JP3046183B2 - Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance - Google Patents

Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance

Info

Publication number
JP3046183B2
JP3046183B2 JP5170734A JP17073493A JP3046183B2 JP 3046183 B2 JP3046183 B2 JP 3046183B2 JP 5170734 A JP5170734 A JP 5170734A JP 17073493 A JP17073493 A JP 17073493A JP 3046183 B2 JP3046183 B2 JP 3046183B2
Authority
JP
Japan
Prior art keywords
temperature
point
rolling
less
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5170734A
Other languages
Japanese (ja)
Other versions
JPH0726323A (en
Inventor
明 八木
正勝 上野
安典 田野
晃 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5170734A priority Critical patent/JP3046183B2/en
Publication of JPH0726323A publication Critical patent/JPH0726323A/en
Application granted granted Critical
Publication of JP3046183B2 publication Critical patent/JP3046183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐SSC性に優れた低
硬度高靭性シームレス鋼管の製造法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low-hardness and high-toughness seamless steel pipe having excellent SSC resistance.

【0002】[0002]

【従来の技術】近年、エネルギー資源としてのガス井、
油井開発は硫化水素濃度の高い環境で且つ極北化する傾
向にあり、開発機材として使用されるシームレス鋼管に
対しては、耐水素割れ性を保つため低硬度で且つ高靭性
を兼ね備えた性質が要求されている。従来より、このよ
うな諸特性を満足するにはASTM No.6以下の結晶
粒度では困難であることが本発明者等によって確かめら
れている。
2. Description of the Related Art In recent years, gas wells as energy resources,
Oil well development tends to be extremely northern in an environment with a high concentration of hydrogen sulfide, and seamless steel pipes used as development equipment require low hardness and high toughness to maintain hydrogen cracking resistance. Have been. Conventionally, to satisfy such characteristics, ASTM No. It has been confirmed by the present inventors that it is difficult to achieve a crystal grain size of 6 or less.

【0003】一方、熱間シームレス鋼管の圧延は、鋳造
鋼片の穿孔圧延、延伸圧延、仕上げ圧延工程に分けられ
るが、成形性および表面品位の確保から通常1100℃
以上の高温域で行われる。よって、再結晶粒の粒成長は
著しく速く、その結晶粒度はASTM No.6以下の粗
粒となる。すなわち、近年の油井用機材として要求され
る特性を満足するにはASTM No.6以上の微細化且
つ整粒組織を安定して得る必要があるが、ASTM N
o.6以上の微細化組織を得るには熱間シームレス圧延
後に行う焼入れ−焼戻しする直接焼入れ工程では不十分
であるため、例えば特開昭52−77813号公報のよ
うに熱間粗圧延した中空素管を強制的に一旦鋼のAr1
点以下の温度に下げて再びオーステナイト化温度に加熱
し引き続き仕上げ圧延を行って焼入れ−焼戻しするか、
或いは通常の仕上げ圧延後に再加熱焼入れ−焼戻しする
必要があった。
[0003] On the other hand, the rolling of a hot seamless steel pipe is divided into a piercing rolling, a stretching rolling, and a finishing rolling process of a cast steel slab.
It is performed in the above high temperature range. Therefore, the growth of recrystallized grains is remarkably fast, and the crystal grain size is determined according to ASTM No. 6 or less coarse particles. That is, in order to satisfy the characteristics required for oil well equipment in recent years, ASTM No. It is necessary to stably obtain a refined and sized structure of 6 or more.
o. Since a direct quenching step of quenching and tempering performed after hot seamless rolling is not enough to obtain a microstructure of 6 or more, for example, a hollow shell which has been roughly hot rolled as disclosed in JP-A-52-77813. Once the steel Ar 1
Or lower to a temperature below the point, heated again to the austenitizing temperature, and then finish rolling and quenching-tempering,
Alternatively, it was necessary to perform reheating quenching and tempering after normal finish rolling.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような方法はいずれにおいても熱効率上の問題のほかに
製造工程が煩雑となる欠点があった。一方、従来の熱間
シームレス圧延ままで近年の油井開発に要求される特性
を満足できる必要条件であるASTM No.6以上の細
粒組織が得られないため、直接焼入れ処理等の省工程で
耐SSCの優れた低硬度高靭性シームレス鋼管が得られ
ないという問題があった。本発明はこのような従来の問
題を解消するものであって、鋼成分、熱間圧延条件を制
御することによって耐SSC性の優れた低硬度高靭性シ
ームレス鋼管の製造法を提供することを目的とする。
However, any of the above-mentioned methods has a drawback that the manufacturing process is complicated in addition to the problem of thermal efficiency. On the other hand, ASTM No., which is a necessary condition that can satisfy the characteristics required for recent oil well development with conventional hot seamless rolling as it is. Since a fine grain structure of 6 or more cannot be obtained, there has been a problem that a low-hardness and high-toughness seamless steel pipe having excellent SSC resistance cannot be obtained in a saving step such as a direct quenching treatment. An object of the present invention is to solve such a conventional problem, and an object of the present invention is to provide a method for producing a low-hardness and high-toughness seamless steel pipe having excellent SSC resistance by controlling steel composition and hot rolling conditions. And

【0005】[0005]

