가하여 비금속개재물에 의한 중심편석을 줄이고 강의 청정도를 높이는 것이다.2) And, as the alloying element to reduce the content of Si and Mn to promote P, S and co-segregation (Ca) and to add additional Ca to reduce the central segregation by non-metallic inclusions and to increase the cleanliness of the steel.

3)이와 더불어, 강내부의 기지조직의 강도를 상승시켜 수소흡수량을 저감하도록 강성분계를 설계한다. 수소유기응력부식균열은 흡수수소량이 수소유기응력부식균열 발생 임계량보다 크면 발생한다. 이것을 방지할 수 있는 방법은 흡수수소량을 저감시키고 수소유기응력부식균열을 발생시킬 수 있는 임계 수소량을 증대시켜야 한다. 구체적인 방법으로서는 모재 및 용접부의 결정립을 미세화시키는 가장 유효한 방법은 Al, N, Ca, Ti, Nb, V을 적정량 첨가하는 것이다.3) In addition, the steel component system is designed to reduce the hydrogen absorption by increasing the strength of the matrix structure inside the steel. Hydrogen organic stress corrosion cracking occurs when the amount of hydrogen absorbed is greater than the threshold amount of hydrogen organic stress corrosion cracking. A way to prevent this should be to reduce the amount of hydrogen absorbed and increase the amount of critical hydrogen that can generate hydrogen organic stress corrosion cracking. As a specific method, the most effective method to refine the grains of the base material and the welded part is to add an appropriate amount of Al, N, Ca, Ti, Nb, V.

이외에도, 페라이트 결정입자를 미세하게 하기 위해 1000℃이하에서의 누적압하율이 60%이상이 되도록 하고, 또한 종래의 방법처럼 저온에서 압연을 행하는 것이 아니고, 900-950℃의 압연마무리 온도범위에서 열간압연한 다음, 450-550℃까지 가속냉각한 후에 공냉하므로써 내수소유기응력부식균열성 및 굴곡가공성이 우수한 페라이트 단상조직을 가진 강재의 제조가 가능하게 되는 것이다.In addition, in order to refine the ferrite crystal grains, the cumulative reduction ratio at 1000 ° C. or lower is 60% or more, and the rolling is not performed at low temperature as in the conventional method, and hot rolling is carried out at a rolling finishing temperature range of 900-950 ° C. After rolling, accelerated cooling to 450-550 ° C., and then air-cooled, it is possible to produce a steel having a ferrite single-phase structure excellent in corrosion resistance and cracking resistance of the organic hydrogen stress.

보다 구체적으로 강성분계를 설명하면, 먼저 상기 C는 그 함량이 증가하면 펄라이트량의 증가를 가져와 길게 늘어난 펄라이트조직을 증가시켜 내수소유기응력부식균열성을 감소시키고 용접부와 모재의 경도 및 조직의 차이를 크게 하는 원인으로 작용하기 때문에 0.06%이하로 억제시키는 것이 바람직하다.In more detail, when the steel component system is described, first, the C increases the amount of pearlite when its content is increased, thereby increasing the pearlite structure which is elongated, thereby reducing the hydrogen stress cracking resistance of the organic hydrogen and the difference between the hardness and texture of the welded part and the base metal. It is preferable to suppress it to 0.06% or less, because it acts as a cause of increasing.

상기 Si는 강중에서 탈산작용을 하며 내부식성을 향상시키지만 0.50%이상 첨가되면 강중에서 비금속개재물로 작용되어 수소유기균열성을 해치기 때문에 0.50%이하로 첨가하는 것이 바람직하다.The Si deoxidizes in steel and improves corrosion resistance, but if it is added more than 0.50%, it is preferable to add 0.50% or less because it acts as a non-metallic inclusion in the steel and impairs hydrogen organic cracking.

상기 Mn은 강중에서 탈산작용을 하고 용접성, 열간가공성 및 강도를 향상시키는 유효한 원소이지만 0.10%이하에서는 그 효과가 없으며 0.50%이상 첨가하면 MnS와 같은 비금속개재물을 형성하여 열간압연시에 길게 늘어나 내수소유기응력균열성을 저해하므로 0.10-0.50%로 첨가하는 것이 바람직하다.Mn is an effective element which deoxidizes in steel and improves weldability, hot workability and strength, but it is not effective at 0.10% or less, and when it is added more than 0.50%, Mn forms a non-metallic inclusion such as MnS and elongates during hot rolling. It is preferable to add 0.10-0.50% because it inhibits organic stress cracking.

