KR19980028324A - Manufacturing method of high tensile steel plate for line pipe with excellent cryogenic impact toughness and hydrogen organic cracking characteristics - Google Patents

Manufacturing method of high tensile steel plate for line pipe with excellent cryogenic impact toughness and hydrogen organic cracking characteristics Download PDF

Info

Publication number
KR19980028324A
KR19980028324A KR1019960047351A KR19960047351A KR19980028324A KR 19980028324 A KR19980028324 A KR 19980028324A KR 1019960047351 A KR1019960047351 A KR 1019960047351A KR 19960047351 A KR19960047351 A KR 19960047351A KR 19980028324 A KR19980028324 A KR 19980028324A
Authority
KR
South Korea
Prior art keywords
impact toughness
rolling
present
manufacturing
hydrogen
Prior art date
Application number
KR1019960047351A
Other languages
Korean (ko)
Other versions
KR100435445B1 (en
Inventor
박찬엽
주세돈
소문섭
박종수
Original Assignee
김종진
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철 주식회사 filed Critical 김종진
Priority to KR1019960047351A priority Critical patent/KR100435445B1/en
Publication of KR19980028324A publication Critical patent/KR19980028324A/en
Application granted granted Critical
Publication of KR100435445B1 publication Critical patent/KR100435445B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 유전 및 천연가스 수송수단으로 사용되는 대구경 라인 파이프용 고장력강판의 제조방법에 관한 것이며, 그 목적은 극저온환경에서 충격인성 및 내수소유기균열특성이 우수한 라인파이프용 고장력 후판의 제조방법을 제공함에 있다.The present invention relates to a method for producing a high-tensile steel sheet for large diameter line pipes used as an oil field and natural gas transportation means, the object of the present invention is to provide a method for producing a high-strength thick plate for line pipes having excellent impact toughness and hydrogen-organic cracking characteristics in cryogenic environments. In providing.

상기 목적달성을 위한 본 발명은 중량%로, C : 0.07-0.11%, Si : 0.20-0.30%, Mn : 1.00-1.30%, P : 0.020%이하, S : 0.003%이하, Cu : 0.10-0.30%, Ni : 0.10-0.25%, Nb : 0.040-0.060%, V : 0.060-0.080%, Ti : 0.005-0.020%, Sol.-Al : 0.020-0.040%, 나머지 Fe 및 기타 불가피한 불순물로 이루어지고, 탄소당량(Ceq)이 0.262-0.379%인 용강을 적절히 제어압연하여 구성되는 극저온 충격인성 및 내수소유기균열특성이 우수한 라인 파이프용 고장력 후판의 제조방법에 관한 것을 그 기술적 요지로 한다.The present invention for achieving the above object by weight, C: 0.07-0.11%, Si: 0.20-0.30%, Mn: 1.00-1.30%, P: 0.020% or less, S: 0.003% or less, Cu: 0.10-0.30 %, Ni: 0.10-0.25%, Nb: 0.040-0.060%, V: 0.060-0.080%, Ti: 0.005-0.020%, Sol.-Al: 0.020-0.040%, remaining Fe and other unavoidable impurities, The technical gist of the present invention relates to a method for producing a high-strength thick plate for a line pipe having excellent cryogenic impact toughness and hydrogen organic crack resistance, which is formed by properly controlling and rolling a molten steel having a carbon equivalent (Ceq) of 0.262-0.379%.

Description

극저온 충격인성 및 내수소유기균열특성이 우수한 라인 파이프용 고장력 후판의 제조방법Manufacturing method of high tensile steel plate for line pipe with excellent cryogenic impact toughness and hydrogen organic cracking characteristics

본 발명은 유전 및 천연가스 수송수단으로 사용되는 대구경 라인 파이프용 고장력강판의 제조방법에 관한 것으로서, 특히 극저온환경에서 충격인성 및 내수소유기군열특성이 우수한 라인파이프용 고장력 후판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing high tensile steel sheets for large diameter line pipes used as oil field and natural gas transportation means, and more particularly, to a method for manufacturing high tensile steel plates for line pipes having excellent impact toughness and hydrogen group resistance in cryogenic environments. .

현재까지는 유전 자원개발추세가 개발환경이 좋은 온,열대지역을 중심으로 활발히 추진되어 왔으나, 최근 석유산업발달과 함께 이 지역에서의 자원이 고갈되고 있기때문에 점차 시베리아, 북극해, 알래스카등 극한지 및 심해저에 대한 유전개발이 진행되고 있다.Up to now, the trend of oilfield resource development has been actively promoted in warm and tropical regions with good development environment. However, due to the recent development of the oil industry and the depletion of resources in this region, it is gradually increasing in extreme regions such as Siberia, Arctic Ocean, Alaska and deep seabed. Genetic development is underway.

이와관련하여 대형 프로젝트로서 개발된 석유 및 천연가스를 유전지로부터 실사용지까지 장거리 운반하기 위한 원유수송관용 강재 역시 이들 극한지의 가혹한 사용 환경하에서 적용될수 있는 강재개발이 필요하게되었다.In this connection, crude oil pipelines for long-distance transport of oil and natural gas developed from large oil fields to oil fields are also required to develop steels that can be applied under the harsh conditions of use in these extreme regions.

