KR100979046B1 - Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof - Google Patents

Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof Download PDF

Info

Publication number
KR100979046B1
KR100979046B1 KR1020070139456A KR20070139456A KR100979046B1 KR 100979046 B1 KR100979046 B1 KR 100979046B1 KR 1020070139456 A KR1020070139456 A KR 1020070139456A KR 20070139456 A KR20070139456 A KR 20070139456A KR 100979046 B1 KR100979046 B1 KR 100979046B1
Authority
KR
South Korea
Prior art keywords
steel
pearlite phase
deformation
tensile strain
less
Prior art date
Application number
KR1020070139456A
Other languages
Korean (ko)
Other versions
KR20090071224A (en
Inventor
양부영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070139456A priority Critical patent/KR100979046B1/en
Publication of KR20090071224A publication Critical patent/KR20090071224A/en
Application granted granted Critical
Publication of KR100979046B1 publication Critical patent/KR100979046B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 강재의 미세조직 및 비금속개재물의 크기를 제어하여 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법을 제공하는 것을 그 목적으로 하고 있다.It is an object of the present invention to provide a hot rolled steel sheet having excellent hydrogen resistance to organic cracking and a method of manufacturing the same, by controlling the size of the steel structure and nonmetallic inclusions.

상기 문제점을 해결하기 위하여 본 발명은 중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Nb: 0.02~0.07%, V: 0.02~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003% 및 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 Ca 및 S의 함량이 1.5 ≤ Ca/S ≤ 4 를 만족하고, 비금속개재물이 존재하며, 조직은 펄라이트상을 포함하며, 상기 비금속개재물과 펄라이트상 및 인장변형량이 하기 수식1을 만족하는 것을 특징으로 한다.In order to solve the above problems, the present invention is a weight%, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.5%, Mn: 0.5 ~ 1.5%, P: 0.01% or less (not including 0%), S: 0.001% or less (without 0%), Al: 0.02 to 0.05%, Nb: 0.02 to 0.07%, V: 0.02 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 ˜0.003% and the remainder contain Fe and other unavoidable impurities, the content of Ca and S satisfies 1.5 ≦ Ca / S ≦ 4, a nonmetallic inclusion is present, and the structure comprises a pearlite phase, the nonmetallic inclusion And the pearlite phase and the tensile strain is characterized by satisfying the following formula (1).

[수식1] x/a + y/b + z/c ≤ 1.5[Equation 1] x / a + y / b + z / c ≤ 1.5

(단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65))

수소유기균열, 냉간압연, 비금속개재물, 펄라이트 Hydrogen Organic Crack, Cold Rolling, Non-metallic Inclusion, Perlite

Description

냉간변형 하에서 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법{Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof}Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof}

본 발명은 황화수소(H2S) 가스 함유량이 높은 원유 혹은 천연가스를 수송하는 라인파이프 강재에 관한 발명으로서, 보다 상세하게는 냉간변형 하에서 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법에 관한 것이다.The present invention relates to a line pipe steel material for transporting crude oil or natural gas having a high hydrogen sulfide (H 2 S) gas content, and more particularly, to a hot rolled steel sheet having excellent hydrogen organic cracking characteristics under cold deformation and a method of manufacturing the same. will be.

최근 에너지 수요 증가 및 기존자원 고갈에 따라 부식성 가스인 황화수소(H2S) 가스 함유량이 높은 원유 혹은 천연가스 개발이 증대됨에 따라 이들을 수송하는 라인파이프 강재는 H2S 가스의 부식성으로 인한 파손 위험이 증대되고 있다. 또한 수송효율 측면에서 고압수송 경향이 증대되고 있어 H2S의 분압이 증가하기 때문에 황화수소 가스의 부식성에 의한 파이프 파손에 대한 저항성을 높이는 것이 요구되고 있다.Recently in accordance with the increase in energy demand, and the existing resource exhaustion line pipe steel to transport them as the increase corrosive gas hydrogen sulfide (H 2 S) gas content of the high oil or natural gas development is the breakage risk of corrosion of the H 2 S gas It is increasing. In addition, in terms of transportation efficiency, the tendency for high pressure transportation is increasing, so that the partial pressure of H 2 S increases, and thus it is required to increase resistance to pipe breakage due to corrosiveness of hydrogen sulfide gas.

수소유기균열의 발생기구는 강재와 황화수소 분위기와의 부식반응에 의해 강재 표면에서 발생되는 수소가 원자상태로 강중에 침입, 확산하여 강중에서 분자화됨에 의해 발생되는 수소가스 압력이 작용하여 균열이 발생되는 것으로 알려져 있다. The mechanism of generating hydrogen organic cracks is caused by cracking due to the action of hydrogen gas pressure generated by molecular hydrogen invading and diffusing hydrogen generated from the surface of steel material by the corrosion reaction between steel and hydrogen sulfide atmosphere. It is known to become.

종래기술들에서는 Cu 첨가, MnS 저감 및 형상제어, 혹은 탄질화물의 미세분산 등에 의해 수소의 침입 혹은 확산을 억제하는 수단, 또는 연속주조 시 중심편석을 저감하는 수단이 제안되고 있다. In the prior arts, a means of suppressing the intrusion or diffusion of hydrogen by addition of Cu, reduction of MnS and shape control, fine dispersion of carbonitride, or the like, or a means of reducing central segregation during continuous casting, has been proposed.