상기 P은 함유량이 높을 경우 입계에 편석하여 취성균열을 일으키고 모재 및 용접부에 고온균열을 야기시키는 유해한 원소이기 때문에 0.020%이하로 관리할 필요가 있다When P is a high content, it is a harmful element that segregates at grain boundaries and causes brittle cracks and high temperature cracks in the base metal and welds. Therefore, P is required to be controlled at 0.020% or less.

상기 S은 내부식성에 매우 해로운 원소이므로 함유량이 적을수록 좋지만 완전히 제거하는 것이 불가능하므로 최대한 그 함유량을 억제하는 것이 필요하며, 0.005%를 초과하면 MnS 등의 비금속개재물이 강중에 다량으로 존재하여 내수소유기응력부식균열성을 해치기 때문에 함유량을 0.005%이하로 억제할 필요가 있다.S is an element that is very detrimental to corrosion resistance, so the smaller the content, the better, but it is impossible to completely remove it, and it is necessary to suppress the content as much as possible. When it exceeds 0.005%, non-metallic inclusions such as MnS are present in a large amount in hydrogen It is necessary to suppress the content to 0.005% or less because it impairs organic stress corrosion cracking.

상기 Al은 탈산제로서 첨가하며 아울러 AlN의 질화물을 형성하여 결정립미세화 작용을 하는데, 그 첨가량이 0.01%이하이면 이에 대한 첨가효과가 없으며 0.05%이상이면 비금속개재물로 존재하여 강의 청정도를 저하시키기 때문에, 상기 Al은 0.01-0.05%로 첨가하는 것이 바람직하다.The Al is added as a deoxidizer and forms a nitride of AlN to effect grain refinement. If the addition amount is less than 0.01%, there is no effect of adding it, and if it is more than 0.05%, it is present as a non-metallic inclusion to lower the cleanliness of the steel. Al is preferably added at 0.01-0.05%.

상기 N는 Nb, Ti, V, Al과 질화물을 형성하여 결정립을 미세화시키기 위하여 첨가하는 원소로서 그 첨가량이 0.0020%이하이면 첨가효과가 없으며 0.015%이상 함유되면 질화물을 형성하지 않고 고용질소로 강중에 존재하기 때문에 상기 N는0.0020-0.015%로 첨가하는 것이 바람직하다.N is an element added to form nitrides with Nb, Ti, V, and Al to make crystal grains fine. If N is less than 0.0020%, N is not effective, and if it is 0.015% or more, N is not dissolved in solid solution. N is preferably added at 0.0020-0.015% since present.

상기 Ca은 압연방향으로 길게 늘어나는 비금속개재물인 MnS를 CaS로 바꾸고 구상화시켜 수소유기응력부식균열성을 감소시키는 원소인데, 그 첨가량이 0.0010%이하이면 첨가효과가 없고 0.0050%이상인 경우에는 비금속개재물로 강중에 잔존하여 강의 청정성을 해치기 때문에,상기 Ca은 0.0010-0.0050%로 첨가하는 것이 바람직하다.The Ca is an element that reduces hydrogen organic stress corrosion cracking by converting and spheroidizing MnS, which is a non-metallic inclusion elongated in the rolling direction, into a CaS. It is preferable to add Ca at 0.0010-0.0050% because it remains in the solution and impairs cleanliness of the steel.

상기 Ti, Nb, V은 미량첨가에 의해 기지조직의 결정립을 미세화하여 탄소당량과 수소유기균열감수성을 높히지 않고 고강도화를 도모할 수 있는 성분으로써, 그 첨가량이 0.01%이하이면 결정립미세화 효과가 없으며 0.05%이상 첨가되면 미세화효과가 포화되어 더 이상의 효과가 나타나지 않기 때문에 0.01-0.05%로 첨가하는 것이 바람직하다.The Ti, Nb, V is a component capable of miniaturizing the crystal grains of the matrix structure by a small amount of addition, thereby increasing the strength without increasing the carbon equivalent and the hydrogen organic cracking sensitivity, and when the addition amount is 0.01% or less, there is no grain refinement effect. If it is added more than 0.05%, it is preferable to add it at 0.01-0.05% because the micronization effect is saturated and no further effect is shown.