극한지 환경하에서 사용되는 파이프 강재의 품질특성은 강도는 물론 저온에서 쉽게 발생될수 있는 취성에 대한 내력 및 황화수소 등에 대한 내수소유기군열(HIC)특성을 갖추는 것이 필수요건이다.The quality characteristics of the pipe steel used in the extreme cold environment are essential as well as the strength, resistance to brittleness that can be easily generated at low temperatures, and the hydrogen organic group sequence (HIC) for hydrogen sulfide.

그러나, 현재 사용되는 파이프강재의 경우 충격인성에 대한 특별한 기준이 없이 단지 강재 사용환경에 따라 수요가 요구수준을 만족시키고 있는 실정이다. 이에 발명자들은 극저온 환경하에서 유전 및 천연가스 수송관의 소재로 사용될 수 있는 라인 파이프용 고장력강재의 제조방법에 관해 대한민국 특허출원 제95-49561호로 출원한 바 있다. 그러나, 상기 방법에 의해 제조된 파이프강재의 경우는 저온인성 측면과 강도확보에 중점을 두고 있기때문에 강도 및 극저온 충격인성의 확보는 가능하지만 내부식환경에서 부식군열을 발생시킬 수있는 단점이 있다.However, in the case of pipe steel currently used, there is no special standard for impact toughness, and the demand satisfies the required level according to the steel usage environment. Therefore, the inventors have filed with Korean Patent Application No. 95-49561 for a method of manufacturing high tensile steel for line pipe that can be used as a material for oilfield and natural gas transport pipe under cryogenic environment. However, in the case of the pipe steel manufactured by the above method, it is possible to secure the strength and cryogenic impact toughness because it focuses on the low temperature toughness and the strength securing, but has a disadvantage of generating corrosion group in the corrosion environment.

이에 본 발명은 상기한 종래의 문제점을 해결하기 위하여 대한민국 특허출원 제95-49561호를 개량한 것으로 그 목적은 상기 강재의 성분계중 Mn의 함량을 줄이고 Cu 및 Ni을 적절히 첨가하는 한편 제조조건을 적절히 제어하므로서, 고강도뿐만아니라 극저온 환경하에서도 우수한 충격인성을 갖는 것은 물론 내부식성이 매우 우수한 라인 파이프용 고장력 후판의 제조방법을 제공하고자 하는데 있다.Therefore, the present invention was improved to solve the above-mentioned problems in the Republic of Korea Patent Application No. 95-49561 Its purpose is to reduce the content of Mn in the component system of the steel and to properly add the Cu and Ni while appropriately manufacturing conditions By controlling, it is to provide a method of manufacturing a high-strength thick plate for line pipe having not only high strength but also excellent impact toughness under extremely low temperature environment and excellent corrosion resistance.

도1은 본 발명에 의한 제어압연방식을 설명하는 이력곡선도1 is a hysteresis curve diagram illustrating a control rolling method according to the present invention;

도2는 타인 파이프용 고장력강재의 조직사진Figure 2 is a photograph of the structure of high tensile steel for tine pipe

(가)는 발명재(A) is invention material

(나)는 비교재(B) comparative material

도3은 발명재와 비교재에 대한 수소균열여부를 비교한 조직사진Figure 3 is a tissue photograph comparing the hydrogen cracking for the invention and the comparative material

본 발명은 라인 파이프용 고장력 후판의 제조방법에 있어서, 중량%로, C : 0.07-0.11%, Si : 0.20-0.30%, Mn : 1.00-1.30%, P : 0.020%이하, S : 0.003%이하, Cu : 0.10-0.30%, Ni : 0.10-0.25%, Nb : 0.040-0.060%, V : 0.060-0.080%, Ti : 0.005-0.020%, Sol.-Al : 0.020-0.040%, 나머지 Fe 및 기타 불가피한 불순물로 이루어지고, 탄소당량(Ceq)이 0.262-0.379%인 용강을 노외정련시 Ca-Si로 개재물을 구상화처리한 다음, 구상화 처리된 슬라브를 재가열하고 980±20℃의 범위에서 잔압하율 80±5%로 조압연한 후, 조압연된 강재를 잔압하율 75±5% 상태에서 미재결정온도역인 900±20℃의 온도로부터 사상압연을 개시하여 760±20℃의 온도범위에서 마무리 압연을 종료하고 이어서 8-l2℃/초의 범위로 480±20℃의 온도범위까지 가속냉각함을 포함하여 구성되는 극저온 충격인성 및 내수소유기균열특성이 우수한 라인 파이프용 고장력 후판의 제조방법에 관한 것이다.The present invention is a method for producing a high-strength thick plate for line pipe, by weight%, C: 0.07-0.11%, Si: 0.20-0.30%, Mn: 1.00-1.30%, P: 0.020% or less, S: 0.003% or less , Cu: 0.10-0.30%, Ni: 0.10-0.25%, Nb: 0.040-0.060%, V: 0.060-0.080%, Ti: 0.005-0.020%, Sol.-Al: 0.020-0.040%, remaining Fe and others Sintering the inclusions with Ca-Si when refining molten steel with inevitable impurities and having a carbon equivalent (Ceq) of 0.262-0.379%, and then reheating the spheroidized slab and reducing the residual pressure in the range of 980 ± 20 ° C. After rough-rolling to 80 ± 5%, the rough-rolled steel starts finishing at a temperature of 900 ± 20 ℃, which is the unrecrystallized temperature range at 75 ± 5% of residual reduction rate, and finish-rolls in the temperature range of 760 ± 20 ℃. High temperature resistance for cryogenic shock and hydrogen organic cracks, including accelerated cooling to a temperature range of 480 ± 20 ℃ in the range of 8-l2 ℃ / sec. It relates to a method for producing a force plate.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 따른 라인 파이프용 고장력강 중에 함유되는 탄소는 강도를 향상시키는데 가장 크게 기여하는 원소로서, 첨가랑의 증가와 함께 강도는 비례적으로 증가하지만 반면에 충격인성 및 내 sour특성을 저해시키는 원소이다. 따라서, 탄소함량이 0.07%이하이면 인장강도 57.7kg/㎟이상의 고강도 확보와 저온인성의 균형을 유지할수 없고, 연주조업시 탄소함량이 0.11%초과시 연주표면크랙발생에 민감하므로 탄소함랑은 0.07-0.11%로 제어함이 바람직하다.Carbon contained in the high-tensile steel for line pipe according to the present invention is the most contributing element to improve the strength, the strength increases proportionally with the increase of the addition, but is an element that impairs the impact toughness and sour resistance . Therefore, if the carbon content is less than 0.07%, it is impossible to balance the high strength and low temperature toughness of more than 57.7kg / mm2 of tensile strength, and the carbon content is 0.07-0.11 because the carbon content is sensitive to the occurrence of playing surface cracks when the carbon content exceeds 0.11%. It is preferable to control by%.