그러나 상기 종래기술들에서는 비교적 내수소유기균열성이 우수한 강재를 얻을 수 있는 수단을 제공하였으나, 강재의 강도 수준이 높아지고 동시에 강산성의 습윤황화수소 분위기에서는 수소유기균열을 완전히 억제하는 것은 곤란하다. 이에 따라 수소균열 발생기점으로 알려져 있는 비금속개재물 크기와 수소유기균열이 전파되는 강재의 경도를 제어하는 방법에 의해 수소유기균열을 효과적으로 제어하는 방법이 제안되었다.However, although the prior arts provide a means for obtaining steel having relatively excellent hydrogen organic cracking resistance, it is difficult to completely suppress hydrogen organic cracking in a high acidic wet hydrogen sulfide atmosphere while increasing the strength level of the steel. Accordingly, a method of effectively controlling hydrogen organic cracks has been proposed by controlling the size of nonmetallic inclusions known as the hydrogen crack generation point and the hardness of steel propagating hydrogen cracks.

그러나 강관제조시 혹은 파이프라인의 건설 중 파이프의 굴곡변형 등이 필요한 경우가 있고, 이때 강재에 가해진 변형은 수소유기균열 저항성을 저하시키는 원인이 된다. NACE MR0175에서는 파이프의 냉간변형이 5% 넘는 경우 잔류응력 해소를 위한 열처리를 하도록 규정하고 있다. 이러한 냉간변형은 파이프라인의 수소유기균열을 안전하게 억제하는 것을 방해하는 요소가 되므로 냉간변형시 내수소유기균열 저 항성을 향상시킬 필요성이 대두되었다.However, there are cases where bending of pipes is required during steel pipe manufacturing or during construction of pipelines, and deformations applied to steel materials cause deterioration of hydrogen organic cracking resistance. NACE MR0175 requires heat treatment to relieve residual stresses when the pipe's cold deformation exceeds 5%. Since such cold deformation is an obstacle to the safe suppression of hydrogen organic cracks in pipelines, there is a need for improving the resistance to hydrogen organic cracking during cold deformation.

본 발명자는 수소유기균열과 냉간변형과의 상관관계를 검토한 결과, 미세조직,비금속개재물의 크기 및 냉간변형 정도에 따라 수소유기균열 발생 위험도가 다르게 나타나는 것을 알 수 있었다.As a result of examining the correlation between the hydrogen organic crack and the cold deformation, the inventors found that the risk of hydrogen organic crack is different depending on the size of the microstructure and nonmetallic inclusions and the degree of cold deformation.

따라서, 본 발명은 강재의 미세조직 및 비금속개재물의 크기를 제어하여 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법을 제공하는 것을 그 목적으로 하고 있다.Accordingly, an object of the present invention is to provide a hot rolled steel sheet having excellent hydrogen-hydrogen organic cracking characteristics and a manufacturing method thereof by controlling the microstructure of steel and the size of nonmetallic inclusions.

상기 문제점을 해결하기 위하여 본 발명은 중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Nb: 0.02~0.07%, V: 0.02~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003% 및 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 Ca 및 S의 함량이 1.5 ≤ Ca/S ≤ 4 를 만족하고, 비금속개재물이 존재하며, 조직은 펄라이트상을 포함하며, 상기 비금속개재물과 펄라이트상 및 인장변형량이 하기 수식1 및 2를 만족하는 것을 특징으로 한다.In order to solve the above problems, the present invention is a weight%, C: 0.02 ~ 0.05%, Si: 0.05 ~ 0.5%, Mn: 0.5 ~ 1.5%, P: 0.01% or less (not including 0%), S: 0.001% or less (without 0%), Al: 0.02 to 0.05%, Nb: 0.02 to 0.07%, V: 0.02 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 ˜0.003% and the remainder contain Fe and other unavoidable impurities, the content of Ca and S satisfies 1.5 ≦ Ca / S ≦ 4, a nonmetallic inclusion is present, and the structure comprises a pearlite phase, the nonmetallic inclusion And the pearlite phase and the tensile strain is characterized by satisfying the following formula (1) and (2).

[수식1] x/a + y/b + z/c ≤ 1.5[Equation 1] x / a + y / b + z / c ≤ 1.5

(단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))
[수식2] 인장변형량(%) = (변형후 시편길이 - 변형전 시편길이)/(변형전 시편길이)×100
(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65))
[Equation 2] Tensile strain (%) = (sample length after deformation-specimen length before deformation) / (sample length before deformation) × 100

나아가, 본 발명의 제조방법은 Ar3 이상의 온도에서 열간 마무리압연하고, 냉각을 개시하여 450~600℃범위에서 냉각을 마무리 후 권취하는 것을 특징으로 한다.Further, the production method of the present invention is characterized in that the hot finish rolling at a temperature of Ar3 or more, starting the cooling and winding after finishing the cooling in the 450 ~ 600 ℃ range.

본 발명은 강재의 미세조직 및 비금속개재물의 크기를 제어하여 내수소유기균열 특성이 우수한 열연강판 및 그 제조방법을 제공하는 효과가 있다.The present invention has the effect of providing a hot rolled steel sheet excellent in the hydrogen-cracked organic properties and its manufacturing method by controlling the microstructure of the steel and the size of the non-metallic inclusions.

이하, 본 발명의 조성범위에 대하여 구체적으로 설명한다.Hereinafter, the composition range of this invention is demonstrated concretely.

C: 0.02~0.05중량%C: 0.02-0.05 wt%

상기 C는 강을 강화시키는데 가장 경제적이며 효과적인 합금성분으로, 0.02중량% 미만을 첨가되면 Nb, V 또는 Ti와 결합하여 강을 강화시키는 효과가 매우 적고, 0.05중량%를 초과하여 첨가되면 내 HIC 성을 저하시키는 중심편석이 증대되므로 그 함량을 0.02~0.05중량%로 제한하는 것이 바람직하다.The C is the most economical and effective alloying component to strengthen the steel, when less than 0.02% by weight of the combination of Nb, V or Ti is very effective to strengthen the steel, when added in excess of 0.05% by weight HIC resistance It is preferable to limit the content to 0.02 to 0.05% by weight since the central segregation to decrease the increase.

Si: 0.05~0.5중량%Si: 0.05-0.5 wt%

상기 Si는 탈산 및 고용강화에 유효한 성분으로, 0.05중량% 미만 첨가되면 탈산효 과를 얻기 어렵고, 0.5중량%를 초과하여 첨가되면 용접성 및 취성을 저하시키므로, 그 함량을 0.05~0.5중량%로 제한하는 것이 바람직하다.The Si is an effective component for deoxidation and solid solution strengthening, and when it is added less than 0.05% by weight, it is difficult to obtain a deoxidation effect, and when it is added in excess of 0.5% by weight, the weldability and brittleness are reduced, so the content is limited to 0.05 to 0.5% by weight. It is desirable to.

Mn: 0.5~1.5중량%Mn: 0.5-1.5 wt%

상기 Mn은 강도 및 인성 확보를 위하여 필수적인 성분으로, 0.5중량% 미만 첨가되면 강도와 인성을 확보하기 어렵고, 1.5중량%를 초과하여 첨가되면 연주시 중심편석을 조장하여 충격인성 및 내 HIC 성을 저하시키므로, 그 함량을 0.5~1.5중량%로 제한하는 것이 바람직하다.The Mn is an essential component for securing strength and toughness. If it is added less than 0.5% by weight, it is difficult to secure strength and toughness, and when it is added in excess of 1.5% by weight, Mn promotes central segregation during performance, thereby reducing impact toughness and HIC resistance. Therefore, it is preferable to limit the content to 0.5 to 1.5% by weight.

P: 0.01중량% 이하(0%를 포함하지 않음)P: 0.01% by weight or less (does not include 0%)

상기 P의 함량이 0.01중량%를 초과하여 첨가되면 연주시 Mn과 함께 중심편석을 조장하여 충격인성 및 유화물응력균열 저항성을 저하시킬 뿐만 아니라 용접성도 저하시키므로, 그 함량을 0.01중량% 이하로 제한한다.When the content of P is added in excess of 0.01% by weight, it promotes central segregation with Mn when playing, thereby reducing impact toughness and emulsion stress cracking resistance as well as reducing weldability, and thus limiting the content to 0.01% by weight or less. .

S: 0.001중량% 이하(0%를 포함하지 않음)S: 0.001% by weight or less (does not include 0%)

상기 S는 강중에서 Mn과 함께 MnS를 형성하여 취성을 크게 저하시키는 성분으로, 0.001중량%를 초과하여 함유되면 수소유기균열 저항성을 크게 감소시키므로, 그 함량을 0.001중량% 이하로 제한하는 것이 바람직하다.S is a component that greatly reduces brittleness by forming MnS together with Mn in steel. When S is contained in an amount exceeding 0.001% by weight, the hydrogen organic cracking resistance is greatly reduced, and the content thereof is preferably limited to 0.001% by weight or less. .

Al: 0.02~0.05중량%Al: 0.02-0.05 wt%

상기 Al은 Si와 함께 탈산작용을 하는 성분으로, 0.02중량% 미만 첨가되면 탈산효과를 얻기 어렵고, 0.05중량%를 초과하여 첨가되면 알루미나 집합체를 증가시켜 내수소유기균열성을 저하시키므로, 그 함량을 0.02~0.05중량%로 제한하는 것이 바람직하다.Al is a component that deoxidizes with Si, and when it is added less than 0.02% by weight, it is difficult to obtain a deoxidation effect, and when it is added in excess of 0.05% by weight, the alumina aggregate is increased to lower the hydrogen-organic crack resistance. It is preferable to limit it to 0.02 to 0.05 weight%.