상기와 같이 조성되는 슬라브를 가열하는데, 이때 가열온도가 1100℃ 미만이면 충분히 가열되지 않을 뿐 아니라 열간압연도중 온도가 저하되어 품질특성에 악 영향을 낀친다. 또한 1100℃이상으로 가열하여야만 강중에 분포되어 있는 석출물들이 충분히 재용해하여 고용량증대에 의한 강도상승 효과를 가져오고 수소유기응력부식균열 감수성을 감소시킬 수 있다. 그러나 가열온도가 1250℃를 넘으면 결정립조대화 현상과 표면스케일의 과다생성으로 인하여 결함이 발생되기 쉽기 때문에 1100-1250℃로 가열하는 것이 바람직하다.When the slab formed as described above is heated, the heating temperature is less than 1100 ℃ not only is not sufficiently heated, but also the temperature is reduced during the hot rolling, adversely affects the quality characteristics. In addition, the precipitates distributed in the steel should be re-dissolved only when heated to more than 1100 ℃ to bring about the effect of increasing the strength by increasing the capacity and to reduce the hydrogen organic stress corrosion cracking susceptibility. However, when the heating temperature exceeds 1250 ℃, it is preferable to heat to 1100-1250 ℃ because defects are likely to occur due to grain coarsening and over-production of the surface scale.

상기와 같이 가열한 후 열간압연하는데, 이때의 페라이트 결정입자를 미세하게 하기 위해 1000℃이하에서의 누적압하율이 60%이상이되도록 하고, 또한, 압연마무리 온도는 900-950℃로 하는 것이 바람직하다. 그 이유는 압연마무리온도가 950℃를 넘으면 결정립의 조대화 현상을 기대할 수 없어 결정립미세화에 의한 강도의 상승효과를 가져올 수 없으며, 또한 압연마무리온도가 900℃이하이면 가속냉각에 의한 충분한 소입효과를 가져올 수 없어 결정립미세화 효과가 적어지기 때문이다.After heating as described above and hot rolling, it is preferable that the cumulative reduction rate at 1000 ° C. or less is 60% or more, and the rolling finishing temperature is 900-950 ° C. to make the ferrite crystal grains fine at this time. . The reason is that when the finish temperature of rolling finish is over 950 ℃, the coarsening of grains cannot be expected, and it is impossible to bring about the synergistic effect of strength due to the grain refinement. This is because the grain refining effect is less because it cannot be imported.

상기와 같이 열간압연한 후 가속냉각하는데, 이때 가속냉각개시온도는 열간압연마무리 온도와 직접적으로 관련이 되어 자동적으로 결정되기 때문에 그 온도를 한정하는 것이 의미가 없으며 실제 조업에서는 열간압연마무리 온도에서 약 15-30℃ 아래온도에서 가속냉각을 개시하게 된다. 그리고, 가속냉각속도는 강조직에 영향이 가장 큰 인자로서 가속냉각속도가 6℃/sec이하가 되면 충분히 경화되지 않아 강도가 저하하며 13℃/sec이상이 되면 마르텐사이트 경화조직이 발생되어 수소유기응력부식균열성을 해치기 때문에 6-13℃/sec의 속도로 가속냉각하는 것이 바람직하다. 상기와 같이 가속냉각할 때의 가속냉각 종료온도는 오스테나이트 조직이 거의 없는 완전한 페라이트 조직이 나타날 수 있는 온도로 하여야 한다. 즉, 550℃이상에서는 오스테나이트조직이 남아 있어 불완전소입이 될 가능성이 많고, 450℃가 되면 충분한 가속냉각 효과가 이루어진다. 그러나 450℃이하가 되면 과잉의 물과 시간을 소비하기 때문에 550-450℃의 온도에서 가속냉각을 종료하는 것이 바람직하다. 상기의 온도에서 가속냉각을 종료한 다음에는 상온까지 공냉하면 된다.Accelerated cooling after hot rolling as described above, in which the accelerated cooling start temperature is directly related to the hot rolling temperature and is automatically determined, so it is not meaningful to limit the temperature. Accelerated cooling will begin at temperatures below 15-30 ° C. In addition, the accelerated cooling rate is the biggest factor affecting the stressed weave, the strength is not sufficiently hardened when the accelerated cooling rate is less than 6 ℃ / sec, the strength decreases, and martensite hardened structure is generated when the accelerated cooling rate is more than 13 ℃ / sec hydrogen hydrogen Accelerated cooling at a rate of 6-13 ° C./sec is desirable because it impairs stress corrosion cracking. As described above, the accelerated cooling end temperature at the time of accelerated cooling should be such that a complete ferrite structure with little austenite structure can be shown. That is, above 550 ° C, austenite structure remains, which is likely to result in incomplete quenching, and when it reaches 450 ° C, sufficient accelerated cooling effect is achieved. However, when it is below 450 ° C., since excess water and time are consumed, it is preferable to terminate accelerated cooling at a temperature of 550-450 ° C. After completion of the accelerated cooling at the temperature described above, air cooling may be performed at room temperature.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]EXAMPLE