규소(Si)는 강도향상에 부분적인 기여를 하지만 주된 첨가목적은 강종의 탈산에 있다. 그러나, 규소함량이 0.2%미만이면 강의 탈산효과가 미흡하며, 0.30%이상 첨가시 규소계 개재물이 증가하여 저온인성을 열화시킬수 있다.Silicon (Si) makes a partial contribution to strength improvement, but the main purpose of addition is to deoxidize steel grades. However, if the silicon content is less than 0.2%, the deoxidation effect of the steel is inadequate, and when 0.30% or more is added, the silicon-based inclusions increase, which may degrade the low temperature toughness.

망간(Mn)은 강도와 인성을 동시에 향상시킬수 있는 원소로서 첨가랑의 증가와 함께 페타이트 결정립은 미세해지나 망간함량이 1.30%를 초과하면 베이나이트및 마르텐사이트등 경한 조직이 생성되어 오히려 충격인성을 해칠 우려가 있고 1.00% 미만이면 고강도 확보가 곤란하다.Manganese (Mn) is an element that can improve strength and toughness at the same time. As the grain size increases, the ferrite grains become finer, but when the manganese content exceeds 1.30%, hard tissues such as bainite and martensite are formed and thus impact toughness There is a risk of harm and less than 1.00% is difficult to secure high strength.

인(P)은 강재의 충격인성을 크게 저해시키는 불순물로서 연주시 중심편석부에 집적하여 내부품질을 열화시키기 때문에 조업기술이 수반되는 인 함량은 0.020%이하로 제한하는 것이 바람직하다.Phosphorus (P) is an impurity that significantly impairs the impact toughness of the steel material, so it accumulates in the central segregation unit during performance and degrades the internal quality. Therefore, the phosphorus content accompanying the operation technique is preferably limited to 0.020% or less.

황(S)은 상기 인 성분과 동일하게 유해한 원소로서 연주시 표면크랙, 내부크랙 및 중심편석의 유발로 인하여 충격인성을 대폭감소시킬수 있기 때문에 S함량은 0.003%이하로 제한하는 것이 바람직하다.Sulfur (S) is the same harmful element as the phosphorus component, the S content is preferably limited to 0.003% or less because it can greatly reduce the impact toughness due to the occurrence of surface cracks, internal cracks and central segregation when playing.

구리(Cu)는 강재의 산화피막형성원소로서, 그 함량이 0.10%이하로 되면 황학수소등의 부식성환경하에서 수소의 침투를 억제하는 효과가 적으며 0.30%이상의 다량 첨가시에는 강도를 향상시키지만 충격인성을 저해한다.Copper (Cu) is an oxide film forming element of steel materials. When the content is less than 0.10%, the effect of inhibiting the penetration of hydrogen in corrosive environments such as sulfuric hydrogen and hydrogen is small. Inhibits.

니켈(Ni)은 구리와 마찬가지로 강재의 산화피막형성을 위해 첨가되는데, 그 함량이 0.10%미만에서는 상기 효과가 떨어지고, 0.25%이상되면 강도향상 효과는 크게 되지만 파이프로 용접후 충격시험시에 모재와 용접부간의 취성이 발생되어 바람직하지 않다.Nickel (Ni) is added to form an oxide film of steel like copper, but if the content is less than 0.10%, the above effect is lowered. If it is more than 0.25%, the strength improvement effect is increased, but when the impact test after welding with pipe, Brittleness between the welds occurs, which is not preferable.