【課題を解決するための手段】本発明は、上記を達成す
るために構成されたもので、その要旨は、重量%として C :0.03〜0.20%、 Si:0.01
〜0.5%、Mn:0.15〜2.5%、 P
:0.020%以下、S :0.010%以下、
Al:0.005〜0.1%、Ti:0.00
5〜0.1%、 Nb:0.005〜0.1%、
N :0.01%以下を含有し、さらに必要によっては Cr:0.1〜1.5%、 Mo:0.05
〜0.5%、Ni:0.1〜2.0%、 V
:0.01〜0.1%、B :0.0003〜0.0
030%の1種または2種以上と、さらに必要によって 希土類元素:0.001〜0.05%、Ca:0.00
1〜0.02%、Co:0.05〜0.5%、
Cu:0.1〜0.5%の1種または2種以上を含有
して残部が実質的にFeからなる鋼片を1000〜12
50℃に加熱した後、熱間穿孔圧延を施して、加工発熱
で1000℃以上に上昇した中空素管を最終段の傾斜圧
延機前で該素管内面から強制冷却して素管全体をAr3
点〜1100℃間の温度にする均一化処理を行った後、
肉厚断面減少率で20〜70%の傾斜圧延を施し、さら
に形状矯正熱間連続圧延を行った後、Ar3 点〜900
℃の温度まで降下した中空素管を、該温度より高いAr
3 点+50〜1000℃に再加熱した後、仕上げ温度が
Ar3 点+50℃以上の熱間仕上げ圧延を施すか、或い
は該素管がAr3 点+50℃以上の十分高い温度が確保
された場合は再加熱することなく仕上げ温度がAr3
+50℃以上の熱間仕上げ圧延を施し、その後Ar3
以上の温度からパイプ焼入れ側深さ1〜2mmの点を鋼の
Ar1 点直下の温度まで150℃/s以下の速度で冷却し
引き続き150℃/s以上の速度でパイプ焼入れ側の反対
面側が800〜400℃になるまで冷却し、しかる後放
冷処理を施すことを特徴とする耐SSC性に優れた低硬
度高靭性シームレス鋼管の製造法である。
Means for Solving the Problems The present invention has been made to achieve the above, and the gist of the invention is that C: 0.03 to 0.20% by weight and Si: 0.01
-0.5%, Mn: 0.15-2.5%, P
: 0.020% or less, S: 0.010% or less,
Al: 0.005 to 0.1%, Ti: 0.00
5 to 0.1%, Nb: 0.005 to 0.1%,
N: 0.01% or less, and if necessary, Cr: 0.1 to 1.5%, Mo: 0.05
-0.5%, Ni: 0.1-2.0%, V
: 0.01 to 0.1%, B: 0.0003 to 0.0
030%, one or more kinds, and if necessary, rare earth elements: 0.001 to 0.05%, Ca: 0.00
1 to 0.02%, Co: 0.05 to 0.5%,
Cu: a steel slab containing 0.1 to 0.5% of one or more kinds and the balance substantially consisting of Fe is 1000 to 12%.
After heating to 50 ° C., hot piercing and rolling was performed, and the hollow shell raised to 1000 ° C. or higher due to the heat generated by working was forcibly cooled from the inner surface of the hollow shell before the final inclined rolling mill, and the entire shell was Ar Three
After performing the homogenization treatment to a temperature between the point and 1100 ° C.,
After performing inclined rolling at a thickness reduction ratio of 20 to 70% and further performing shape-correcting hot continuous rolling, Ar 3 points to 900
C. to a temperature lower than the temperature.
After reheating to 3 points +50 to 1000 ° C., hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C. or higher, or when the raw material tube has a sufficiently high temperature of Ar 3 points + 50 ° C. or higher. Is subjected to hot finishing rolling at a finishing temperature of Ar 3 points + 50 ° C. or more without reheating, and then from the temperature of Ar 3 or more to the point of 1-2 mm deep on the pipe quenching side to the temperature just below Ar 1 point of steel. Cooling at a rate of 150 ° C./s or less, and then cooling at a rate of 150 ° C./s or more to 800 to 400 ° C. on the opposite side of the quenching side of the pipe, and then performing a cooling treatment. This is a method for producing a low hardness and high toughness seamless steel pipe having excellent SSC properties.

【0006】[0006]

【作用】以下本発明の製造法について詳細に説明する。
先ず、本発明において上記のような鋼成分に限定した理
由について説明する。C,Mnは、焼入れ効果を増して
強度を高め降伏点30〜60kgf/mm2 の高張力鋼を安定
して得るためおよび細粒化を図るため重要である。少な
過ぎるとその効果がなく、多過ぎるとパイプ焼入れ側深
さ1〜2mmの点を鋼のAr1 点直下の温度まで150℃
/s以下の速度で冷却しても硬さの低減(ビッカース硬さ
<250)が図れず耐SSC性の劣化をきたし、また靭
性劣化の原因となるためそれぞれ0.03〜0.0.2
0%、0.15〜2.5%とした。Siは、脱酸剤が残
存したもので強度を高める有効な成分である。少な過ぎ
るとその効果がなく、多過ぎると介在物を増加して耐S
SC性を低下させるため0.01〜0.5%とした。
The production method of the present invention will be described below in detail.
First, the reason why the present invention is limited to the above steel components will be described. C and Mn are important for increasing the quenching effect, increasing the strength, stably obtaining a high-tensile steel having a yield point of 30 to 60 kgf / mm 2 , and reducing the grain size. If too little without the effect, 0.99 ° C. if too large a point pipe hardening side depth 1~2mm to a temperature just below Ar 1 point of the steel
Even when cooled at a rate of not more than / s, the hardness cannot be reduced (Vickers hardness <250), and the SSC resistance is deteriorated.
0%, 0.15 to 2.5%. Si is a component in which the deoxidizing agent remains and is an effective component for increasing the strength. If the amount is too small, the effect is not obtained.
In order to reduce the SC property, the content was set to 0.01 to 0.5%.