진공용해로에서 하기 표 1과 같이 조성되는 강종들을 단중이 50kg이 되게 진공유도용해로에서 용해하여 두께 120mm의 강괴를 제조하고, 이 강괴를 1250℃에서 2시간 동안 가열한 다음 조압연하여 두께 80mm의 최종 스라브를 얻었다.In the vacuum melting furnace, steel grades prepared as shown in Table 1 below were melted in a vacuum induction furnace so that the weight was 50 kg, to prepare a steel ingot having a thickness of 120 mm. The steel ingot was heated at 1250 ° C. for 2 hours, and then rough-rolled to a final thickness of 80 mm. Got a slab.

강종Steel grade 화학성분(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS AlAl NN CaCa TiTi NbNb VV 비교강Comparative steel 1One 0.090.09 0.290.29 1.521.52 0.0140.014 0.0030.003 0.0350.035 0.00560.0056 0.00230.0023 -- -- -- 22 0.020.02 0.250.25 1.411.41 0.0180.018 0.0030.003 0.0150.015 0.0150.015 -- 0.0150.015 0.040.04 0.050.05 발명강Invention steel 1One 0.010.01 0.010.01 0.220.22 0.0130.013 0.0030.003 0.0140.014 0.00300.0030 0.00200.0020 0.0140.014 0.010.01 0.050.05 22 0.020.02 0.010.01 0.320.32 0.0180.018 0.0020.002 0.0130.013 0.00520.0052 0.00200.0020 0.0130.013 0.010.01 0.020.02 33 0.030.03 0.030.03 0.400.40 0.0150.015 0.0030.003 0.0170.017 0.00770.0077 0.00240.0024 0.0170.017 0.020.02 0.050.05 44 0.030.03 0.040.04 0.440.44 0.0090.009 0.0030.003 0.0150.015 0.0130.013 0.00240.0024 0.0150.015 0.030.03 0.050.05

이와 같이 얻어진 두께 80mm의 슬라브를 하기 표 2와 같이 6패스 열간압연하여 두께 14mm의 열간압연판을 얻었다.The slab having a thickness of 80 mm thus obtained was hot rolled in six passes as shown in Table 2 to obtain a hot rolled sheet having a thickness of 14 mm.

압연패스Rolling pass 1One 22 33 44 55 66 압연개시온도(℃)Rolling Start Temperature (℃) 11501150 11101110 10701070 985985 955955 925925 누적압하율(%)Cumulative reduction rate (%) 18.618.6 37.537.5 53.853.8 63.863.8 72.572.5 78.878.8 압연후 두께(mm)Thickness after rolling (mm) 6565 5050 3737 2929 2222 1717

상기 표 2에서 알 수 있듯이, 1000℃이하에서의 누적압하율은 63.8%(985℃일 경우)로 하였으며, 열간압연직후 바로 유냉하였다. 상기와 같이 열간압연할 때의 가열온도, 압연마무리 온도 및 압연후의 가속냉각은 하기표 3에 나타난 조건으로하였다. 참고로, 가속냉각개시온도는 압연마무리 온도에서 20℃만큼 하강한 온도로 하였다. 이와 같이 제조된 시험편의 수소유기응력부식균열시험과 굴곡가공성을 시험한 다음 그 결과를 하기 표 3에 나타내었다.As can be seen in Table 2, the cumulative reduction rate at 1000 ° C. or less was 63.8% (when 985 ° C.), and oil-cooled immediately after hot rolling. As described above, the heating temperature, the rolling finish temperature, and the accelerated cooling after rolling in hot rolling were the conditions shown in Table 3 below. For reference, the accelerated cooling start temperature was lowered by 20 ° C from the rolling finish temperature. The hydrogen-organic stress corrosion cracking test and the bendability test of the test piece thus prepared are shown in Table 3 below.