니오븀(Nb)은 그 첨가량이 증가할수록 Nb(C,N)석출물 생성으로 인장강도가 증가하며 후판압연시는 입계에 석출된 Nb(C,N)석출물이 결정립성장을 억제함으로씨 결정립 미세화효과에 의한 강도 및 충격인성을 향상시키는 역활을 한다. 그러나, Nb의 함량이 0.040%미만에서는 재질특성 향상이 미흡하며, 0.060%를 초과 함유시는 포화현상을 나타내어 강도및 충격인성 개선효과가 미미할뿐만 아니라 과다함유시 오히려 용접부의 충격인성을 저해시킨다.Niobium (Nb) increases the tensile strength due to the formation of Nb (C, N) precipitates as the amount of its addition increases.Nb (C, N) precipitates deposited at grain boundaries inhibit grain growth during thick-sheet rolling. It serves to improve the strength and impact toughness. However, when the Nb content is less than 0.040%, the improvement of the material properties is insufficient. When the content of Nb is more than 0.060%, the saturation phenomenon is shown, and the effect of improving the strength and impact toughness is insignificant.

바나듐(V)은 V(C,N)석출원소로서, 그 함랑의 증가에 따라 항복강도의 증가보다는 인장강도증가에 크게 기여한다. 따라서, 본 발명에서는 Mn성분의 하향화와 더불어 기존보다 강도적인 측면외에 인성과의 균형을 고려하여 그 함량을 0.060-0.080%로 제한함이 바람직한데, V이 0.060%미만으로 함유되면 Mn성분의 하향화로 강도확보가 어렵고 0.080%이상으로 다량함유시 탄소당량(Ceq)의 증가와 함께 모재 및 용접부 충격인성을 크게 저해시킨다.Vanadium (V) is a V (C, N) precipitation element and contributes to the increase in tensile strength rather than the increase in yield strength as the dilution increases. Therefore, in the present invention, it is preferable to limit the content of the Mn component to 0.060-0.080% in consideration of the balance between toughness and strength in addition to the lowering of the conventional Mn component. It is difficult to secure the strength, and when it contains a large amount of more than 0.080%, the carbon equivalent (Ceq) increases and the impact toughness of the base metal and the weld part is greatly impaired.

티타늄(Ti)함랑은 0.005-0.020%로 제한함이 바람직한데, 그 이유는 통상 Ti/N비를 1.0-3.0으로 관리함으로써 슬라브 재가열공정 및 용접부등 고온에서 TiN 석출물이 입계에 미세 분산되어 초기 오스테나이트 결정립성장을 억제하고 강도의 부분적인 증가와 함께 인성의 대폭적인 개선을 도모할수 있기 때문이다. 특히, Ti 함량이 0.020%이상으로 다량 첨가되는 경우 용강중의 질소 수준이 통상 50ppm임을 감안할때 산화물계 개재물 형성 또는 과잉일 고용 Ti이 조대 석출물로 형성되어 인성을 저해시키므로 바람직하지 않다.Titanium (Ti) content is preferably limited to 0.005-0.020% because the Ti / N ratio is usually controlled at 1.0-3.0, and the TiN precipitate is finely dispersed at the grain boundary at the high temperature such as the slab reheating process and the welded portion. This is because nitrite grain growth can be suppressed and toughness can be drastically improved with a partial increase in strength. In particular, when the Ti content is added in a large amount of 0.020% or more, since the nitrogen level in the molten steel is usually 50 ppm, it is not preferable because the formation of oxide-based inclusions or excessively dissolved solid solution Ti is formed as coarse precipitates to inhibit toughness.

이렇게 본 발명의 강성분계는 기존의 강재에 비해 강중 Mn성분이 하향화되고, 산화피막형성원소인 Cu, Ni이 첨가되며 저온인성 및 우수한 용접성을 동시에 확보하기 위해 전체 성분계의 탄소당량이 0.262-0.379%의 범위로 낮게 관리됨에 특징이 있다.As described above, the steel component of the present invention has a lower Mn component in steel compared to conventional steels, Cu and Ni, which are oxide forming elements, are added, and the carbon equivalent of the total component is 0.262-0.379% in order to secure low temperature toughness and excellent weldability at the same time. It is characterized by low management in the range of

이하, 본 발명에 의한 제조방법을 상세히 설명한다.Hereinafter, the manufacturing method according to the present invention will be described in detail.

상기한 조성을 갖는 파이프용 고장력 강재의 내부품질의 건전성 확보를 위해 본 발명에서는 전로조입시 후판압연에서 길게 연신되어 취성파괴의 기점으로 작용하여 크랙전파를 촉진시키는 MnS개재물을 CaS의 구상화 개재물로 형상을 제어하는 것이 필요하다. 이러한 연주방법은 본 발명자가 기출원한 대한민국 특허출원 제95-49561호에 자세히 제시되어 있다.In order to ensure the integrity of the internal quality of the high-strength steel for pipes having the above-described composition, in the present invention, the MnS inclusions, which are elongated in the thick plate rolling when the converter is inserted, act as a starting point of brittle fracture and promote crack propagation, are shaped as spherical inclusions of CaS. It is necessary to control. Such a playing method is described in detail in Korean Patent Application No. 95-49561 filed by the inventor.