【0007】Pは、粒界偏析を起こして加工の際き裂を
生じ易く有害な成分であり、また低温靭性の劣化をきた
すためその含有量を0.020%以下とした。Sは、M
nS系介在物を形成して熱間連続圧延で延伸し層状組織
を形成し、鋼の破壊伝播性能を改善する。少な過ぎると
その効果がなく、多過ぎると介在物を増加して鋼の性質
を脆化するため0.01%以下とした。Alは、Siと
同様脱酸剤が残存したもので、鋼中の不純物成分として
含まれるNと結合して結晶粒の成長を抑えて鋼の破壊伝
播性能を改善する。少な過ぎるとその効果がなく、多過
ぎると介在物を増加して鋼の性質を脆化するため0.0
05〜0.1%とした。
[0007] P is a harmful component that easily causes cracks during processing due to grain boundary segregation, and its content is limited to 0.020% or less because it causes deterioration of low-temperature toughness. S is M
An nS-based inclusion is formed and stretched by hot continuous rolling to form a layered structure, thereby improving the fracture propagation performance of steel. If too little without the effect, too and inclusions increase to the set to 0.01% or less to embrittlement properties of the steel. Al has a deoxidizing agent remaining like Si, and combines with N contained as an impurity component in steel to suppress the growth of crystal grains and improve the fracture propagation performance of steel. If the amount is too small, the effect is not obtained.If the amount is too large, the number of inclusions increases and the properties of the steel become brittle.
05 to 0.1%.

【0008】Ti,Nbは、いずれもシームレス圧延中
の結晶粒径制御元素として本発明の成分の中で最も重要
な元素である。Tiは、鋼中の不純物成分として含まれ
るNと結合して、Nbは主にCと結合して、熱間傾斜圧
延中の結晶粒制御および熱間傾斜圧延後の結晶粒の成長
を抑える重要な成分である。結晶粒の成長抑制が不十分
であるとパイプ焼入れ側1〜2mmの点を鋼のAr1 点直
下の温度まで150℃/s以下の速度で冷却しても硬さの
低減(ビッカース硬さ<250)が図れず耐SSC性の
劣化をきたす。添加粒が少な過ぎるとその効果がなく、
多過ぎてもその効果は飽和し、しかも非常に高価である
ため0.005〜0.1%とした。Nは、後述のBの焼
入れ性を低下させる有害な成分としてその含有量を0.
01%以下とした。上記の成分組成の鋼でさらに鋼の強
度を高める場合Cr,Mo,Ni,V,B等の成分を必
要に応じて選択的に添加する。Cr,Mo,Ni,V
は、鋼の焼入れ性を増して、強度を高めるために添加す
るものである。少な過ぎるとその効果がなく、多過ぎて
もその効果が飽和し、しかも非常に高価であるため、そ
れぞれ0.1〜1.5%、0.05〜0.5%、0.1
〜2.0%、0.01〜0.1%とした。Bは、焼入れ
性を著しく向上せしめて強度を高める。少な過ぎるとそ
の効果がなく、多過ぎても効果は変わらず、靭性や熱間
加工性を劣化させるので0.0003〜0.0030%
とした。
[0008] Both Ti and Nb are the most important elements among the components of the present invention as crystal grain size control elements during seamless rolling. Ti combines with N contained as an impurity component in steel, and Nb mainly combines with C, thereby controlling crystal grains during hot-gradient rolling and suppressing the growth of crystal grains after hot-gradient rolling. Component. If the growth of crystal grains is insufficiently suppressed, the hardness is reduced (Vickers hardness <) even if the point 1 to 2 mm on the quenched side of the pipe is cooled at a rate of 150 ° C./s or less to a temperature just below the Ar 1 point of the steel. 250), the SSC resistance deteriorates. If the added particles are too small, the effect will not be
If the amount is too large, the effect is saturated, and it is very expensive. N is a harmful component that lowers the hardenability of B described below, and its content is set to 0.1.
01% or less. In the case of further increasing the strength of the steel having the above composition, components such as Cr, Mo, Ni, V, and B are selectively added as needed. Cr, Mo, Ni, V
Is added to increase the hardenability of steel and to increase the strength. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect is saturated and the cost is very high. Therefore, 0.1 to 1.5%, 0.05 to 0.5%, 0.1
To 2.0% and 0.01 to 0.1%. B remarkably improves the hardenability and increases the strength. If the amount is too small, the effect is not obtained, and if the amount is too large, the effect does not change, and the toughness and the hot workability are deteriorated.
And

【0009】さらに本発明は、近年のシームレス鋼管の
使用環境を鑑み上記の成分組成で構成される鋼の耐SS
C性を改善するために希土類元素等の成分を必要に応じ
て選択的に添加する。希土類元素、Caは、介在物の形
態を球状化させて無害化する有効な成分である。少な過
ぎるとその効果がなく、多過ぎると介在物を増加して耐
SSC性を低下させるのでそれぞれ0.001〜0.0
5%、0.001〜0.02%とした。Co,Cuは、
鋼中への水素侵入抑制効果があり耐SSC性に有効に働
く。少な過ぎるとその効果がなく、多過ぎるとその効果
が飽和するためそれぞれ0.05〜0.5%、0.1〜
0.5%とした。
Further, the present invention has been developed in view of the use environment of seamless steel pipes in recent years.
In order to improve the C property, a component such as a rare earth element is selectively added as needed. The rare earth element, Ca, is an effective component that makes the form of inclusions spherical and harmless. If the amount is too small, the effect is not obtained. If the amount is too large, the number of inclusions increases and the SSC resistance is lowered.
5%, 0.001 to 0.02%. Co and Cu are
It has the effect of suppressing hydrogen intrusion into steel and works effectively on SSC resistance. If the amount is too small, the effect is not obtained. If the amount is too large, the effect is saturated.
0.5%.

【0010】次に熱間シームレス圧延条件を上記のよう
に限定した理由について説明する。上記のような成分組
織の鋼は転炉、電気炉等の溶解炉で或いはさらに真空脱
ガス処理を経て溶製され、連続鋳造法または造塊分塊法
で鋼片を製造する。鋼片は、直ちに或いは一旦冷却され
た後高温に加熱し熱間穿孔圧延を行う。加熱温度は、熱
間穿孔圧延を容易にするため十分高くしておかねばなら
ないと同時に細粒オーステナイト組織を得る観点からは
極力低い方が望ましい。本発明の成分範囲内であれば1
000℃以上の温度で熱間穿孔加工上なんら支障が生じ
ずまた細粒化の観点から1250℃以上では粗粒となる
ため、その温度は1000〜1250℃とした。
Next, the reason why the hot seamless rolling conditions are limited as described above will be described. The steel having the above-mentioned composition is melted in a melting furnace such as a converter or an electric furnace or further subjected to vacuum degassing, and a steel slab is manufactured by a continuous casting method or an ingot lump method. The slab is heated immediately after or once cooled and then subjected to hot piercing and rolling. The heating temperature must be sufficiently high to facilitate hot piercing and rolling, and is preferably as low as possible from the viewpoint of obtaining a fine-grained austenite structure. 1 within the range of the component of the present invention.
At a temperature of 000 ° C. or higher, there is no problem in hot drilling, and from 1250 ° C. or higher, coarse particles are formed from the viewpoint of grain refinement.

【0011】熱間穿孔圧延が行われた中空素管は、加工
による発熱現象で1000℃以上の高温で、しかも素管
の温度は内表面で高く不均一となり、一方、最終段の傾
斜圧延機による結晶粒径微細化効果を図1に示すよう
に、結晶粒径は主に圧延温度に支配される。よって、最
終段の傾斜圧延機で均一且つ細粒オーステナイトを得る
には圧延直前の素管温度を低下させると同時に素管温度
を均一にしなければならない。本発明の成分範囲内で細
粒組織を得るには最終段の傾斜圧延機前温度はAr3
〜1100℃にする必要があり、また、素管温度の均一
化は、外表側に比べて温度が高い内表面側を強制的に冷
却する必要がある。冷却は、水単独或いはミスト、圧縮
空気のいずれでもよい。
The hollow shell subjected to hot piercing and rolling has a high temperature of 1000 ° C. or more due to the heat generation phenomenon caused by processing, and the temperature of the shell is high and uneven on the inner surface. As shown in FIG. 1, the crystal grain size is largely controlled by the rolling temperature. Therefore, in order to obtain uniform and fine-grained austenite in the final-stage inclined rolling mill, it is necessary to lower the tube temperature immediately before rolling and at the same time to make the tube temperature uniform. In order to obtain a fine grain structure within the component range of the present invention, the temperature before the final stage of the inclined rolling mill needs to be Ar 3 point to 1100 ° C, and the uniform tube temperature is higher than that on the outer surface side. It is necessary to forcibly cool the inner surface side where the temperature is high. The cooling may be water alone, mist, or compressed air.

【0012】また、傾斜圧延機では再結晶は大部分動的
に起こるので、結晶粒度は加工量によらない。しかし、
再結晶する臨界ひずみは超えている必要がある。圧下率
は、再結晶が圧延終了後にも静的に起こることを考慮し
て下限を20%とした。一方、圧下率が余り大き過ぎる
と、圧延が困難になりパイプの成形性や表面品位の低下
が起こるため、上限を70%とした。最終段の傾斜圧延
により微細化された該素管は圧延終了後、形状矯正のた
めの連続圧延を行い、Ar3 点〜900℃の温度まで降
下した中空素管は、該温度より高いAr3 点+50〜1
000℃に再加熱するか、或いは該素管がAr3 点+5
0℃以上の十分高い温度が確保されている場合は再加熱
せずに熱間最終仕上げ圧延を施す。再加熱温度は、最終
仕上げ後オーステナイトからの焼入れ温度を確保するた
め高温にする必要があるが高過ぎると酸化スケールが多
く生じ疵発生の原因となるためAr3 点+50〜100
0℃とした。Ar3 点以上の温度から急冷する焼入れ処
理を施した後、続いて、Ar1 点以下の温度に加熱して
冷却する焼戻し処理を行う最終仕上げ圧延温度は、圧延
後オーステナイトからの焼入れ温度を確保するため圧延
温度はAr1 点以上とした。
[0012] In the inclined rolling mill, since recrystallization occurs mostly dynamically, the crystal grain size does not depend on the processing amount. But,
The critical strain for recrystallization must be exceeded. The lower limit of the rolling reduction was set to 20% in consideration of the fact that recrystallization occurs statically even after the end of rolling. On the other hand, if the rolling reduction is too large, rolling becomes difficult and the formability and surface quality of the pipe deteriorate, so the upper limit was set to 70%. After completion of the rolling, the raw tube refined by the inclined rolling at the final stage is subjected to continuous rolling for shape correction, and the hollow raw tube lowered to a temperature of from the Ar 3 point to 900 ° C. has an Ar 3 temperature higher than the temperature. Points + 50 to 1
Reheat to 000 ° C, or set the element tube to Ar 3 points + 5
If a sufficiently high temperature of 0 ° C. or higher is secured, hot final rolling is performed without reheating. Reheating temperature is causative for Ar 3 point of the quenching temperature and oxide scale it is necessary to high temperature too high to ensure the many resulting scratches generated from the last finishing after austenite + 50-100
0 ° C. After the quenching process of quenching from the temperature of Ar 3 points or more, and then the tempering process of heating and cooling to the temperature of Ar 1 point or less, the final finish rolling temperature secures the quenching temperature from austenite after rolling. For this, the rolling temperature was set to one or more Ar.

【0013】形状矯正のための連続圧延直後或いは再加
熱後Ar3 点+50℃以上の温度で熱間最終仕上げ圧延
を行う。圧延温度は、あまり低くなると形状の確保が困
難となるため、Ar3 点+50℃以上とした。
Immediately after continuous rolling for shape correction or after reheating, hot final finishing rolling is performed at a temperature of 3 points of Ar + 50 ° C. or more. Rolling temperature, it becomes difficult becomes too low secure shape was Ar 3 point + 50 ℃ or higher.

【0014】熱間最終仕上げ圧延後Ar3 点以上の温度
からパイプ焼入れ側1〜2mmの点を鋼のAr1 点直下の
温度まで150℃/s(秒)以下の速度で冷却し引き続き
150℃/s以上の速度でその反対側の面が800〜40
0℃になるまで冷却した後、放冷処理を施す。焼入れ開
始温度は、細粒フェライト+ベイナイト+マルテンサイ
トの混合組織を確保し、必要とする強度を確保するため
Ar3 点以上とした。焼入れ時の冷却速度は、強度、靭
性、耐SSC性を確保するため特に重要である。冷却速
度は、冷媒すなわち冷却水の温度を一定とした場合、水
量密度の大小により決まりその水量密度は焼入れ表面か
ら深さ1〜2mmの点の冷却速度に最も大きく影響を及ぼ
す。強度確保に必要な水量密度で冷却すると焼入れ端か
ら1〜2mmの点の冷却速度が大きくなり、焼戻し後の硬
さが上昇し、耐SSC性が低下する。耐SSC性の確保
には、ビッカース硬さ250以下にする必要があり、本
発明範囲の鋼成分は150℃/s以下で冷却する必要があ
る。
After the final hot rolling, from the temperature of at least 3 points of Ar to the point of 1 to 2 mm on the quenching side of the pipe from the temperature of 1 to 2 m below the point of Ar of the steel, it is cooled at a rate of 150 ° C./sec. / s on the opposite side at a speed of at least 800 / s
After cooling to 0 ° C., a cooling treatment is performed. The quenching start temperature was set to three or more Ar points in order to secure a mixed structure of fine-grained ferrite + bainite + martensite and to secure required strength. The cooling rate during quenching is particularly important to ensure strength, toughness, and SSC resistance. The cooling rate is determined by the size of the water density when the temperature of the refrigerant, that is, the cooling water is fixed, and the water density has the greatest effect on the cooling rate at a point of 1 to 2 mm deep from the quenched surface. When cooling is performed at a water density required for securing the strength, the cooling rate at a point of 1 to 2 mm from the quenched end increases, the hardness after tempering increases, and the SSC resistance decreases. To secure SSC resistance, the Vickers hardness must be 250 or less, and the steel component within the scope of the present invention needs to be cooled at 150 ° C./s or less.

【0015】しかしながら、パイプ焼入れ側の反対側の
面の冷却速度を150℃/s以下とすると必要な強度が確
保できない。よって、焼入れ側から深さ1〜2mmの点の
冷却速度を、Ar1 点を切るまで150℃/s以下で行
い、引き続き150℃/s以上の速度で冷却する。150
℃/s以上の速度での冷却は、パイプ焼入れ側の反対面側
が800〜400℃で停止しなければならない。150
℃/s以上の速度で冷却を完了する温度(ここでは、パイ
プの内面側)は冷却後のパイプの自己保有熱によりパイ
プ焼入れ側から1〜2mmの点を400〜600℃まで復
熱する必要があり、その温度はパイプの肉厚により変化
する。一般的にガス、石油エネルギー資源機材として使
用されるパイプの肉厚範囲(5〜30mm)では、冷却を
完了する温度があまり低くなると十分な復熱がなく、ま
たあまり高くなると十分な強度を確保するための組織が
得られないため、パイプ焼入れ側の反対面側が800〜
400℃で冷却を停止するのがよい。
However, if the cooling rate of the surface on the side opposite to the quenching side of the pipe is set to 150 ° C./s or less, required strength cannot be secured. Therefore, the cooling rate at a point of 1 to 2 mm in depth from the quenching side is performed at 150 ° C./s or less until the Ar 1 point is cut, and then cooled at a rate of 150 ° C./s or more. 150
Cooling at a rate of ° C / s or more must stop at 800-400 ° C on the side opposite the pipe quenching side. 150
The temperature at which cooling is completed at a rate of at least ° C / s (in this case, the inner surface of the pipe) needs to be reheated to a point of 1 to 2 mm from the quenching side of the pipe to 400 to 600 ° C by the self-held heat of the cooled pipe. The temperature varies depending on the wall thickness of the pipe. Generally, in the range of wall thickness (5 to 30 mm) of pipes used as gas and petroleum energy resources, when the temperature at which cooling is completed is too low, there is no sufficient recuperation, and when it is too high, sufficient strength is secured. Since the microstructure for quenching is not obtained, the surface opposite to the hardened
The cooling is preferably stopped at 400 ° C.

【0016】尚、本発明において、仕上げ鋼管の冷却を
1〜2mmの点を基準としたのは、1mm未満では脱炭層或
いはスケールで硬度測定が難しくなること、また2mmを
超えると冷却速度の影響が小さく敏感に材質を管理する
ことができない。つまり、1〜2mmの深さは冷却速度の
影響を敏感に受け材質を管理し易い範囲であるからであ
る。
In the present invention, the cooling of the finished steel pipe is based on the point of 1 to 2 mm. If it is less than 1 mm, it becomes difficult to measure the hardness of the decarburized layer or scale. The material cannot be controlled sensitively. That is, the depth of 1 to 2 mm is a range that is sensitive to the cooling rate and easily manages the material.

【0017】以上の製造方法で得られる鋼は、粗大粒を
含むことなく且つ焼入れ時の自己保有熱により焼戻しを
省略した省工程で耐SSC性に優れた低硬度高靭性シー
ムレス鋼管の製造に有効である。
The steel obtained by the above manufacturing method is effective for the production of a low-hardness and high-toughness seamless steel pipe excellent in SSC resistance and free of tempering by self-holding heat during quenching without containing coarse grains. It is.

【0018】[0018]

【実施例】次に本発明の実施例について説明する。転炉
で溶製し連続鋳造を経て製造された表1に示す成分の鋼
片を表2に示す条件で熱間シームレス圧延を行ってパイ
プ焼入れ側1〜2mmの点を鋼のAr1 点以下の温度まで
150℃/s以下の速度で冷却し、引き続き150℃/s以
上の速度で冷却後、放冷処理を施した。これらの鋼管の
強度、硬さ、オーステナイト粒度および耐SSC性を表
1に示した。尚、耐SSC性は、NACE TM01−
77に従った荷重方式によるσth(Threshold Stress)を
求めて評価した。
Next, an embodiment of the present invention will be described. A steel slab having the components shown in Table 1 produced by continuous casting and smelted in a converter is subjected to hot seamless rolling under the conditions shown in Table 2, and the point of 1 to 2 mm on the quenching side of the pipe is Ar 1 point or less of steel. , Was cooled at a rate of 150 ° C / s or less, subsequently cooled at a rate of 150 ° C / s or more, and then allowed to cool. Table 1 shows the strength, hardness, austenite grain size and SSC resistance of these steel tubes. In addition, SSC resistance is NACE TM01-
Σth (Threshold Stress) by the load method according to No. 77 was obtained and evaluated.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】本発明によって製造された鋼管は、高強度
を有し且つ従来法に比しオーステナイト粒度(γ粒度)
は微細で低硬度が得られ耐SSC性はσthで0.2σy
以上向上することがわかる。
The steel pipe manufactured according to the present invention has a high strength and an austenite grain size (γ grain size) as compared with the conventional method.
Is fine, low hardness is obtained and the SSC resistance is 0.2σy at σth
It turns out that it improves above.

【0022】[0022]

【発明の効果】上記の本発明法によって製造された鋼管
は、高強度を有し且つ従来法に比しオーステナイト粒度
は最高硬さが低く、低温靭性および耐SSC性が優れて
いるため、極北の寒冷地や硫化物応力腐食環境において
使用される。
As described above, the steel pipe manufactured by the method of the present invention has a high strength, an austenite grain size lower than that of the conventional method, a lower maximum hardness, and excellent low-temperature toughness and SSC resistance. Used in cold climates and sulfide stress corrosion environments.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通常の鋼板圧延法と傾斜圧延後のγ粒度と圧延
温度の影響を示す。
FIG. 1 shows the influence of the γ-grain size and rolling temperature after a conventional steel plate rolling method and inclined rolling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 晃 福岡県北九州市戸畑区飛幡町1番1号 新日本製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平1−278902(JP,A) 特開 平4−21721(JP,A) 特開 平6−18327(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Akira Nakajima, Inventor 1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Nippon Steel Corporation Yawata Works (56) References JP-A-1-278902 (JP, A) JP-A-4-21721 (JP, A) JP-A-6-18327 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%として、 C :0.03〜0.20%、 Si:0.01〜
0.5%、 Mn:0.15〜2.5%、 P :0.020%
以下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下 を含有して残部が実質的にFeからなる鋼片を1000
〜1250℃に加熱した後、熱間穿孔圧延を施して、加
工発熱で1000℃以上に上昇した中空素管を最終段の
傾斜圧延機前で該素管内面から強制冷却して素管全体を
Ar3 点〜1100℃間の温度にする均一化処理を行っ
た後、肉厚断面減少率で20〜70%の傾斜圧延を施
し、さらに形状矯正熱間連続圧延を行った後、Ar3
〜900℃の温度まで降下した中空素管を、該温度より
高いAr3 点+50〜1000℃に再加熱した後、或い
は該素管がAr3 点+50℃以上の十分高い温度が確保
された場合は再加熱することなく、仕上げ温度がAr3
点+50℃以上の熱間仕上げ圧延を施し、その後Ar3
点以上の温度からパイプ焼入れ側深さ1〜2mmの点を鋼
のAr1 点直下の温度まで150℃/秒(s)以下の速
度で冷却し、引き続き150℃/s以上の速度でパイプ焼
入れ側の反対面側が800〜400℃になるまで冷却
し、しかる後放冷処理を施すことを特徴とする耐SSC
性に優れた低硬度高靭性シームレス鋼管の製造法。
C .: 0.03 to 0.20%, and Si: 0.01 to 1.0% by weight.
0.5%, Mn: 0.15 to 2.5%, P: 0.020%
S: 0.010% or less, Al: 0.005 or less
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, and the balance is substantially 1000%.
After heating to 121250 ° C., hot piercing and rolling are performed, and the hollow shell raised to 1000 ° C. or higher by working heat is forcibly cooled from the inner surface of the hollow shell before the final stage of the inclined rolling mill, and the entire shell is cooled. After performing a homogenization process at a temperature between Ar 3 points and 1100 ° C., performing an inclined rolling at a reduction rate of 20 to 70% in a thickness section reduction rate, further performing a shape correcting hot continuous rolling, and then performing an Ar 3 point the hollow shell was lowered to a temperature of to 900 ° C., was reheated to a high Ar 3 point + 50 to 1000 ° C. than the temperature, or if the plain pipe Ar 3 point + 50 ℃ above temperature high enough is secured Finishes at Ar 3 without reheating
Point + 50 subjected to hot finish rolling over ° C., then Ar 3
From the temperature above the point, the point of 1-2 mm deep on the pipe quenching side is cooled at a rate of 150 ° C./sec (s) or less to the temperature just below the Ar 1 point of the steel, and then the pipe is quenched at a rate of 150 ° C./s or more. Characterized in that the opposite side is cooled to 800 to 400 ° C. and then subjected to a cooling treatment.
Method of manufacturing low hardness and high toughness seamless steel pipe with excellent heat resistance.
【請求項2】 重量%として、 C :0.03〜0.20%、 Si:0.01〜
0.5%、 Mn:0.15〜2.5%、 P :0.020%
以下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下を含有して、さらに Cr:0.1〜1.5%、 Mo:0.05〜
0.5%、 Ni:0.1〜2.0%、 V :0.01〜
0.1%、 B :0.0003〜0.0030%の1種または2種
以上 を含有して残部が実質的にFeからなる鋼片を1000
〜1250℃に加熱した後、熱間穿孔圧延を施して、加
工発熱で1000℃以上に上昇した中空素管を最終段の
傾斜圧延機前で該素管内面から強制冷却して素管全体を
Ar3 点〜1100℃間の温度にする均一化処理を行っ
た後、肉厚断面減少率で20〜70%の傾斜圧延を施
し、さらに形状矯正熱間連続圧延を行った後、Ar3
〜900℃の温度まで降下した中空素管を、該温度より
高いAr3 点+50〜1000℃に再加熱した後、或い
は該素管がAr3 点+50℃以上の十分高い温度が確保
された場合は再加熱することなく、仕上げ温度がAr3
点+50℃以上の熱間仕上げ圧延を施し、その後Ar3
点以上の温度からパイプ焼入れ側深さ1〜2mmの点を鋼
のAr1 点直下の温度まで150℃/s以下の速度で冷却
し、引き続き150℃/s以上の速度でパイプ焼入れ側の
反対面側が800〜400℃になるまで冷却し、しかる
後放冷処理を施すことを特徴とする耐SSC性に優れた
低硬度高靭性シームレス鋼管の製造法。
2. As% by weight, C: 0.03 to 0.20%, Si: 0.01 to
0.5%, Mn: 0.15 to 2.5%, P: 0.020%
S: 0.010% or less, Al: 0.005 or less
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Cr: 0.1-1.5%, Mo: 0.05-
0.5%, Ni: 0.1 to 2.0%, V: 0.01 to
A steel slab containing 0.1%, B: one or more of 0.0003 to 0.0030%, and the balance substantially consisting of Fe
After heating to 121250 ° C., hot piercing and rolling are performed, and the hollow shell raised to 1000 ° C. or higher by working heat is forcibly cooled from the inner surface of the hollow shell before the final stage of the inclined rolling mill, and the entire shell is cooled. After performing a homogenization process at a temperature between Ar 3 points and 1100 ° C., performing an inclined rolling at a reduction rate of 20 to 70% in a thickness section reduction rate, further performing a shape correcting hot continuous rolling, and then performing an Ar 3 point the hollow shell was lowered to a temperature of to 900 ° C., was reheated to a high Ar 3 point + 50 to 1000 ° C. than the temperature, or if the plain pipe Ar 3 point + 50 ℃ above temperature high enough is secured Finishes at Ar 3 without reheating
Point + 50 subjected to hot finish rolling over ° C., then Ar 3
From the temperature above the point, the point of 1-2 mm deep on the pipe quenching side is cooled at a rate of 150 ° C / s or less to a temperature just below the Ar 1 point of the steel, and then opposite to the pipe quenching side at a rate of 150 ° C / s or more. A method for producing a low-hardness and high-toughness seamless steel pipe excellent in SSC resistance, characterized in that the surface side is cooled to 800 to 400 ° C. and then subjected to a cooling treatment.
【請求項3】 重量%として、 C :0.03〜0.20%、 Si:0.01〜
0.5%、 Mn:0.15〜2.5%、 P :0.020%
以下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下を含有して、さらに 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02%、 Co:0.05〜
0.5%、 Cu:0.1〜0.5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1000〜1250℃に加熱した後、熱間
穿孔圧延を施して、加工発熱で1000℃以上に上昇し
た中空素管を最終段の傾斜圧延機前で該素管内面から強
制冷却して素管全体をAr3 点〜1100℃間の温度に
する均一化処理を行った後、肉厚断面減少率で20〜7
0%の傾斜圧延を施し、さらに形状矯正熱間連続圧延を
行った後、Ar3 点〜900℃の温度まで降下した中空
素管を、該温度より高いAr3 点+50〜1000℃に
再加熱した後、或いは該素管がAr3 点+50℃以上の
十分高い温度が確保された場合は再加熱することなく、
仕上げ温度がAr3 点+50℃以上の熱間仕上げ圧延を
施し、その後Ar3 点以上の温度からパイプ焼入れ側深
さ1〜2mmの点を鋼のAr1 点直下の温度まで150℃
/s以下の速度で冷却し、引き続き150℃/s以上の速度
でパイプ焼入れ側の反対面側が800〜400℃になる
まで冷却し、しかる後放冷処理を施すことを特徴とする
耐SSC性に優れた低硬度高靭性シームレス鋼管の製造
法。
3. As% by weight, C: 0.03 to 0.20%, Si: 0.01 to
0.5%, Mn: 0.15 to 2.5%, P: 0.020%
S: 0.010% or less, Al: 0.005 or less
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Rare earth element: 0.001 to 0.05%, Ca: 0.001 to 0.02%, Co: 0.05 to
After heating a steel slab containing one or more of 0.5%, Cu: 0.1 to 0.5% and substantially the remainder of Fe to 1000 to 1250 ° C., hot piercing and rolling The hollow shell raised to 1000 ° C. or higher due to the heat generated during processing is forcibly cooled from the inner surface of the hollow shell before the final inclined rolling mill to uniformly cool the entire shell to a temperature between Ar 3 points and 1100 ° C. After performing the surface treatment, the reduction rate of the thickness cross section is 20 to 7
After performing 0% inclined rolling and further performing shape correcting hot continuous rolling, the hollow shell dropped to a temperature of Ar 3 point to 900 ° C. is reheated to an Ar 3 point higher than the temperature and 50 to 1000 ° C. after, or without reheating if the plain pipe Ar 3 point + 50 ℃ above temperature high enough is secured,
Hot finishing rolling is performed at a finishing temperature of Ar 3 points + 50 ° C or higher, and then a temperature of 1 to 2 mm deeper on the pipe quenching side from the temperature of Ar 3 points or higher to a temperature just below Ar 1 point of steel at 150 ° C.
SSC resistance characterized by cooling at a rate of not more than 150 ° C / s, then cooling at a rate of not less than 150 ° C / s to 800-400 ° C on the opposite side of the pipe quenching side, and then subjecting it to a cooling treatment. Method for producing low-hardness and high-toughness seamless steel pipe excellent in quality.
【請求項4】 重量%として、 C :0.03〜0.20%、 Si:0.01〜
0.5%、 Mn:0.15〜2.5%、 P :0.020%
以下、 S :0.010%以下、 Al:0.005〜
0.1%、 Ti:0.005〜0.1%、 Nb:0.005〜
0.1%、 N :0.01%以下を含有して、さらに Cr:0.1〜1.5%、 Mo:0.05〜
0.5%、 Ni:0.1〜2.0%、 V :0.01〜
0.1%、 B :0.0003〜0.0030%の1種または2種
以上と、 希土類元素:0.001〜0.05%、 Ca:0.001〜0.02%、 Co:0.05〜0.5%、 Cu:0.1〜0.
5% の1種または2種以上を含有して残部が実質的にFeか
らなる鋼片を1000〜1250℃に加熱した後、熱間
穿孔圧延を施して、加工発熱で1000℃以上に上昇し
た中空素管を最終段の傾斜圧延機前で該素管内面から強
制冷却して素管全体をAr3 点〜1100℃間の温度に
する均一化処理を行った後、肉厚断面減少率で20〜7
0%の傾斜圧延を施し、さらに形状矯正熱間連続圧延を
行った後、Ar3 点〜900℃の温度まで降下した中空
素管を該温度より高いAr3 点+50〜1000℃に再
加熱した後、或いは該素管がAr3 点+50℃以上の十
分高い温度が確保された場合は再加熱することなく、仕
上げ温度がAr3 点+50℃以上の熱間仕上げ圧延を施
し、その後Ar3 点以上の温度からパイプ焼入れ側深さ
1〜2mmの点を鋼のAr1 点直下の温度まで150℃/s
以下の速度で冷却し、引き続き150℃/s以上の速度で
パイプ焼入れ側の反対面側が800〜400℃になるま
で冷却し、しかる後放冷処理を施すことを特徴とする耐
SSC性に優れた低硬度高靭性シームレス鋼管の製造
法。
4. C: 0.03-0.20%, Si: 0.01-% by weight
0.5%, Mn: 0.15 to 2.5%, P: 0.020%
S: 0.010% or less, Al: 0.005 or less
0.1%, Ti: 0.005 to 0.1%, Nb: 0.005 to
0.1%, N: 0.01% or less, Cr: 0.1-1.5%, Mo: 0.05-
0.5%, Ni: 0.1 to 2.0%, V: 0.01 to
0.1%, B: one or more of 0.0003 to 0.0030%, rare earth element: 0.001 to 0.05%, Ca: 0.001 to 0.02%, Co: 0 0.05-0.5%, Cu: 0.1-0.
After heating a steel slab containing 5% of one or more kinds and the balance substantially consisting of Fe to 1000 to 1250 ° C., it was subjected to hot piercing and rolling to 1000 ° C. or more due to the heat generated during processing. After the hollow shell is forcibly cooled from the inner surface of the shell in front of the final stage of the inclined rolling mill, and the entire shell is homogenized to a temperature of between Ar 3 point and 1100 ° C., the wall thickness reduction rate is determined. 20-7
After performing 0% inclined rolling and further performing shape-correcting continuous hot rolling, the hollow shell lowered to a temperature of Ar 3 point to 900 ° C. was reheated to an Ar 3 point higher than the temperature and 50 to 1000 ° C. after, or without reheating if the plain pipe Ar 3 point + 50 ℃ above temperature high enough is secured, the finishing temperature is subjected to hot finish rolling Ar 3 point + 50 ℃ or higher, then Ar 3 point From the above temperature, the point of 1 to 2 mm depth on the pipe quenching side is 150 ° C / s from the above point to the temperature just below the Ar 1 point
Cooling at the following speed, then cooling at a speed of 150 ° C./s or more to 800-400 ° C. on the side opposite to the quenching side of the pipe, and then subjecting it to a cooling treatment. Manufacturing method of low hardness and high toughness seamless steel pipe.
JP5170734A 1993-07-09 1993-07-09 Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance Expired - Lifetime JP3046183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170734A JP3046183B2 (en) 1993-07-09 1993-07-09 Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5170734A JP3046183B2 (en) 1993-07-09 1993-07-09 Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance

Publications (2)

Publication Number Publication Date
JPH0726323A JPH0726323A (en) 1995-01-27
JP3046183B2 true JP3046183B2 (en) 2000-05-29

Family

ID=15910403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170734A Expired - Lifetime JP3046183B2 (en) 1993-07-09 1993-07-09 Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance

Country Status (1)

Country Link
JP (1) JP3046183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882298A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 Seamless steel tube used for X60 delivery pipeline and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057286A1 (en) * 2000-02-02 2001-08-09 Kawasaki Steel Corporation High strength, high toughness, seamless steel pipe for line pipe
CN103215518B (en) * 2013-05-14 2016-04-20 内蒙古包钢钢联股份有限公司 Containing the resistance to H of rare earth 2the preparation method of S corroded pipeline weldless steel tube
CN105855317A (en) * 2016-06-14 2016-08-17 鑫鹏源智能装备集团有限公司 Niobium and niobium alloy seamless tube hot rolling production and processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882298A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 Seamless steel tube used for X60 delivery pipeline and manufacturing method thereof
CN103882298B (en) * 2012-12-21 2016-01-20 鞍钢股份有限公司 A kind of X60 line of pipes weldless steel tube and manufacture method thereof

Also Published As

Publication number Publication date
JPH0726323A (en) 1995-01-27

Similar Documents

Publication Publication Date Title
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
CN106756612A (en) A kind of easy laser welding hull plate steel of bainite/martensite/austenite high-ductility and manufacture method
CN105039870A (en) X80M pipeline steel resistant to low temperature and large in strain and manufacturing method and application of X80M pipeline steel
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JPH09111344A (en) Production of high strength and low yield ratio seamless steel pipe
JP2579094B2 (en) Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance
JPH09111343A (en) Production of high strength and low yield ratio seamless steel pipe
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP3249210B2 (en) Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3059993B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
KR100431852B1 (en) A method for manufacturing high strength thick steel sheet and a vessel by deep drawing
JPH06184635A (en) Production of high strength seamless steel pipe excellent in fracture propagating resistance
JP3145515B2 (en) Manufacturing method of low yield ratio high toughness seamless steel pipe
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC
JP2556643B2 (en) Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000208