이때, 수소유기응력부식균열시험은 폭 15mm, 길이 100mm의 시편을 최대강도점의 50%되는 강도까지 굴곡한 후 NACE Standard TM-02-84용액(유화수소포화 5% NaCl-0.5%초산(CH3COOH), pH=3용액)에 96시간 침지하고 균열유무를 파악하였다.At this time, the hydrogen organic stress corrosion cracking test was conducted by bending a specimen of width 15mm and length 100mm to the strength of 50% of the maximum strength point and then NACE Standard TM-02-84 solution (hydrogen saturation 5% NaCl-0.5% acetic acid (CH 3 COOH), pH = 3 solution) was immersed for 96 hours to determine the presence of cracks.

그리고, 굴곡가공성 시험은 시험편이 중심부를 기점으로 180°로 굴곡하여 균열유무를 관찰하였다.In the bending workability test, the test piece was bent at 180 ° from the center to observe cracks.

강종Steel grade 제조조건Manufacture conditions 실험결가균열유뮤Experimental crack crack 종합결론Conclusion 가열온도(℃)Heating temperature (℃) 압연마무리온도(℃)Rolling Finish Temperature (℃) 가속냉각개시온도(℃)Accelerated cooling start temperature (℃) 가속냉각종료온도(℃)Accelerated cooling end temperature (℃) 가속냉각속도(℃/sec)Accelerated Cooling Speed (℃ / sec) SSCC* SSCC * 굴곡가공성시험Flexibility test 비교재Comparative material 1One 비교강1Comparative Steel 1 11501150 925925 905905 500500 1.51.5 발생Occur 발생Occur ×× 22 11501150 925925 905905 500500 1010 발생Occur 발생Occur ×× 33 비교강2Comparative Steel 2 12001200 925925 905905 500500 1010 발생Occur 발생Occur ×× 발명재Invention 1One 발명강1Inventive Steel 1 11501150 910910 890890 500500 1010 없음none 없음none 22 11501150 925925 905905 500500 1010 없음none 없음none 33 11501150 940940 920920 500500 1010 없음none 없음none 44 발명강2Inventive Steel 2 11501150 925925 905905 540540 1010 없음none 없음none 55 11501150 925925 905905 500500 1010 없음none 없음none 66 11501150 925925 905905 465465 1010 없음none 없음none 77 발명강3Invention Steel 3 12001200 925925 905905 500500 77 없음none 없음none 88 12001200 925925 905905 500500 1212 없음none 없음none 99 발명강4Inventive Steel 4 12001200 925925 905905 500500 77 없음none 없음none *SSCC는 수소유기응력부식균열성임* SSCC is hydrogen organic stress corrosion cracking

상기 표 3에 나타난 바와 같이, 본 발명의 강성분계를 벗어나 합금원소의 함량이 과잉이거나 부족한 비교강(1-2)를 가속냉각속도가 느리게 하여 제조한 비교재(1) 및 제조조건만은 본 발명의 조건으로 하여 제조한 비교재(2-3)의 경우 수소유기응력부식균열이 발생하였으며, 또한 굴곡시험후에도 균열이 발생하였다.As shown in Table 3, the comparative material (1) and the manufacturing conditions produced by slowing the cooling rate of the comparative steel (1-2) that is excessive or insufficient content of alloying elements outside the steel component system of the present invention is In the case of the comparative material (2-3) prepared under the conditions of the invention, hydrogen organic stress corrosion cracking occurred, and cracking occurred even after the bending test.

이에 반해, 발명강(1)을 압연마무리온도와 가속냉각개시온도를 변화시키면서 제조한 발명재(1-3), 발명강(2)를 가속냉각종료온도를 변화시키면서 제조한 발명재(4-6), 발명강(3)을 가속냉각속도를 변화시키면서 제조한 발명재(7-8) 및 발명재(9)의 경우 수소유기응력부식균열이 발생하지 않았으며, 굴곡시험후에도 균열이 발생하지 않았다.On the other hand, the invention material (1-3) which manufactured the invention steel (1) while changing rolling finishing temperature and the accelerated cooling start temperature, and the invention material which produced the invention steel (2) while changing the acceleration cooling end temperature (4- 6) Invention material (7-8) and invention material (9) produced by varying the accelerated cooling rate of the inventive steel (3) did not generate hydrogen organic stress corrosion cracking, and cracks did not occur even after bending test. Did.