또한, 본 발명에서는 상기와 같은 전로조업을 거쳐 연주된 슬라브를 제어압연하는데, 이때 제어압연은 도 1과 같은 방식을 이용한다. 즉, 본 발명에 의한 제어압연은 우선 통상의 온도로 재가열한 다음, 도 1과 같이 재결정영역인 960-1000℃에서 잔압하율 75-85%의 범위로 조압연을 실시하여 초기 오스테나이트 결정립을 미세화시키고, 이후 조압연된 강재를 미재결정구역인 920-880℃의 온도범위에서 사상압연을 개시하고 페라이트와 오스테나이트 2상영역을 피하여 Ar3직상온도인 780-740℃의 온도범위에서 마무리 압연하며, 또한, 사상압연 개시시점에서의 잔압하율은 80-70%정도로 설정한다.In addition, in the present invention, the slab played through the converter operation as described above, the control rolling, wherein the control rolling uses the same method as in FIG. That is, the control rolling according to the present invention is first reheated to a normal temperature, and then roughly rolled in the range of 75-85% of residual reduction ratio in the recrystallization area of 960-1000 ° C. as shown in FIG. After refining, the rough rolled steel starts finishing in the temperature range of 920-880 ℃, which is the unrecrystallized zone, and finish-rolls in the temperature range of 780-740 ℃, which is directly above Ar 3 , avoiding the ferrite and austenite two-phase zones. In addition, the residual reduction rate at the start of finishing rolling is set to about 80-70%.

이러한 본 발명에 따른 제어압연 방식은 기존의 제어압연과는 달리 약 30℃정도 높을뿐만 아니라 사상압연을 미재결정역에서 실시하기 때문에 펄라이트 밴드(pearlite band)조직을 억제하므로써 강재의 결정립이 보다 미세화되어 극저온 취성에 유리하고, 특히 내수소유기군열특성이 향상된다. 만일 상기 조압연을 재결정온도이상인 1000℃이상에서 실시할 때는 고온역에서 압연으로 누적압하효과가 적어 초기 오스테나이트 결정립 미세화 효과가 미흡하며, 960℃이하의 온도역에서 압연을 하면 결정립미세화 효과는 있으나 재결정온도 및 압하량에서 충분히 실시되도록 하기 곤란한 점이 있다. 그리고, 제어압연온도를 920℃이상으로 사상압연을 개시하면 부분 재결정역에 의한 결정립의 성장으로 조내화에 의한 충격인성이 열화되며 이러한 압연이 740℃이하의 저온역에서 종료되면 2상역 압연에 의한 집합조직의 형성으로 항복강도의 확보는 유리하지만 충격이방성의 열화 및 상기 밴드조직형성에 의한 내 sour특성이 열화되는 단점이 있다.Unlike the conventional control rolling, the control rolling method according to the present invention is not only about 30 ° C. higher, but also because the finishing rolling is performed in the unrecrystallized region, the grain size of the steel is further refined by suppressing the pearlite band structure. It is advantageous for cryogenic brittleness, and in particular, the hydrogen organic group thermal characteristics are improved. If the rough rolling is carried out at a temperature above 1000 ° C. above the recrystallization temperature, the cumulative reduction effect due to rolling in the high temperature range is small, and thus the initial austenite grain refining effect is insufficient. When rolling at a temperature range below 960 ° C., there is a grain refining effect. There is a point that it is difficult to sufficiently carry out at the recrystallization temperature and the reduction amount. And when the rolling starts at the control rolling temperature of 920 ℃ or more, the impact toughness due to coarsening is deteriorated due to the growth of grains by the partial recrystallization zone, and when such rolling is finished in the low temperature region below 740 ℃, The yield strength is advantageously secured by the formation of the aggregate structure, but there is a disadvantage in that the impact anisotropy and the sour resistance due to the band structure are degraded.

또한, 상기와같이 제어 압연 후 가속냉각을 할때는 8-12℃/초의 범위로 냉각하여 460-500℃의 온도에서 종료시키는 것이 바람직하다. 만일, 가속냉각속도가 8℃/초 미만으로 되민 약랭에 의해 오스테나이트→페라이트 변태 미완료로 충격인성 및 인장강도 향상에 적합한 베이나이트 조직확보가 어려우며, 12℃/초를 초과하면 강냉각에 의해 인장강도는 향상되나 형상이 불랑해질 우려가 있다.In addition, when the accelerated cooling after the control rolling as described above, it is preferable to cool in the range of 8-12 ℃ / sec and terminate at a temperature of 460-500 ℃. If the accelerated cooling rate is lower than 8 ° C / sec, it is difficult to secure bainite structure suitable for improving impact toughness and tensile strength due to incomplete austenite to ferrite transformation.If it exceeds 12 ° C / sec, it is tensioned by strong cooling. Although the strength is improved, there is a fear that the shape becomes bulging.

그리고, 상기한 냉각속도로 냉각시 그 종료온도가 500℃이상에서 이루어지면 역시 오스테나이트→페라이트 변태가 완료되지 않아 밴드조직이 형성되어 수소균열파괴의 기점이 될 수 있으며 460℃미만의 저온에서 냉각이 종료되던 마르텐사이트등 저온변태조직을 형성하여 항복강도 및 인장강도 확보는 유리하나 충격인성은 저하되어 바람직하지 않다. 결국, 본 발명에 따라 제조되는 파이프용 고장력 강재는 충격인성에 유해한 밴드(집합조직)이 소멸되고 인성향상에 유리한 페라이트-펄라이트-저온 베이나이트 조직을 형성하여 -60℃의 극저온에서 우수한 저온인성을 갖게되어 득히 두께 6-20mm의 범위인 내구경 라인파이프용 후판에 적합하다.If the end temperature is higher than 500 ° C. when cooling at the above cooling rate, the austenite → ferrite transformation is not completed, and thus a band structure may be formed, which may be a starting point of hydrogen crack breakdown and cooling at a low temperature of less than 460 ° C. It is advantageous to secure the yield strength and tensile strength by forming the low temperature transformation structure such as martensite, but the impact toughness is lowered, which is not preferable. As a result, the high tensile strength steel for pipes manufactured according to the present invention forms a ferrite-perlite-low-temperature bainite structure, which has a band (assembly structure) harmful to impact toughness and is advantageous for toughness improvement, and has excellent low-temperature toughness at cryogenic temperatures of -60 ° C. It is suitable for heavy-duty line pipes with a diameter of 6-20mm.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

중량%로 , C : 0.09%, Si : 0.25%, Mn : 1.20%, P : 0.020%. S : 0.002%, Cu : 0.25%, Ni : 0.15%, Sol-Al : 0.025%, Nb : 0.050%, V : 0.070%, Ti : 0.012% (탄소당량 : 0.331)를 포함하여 조성되도록 용선 예비처리공정에서 밀스케일(mill scale)투입후 교반처리로 1차정련한 후, 노외정련 공정에서 파우더 인젝션(powder injection)시 Ca-Si 210㎏를 투입하고 진공도를 2torr이하로 한 진공탈가스 처리시 조업말기에 Ca-Wire 200㎏을 투입하고 5분이상 용강을 환류처리하고, 연주주조시 중심편석 최소화를 위해 전자교반처리를 실시하였다. 이후, 연주공정에서 얻어진 슬라브는 후판공정에서 통상 가열수준인 1230℃로 가열하고, 980℃에서 잔압하율 80%를 적용하여 조압연을 실시한 다음, 잔압하율이 70%인 상태에서 900℃의 온도에서 사상 압연을 개시하여 760℃의 온도에서 압연을 종료하여 두께 6mm정도인 압연판을 얻었다.By weight%, C: 0.09%, Si: 0.25%, Mn: 1.20%, P: 0.020%. S: 0.002%, Cu: 0.25%, Ni: 0.15%, Sol-Al: 0.025%, Nb: 0.050%, V: 0.070%, Ti: 0.012% (Carbon equivalent: 0.331) After milling in the process, after the first smelting by stirring treatment, in the powder injection in the furnace refining process, 210 kg of Ca-Si is added and the vacuum degassing process with the vacuum degree of 2torr or less is performed. At the end, 200kg of Ca-Wire was added and the molten steel was refluxed for more than 5 minutes, and electrostirring was performed to minimize the center segregation during casting. Subsequently, the slabs obtained in the casting process are heated to 1230 ° C., which is a normal heating level in the thick plate process, and rough rolling is performed at 980 ° C. by applying a residual pressure reduction ratio of 80%. Finishing rolling was started at the temperature, and rolling was finished at the temperature of 760 degreeC, and the rolling board about 6 mm in thickness was obtained.

상기 압연판은 바로 12℃/초 냉각속도로 수 냉각하여 480℃의 온도에서 종료하고, 이렇게 냉각이 완료된 후판강재를 발명재로 하였다.The rolled plate was immediately cooled by water at a cooling rate of 12 ° C./second and terminated at a temperature of 480 ° C., and thus, the steel plate steel material thus cooled was used as an inventive material.

또한, 비교를 위하여 중량%로. C : 0.11%, Si : 0.25%, Mn : 1.58%, P : 0. 020%, S : 0.002%, So1.-Al : 0.025%, Nb : 0.050%, V : 0.080%, Ti : 0.010%, (탄소당량 0.390%)를 포함하여 조성되는 용선을 노외정련에서 Ca-Si를 410㎏ 투입할 것을 제외하고는 발명재의 방법과 동일하게 연주 슬라브를 제조하였다. 이후, 제조된 슬라브를 제어압연시 조압연후의 잔압하율 70%인 상대에서 980℃의 온도에서 1차 사상압연을 개시하고, 2차 사상압연을 870℃에서 시작하여 730℃의 온도에서 압연을 종료하여 두께 6㎜인 압연판을 얻고, 상기 압연판을 8℃/초의 냉각속도로 수냉하여 540℃의 온도에서 냉각을 종료하고, 이렇게 냉각이 완료된 후판강재를 비교재로 하였다.Also in weight percent for comparison. C: 0.11%, Si: 0.25%, Mn: 1.58%, P: 0.02%, S: 0.002%, So1.-Al: 0.025%, Nb: 0.050%, V: 0.080%, Ti: 0.010%, A molten iron including (carbon equivalent 0.390%) was prepared in the same manner as in the invention, except that 410 kg of Ca-Si was added to the outside of the refining furnace. Thereafter, the first slab is started at a temperature of 980 ° C. at a relative pressure of 70% of the residual reduction after rough rolling in the controlled slab, and the second finishing rolling starts at 870 ° C. and rolls at a temperature of 730 ° C. After finishing, a rolled sheet having a thickness of 6 mm was obtained, the rolled sheet was cooled by water at a cooling rate of 8 ° C / second, and the cooling was completed at a temperature of 540 ° C.

상기와같이 제조된 발명재와 비교재에 대하여 각각 기계적성질, 충격인성 및 수소균열을 측정하고 그 결과를 하기표 1에 나타내었다.Mechanical properties, impact toughness and hydrogen cracks were measured for the inventive and comparative materials prepared as described above, and the results are shown in Table 1 below.

또한, 발명재와 비교재의 조직을 광학현미경을 이용하여 200배의 비율로 관찰하고, 그 결과를 도 2에 나타내었다.In addition, the structure of the invention material and the comparative material were observed at a ratio of 200 times using an optical microscope, and the results are shown in FIG. 2.

또한, 100%수소분위기하에서 유지후 충격시험한 결과 발명재와 비교재의 파면조직을 광학현미경을 이용하여 관찰하고. 그 결과를 도 3에 나타내었다.In addition, as a result of impact test after holding in 100% hydrogen atmosphere, the wavefront structure of the invention and the comparative material was observed using an optical microscope. The results are shown in FIG.

실시예Example 기계적 성질(㎏/㎟)Mechanical property (㎏ / ㎠) 충격인성(㎏·m)Impact Toughness (㎏m) 내HIC특성HIC resistance 항복surrender 인장Seal 연신(%)Elongation (%) 0℃0 ℃ -26℃-26 ℃ -60℃-60 ℃ VTrEVTrE CLR(%)CLR (%) ETC(㎜)ETC (mm) 발명재Invention 51.851.8 60.860.8 3535 29.629.6 24.024.0 15.415.4 -60℃-60 ℃ 88 0.10.1 비교재Comparative material 55.555.5 64.064.0 3737 17.117.1 11.311.3 6.46.4 -40℃-40 ℃ 3030 3.43.4

상기표 1에 나타난 바와같이, 발명재와 비교재의 경우 모두 API-X70강재 규격(항복강도 : 49㎏/㎟이상, 인장강도 : 57.7㎏/㎟이상, 연신 : 23%이상; '77년 NACE규격)을 만족하고 있지만, 발명재의 경우 비교재에 비하여 저온 충격인성이 매우 우수함을 알수 있다. 이러한 원인은 도 2의 조직사진에서도 알수 있듯이, 발명재의 경우(가) 밴드조직이 형성된 비교재의 경우(나) 보다도 결정립이 매우 미세화되었기 때문임을 알수 있다. 이러한 사실은 도 3에서도 알 수있는 바와 같이 비교재의 경우 실제 sour환경에서 수소균열이 크게 발달되어있는 반면 본 발명재에서는 거의 관찰되지 않았다.As shown in Table 1, in the case of the invention material and the comparative material, both API-X70 steel standards (yield strength: 49 kg / mm2 or more, tensile strength: 57.7 kg / mm2 or more, elongation: 23% or more; '77 NACE standard ), But it can be seen that the low temperature impact toughness of the invention material compared to the comparative material. As can be seen from the tissue photograph of FIG. 2, it can be seen that in the case of the inventive material, the crystal grains are much finer than in the case of the comparative material in which the band structure is formed (b). As can be seen from FIG. 3, in the case of the comparative material, hydrogen crack was greatly developed in the actual sour environment, but little was observed in the present invention.

상술한 바와같이, 본발명에 따라 강재의 성분계 및 제조조건을 적절히 제어하면 강도는 물론 극저온 환경하에서도 우수한 충격인성을 갖을 뿐만아니라 특히 sour환경하에서도 내균열특성이 우수한 타인 파이프용 고장력후판이 제공되고 이러한 후판은 극한지 지역에서도 원유수송관등에 사용시 그 수명이 연장될수 있는 효과가 있다.As described above, according to the present invention, if the component system and manufacturing conditions of the steel are properly controlled, not only the strength but also the impact toughness under cryogenic environments are provided, and the high-strength thick plate for tine pipes having excellent cracking characteristics especially under a sour environment is provided. These thick plates have the effect of extending their life when used in crude oil pipelines even in the extreme regions.

Claims (1)

라인 파이프용 고장력 후판의 제조방법에 있어서, 중량%로, C : 0.07-0.11%, Si : 0.20-0.30%, Mn : 1.00-1.30%, P : 0.020%이하, S : 0.003%이하, Cu : 0.10-0.30%, Ni : 0.10-0.25%, Nb : 0 .040-0 .060%, V : 0.060-0.080%, Ti : 0.005-0.020%, Sol.-Al : 0.020-0.040%, 나머지 Fe 및 기타불가피한 불순물로 이루어지고, 탄소당량(Ceq)이 0.262-0.379%인 용강을 노외정련시 Ca-Si로 개재물을 구상화 처리한 다음, 구상화 처리된 슬라브를 재가열하고, 980±20℃의 범위에서 잔압하율 80±5%로 조압연한 후, 조압연된 강재를 잔압하율 75±5% 상태에서 미재결정온도역인 900±20℃의 온도로부터 사상압연을 개시하여 760±20℃의 온도범위에서 마무리 압연을 종료하고 이어서 8-12℃/초의 범위로 480±20℃의 온도범위까지 가속냉각함을 포함하여 구성되는 것을 특징으로 하는 극저온 충격인성 및 내수소유기균열특성이 우수한 타인 파이프용 고장력 후판의 제조방법.In the manufacturing method of the high-strength thick plate for line pipe, in weight%, C: 0.07-0.11%, Si: 0.20-0.30%, Mn: 1.00-1.30%, P: 0.020% or less, S: 0.003% or less, Cu: 0.10-0.30%, Ni: 0.10-0.25%, Nb: 0.0040-0.060%, V: 0.060-0.080%, Ti: 0.005-0.020%, Sol.-Al: 0.020-0.040%, remaining Fe and Sintering the inclusions with Ca-Si during refining of molten steel with other unavoidable impurities and having a carbon equivalent (Ceq) of 0.262-0.379%, and then reheating the spheroidized slab and remaining in the range of 980 ± 20 ° C. After rough rolling at a rolling reduction of 80 ± 5%, the rough-rolled steel is started at a temperature range of 760 ± 20 ° C from a temperature of 900 ± 20 ° C, which is the unrecrystallized temperature range, at a residual pressure reduction rate of 75 ± 5%. Tine excellent in cryogenic impact toughness and hydrogen-organic cracking characteristics, characterized in that the finish rolling and then accelerated cooling to a temperature range of 480 ± 20 ℃ in the range of 8-12 ℃ / second Method of manufacturing high tensile steel plate for pipe.
KR1019960047351A 1996-10-22 1996-10-22 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment KR100435445B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960047351A KR100435445B1 (en) 1996-10-22 1996-10-22 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960047351A KR100435445B1 (en) 1996-10-22 1996-10-22 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment

Publications (2)

Publication Number Publication Date
KR19980028324A true KR19980028324A (en) 1998-07-15
KR100435445B1 KR100435445B1 (en) 2004-08-25

Family

ID=37348789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960047351A KR100435445B1 (en) 1996-10-22 1996-10-22 Manufacturing method of high tensile strength plate for line pipes characterizing superior impact toughness and resistance to hydrogen induced cracking in ultra-low temperature environment

Country Status (1)

Country Link
KR (1) KR100435445B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815717B1 (en) * 2006-11-02 2008-03-20 주식회사 포스코 High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
KR100832982B1 (en) * 2006-11-09 2008-05-27 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
KR101411861B1 (en) * 2012-06-28 2014-07-01 현대제철 주식회사 Method for producing steel pipe with resistant hydrogen induced crack
KR20210076482A (en) 2019-12-16 2021-06-24 주식회사 포스코 Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100518323B1 (en) * 2001-12-24 2005-10-04 주식회사 포스코 High Strength Linepipe Steel and Method for Manufacturing the Steel
KR102400036B1 (en) * 2020-04-13 2022-05-19 주식회사 포스코 Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131320A (en) * 1981-02-06 1982-08-14 Kawasaki Steel Corp Production of high tensile steel plate having superior low temperature toughness
JPS5877528A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile steel with superior toughness at low temperature
KR100256350B1 (en) * 1995-09-25 2000-05-15 이구택 The manufacturing method for yield strength 50kgf/mm2 steel with excellent anti hydrogen cracking and stress corrosion cracking property
KR100256347B1 (en) * 1995-12-11 2000-05-15 이구택 The manufacturing method for pipe steelsheet with excellent anti hydrogen cracking property
KR100256352B1 (en) * 1995-12-14 2000-05-15 이구택 The manufacturing method for high strength steel sheet used line pipe with excellent ultra low temperature impact toughness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100815717B1 (en) * 2006-11-02 2008-03-20 주식회사 포스코 High strength linepipe steel plate for large diameter pipe with high low-temperature ductility and hic resistance at the h2s containing environment and manufacturing method thereof
KR100832982B1 (en) * 2006-11-09 2008-05-27 주식회사 포스코 Hot-rolled steel having excellent hydrogen induced crack resistance and low temperature toughness and the method for manufacturing the same
KR101411861B1 (en) * 2012-06-28 2014-07-01 현대제철 주식회사 Method for producing steel pipe with resistant hydrogen induced crack
KR20210076482A (en) 2019-12-16 2021-06-24 주식회사 포스코 Steel sheet having excellent resistance of sulfide stress cracking and method of manufacturing the same
WO2021125734A1 (en) 2019-12-16 2021-06-24 주식회사 포스코 Steel material having excellent resistance to sulfide stress cracking and method for manufacturing same

Also Published As

Publication number Publication date
KR100435445B1 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
CA2620054C (en) Seamless steel pipe for line pipe and a process for its manufacture
EP2264205B1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
KR101601000B1 (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP2022510214A (en) Ultra-high-strength steel with excellent cold workability and SSC resistance and its manufacturing method
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
JP3981615B2 (en) Non-water-cooled thin low yield ratio high-tensile steel and method for producing the same
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
KR19980028324A (en) Manufacturing method of high tensile steel plate for line pipe with excellent cryogenic impact toughness and hydrogen organic cracking characteristics
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
KR20200047926A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR102498135B1 (en) High-strength steel material having excellent resistance of sulfide stress crack, and method for manufacturing thereof
JPH05295434A (en) Production of high tensile strength steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH03236420A (en) Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH08311549A (en) Production of ultrahigh strength steel pipe
KR100256352B1 (en) The manufacturing method for high strength steel sheet used line pipe with excellent ultra low temperature impact toughness
JP2004339550A (en) LOW YIELD RATIO 570 MPa CLASS HIGH-TENSILE STRENGTH STEEL HAVING EXCELLENT WELD ZONE TOUGHNESS AND THREAD CUTTABILITY, AND ITS PRODUCTION METHOD
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
KR20200047081A (en) High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof
KR100564883B1 (en) Manufacturing method of hot coil for usage as a line pipe
KR102218423B1 (en) Thin steel plate having excellent low-temperature toughness and ctod properties, and method for manufacturing thereof
JPH08295929A (en) Production of sour resistant steel sheet for line pipe excellent in co2 corrosion resistance and low temperature toughness
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130530

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 12

EXPY Expiration of term