Nb: 0.02~0.07중량%, V: 0.02~0.06중량%Nb: 0.02 to 0.07 wt%, V: 0.02 to 0.06 wt%

상기 Nb 및 V는 소량 첨가에 의해 석출강화 효과를 나타내는 성분으로, 본 발명의 탄소범위에서는 Nb는 0.07중량%, V는 0.06중량% 초과시 석출강화에 의한 강도증가가 크지 않으므로, 그 함량을 각각 0.07중량%와 0.06중량% 이하로 제한하며, 0.02중량% 미만에서는 효과가 없다. 따라서 그 함량은 0.02~0.06중량%로 제한하는 것이 바람직하다.The Nb and V is a component showing the precipitation strengthening effect by the addition of a small amount, in the carbon range of the present invention, Nb is 0.07% by weight, V is 0.07% by weight when the strength increase due to precipitation strengthening is greater than 0.06%, respectively, its content is 0.07 It is limited to less than 0.06% by weight, and less than 0.02% by weight has no effect. Therefore, the content is preferably limited to 0.02 to 0.06% by weight.

Ti: 0.005~0.02중량%Ti: 0.005-0.02 wt%

상기 Ti는 강중에서 TiN으로 석출되어 재가열시 오스테나이트의 결정립 성장을 억제함으로써 고강도 및 우수한 충격인성을 얻을 수 있게 하며 또한 TiC 등으로 석출되어 강을 강화하는 역할을 한다. 그러나, 본 발명의 탄소범위에서 상기 Ti의 함량이 0.005중량%는 그 효과를 얻기 위한 최소량이며, 0.02중량%를 초과하면 상기 효과가 크지 않으므로, 그 함량을 0.005~0.02중량% 이하로 제한하는 것이 바람직하다.The Ti is precipitated with TiN in the steel to suppress the grain growth of austenite when reheated to obtain high strength and excellent impact toughness, and also precipitated by TiC, etc. to strengthen the steel. However, in the carbon range of the present invention, the content of Ti is 0.005% by weight, which is the minimum amount for obtaining the effect. If the content exceeds 0.02% by weight, the effect is not large. Therefore, the content is limited to 0.005% to 0.02% by weight or less. desirable.

Cr: 0.1~0.5중량%Cr: 0.1-0.5 wt%

상기 Cr은 강도증가 및 내식성 확보를 위해 첨가된다. Cr 첨가는 저온변태조직으로의 변태를 쉽게 유도하기 위해 첨가하는 성분으로, 0.1중량% 미만 첨가되면 상기 효과가 적고, 0.5중량%를 초과하여 첨가되면 국부부식 발생 위험이 증대되므로, 그 함량을 0.1~0.5중량%로 제한하는 것이 바람직하다.The Cr is added to increase strength and ensure corrosion resistance. The addition of Cr is an ingredient added to easily induce transformation into low temperature metamorphic tissues. The addition of less than 0.1 wt% results in less effect, and the addition of more than 0.5 wt% increases the risk of local corrosion. It is preferable to limit it to -0.5 weight%.

Ca: 0.0015~0.003중량%Ca: 0.0015 to 0.003 wt%

상기 Ca는 유화물계 개재물의 형상을 구상화시킴으로써 수소유기균열발생 기점을 억제하는 역할을 하는 성분으로, 0.0015중량% 미만 첨가되면 상기 효과를 얻기가 어렵고, 0.003중량%를 초과하여 첨가되면 개재물 양이 오히려 증가하여 수소유기균열 저항성을 저하시키므로, 그 함량을 0.0015~0.003중량%로 제한하는 것이 바람직하다.The Ca is a component that suppresses the origin of hydrogen organic crack generation by spheroidizing the shape of the emulsion-based inclusions, it is difficult to obtain the effect when added less than 0.0015% by weight, the amount of inclusions is more than 0.003% by weight Since it increases the hydrogen organic cracking resistance, it is preferable to limit the content to 0.0015 ~ 0.003% by weight.

상기한 조성 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.In addition to the above compositions, the remainder is composed of Fe and other unavoidable impurities.

Ca와 S의 함량의 비는 1.5 ≤ Ca/S ≤ 4 로 제한하는 것이 바람직하다.The ratio of the content of Ca and S is preferably limited to 1.5 ≦ Ca / S ≦ 4.

함량비가 1.5 미만에서는 MnS 형성이 용이하여 수소유기균열저항성이 저하되며, 4 초과시에는 Ca 계 비금속개재물 량이 증가하여 수소유기균열저항성 및 인성이 저하되는 문제가 있으므로 상기 범위로 제한하였다.When the content ratio is less than 1.5, MnS is easily formed and the hydrogen organic cracking resistance is lowered. When the content ratio is higher than 4, the amount of Ca-based non-metallic inclusions increases, thereby limiting the hydrogen organic cracking resistance and toughness.

비금속개재물, 펄라이트 및 변형량의 상관관계에 대하여 구체적으로 설명한다.The correlation between nonmetallic inclusions, pearlite and deformation amount will be described in detail.

강재에 필수불가결하게 존재하는 비금속개재물은 열간압연단계에서 압연방향으로 파쇄되거나 연신되어 수소유기균열의 개시점 역할을 하게 된다. 또한 조관 혹은 굴곡변형 등의 변형과정 중에 비금속 개재물과 기지금속과의 계면이 분리되거나 혹은 보이드(void) 가 더 커져 수소유기균열 발생이 용이해지는 원인이 된다. 따라서 압연 전 강재의 비금속 개재물을 제한함으로 수소유기균열 발생 위험을 줄일 수 있다. Non-metallic inclusions indispensably present in the steel are fractured or stretched in the rolling direction in the hot rolling step to serve as a starting point of the hydrogen organic crack. In addition, the interface between the base metal inclusions and the base metal is separated or voids become larger during the deformation process such as tubing or bending deformation, causing hydrogen organic cracks to be easily generated. Therefore, by limiting the non-metallic inclusions of the steel before rolling can reduce the risk of hydrogen organic cracking.

미세조직 측면에서 펄라이트상이 생길 수 있는데 이 펄라이트상이 대상형으로 존재하면 수소유기균열이 이 대상조직을 통하여 쉽게 전파될 수 있어 대상 펄라이트상 형성을 억제해야 한다. 그러나 대상 펄라이트상을 억제하고 도상 펄라이트 (pearlite colony) 형태로 제어하더라도 강재가 변형되는 경우 펄라이트와 기지금속과의 계면에서 수소압이 쉽게 형성될 수 있는 가능성이 존재한다. 따라서 펄라이트상의 제어도 필요하다.Perlite phase may occur in terms of microstructure, and if the pearlite phase is present as a target type, hydrogen organic cracks can be easily propagated through the target tissue, and thus the target pearlite phase formation should be suppressed. However, even if the target pearlite phase is suppressed and controlled in the form of a pearlite colony, there is a possibility that hydrogen pressure is easily formed at the interface between the pearlite and the base metal when the steel is deformed. Therefore, control over pearlite is also required.

이상의 검토에서 비금속개재물과 펄라이트상은 외부 변형량에 따라 수소유기균열 발생위험도를 증가시키게 되는데 하기의 수식1에 의해 수소유기균열 발생 위험도가 제한된다.In the above review, the nonmetallic inclusions and the pearlite phase increase the risk of hydrogen organic crack generation according to the amount of external deformation. However, the risk of hydrogen organic crack generation is limited by Equation 1 below.

[수식1] x/a + y/b + z/c ≤ 1.5[Equation 1] x / a + y / b + z / c ≤ 1.5

(단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65))

인장변형량은 인장응력에 의해 시편이 변형된 정도를 말하며 하기의 [수식2]와 같이 정의된다. 변형량은 통상의 변형량측정기 등을 이용하여 측정된다.Tensile strain refers to the degree of deformation of the specimen by the tensile stress and is defined as shown in Equation 2 below. The strain amount is measured using a conventional strain gauge or the like.

[수식2] 인장변형량(%) = (변형후 시편길이 - 변형전 시편길이)/(변형전 시편길이)×100[Equation 2] Tensile strain (%) = (sample length after deformation-specimen length before deformation) / (sample length before deformation) × 100

이하, 본 발명의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, the manufacturing method of this invention is demonstrated concretely.

(1) 재가열 온도(1) reheat temperature

재가열 온도는 Nb계 석출물의 고용온도에 의해 결정되며, 본 발명의 성분범위에서는 1150℃ 이상에서 고용이 가능하며, 1250℃ 이상으로 가열하는 경우는 강재의 결정립도가 매우 커져 인성이 저하되므로 1150~1250℃ 로 재가열 온도를 제한한다.The reheating temperature is determined by the solid solution temperature of the Nb-based precipitate, and in the component range of the present invention, solid solution can be performed at 1150 ° C or higher. ℃ Limit the reheat temperature.

(2) 압연조건(2) rolling conditions

미재결정온도 이하에서 압하량은 열연강재 미세조직의 결정입도 및 균일성에 매우 큰 영향을 끼치며 결정입도 및 균일성은 수소유기균열 저항성 및 저온인성에 영향이 크다. 압하율이 70% 미만의 경우 결정입도의 균질성이 저하되어 저온인성이 저하되므로 압하율을 70% 이상으로 제한한다. Ar3 이상에서 압연을 마무리 하는 것은 Ar3 미만의 온도에서는 페라이트 변태를 개시하며 이때 압연이 되면 수소유기균열 저항성이 매우 낮아지므로 Ar3 이상에서 압연을 마무리해야 한다.Below the unrecrystallized temperature, the amount of reduction greatly affects the grain size and uniformity of the hot rolled steel microstructure, and the grain size and uniformity have a great influence on the hydrogen organic crack resistance and low temperature toughness. If the reduction ratio is less than 70%, the homogeneity of the grain size is lowered and the low temperature toughness is lowered, so the reduction ratio is limited to 70% or more. Finishing the rolling above Ar3 starts the ferrite transformation at a temperature below Ar3, and when rolling, the hydrogen organic cracking resistance becomes very low, so rolling must be finished above Ar3.

(3) 냉각 및 권취조건(3) Cooling and winding conditions

냉각은 Ar3 온도 이상에서 개시해야 하며 그 미만의 온도에서 개시되는 경우, 냉각 전에 조대한 페라이트가 형성되어 인성을 저하시키는 원인이 된다. 따라서 Ar3 온도 이상에서 냉각을 개시하며 냉각속도가 10℃/s 보다 느린 경우 수소유기균열 저항성을 떨어뜨리는 펄라이트 조직 형성이 용이하며, 30℃/s 보다 빠른 경우는 베이나이트 형성이 용이하기 때문에 냉각속도는 10~30℃/s 범위에서 제한하며, 600℃ 초과하여 권취를 하는 경우는 변태가 불안정하여 펄라이트 조직 형성이 가능하며, 450℃ 미만에서 강재의 강성이 커 권취가 매우 어렵다. 따라서 권취온도는 450~600℃ 범위에서 제한한다.Cooling should commence above the Ar3 temperature and, if commenced below, coarse ferrite will form prior to cooling, leading to lower toughness. Therefore, if the cooling rate is started above Ar3 temperature and cooling rate is slower than 10 ℃ / s, it is easy to form pearlite structure that lowers hydrogen organic cracking resistance, and if it is faster than 30 ℃ / s, bainite formation is easy Is limited in the range of 10 ~ 30 ℃ / s, if the winding is more than 600 ℃ is unstable transformation is possible to form a pearlite structure, and less than 450 ℃ is very difficult to wind large winding. Therefore, the coiling temperature is limited in the range of 450 ~ 600 ℃.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

하기 표 1과 같이 조성되는 강을 1150~1250℃ 범위에서 2~3시간 동안 재가열한 후, 850℃ 이상에서 마무리 열간압연 및 냉각개시하고, 500℃~600℃ 범위에서 권취하여 두께가 12.7~16mm인 강재를 제조하였다. 상기 강재의 수소유기균열저항성은 NACE TM0284에 따라서 1기압 H2S 가스로 포화된 5%NaCl + 0.5%CH3COOH 용액 중에서 행하였고, 초음파 탐상법에 의해 균열정도를 관찰하였다.After reheating the steel formed as shown in Table 1 for 2 to 3 hours in the range of 1150 ~ 1250 ℃, start hot rolling and cooling finish at 850 ℃ or more, and wound up in 500 ℃ ~ 600 ℃ range to 12.7 ~ 16mm thickness Phosphor steel was prepared. Hydrogen organic crack resistance of the steel was carried out in a 5% NaCl + 0.5% CH 3 COOH solution saturated with 1 atm H 2 S gas according to NACE TM 0284, and the degree of cracking was observed by ultrasonic inspection.

구분division 조성 (중량%)Composition (wt%) Ca/SCa / S CC SiSi MnMn PP SS AlAl NbNb VV TiTi CrCr CaCa 강재1Steel 1 0.0450.045 0.210.21 1.321.32 0.0070.007 0.0010.001 0.0310.031 0.0410.041 0.0450.045 0.010.01 0.210.21 0.00250.0025 2.52.5 강재2Steel 2 0.0420.042 0.220.22 1.451.45 0.0060.006 0.00070.0007 0.0330.033 0.0490.049 0.0480.048 0.0080.008 0.250.25 0.00180.0018 2.572.57 강재3Steel 3 0.0340.034 0.230.23 1.321.32 0.0050.005 0.0010.001 0.0320.032 0.0560.056 0.0410.041 0.010.01 0.120.12 0.00220.0022 2.22.2

하기 표2에는 상기 표1의 강재에 대한 수소균열발생 면적율, 비금속개재물의 면적, 펄라이트상의 면적율, 변형률 및 내수소유기균열 특성 충족여부에 대하여 나타내었다.Table 2 below shows the hydrogen crack generation area ratio, the area of the non-metallic inclusions, the area ratio of the pearlite phase, the strain rate and the hydrogen organic crack resistance characteristics for the steel of Table 1 above.

구분division 수소균열
발생
면적율
(CAR,%)
Hydrogen crack
Occur
Area ratio
(CAR,%)
비금속개재
물 면적
(μm2)
Non-metallic Intervention
Water area
(μm 2 )
펄라이트
상 면적

(%)
Pearlite
Phase area
rate
(%)
변형률
(%)
Strain
(%)
(수식1) 값Equation 1 Value 내수소유기균열특성
충족여부
Hydrogen Organic Cracking Characteristics
Meet
비교compare
구분1









Category 1









00 586586 0.20.2 55 0.7430.743 발명강1Inventive Steel 1
00 689689 0.60.6 77 1.29451.2945 발명강2Inventive Steel 2 0.20.2 568568 0.60.6 1010 1.3841.384 발명강3Invention Steel 3 0.20.2 684684 0.40.4 66 1.0421.042 발명강4Inventive Steel 4 0.20.2 785785 0.40.4 44 0.99250.9925 발명강5Inventive Steel 5 0.30.3 762762 0.60.6 88 1.3811.381 발명강6Inventive Steel 6 2.32.3 586586 1.31.3 55 1.8431.843 비교강1Comparative Steel 1 3.43.4 568568 2.12.1 1010 2.8842.884 비교강2Comparative Steel 2 4.34.3 684684 2.32.3 66 2.9422.942 비교강3Comparative Steel 3 5.85.8 689689 3.53.5 77 4.19454.1945 비교강4Comparative Steel 4 8.98.9 785785 3.13.1 44 3.69253.6925 비교강5Comparative Steel 5 9.29.2 762762 2.62.6 88 3.3813.381 비교강6Comparative Steel 6 강재2











Steel 2











00 897897 0.50.5 55 1.19851.1985 발명강7Inventive Steel 7
00 898898 0.20.2 55 0.8990.899 발명강8Inventive Steel 8 00 978978 0.40.4 99 1.3391.339 발명강9Inventive Steel 9 0.10.1 853853 0.40.4 66 1.12651.1265 발명강10Inventive Steel 10 0.20.2 865865 0.10.1 99 0.98250.9825 발명강11Inventive Steel 11 0.40.4 932932 0.30.3 1010 1.2661.266 발명강12Inventive Steel 12 0.50.5 945945 0.70.7 55 1.42251.4225 발명강13Inventive Steel 13 0.50.5 963963 0.40.4 88 1.28151.2815 발명강14Inventive Steel 14 5.15.1 897897 1.51.5 55 2.19852.1985 비교강7Comparative Steel 7 5.45.4 898898 3.23.2 55 3.8993.899 비교강8Comparative Steel 8 6.26.2 865865 3.83.8 99 4.68254.6825 비교강9Comparative Steel 9 6.26.2 963963 5.45.4 88 6.28156.2815 비교강10Comparative Steel 10 6.56.5 932932 4.14.1 1010 5.0665.066 비교강11Comparative Steel 11 6.86.8 945945 2.82.8 55 3.52253.5225 비교강12Comparative Steel 12 8.28.2 978978 3.83.8 99 4.7394.739 비교강13Comparative Steel 13 9.39.3 853853 1.51.5 66 2.22652.2265 비교강14Comparative Steel 14 강재3



Steel 3



9.59.5 15711571 1.21.2 55 2.23552.2355 비교강15Comparative Steel 15
12.812.8 16851685 2.12.1 66 3.24253.2425 비교강16Comparative Steel 16 14.914.9 14961496 1.41.4 77 2.4982.498 비교강17Comparative Steel 17 18.518.5 15231523 3.43.4 44 4.36154.3615 비교강18Comparative Steel 18 21.821.8 16321632 2.12.1 99 3.3663.366 비교강19Comparative Steel 19

단, 수식1은 x/a + y/b + z/c ≤ 1.5Equation 1 is x / a + y / b + z / c ≤ 1.5

(단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))
(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65))

상기 표2에서 나타난 것처럼, 수소균열발생 면적율이 0.5% 이하인 내수소유기균열특성이 우수한 발명강 1 내지 14의 경우, 수식1의 값을 만족하고 있다.As shown in Table 2, in the case of the invention steels 1 to 14 excellent in the hydrogen-cracking organic cracking characteristics of the hydrogen crack generation area ratio of 0.5% or less, the value of Equation 1 is satisfied.

도1은 최대 비금속개재물 크기, 저온변태조직 분율 및 변형량과 수소유기균열 상관성을 나타내는 그래프이다.1 is a graph showing the maximum nonmetallic inclusion size, low temperature transformation tissue fraction and deformation amount and hydrogen organic crack correlation.

Claims (2)

중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S: 0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Nb: 0.02~0.07%, V: 0.02~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003% 및 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 Ca 및 S의 함량이 1.5 ≤ Ca/S ≤ 4 를 만족하고, 비금속개재물이 존재하며, 조직은 펄라이트상을 포함하며, 상기 비금속개재물과 펄라이트상 및 인장변형량이 하기 수식1 및 2를 만족하는 것을 특징으로 하는 냉간변형 하에서 내수소유기균열 특성이 우수한 열연강판.By weight, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less (not including 0%), S: 0.001% or less (not including 0%) Al: 0.02 to 0.05%, Nb: 0.02 to 0.07%, V: 0.02 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 to 0.003% and the rest are Fe and other Containing unavoidable impurities, the content of Ca and S satisfies 1.5 ≦ Ca / S ≦ 4, a nonmetallic inclusion is present, and the structure includes a pearlite phase, and the nonmetallic inclusions and pearlite phase and tensile strain are Hot rolled steel sheet excellent in hydrogen organic cracking characteristics under cold deformation characterized by satisfying 1 and 2. [수식1] x/a + y/b + z/c ≤ 1.5[Equation 1] x / a + y / b + z / c ≤ 1.5 (단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65)) [수식2] 인장변형량(%) = (변형후 시편길이 - 변형전 시편길이)/(변형전 시편길이)×100[Equation 2] Tensile strain (%) = (sample length after deformation-specimen length before deformation) / (sample length before deformation) × 100 중량%로, C: 0.02~0.05%, Si: 0.05~0.5%, Mn: 0.5~1.5%, P: 0.01% 이하(0%를 포함하지 않음), S:0.001% 이하(0%를 포함하지 않음), Al: 0.02~0.05%, Nb: 0.02~0.07%, V: 0.02~0.06%, Ti: 0.005~0.02%, Cr: 0.1~0.5%, Ca: 0.0015~0.003% 및 나머지는 Fe 및 기타 불가피한 불순물을 포함하고, 상기 Ca 및 S의 함량이 1.5 ≤ Ca/S ≤4 를 만족하는 슬라브를 Ar3 이상의 온도에서 70%이상의 압하율로 열간 마무리압연하고, 10~30℃/s의 속도로 냉각을 개시하여 450~600℃범위에서 냉각을 마무리 후 권취하여By weight, C: 0.02 to 0.05%, Si: 0.05 to 0.5%, Mn: 0.5 to 1.5%, P: 0.01% or less (not including 0%), S: 0.001% or less (not including 0%) Al: 0.02 to 0.05%, Nb: 0.02 to 0.07%, V: 0.02 to 0.06%, Ti: 0.005 to 0.02%, Cr: 0.1 to 0.5%, Ca: 0.0015 to 0.003% and the rest are Fe and other Slabs containing unavoidable impurities and satisfying the contents of Ca and S of 1.5 ≦ Ca / S ≦ 4 are hot-rolled at a reduction ratio of 70% or more at a temperature of Ar3 or higher, and cooled at a rate of 10 to 30 ° C / s. Start by winding after finishing cooling in the range of 450 ~ 600 ℃ 비금속 개재물이 존재하고, 조직은 펄라이트상을 포함하며, 상기 비금속개재물과 펄라이트상 및 인장변형량이 하기 수식1 및 2를 만족하는 강판을 제조하는 것을 특징으로 하는 냉간변형 하에서 내수소유기균열 특성이 우수한 열연강판의 제조방법.The non-metallic inclusions are present, and the structure includes a pearlite phase, and the nonmetallic inclusions, pearlite phase and tensile strain are excellent in the hydrogen-organic crack resistance under cold deformation, characterized in that to produce a steel sheet satisfying the following formulas 1 and 2 Method for producing hot rolled steel sheet. [수식1] x/a + y/b + z/c ≤ 1.5[Equation 1] x / a + y / b + z / c ≤ 1.5 (단, x : 비금속개재물 면적(μm2), y : 펄라이트상 면적율(%), z : 인장변형량 (%), a = 2000, b=1, c=20 (X60/X65급에 대하여))(Where, x: nonmetallic inclusion area (μm 2 ), y: pearlite phase area (%), z: tensile strain (%), a = 2000, b = 1, c = 20 (for class X60 / X65)) [수식2] 인장변형량(%) = (변형후 시편길이 - 변형전 시편길이)/(변형전 시편길이)×100[Equation 2] Tensile strain (%) = (sample length after deformation-specimen length before deformation) / (sample length before deformation) × 100
KR1020070139456A 2007-12-27 2007-12-27 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof KR100979046B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070139456A KR100979046B1 (en) 2007-12-27 2007-12-27 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070139456A KR100979046B1 (en) 2007-12-27 2007-12-27 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20090071224A KR20090071224A (en) 2009-07-01
KR100979046B1 true KR100979046B1 (en) 2010-08-30

Family

ID=41322659

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070139456A KR100979046B1 (en) 2007-12-27 2007-12-27 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100979046B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461730B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Hot-rolled steel sheet having excellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR101490561B1 (en) * 2012-12-21 2015-02-05 주식회사 포스코 Hot-rolled steel sheet having excellent hydrogen induced crack resistance and yield ratio and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070122A (en) 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking
JPH06179910A (en) * 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd Production of steel plate excellent in hydrogen induced cracking resistance
KR20030053757A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR20080042296A (en) * 2006-11-09 2008-05-15 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070122A (en) 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking
JPH06179910A (en) * 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd Production of steel plate excellent in hydrogen induced cracking resistance
KR20030053757A (en) * 2001-12-24 2003-07-02 주식회사 포스코 Line pipe steel with excellent sulfide stress corrosion cracking resistance and method for manufacturing the steel
KR20080042296A (en) * 2006-11-09 2008-05-15 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461730B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Hot-rolled steel sheet having excellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR101490561B1 (en) * 2012-12-21 2015-02-05 주식회사 포스코 Hot-rolled steel sheet having excellent hydrogen induced crack resistance and yield ratio and method of manufacturing the same

Also Published As

Publication number Publication date
KR20090071224A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5812115B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
WO2014041802A1 (en) Hot-rolled steel sheet and method for manufacturing same
WO2007023806A1 (en) Seamless steel pipe for line pipe and method for producing same
JP6468301B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
JP3747724B2 (en) 60 kg class high strength steel excellent in weldability and toughness and method for producing the same
KR101639909B1 (en) Thick hot rolled steel plate having exellent hydrogen induced crack resistance and sulfide stress cracking and method for manufacturing the same
KR101403098B1 (en) High strength thick hot rolled steel plate having exellent hydrogen induced crack resistance and method for manufacturing the same
KR100979046B1 (en) Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
JP4741715B2 (en) High strength steel pipe and manufacturing method thereof
KR101657812B1 (en) Hot rolled steel plate having excellent pipe expansibility and method for manufacturing the same
KR100832982B1 (en) Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
JP6565890B2 (en) Low yield ratio and high strength hot rolled steel sheet with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR102236850B1 (en) Hot rolled steel plate having exellent hydrogen induced crack resistance and tensile property at high temperature and method of manufacturing the same
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
KR101461730B1 (en) Hot-rolled steel sheet having excellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR102043521B1 (en) Hot-rolled steel sheet for use in oil well and method for manufacturing the same
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
KR101490561B1 (en) Hot-rolled steel sheet having excellent hydrogen induced crack resistance and yield ratio and method of manufacturing the same
KR20110040156A (en) Line pipe steel plate excellent in hydrogen induced cracking resistance and method for manufacturing the same
KR100957938B1 (en) Steel materials having excellent resistance of hydrogen induced crack and sulfide stress crack, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130821

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150824

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170823

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180824

Year of fee payment: 9