상술한 바와 같이, 본 발명은 종래의 저온압연-가속냉각형 후고장력강판과 는 달리, 900℃이상의 고온역 강압연으로 오스테나이트의 반복재결정에 의한 입도 미세화가 가능하며 공냉대기없이 짧은 시간에 압연함으로써 압연생산성을 향상시킬 수 있는 효과가 있는 것이다. 따라서, 본 발명에 의해 제조된 강판은 석유, 천연가스 및 석유정제품의 저장조 또는 수송파이프의 굴곡부위에 사용할 수 있으며, 또한 아연도금조의 굴곡부위에도 적용되어 설비의 사용수명연장과 대형사고를 미리 예방할 수 있는 것이다.As described above, the present invention, unlike the conventional low-temperature-accelerated cooling type high tensile steel sheet, can be refined in the grain size by repeated recrystallization of austenite by high temperature zone cold rolling of more than 900 ℃ and rolling in a short time without air cooling atmosphere By doing so, there is an effect of improving rolling productivity. Therefore, the steel sheet produced by the present invention can be used in the bent portion of the storage tank or transport pipe of petroleum, natural gas and petroleum refinery, and can also be applied to the bent portion of the galvanizing tank to prevent prolonged service life of the equipment and large accidents. It is.

Claims (1)

중량%로, C:0.06%이하, Si:0.50%이하, Mn:0.10-0.50%, P:0.020%이하, S:0.005%이하 Al:0.01-0.05%, N:0.0020-0.015%, Ca:0.0010-0.0050%, Ti:0.01-0.05%, Nb:0.01-0.07%, V:0.01-0.07% 및 나머지 Fe와 기타 불가피한 불순물로 조성되는 슬라브를 1100-1250℃의 온도범위로 가열하고, 이어 1000℃이하에서의 누적압하율이 60%이상이고, 900-950℃의 압연마무리 온도조건으로 열간압연한 후 6-13℃/sec의 속도로 550-450℃까지 냉각한 다음, 공냉하여 이루어지는 내수소유기응력부식균열성 및 굴곡가공성이 우수한 페라이트 열연강판의 제조방법.By weight%, C: 0.06% or less, Si: 0.50% or less, Mn: 0.10-0.50%, P: 0.020% or less, S: 0.005% or less Al: 0.01-0.05%, N: 0.0020-0.015%, Ca: A slab consisting of 0.0010-0.0050%, Ti: 0.01-0.05%, Nb: 0.01-0.07%, V: 0.01-0.07% and the remaining Fe and other unavoidable impurities is heated to a temperature range of 1100-1250 ° C., followed by 1000 Cumulative pressure reduction rate of less than 60 ℃, hot rolling at 900-950 ℃ rolling finishing temperature conditions, and then cooled to 550-450 ℃ at a rate of 6-13 ℃ / sec, and then cooled by air Method for producing ferritic hot rolled steel sheet with excellent organic stress corrosion cracking and bending processability.
KR1019970062735A 1997-11-25 1997-11-25 A manufacturing method of ferritic steel with low susceptibility of corrosion KR100340543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970062735A KR100340543B1 (en) 1997-11-25 1997-11-25 A manufacturing method of ferritic steel with low susceptibility of corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970062735A KR100340543B1 (en) 1997-11-25 1997-11-25 A manufacturing method of ferritic steel with low susceptibility of corrosion

Publications (2)

Publication Number Publication Date
KR19990042035A KR19990042035A (en) 1999-06-15
KR100340543B1 true KR100340543B1 (en) 2002-07-18

Family

ID=37480273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970062735A KR100340543B1 (en) 1997-11-25 1997-11-25 A manufacturing method of ferritic steel with low susceptibility of corrosion

Country Status (1)

Country Link
KR (1) KR100340543B1 (en)

Also Published As

Publication number Publication date
KR19990042035A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP2010156016A (en) High-strength hot-rolled steel sheet superior in bendability and anisotropy of toughness, and method for manufacturing the same
KR20200066512A (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
KR102164110B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR100832982B1 (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
KR100340543B1 (en) A manufacturing method of ferritic steel with low susceptibility of corrosion
KR102164097B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
KR19980028324A (en) Manufacturing method of high tensile steel plate for line pipe with excellent cryogenic impact toughness and hydrogen organic cracking characteristics
KR100979046B1 (en) Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
KR100435467B1 (en) A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
KR102407420B1 (en) High strength hot rolled steel sheet for steel pipe and method of manufacturing the same
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JPH06172920A (en) High strength hot rolled steel plate and its production
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
KR102326109B1 (en) Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same
KR102164094B1 (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR100363191B1 (en) The method of manufacturing linepipe steel with good formability
KR100564883B1 (en) Manufacturing method of hot coil for usage as a line pipe
JP2001158936A (en) Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee